Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand
2013-12-01
The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.
Apparatus and method for a light direction sensor
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2011-01-01
The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.
Study of Far—Field Directivity Pattern for Linear Arrays
NASA Astrophysics Data System (ADS)
Ana-Maria, Chiselev; Luminita, Moraru; Laura, Onose
2011-10-01
A model to calculate directivity pattern in far field is developed in this paper. Based on this model, the three-dimensional beam pattern is introduced and analyzed in order to investigate geometric parameters of linear arrays and their influences on the directivity pattern. Simulations in azimuthal plane are made to highlight the influence of transducers parameters, including number of elements and inter-element spacing. It is true that these parameters are important factors that influence the directivity pattern and the appearance of side-lobes for linear arrays.
NASA Astrophysics Data System (ADS)
Irwansyah, Kuse, Naoyuki; Usagawa, Tsuyoshi
2017-08-01
Directivity pattern of an ordinary loudspeaker becomes more directive at higher frequencies. However, because a single loudspeaker tends to radiate uniformly in all directions at low frequencies, reverberation from surrounding building walls may affect speech intelligibility when installing a multiple-loudspeaker system at crossroads. As an alternative, a sharply directive sound source is recommended to be used, but in many cases the directivity of an ordinary loudspeaker is less sharp at lower frequencies. Therefore, in order to overcome such a limitation, this paper discusses the possibility of using four loudspeakers under active control to realize a quadrupole radiation pattern in low frequency range. In this study, the radiation pattern of a primary loudspeaker and three secondary loudspeakers has been modelled. By placing the loudspeakers close together in the direction of 0°, 90°, 180°, and 270°, it was theoretically demonstrated that a quadrupole radiation pattern can be shaped in the target frequency range up to 600 Hz by simply controlling the directivity in three of four directions which are 45°, 135°, 225°, and 315°. Although, the radiation pattern model is far from realistic configurations and conditions, it is possible to realize a quadrupole radiation pattern in the low frequency range.
Enabling complex nanoscale pattern customization using directed self-assembly.
Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P
2014-12-16
Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.
Evaluation of Orientation Performance of Attention Patterns for Blind Person.
Fujisawa, Shoichiro; Ishibashi, Tatsuki; Sato, Katsuya; Ito, Sin-Ichi; Sueda, Osamu
2017-01-01
Tactile walking surface indicators (TWSIs) are installed on footpath to support independent travel for the blind. There are two types of TWSIs, attention patterns and guiding patterns. The attention pattern is usually installed at the crosswalk entrances. The direction of the crossing can be acquired by the row of the projection of the attention pattern through the soles of the shoes. In addition, truncated domes or cones of the attention pattern were arranged in a square grid, parallel or diagonal at 45 degrees to the principal direction of travel. However, the international standard organization (ISO) allows a wide-ranging size. In this research, the direction indicating performance was compared at the same intervals for the five diameters specified by the international standard. As a result of the experiment, the diagonal array does not indicate the direction of travel, but the projection row does indicate the direction of travel in the parallel array. When the attention pattern is installed at a crosswalk entrance, a parallel array should be installed in the direction of the crossing.
Wang, Ren; Wang, Bing-Zhong; Huang, Wei-Ying; Ding, Xiao
2016-04-16
A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios.
Finger Vein Recognition Based on Local Directional Code
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-01-01
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194
Finger vein recognition based on local directional code.
Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2012-11-05
Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.
Directivity pattern of the sound radiated from axisymmetric stepped plates.
He, Xiping; Yan, Xiuli; Li, Na
2016-08-01
For the purpose of optimal design and efficient utilization of the kind of stepped plate radiator in air, in this contribution, an approach for calculation of the directivity pattern of the sound radiated from a stepped plate in flexural vibration with a free edge is developed based on Kirchhoff-Love hypothesis and Rayleigh integral principle. Experimental tests of directivity pattern for a fabricated flat plate and two fabricated plates with one and two step radiators were carried out. It shows that the configuration of the measured directivity patterns by the proposed analytic approach is similar to those of the calculated approach. Comparison of the agreement between the calculated directivity pattern of a stepped plate and its corresponding theoretical piston show that the former radiator is equivalent to the latter, and the diffraction field generated by the unbaffled upper surface may be small. It also shows that the directivity pattern of a stepped radiator is independent of the metallic material but dependent on the thickness of base plate and resonant frequency. The thicker the thickness of base plate, the more directive the radiation is. The proposed analytic approach in this work may be adopted for any other plates with multi-steps.
Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.
Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho
2011-06-07
This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.
Study on induced strain in direct nanoimprint lithography
NASA Astrophysics Data System (ADS)
Watanabe, Kenta; Iida, Tatsuya; Yasuda, Masaaki; Kawata, Hiroaki; Hirai, Yoshihiko
2018-06-01
The induced shear strain distribution in a polymer film is investigated by computational study in a direct nanoimprint process. The effects of the polymer thickness, mold pattern shape such as rectangular, triangular or overcut pattern shape, and the coefficient of friction between the mold and the polymer are studied by computational work. As the coefficient of friction increases, the induced shear strain increases along the mold surface. Depending on the polymer thickness, the shear strain is induced in the residual and/or pattern area. In the triangular pattern, the strain is induced in the pattern central area. The results suggest that shear stress remains in the triangular pattern area in the direct nanoimprint process. On the other hand, the rectangular pattern is suitable for suppressing the induced strain inside the pattern.
Controlling the perceived distance of an auditory object by manipulation of loudspeaker directivity.
Laitinen, Mikko-Ville; Politis, Archontis; Huhtakallio, Ilkka; Pulkki, Ville
2015-06-01
This work presents a method to control the perceived distance of an auditory object by changing the directivity pattern of a loudspeaker and consequently the direct-to-reverberant ratio at the listening spot. Control of the directivity pattern is achieved by beamforming using a compact multi-driver loudspeaker unit. A small-sized cubic array consisting of six drivers is assembled, and per driver beamforming filters are derived from directional measurements of the array. The proposed method is evaluated using formal listening tests. The results show that the perceived distance can be controlled effectively by directivity pattern modification.
Graphene Transistor fabricated by Helium Ion Milling
NASA Astrophysics Data System (ADS)
Zhang, Kaiwen; Zhao, Xiangming; Xu, Xiangfan; Vignesh, Viswanathan; Li, Baowen; Pickard, Daniel; Özyilmaz, Barbaros; Department of Physics, National University of Singapore Team; Department of Electrical; Computer Engineering, National University of Singapore Team; eNanoCore, National University of Singapore Team
2011-03-01
We report the direct patterning of graphene for various nano-device applications. The Helium Ion Microscope (HIM), able to resolve nano-scale features on solid samples with an edge resolution of a mere 0.25 nm, has a number of attributes which make it attractive for the imaging of graphene structures. Even more compelling is the ability to directly modify graphene, through surface sputtering, enabling direct pattern transfer for the fabrication of graphene devices. The integration of the HIM with a vector pattern generator (Nano Pattern Generation System, NPGS), provides the capability to directly pattern graphene into nano-ribbons. We have successfully fabricated sub-100nm graphene nano-ribbon devices on Si/SiO2 substrate. Resistance measurement has been made as a function of temperature.
Wang, Ren; Wang, Bing-Zhong; Huang, Wei-Ying; Ding, Xiao
2016-01-01
A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios. PMID:27092512
Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae
2013-05-01
We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-01-01
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-12-10
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.
Determination of wood grain direction from laser light scattering pattern
NASA Astrophysics Data System (ADS)
Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo
2004-01-01
Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.
Field, Aaron S; Alexander, Andrew L; Wu, Yu-Chien; Hasan, Khader M; Witwer, Brian; Badie, Behnam
2004-10-01
To categorize the varied appearances of tumor-altered white matter (WM) tracts on diffusion tensor eigenvector directional color maps. Diffusion tensor imaging (DTI) was obtained preoperatively in 13 patients with brain tumors ranging from benign to high-grade malignant, including primary and metastatic lesions, and maps of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and major eigenvector direction were generated. Regions of interest (ROIs) were drawn within identifiable WM tracts affected by tumor, avoiding grossly cystic and necrotic regions, known fiber crossings, and gray matter. Patterns of WM tract alteration were categorized on the basis of qualitative analysis of directional color maps and correlation analysis of ADC and FA. Four basic patterns of WM alteration were identified: 1) normal or nearly normal FA and ADC, with abnormal tract location or tensor directions attributable to bulk mass displacement, 2) moderately decreased FA and increased ADC with normal tract locations and tensor directions, 3) moderately decreased FA and increased ADC with abnormal tensor directions, and 4) near isotropy. FA and ADC were inversely correlated for Patterns 1-3 but did not discriminate edema from infiltrating tumor. However, in the absence of mass displacement, infiltrating tumor was found to produce tensor directional changes that were not observed with vasogenic edema, suggesting the possibility of discrimination on the basis of directional statistics. Tumor alteration of WM tracts tends to produce one of four patterns on FA and directional color maps. Clinical application of these patterns must await further study. Copyright 2004 Wiley-Liss, Inc.
Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.
Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-09-10
A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.
Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.
Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei
2015-04-28
Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.
NASA Astrophysics Data System (ADS)
Huerta-Murillo, D.; Aguilar-Morales, A. I.; Alamri, S.; Cardoso, J. T.; Jagdheesh, R.; Lasagni, A. F.; Ocaña, J. L.
2017-11-01
In this work, hierarchical surface patterns fabricated on Ti-6Al-4V alloy combining two laser micro-machining techniques are presented. The used technologies are based on nanosecond Direct Laser Writing and picosecond Direct Laser Interference Patterning. Squared shape micro-cells with different hatch distances were produced by Direct Laser Writing with depths values in the micro-scale, forming a well-defined closed packet. Subsequently, cross-like periodic patterns were fabricated by means of Direct Laser Interference Patterning using a two-beam configuration, generating a dual-scale periodic surface structure in both micro- and nano-scale due to the formation of Laser-Induced Periodic Surface Structure after the picosecond process. As a result a triple hierarchical periodic surface structure was generated. The surface morphology of the irradiated area was characterized with scanning electron microscopy and confocal microscopy. Additionally, static contact angle measurements were made to analyze the wettability behavior of the structures, showing a hydrophobic behavior for the hierarchical structures.
Three-dimensional volume containing multiple two-dimensional information patterns
NASA Astrophysics Data System (ADS)
Nakayama, Hirotaka; Shiraki, Atsushi; Hirayama, Ryuji; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2013-06-01
We have developed an algorithm for recording multiple gradated two-dimensional projection patterns in a single three-dimensional object. When a single pattern is observed, information from the other patterns can be treated as background noise. The proposed algorithm has two important features: the number of patterns that can be recorded is theoretically infinite and no meaningful information can be seen outside of the projection directions. We confirmed the effectiveness of the proposed algorithm by performing numerical simulations of two laser crystals: an octagonal prism that contained four patterns in four projection directions and a dodecahedron that contained six patterns in six directions. We also fabricated and demonstrated an actual prototype laser crystal from a glass cube engraved by a laser beam. This algorithm has applications in various fields, including media art, digital signage, and encryption technology.
Kwon, Won Kyoung; Kim, Ah Na; Lee, Pil Moo; Park, Cheol Hwan; Kim, Jae Hun
2016-01-01
Background. Caudal epidural steroid injections (CESIs) are an effective treatment for pain. If the injection spreads in a specific pattern depending on the needle position or bevel direction, it would be possible to inject the agent into a specific and desired area. Objectives. We conducted a prospective randomized trial to determine if the needle position and bevel direction have any effect on the epidural spreading pattern in CESI. Methods. Demographic data of the patient were collected. During CESI, the needle position (middle or lateral) and direction (ventral or dorsal) were randomly allocated. Following fluoroscope-guided injection of 4 mL contrast media and 10 mL of injectates, the epidural spreading patterns (ventral or dorsal, bilateral or lateral) were imaged. Results. In the 210 CESIs performed, the needle tip position and bevel direction did not influence the epidural spreading patterns at L4-5 and L5-S1 disc levels. A history of Lumbar spine surgery was associated with a significantly limited spread to each disc level. A midline needle tip position was more effective than the lateral position in spreading to the distant disc levels. Conclusions. Neither the needle tip position nor the bevel direction affected the epidural drug spreading pattern during CESI. PMID:27445609
Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns
Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; ...
2016-08-16
Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyreneblock-poly(methyl methacrylate). Faster assembly kinetics aremore » observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. Lastly, the rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.« less
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
Directionality of dog vocalizations
NASA Astrophysics Data System (ADS)
Frommolt, Karl-Heinz; Gebler, Alban
2004-07-01
The directionality patterns of sound emission in domestic dogs were measured in an anechoic environment using a microphone array. Mainly long-distance signals from four dogs were investigated. The radiation pattern of the signals differed clearly from an omnidirectional one with average differences in sound-pressure level between the frontal and rear position of 3-7 dB depending from the individual. Frequency dependence of directionality was shown for the range from 250 to 3200 Hz. The results indicate that when studying acoustic communication in mammals, more attention should be paid to the directionality pattern of sound emission.
Transformations of visual memory induced by implied motions of pattern elements.
Finke, R A; Freyd, J J
1985-10-01
Four experiments measured distortions in short-term visual memory induced by displays depicting independent translations of the elements of a pattern. In each experiment, observers saw a sequence of 4 dot patterns and were instructed to remember the third pattern and to compare it with the fourth. The first three patterns depicted translations of the dots in consistent, but separate directions. Error rates and reaction times for rejecting the fourth pattern as different from the third were substantially higher when the dots in that pattern were displaced slightly forward, in the same directions as the implied motions, compared with when the dots were displaced in the opposite, backward directions. These effects showed little variation across interstimulus intervals ranging from 250 to 2,000 ms, and did not depend on whether the displays gave rise to visual apparent motion. However, they were eliminated when the dots in the fourth pattern were displaced by larger amounts in each direction, corresponding to the dot positions in the next and previous patterns in the same inducing sequence. These findings extend our initial report of the phenomenon of "representational momentum" (Freyd & Finke, 1984a), and help to rule out alternatives to the proposal that visual memories tend to undergo, at least to some extent, the transformations implied by a prior sequence of observed events.
The epidemic spreading model and the direction of information flow in brain networks.
Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Van Mieghem, P
2017-05-15
The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process. Copyright © 2017 Elsevier Inc. All rights reserved.
Sherratt, Emma; Alejandrino, Alvin; Kraemer, Andrew C; Serb, Jeanne M; Adams, Dean C
2016-09-01
Directional evolution is one of the most compelling evolutionary patterns observed in macroevolution. Yet, despite its importance, detecting such trends in multivariate data remains a challenge. In this study, we evaluate multivariate evolution of shell shape in 93 bivalved scallop species, combining geometric morphometrics and phylogenetic comparative methods. Phylomorphospace visualization described the history of morphological diversification in the group; revealing that taxa with a recessing life habit were the most distinctive in shell shape, and appeared to display a directional trend. To evaluate this hypothesis empirically, we extended existing methods by characterizing the mean directional evolution in phylomorphospace for recessing scallops. We then compared this pattern to what was expected under several alternative evolutionary scenarios using phylogenetic simulations. The observed pattern did not fall within the distribution obtained under multivariate Brownian motion, enabling us to reject this evolutionary scenario. By contrast, the observed pattern was more similar to, and fell within, the distribution obtained from simulations using Brownian motion combined with a directional trend. Thus, the observed data are consistent with a pattern of directional evolution for this lineage of recessing scallops. We discuss this putative directional evolutionary trend in terms of its potential adaptive role in exploiting novel habitats. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
2013-01-01
Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130
Wang, Meng; Liu, Qian; Zhang, Haoran; Wang, Chuang; Wang, Lei; Xiang, Bingxi; Fan, Yongtao; Guo, Chuan Fei; Ruan, Shuangchen
2017-08-30
Directional water collection has stimulated a great deal of interest because of its potential applications in the field of microfluidics, liquid transportation, fog harvesting, and so forth. There have been some bio or bioinspired structures for directional water collection, from one-dimensional spider silk to two-dimensional star-like patterns to three-dimensional Nepenthes alata. Here we present a simple way for the accurate design and highly controllable driving of tiny droplets: by laser direct writing of hierarchical patterns with modified wettability and desired geometry on a superhydrophobic film, the patterned film can precisely and directionally drive tiny water droplets and dramatically improve the efficiency of water collection with a factor of ∼36 compared with the original superhydrophobic film. Such a patterned film might be an ideal platform for water collection from humid air and for planar microfluidics without tunnels.
You, Renchuan; Li, Xiufang; Luo, Zuwei; Qu, Jing; Li, Mingzhong
2015-03-05
Micropatterned biomaterials have been used to direct cell alignment for specific tissue engineering applications. However, the understanding of how cells respond to guidance cues remains limited. Plasticity in protrusion formation has been proposed to enable cells to adapt their motility mode to microenvironment. In this study, the authors investigated the key role of protrusion response in cell guidance on patterned silk fibroin films. The results revealed that the ability to transform between filopodia and small lamellipodia played important roles in directional cell guidance. Filopodia did not show directional extension on patterned substrates prior to spreading, but they transduced topographical cues to the cell to trigger the formation of small lamellipodia along the direction of a microgrooved or parallel nanofiber pattern. The polar lamellipodia formation provided not only a path with directionality, but a driving force for directional cell elongation. Moreover, aligned nanofibers coating provided better mechanical support for the traction of filopodia and lamellipodia, promoting cell attachment, spreading, and migration. This study provides new insight into how cells respond to guidance cues and how filopodia and lamellipodia control cell contact guidance on micropatterned biomaterial surfaces.
NASA Astrophysics Data System (ADS)
Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul
2010-03-01
Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.
Temporal dynamics of 2D motion integration for ocular following in macaque monkeys.
Barthélemy, Fréderic V; Fleuriet, Jérome; Masson, Guillaume S
2010-03-01
Several recent studies have shown that extracting pattern motion direction is a dynamical process where edge motion is first extracted and pattern-related information is encoded with a small time lag by MT neurons. A similar dynamics was found for human reflexive or voluntary tracking. Here, we bring an essential, but still missing, piece of information by documenting macaque ocular following responses to gratings, unikinetic plaids, and barber-poles. We found that ocular tracking was always initiated first in the grating motion direction with ultra-short latencies (approximately 55 ms). A second component was driven only 10-15 ms later, rotating tracking toward pattern motion direction. At the end the open-loop period, tracking direction was aligned with pattern motion direction (plaids) or the average of the line-ending motion directions (barber-poles). We characterized the dependency on contrast of each component. Both timing and direction of ocular following were quantitatively very consistent with the dynamics of neuronal responses reported by others. Overall, we found a remarkable consistency between neuronal dynamics and monkey behavior, advocating for a direct link between the neuronal solution of the aperture problem and primate perception and action.
Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang
2017-09-01
The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Zhihua; Tan, Jun; Zou, Qingze; Jiang, Wei
2013-11-01
In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the "writing" (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the "writing" speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be fabricated at a high speed of ~5 mm/s, with the line width and the line depth at ~95 nm and 2 nm, respectively. A fine pattern of the word "NANO" is also fabricated at the speed of ~5 mm/s.
ERIC Educational Resources Information Center
Wang, Yang; O'Dwyer, Laura
2011-01-01
Using data from the Trends in International Mathematics and Science Study (TIMSS) 2003 and 2007 administrations, this study examines international trends in technology use and explores the international patterns in how teacher-directed, student-use of technology is related to eighth grade mathematics achievement. Descriptive patterns in…
Direct nano-patterning of graphene with helium ion beams
NASA Astrophysics Data System (ADS)
Naitou, Y.; Iijima, T.; Ogawa, S.
2015-01-01
Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO2/Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He+). Doses of 2.0 × 1016 He+ cm-2 from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He+ in a non-monotonic fashion. Increasing the dose from 2.0 × 1016 to 5.0 × 1016 He+ cm-2 improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 1017 He+ cm-2 degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices.
Directed self-assembly of proteins into discrete radial patterns
Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas
2013-01-01
Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678
Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60
NASA Astrophysics Data System (ADS)
Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.
2011-07-01
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.
NASA Technical Reports Server (NTRS)
Lawton, Teri B.
1989-01-01
A cortical neural network that computes the visibility of shifts in the direction of movement is proposed. The network computes: (1) the magnitude of the position difference between the test and background patterns, (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern, and (3) using global processes that pool the output from paired even- and odd-symmetric simple and complex cells across the spatial extent of the background frame of reference the direction a test pattern moved relative to a textured background. Evidence that magnocellular pathways are used to discriminate the direction of movement is presented. Since magnocellular pathways are used to discriminate the direction of movement, this task is not affected by small pattern changes such as jitter, short presentations, blurring, and different background contrasts that result when the veiling illumination in a scene changes.
Methodology for evaluating pattern transfer completeness in inkjet printing with irregular edges
NASA Astrophysics Data System (ADS)
Huang, Bo-Cin; Chan, Hui-Ju; Hong, Jian-Wei; Lo, Cheng-Yao
2016-06-01
A methodology for quantifying and qualifying pattern transfer completeness in inkjet printing through examining both pattern dimensions and pattern contour deviations from reference design is proposed, which enables scientifically identifying and evaluating inkjet-printed lines, corners, circles, ellipses, and spirals with irregular edges of bulging, necking, and unpredictable distortions resulting from different process conditions. This methodology not only avoids differences in individual perceptions of ambiguous pattern distortions but also indicates the systematic effects of mechanical stresses applied in different directions to a polymer substrate, and is effective for both optical and electrical microscopy in direct and indirect lithography or lithography-free patterning.
Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.
Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei
2015-02-01
This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.
Resolution characteristics of optical coherence tomography for dental use.
Watanabe, Hiroshi; Kuribayashi, Ami; Sumi, Yasunori; Kurabayashi, Tohru
2017-03-01
The purpose of this study was to clarify the resolution characteristics of optical coherence tomography (OCT) for dental use. Two types of swept-source optical coherence tomography machines were employed in this study. To clarify their resolution characteristics, we newly developed a glass chart device with a ladder pattern of wavelengths, which ranged from 4 × 2 μm to 1024 × 2 μm, as well as a star-target pattern, a grid pattern and a spatial frequency response pattern. The resolving powers and characteristics of the OCTs were subjectively evaluated. The Santec OCT-2000 ™ (Santec Co., Komaki, Japan) had a resolving power of 64 μm in both the horizontal X and vertical Y directions, while the OCT from Yoshida had a resolving power of 64 μm in the horizontal X direction and 128 µm in the vertical Y direction. The resolving power of the depth Z direction could not be obtained from this study. With the Yoshida OCT, the star-target pattern seemed to be non-symmetrical, owing to an edge enhancement effect, which was revealed when the ladder patterns were placed in a horizontal direction. This study successfully clarified the resolution characteristics of two types of OCTs. The obtained data may be useful for diagnostic purposes, and the glass chart device used in this study may be useful for OCT quality assurance programmes.
Directed liquid phase assembly of highly ordered metallic nanoparticle arrays
Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...
2014-04-01
Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less
Thompson, L.M.; Van Manen, F.T.; King, T.L.
2005-01-01
Highways are one of the leading causes of wildlife habitat fragmentation and may particularly affect wide-ranging species, such as American black bears (Ursus americanus). We initiated a research project in 2000 to determine potential effects of a 4-lane highway on black bear ecology in Washington County, North Carolina. The research design included a treatment area (highway construction) and a control area and a pre- and post-construction phase. We used data from the pre-construction phase to determine whether we could detect scale dependency or directionality among allele occurrence patterns using geostatistics. Detection of such patterns could provide a powerful tool to measure the effects of landscape fragmentation on gene flow. We sampled DNA from roots of black bear hair at 70 hair-sampling sites on each study area for 7 weeks during fall of 2000. We used microsatellite analysis based on 10 loci to determine unique multi-locus genotypes. We examined all alleles sampled at ???25 sites on each study area and mapped their presence or absence at each hair-sample site. We calculated semivariograms, which measure the strength of statistical correlation as a function of distance, and adjusted them for anisotropy to determine the maximum direction of spatial continuity. We then calculated the mean direction of spatial continuity for all examined alleles. The mean direction of allele frequency variation was 118.3?? (SE = 8.5) on the treatment area and 172.3?? (SE = 6.0) on the control area. Rayleigh's tests showed that these directions differed from random distributions (P = 0.028 and P < 0.001, respectively), indicating consistent directional patterns for the alleles we examined in each area. Despite the small spatial scale of our study (approximately 11,000 ha for each study area), we observed distinct and consistent patterns of allele occurrence, suggesting different directions of gene flow between the study areas. These directions seemed to coincide with the primary orientation of the best habitat areas. Furthermore, the patterns we observed suggest directions of potential source populations beyond the 2 study areas. Indeed, nearby areas classified as core black bear habitat exist in the directions indicated by our analysis. Geostatistical analysis of allele occurrence patterns may provide a useful technique to identify potential barriers to gene flow among bear populations.
Analysis of different vibration patterns to guide blind people.
Durá-Gil, Juan V; Bazuelo-Ruiz, Bruno; Moro-Pérez, David; Mollà-Domenech, Fernando
2017-01-01
The literature indicates the best vibration positions and frequencies on the human body where tactile information is transmitted. However, there is a lack of knowledge about how to combine tactile stimuli for navigation. The aim of this study is to compare different vibration patterns outputted to blind people and to determine the most intuitive vibration patterns to indicate direction for navigation purposes through a tactile belt. The vibration patterns that stimulate the front side of the waist are preferred for indicating direction. Vibration patterns applied on the back side of the waist could be suitable for sending messages such as stop.
Directed block copolymer self-assembly implemented via surface-embedded electrets
NASA Astrophysics Data System (ADS)
Wu, Mei-Ling; Wang, Dong; Wan, Li-Jun
2016-02-01
Block copolymer (BCP) nanolithography is widely recognized as a promising complementary approach to circumvent the feature size limits of conventional photolithography. The directed self-assembly of BCP thin film to form ordered nanostructures with controlled orientation and localized pattern has been the key challenge for practical nanolithography applications. Here we show that BCP nanopatterns can be directed on localized surface electrets defined by electron-beam irradiation to realize diverse features in a simple, effective and non-destructive manner. Charged electrets can generate a built-in electric field in BCP thin film and induce the formation of perpendicularly oriented microdomain of BCP film. The electret-directed orientation control of BCP film can be either integrated with mask-based patterning technique or realized by electron-beam direct-writing method to fabricate microscale arbitrary lateral patterns down to single BCP cylinder nanopattern. The electret-directed BCP self-assembly could provide an alternative means for BCP-based nanolithography, with high resolution.
A pattern-based analysis of clinical computer-interpretable guideline modeling languages.
Mulyar, Nataliya; van der Aalst, Wil M P; Peleg, Mor
2007-01-01
Languages used to specify computer-interpretable guidelines (CIGs) differ in their approaches to addressing particular modeling challenges. The main goals of this article are: (1) to examine the expressive power of CIG modeling languages, and (2) to define the differences, from the control-flow perspective, between process languages in workflow management systems and modeling languages used to design clinical guidelines. The pattern-based analysis was applied to guideline modeling languages Asbru, EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of consideration. We evaluated the selected CIG modeling languages and identified their degree of support of 43 control-flow patterns. We used a set of explicitly defined evaluation criteria to determine whether each pattern is supported directly, indirectly, or not at all. PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 11. All four directly support basic control-flow patterns, cancellation patterns, and some advance branching and synchronization patterns. None support multiple instances patterns. They offer varying levels of support for synchronizing merge patterns and state-based patterns. Some support a few scenarios not covered by the 43 control-flow patterns. CIG modeling languages are remarkably close to traditional workflow languages from the control-flow perspective, but cover many fewer workflow patterns. CIG languages offer some flexibility that supports modeling of complex decisions and provide ways for modeling some decisions not covered by workflow management systems. Workflow management systems may be suitable for clinical guideline applications.
NASA Astrophysics Data System (ADS)
Sumekar, W.; Al-Baarri, A. N.; Kurnianto, E.
2018-01-01
Marketing distribution is an important of the strategy in business development in agroindustries. The aim of the research was to introduce marketing (distribution pattern, margin and marketing efficiency) at the salted egg agro industries in Brebes Regency. Survey method had been conducted on 52 salted egg agro industries which had active PIRT certificate. The data collection was conducted by means of interview and observation. Descriptive analysis was used to determine the marketing distribution of salted eggs. Marketing efficiency was obtained by calculating marketing margin and farmer share. The results show that the salted egg agro industries implemented two marketing distribution patterns; direct marketing pattern (consumer→producers) and indirect marketing pattern (producer→retailer→consumer). The number of the salted egg agro industries which apply indirect marketing pattern is 57.69%. The implementation of direct and indirect marketing patterns was classified as efficient according to the farmer’s share values of 87.13% and 78.21%. It can be recommended the direct marketing.
Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao
2017-11-09
We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.
A Goal Direction Signal in the Human Entorhinal/Subicular Region
Chadwick, Martin J.; Jolly, Amy E.J.; Amos, Doran P.; Hassabis, Demis; Spiers, Hugo J.
2015-01-01
Summary Navigating to a safe place, such as a home or nest, is a fundamental behavior for all complex animals. Determining the direction to such goals is a crucial first step in navigation. Surprisingly, little is known about how or where in the brain this “goal direction signal” is represented. In mammals, “head-direction cells” are thought to support this process, but despite 30 years of research, no evidence for a goal direction representation has been reported [1, 2]. Here, we used fMRI to record neural activity while participants made goal direction judgments based on a previously learned virtual environment. We applied multivoxel pattern analysis [3–5] to these data and found that the human entorhinal/subicular region contains a neural representation of intended goal direction. Furthermore, the neural pattern expressed for a given goal direction matched the pattern expressed when simply facing that same direction. This suggests the existence of a shared neural representation of both goal and facing direction. We argue that this reflects a mechanism based on head-direction populations that simulate future goal directions during route planning [6]. Our data further revealed that the strength of direction information predicts performance. Finally, we found a dissociation between this geocentric information in the entorhinal/subicular region and egocentric direction information in the precuneus. PMID:25532898
Erasure of memory in paste by irradiation of ultrasonic waves
NASA Astrophysics Data System (ADS)
Nakahara, Akio; Yoneyama, Ryota; Ito, Maruto; Matsuo, Yousuke; Kitsunezaki, So
2017-06-01
Densely packed colloidal suspension, called paste, remembers the direction of applied forces, such as vibration and flow, and these memories kept in paste can be visualized as morphology of desiccation crack patterns. For example, when the paste remembers the direction of vibration, all primary cracks propagate in the direction perpendicular to the direction of initial vibration. On the other hand, when the paste remembers the direction of flow, all primary cracks propagate along the direction of initial flow. These results indicate that external forces imprint easy-breakable direction into paste as memories. Therefore, by controlling memories in paste, we can tune to produce various types of crack patterns, such as cellular, radial, lamellar, ring, spiral and lattice structures. Recently we have found that memories in paste can be erased by the irradiation of ultrasonic waves to paste as we obtain only isotropic and cellular crack patterns without any anisotropy related to memory effect. This method can be applied to increase the breaking strength of dried paste by homogenizing microstructure in paste.
Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography
NASA Astrophysics Data System (ADS)
Bat, Erhan; Lee, Juneyoung; Lau, Uland Y.; Maynard, Heather D.
2015-03-01
Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein, we present a new resist that protects proteins during electron-beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively crosslink to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron-beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high-precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometre and nanometre scale without requiring cleanroom conditions.
Kojima, Yukio; Kawamura, Jun; Fukui, Hisao
2012-10-01
Miniscrews placed in bone have been used as orthodontic anchorage in extraction space closure with sliding mechanics. The movement patterns of the teeth depend on the force directions. To move the teeth in a desired pattern, the appropriate direction of force must be selected. The purpose of this article is to clarify the relationship between force directions and movement patterns. By using the finite element method, orthodontic movements were simulated based on the remodeling law of the alveolar bone. The power arm length and the miniscrew position were varied to change the force directions. When the power arm was lengthened, rotation of the entire maxillary dentition decreased. The posterior teeth were effective for preventing rotation of the anterior teeth through an archwire. In cases of a high position of a miniscrew, bodily tooth movement was almost achieved. The vertical component of the force produced intrusion or extrusion of the entire dentition. Within the limits of the method, the mechanical simulations demonstrated the effect of force direction on movement patterns. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Directional transport of droplets on wettability patterns at high temperature
NASA Astrophysics Data System (ADS)
Huang, Shuai; Yin, Shaohui; Chen, Fengjun; Luo, Hu; Tang, Qingchun; Song, Jinlong
2018-01-01
Directional transport of liquid has attracted increasing interest owing to its potential of application in lab-on-a-chip, microfluidic devices and thermal management technologies. Although numerous strategies have been developed to achieve directional transport of liquid at low temperature, controlling the directional transport of liquid at high temperature remains to be a challenging issue. In this work, we reported a novel strategy in which different parts of droplet contacted with surface with different wettability patterns, resulting in a discrepant evaporative vapor film to achieve the directional transport of liquid. The experimental results showed that the state of the liquid on wettability patterned surface gradually changed from contact boiling to Leidenfrost state with the increase of substrate temperature Ts, and liquid on superhydrophilic surface was in composite state of contact boiling and Leidenfrost when Ts was higher than 200 °C. Inspired by the different evaporation states of droplet on the wettability boundary, controlling preferential motion of droplets was observed at high temperature. By designing a surface with wettability pattern on which superhydrophobic region and superhydrophilic region are alternately arranged, a controlled directional transport of droplet can be achieved at high temperature.
Low-cost coding of directivity information for the recording of musical instruments
NASA Astrophysics Data System (ADS)
Braasch, Jonas; Martens, William L.; Woszczyk, Wieslaw
2004-05-01
Most musical instruments radiate sound according to characteristic spatial directivity patterns. These patterns are usually not only strongly frequency dependent, but also time-variant functions of various parameters of the instrument, such as pitch and the playing technique applied (e.g., plucking versus bowing of string instruments). To capture the directivity information when recording an instrument, Warusfel and Misdariis (2001) proposed to record an instrument using four channels, one for the monopole and the others for three orthogonal dipole parts. In the new recording setup presented here, it is proposed to store one channel at a high sampling frequency, along with directivity information that is updated only every few milliseconds. Taking the binaural sluggishness of the human auditory system into account in this way provides a low-cost coding scheme for subsequent reproduction of time-variant directivity patterns.
A study of lip prints and its reliability as a forensic tool
Verma, Yogendra; Einstein, Arouquiaswamy; Gondhalekar, Rajesh; Verma, Anoop K.; George, Jiji; Chandra, Shaleen; Gupta, Shalini; Samadi, Fahad M.
2015-01-01
Introduction: Lip prints, like fingerprints, are unique to an individual and can be easily recorded. Therefore, we compared direct and indirect lip print patterns in males and females of different age groups, studied the inter- and intraobserver bias in recording the data, and observed any changes in the lip print patterns over a period of time, thereby, assessing the reliability of lip prints as a forensic tool. Materials and Methods: Fifty females and 50 males in the age group of 15 to 35 years were selected for the study. Lips with any deformity or scars were not included. Lip prints were registered by direct and indirect methods and transferred to a preformed registration sheet. Direct method of lip print registration was repeated after a six-month interval. All the recorded data were analyzed statistically. Results: The predominant patterns were vertical and branched. More females showed the branched pattern and males revealed an equal prevalence of vertical and reticular patterns. There was an interobserver agreement, which was 95%, and there was no change in the lip prints over time. Indirect registration of lip prints correlated with direct method prints. Conclusion: Lip prints can be used as a reliable forensic tool, considering the consistency of lip prints over time and the accurate correlation of indirect prints to direct prints. PMID:26668449
Patterns of interhemispheric correlation during human communication.
Grinberg-Zylberbaum, J; Ramos, J
1987-09-01
Correlation patterns between the electroencephalographic activity of both hemispheres in adult subjects were obtained. The morphology of these patterns for one subject was compared with another subject's patterns during control situations without communication, and during sessions in which direct communication was stimulated. Neither verbalization nor visual or physical contact are necessary for direct communication to occur. The interhemispheric correlation patterns for each subject were observed to become similar during the communication sessions as compared to the control situations. These effects are not due to nonspecific factors such as habituation or fatigue. The results support the syntergic theory proposed by one of the authors (Grinberg-Zylberbaum).
Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.
Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M
2013-03-20
Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.
Three-dimensional phase-field simulations of directional solidification
NASA Astrophysics Data System (ADS)
Plapp, Mathis
2007-05-01
The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.
Light Management in Transparent Conducting Oxides by Direct Fabrication of Periodic Surface Arrays
NASA Astrophysics Data System (ADS)
Eckhardt, S.; Sachse, C.; Lasagni, A. F.
Line- and hexagonal-like periodic textures were fabricated on aluminium zinc oxide (AZO) using direct laser interference patterning method. It was found that hexagonally patterned surfaces show a higher performance in both transparency and diffraction properties compared to line-like textured and non-patterned substrates. Furthermore, the electrical resistance of the processed AZO coated substrates remained below the tolerance values for transparent conducting electrodes.
Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
Liu, Yi-Kai; Lee, Ming-Tsang
2014-08-27
This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.
Cellular-automata-based learning network for pattern recognition
NASA Astrophysics Data System (ADS)
Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios
1991-11-01
Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.
Servo-integrated patterned media by hybrid directed self-assembly.
Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David
2014-11-25
A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.
Anomalous refraction of light through slanted-nanoaperture arrays on metal surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Myungji; Jung, Yun Suk; Xi, Yonggang
2015-09-07
We report a nanoapertured metal surface that demonstrates anomalous refraction of light for a wide range of incident angles. A nanoslit aperture is designed to serve as a tilted vertical-dipole whose radiation pattern orients to a glancing angle direction to substrate. An array of such slanted nanoslits formed in a metal film redirects an incident beam into the direction of negative refraction angle: the aperture-transmitted wave makes a far-field propagation to the tilt-oriented direction of radiation pattern. The thus-designed nanoaperture array demonstrates the −1st order diffraction (i.e., to the negative refraction-angle direction) with well-suppressed background transmission (the zero-order direct transmissionmore » and other higher-order diffractions). Engineering the radiation pattern of nanoaperture offers an approach to overcoming the limits of conventional diffractive/refractive optics and complementing metasurface-based nano-optics.« less
Nishi, Kengo; Shibayama, Mitsuhiro
2017-05-03
Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.
Aging and the Visual Perception of Motion Direction: Solving the Aperture Problem.
Shain, Lindsey M; Norman, J Farley
2018-07-01
An experiment required younger and older adults to estimate coherent visual motion direction from multiple motion signals, where each motion signal was locally ambiguous with respect to the true direction of pattern motion. Thus, accurate performance required the successful integration of motion signals across space (i.e., accurate performance required solution of the aperture problem) . The observers viewed arrays of either 64 or 9 moving line segments; because these lines moved behind apertures, their individual local motions were ambiguous with respect to direction (i.e., were subject to the aperture problem). Following 2.4 seconds of pattern motion on each trial (true motion directions ranged over the entire range of 360° in the fronto-parallel plane), the observers estimated the coherent direction of motion. There was an effect of direction, such that cardinal directions of pattern motion were judged with less error than oblique directions. In addition, a large effect of aging occurred-The average absolute errors of the older observers were 46% and 30.4% higher in magnitude than those exhibited by the younger observers for the 64 and 9 aperture conditions, respectively. Finally, the observers' precision markedly deteriorated as the number of apertures was reduced from 64 to 9.
NASA Astrophysics Data System (ADS)
Guojun, He; Lin, Guo; Zhicheng, Yu; Xiaojun, Zhu; Lei, Wang; Zhiqiang, Zhao
2017-03-01
In order to reduce the stochastic volatility of supply and demand, and maintain the electric power system's stability after large scale stochastic renewable energy sources connected to grid, the development and consumption should be promoted by marketing means. Bilateral contract transaction model of large users' direct power purchase conforms to the actual situation of our country. Trading pattern of large users' direct power purchase is analyzed in this paper, characteristics of each power generation are summed up, and centralized matching mode is mainly introduced. Through the establishment of power generation enterprises' priority evaluation index system and the analysis of power generation enterprises' priority based on fuzzy clustering, the sorting method of power generation enterprises' priority in trading patterns of large users' direct power purchase is put forward. Suggestions for trading mechanism of large users' direct power purchase are offered by this method, which is good for expand the promotion of large users' direct power purchase further.
A helical biosonar scanning pattern in the Chinese noctule, Nyctalus plancyi.
Müller, Rolf; Lu, Hongwang; Zhang, Shuyi; Peremans, Herbert
2006-06-01
Directivity and sound diffraction of the pinna of the Chinese Noctule (Nyctalus plancyi) have been studied numerically. The pinna was found capable of generating a periodic helical scanning pattern over frequency, if the tragus and the thickened lower ledge of the pinna rim were in an appropriate position. During the helical scan, a directivity pattern with a strong mainlobe alternated with a pattern dominated by a conical sleeve of sidelobes. This alternation was present, even when an unfavorable arrangement of the pinna disrupted the overall helical scanning pattern. In the fully formed helical scan, the orientation of main and sidelobes for different frequencies revealed a spatial ordering which extends volume coverage. Five different pinna parts have been removed from the digital pinna-shape representations in turn to assess their influence on the directivity. Of these parts, the tragus stem and the thickened lower ledge of the pinna rim were found to have the largest overall impact. The anatomical prominence of these structures was hence in agreement with their acoustic functionality. In the near-field, tragus stem and lower ledge were seen to act primarily through large shifts in the wavefield phase in both directions.
Using Laser-Induced Thermal Voxels to Pattern Diverse Materials at the Solid-Liquid Interface.
Zarzar, Lauren D; Swartzentruber, B S; Donovan, Brian F; Hopkins, Patrick E; Kaehr, Bryan
2016-08-24
We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. This strategy expands the chemistries and materials that can be used in combination with laser direct writing.
Using laser-induced thermal voxels to pattern diverse materials at the solid–liquid interface
Zarzar, Lauren D.; Swartzentruber, B. S.; Donovan, Brian F.; ...
2016-08-05
We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. In conclusion, this strategy expands the chemistries and materials that can be used in combination with laser direct writing.
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
Self-Directed Learning Needs, Patterns, and Outcomes among General Surgeons
ERIC Educational Resources Information Center
Gagliardi, Anna R.; Wright, Frances C.; Victor, J. Charles; Brouwers, Melissa C.; Silver, Ivan L.
2009-01-01
Introduction: To explore the relationship between self-directed learning (SDL) needs, patterns, barriers, and outcomes among nonacademic general surgeons. Methods: Participants dictated details of SDL episodes associated with cancer patient management from October 2007 to March 2008. Transcripts were coded thematically. Frequencies were calculated…
Artificial Intelligence in ADA: Pattern-Directed Processing. Final Report.
ERIC Educational Resources Information Center
Reeker, Larry H.; And Others
To demonstrate to computer programmers that the programming language Ada provides superior facilities for use in artificial intelligence applications, the three papers included in this report investigate the capabilities that exist within Ada for "pattern-directed" programming. The first paper (Larry H. Reeker, Tulane University) is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com
A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less
Can direct gas-liquid chromatography of clinical samples detect specific organisms?
Watt, B; Geddes, P A; Greenan, O A; Napier, S K; Mitchell, A
1982-01-01
A total of 1929 samples was analyzed by direct gas-liquid chromatography and the volatile fatty acid (VFA) patterns of the positive samples were compared with the results of culture. There was no correlation between any bacterial genus or species and the detailed VFA patterns although the presence of butyric or valeric acids, or both, was generally associated with the presence of anaerobes and that of acetic acid was generally associated with aerobic bacteria; however, the technique could not predict the nature of the subsequent bacterial isolate. There was also poor correlation between the VFA pattern in a given sample and the VFA pattern(s) of anaerobic bacteria subsequently isolated from that sample. PMID:7096589
Conveying 3D shape with texture: recent advances and experimental findings
NASA Astrophysics Data System (ADS)
Interrante, Victoria; Kim, Sunghee; Hagh-Shenas, Haleh
2002-06-01
If we could design the perfect texture pattern to apply to any smooth surface in order to enable observers to more accurately perceive the surface's shape in a static monocular image taken from an arbitrary generic viewpoint under standard lighting conditions, what would the characteristics of that texture pattern be? In order to gain insight into this question, our group has developed an efficient algorithm for synthesizing a high resolution texture pattern, derived from a provided 2D sample, over an arbitrary doubly curved surface in such a way that the orientation of the texture is constrained to follow a specified underlying vector field over the surface, at a per-pixel level, without evidence of seams or projective distortion artifacts. In this paper, we report the findings of a recent experiment in which we attempt to use this new texture synthesis method to assess the shape information carrying capacity of two different types of directional texture patterns (unidirectional and bi-directional) under three different orientation conditions (following the first principal direction, following a constant uniform direction, or swirling sinusoidally in the surface). In a four alternative forced choice task, we asked participants to identify the quadrant in which two B-spline surfaces, illuminated from different random directions and simultaneously and persistently displayed, differed in their shapes. We found, after all subjects had gained sufficient training in the task, that accuracy increased fairly consistently with increasing magnitude of surface shape disparity, but that the characteristics of this increase differed under the different texture orientation conditions. Subjects were able to more reliably perceive smaller shape differences when the surfaces were textured with a pattern whose orientation followed one of the principal directions than when the surfaces were textured with a pattern that either gradually swirled in the surface or followed a constant uniform direction in the tangent plane regardless of the surface shape characteristics. These findings appear to support our hypothesis that anisotropic textures aligned with the first principal direction may facilitate shape perception, for a generic view, by making more, reliable information about the extent of the surface curvature explicitly available to the observer than would be available if the texture pattern were oriented in any other way.
Lewin, Keith F.
1997-04-15
A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.
Lewin, K.F.
1997-04-15
A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.
A MS-lesion pattern discrimination plot based on geostatistics.
Marschallinger, Robert; Schmidt, Paul; Hofmann, Peter; Zimmer, Claus; Atkinson, Peter M; Sellner, Johann; Trinka, Eugen; Mühlau, Mark
2016-03-01
A geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. A dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. Parameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis.
Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana)
Lee, Wah-Keat; Socha, John J
2009-01-01
Background Hemolymph flow patterns in opaque insects have never been directly visualized due to the lack of an appropriate imaging technique. The required spatial and temporal resolutions, together with the lack of contrast between the hemolymph and the surrounding soft tissue, are major challenges. Previously, indirect techniques have been used to infer insect heart motion and hemolymph flow, but such methods fail to reveal fine-scale kinematics of heartbeat and details of intra-heart flow patterns. Results With the use of microbubbles as high contrast tracer particles, we directly visualized hemolymph flow in a grasshopper (Schistocerca americana) using synchrotron x-ray phase-contrast imaging. In-vivo intra-heart flow patterns and the relationship between respiratory (tracheae and air sacs) and circulatory (heart) systems were directly observed for the first time. Conclusion Synchrotron x-ray phase contrast imaging is the only generally applicable technique that has the necessary spatial, temporal resolutions and sensitivity to directly visualize heart dynamics and flow patterns inside opaque animals. This technique has the potential to illuminate many long-standing questions regarding small animal circulation, encompassing topics such as retrograde heart flow in some insects and the development of flow in embryonic vertebrates. PMID:19272159
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification
NASA Technical Reports Server (NTRS)
Trivedi, R.; Tewari, S. N.; Kurtze, D.
1999-01-01
The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.
Giant honeybees ( Apis dorsata) mob wasps away from the nest by directed visual patterns
NASA Astrophysics Data System (ADS)
Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas
2014-11-01
The open nesting behaviour of giant honeybees ( Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.
Via patterning in the 7-nm node using immersion lithography and graphoepitaxy directed self-assembly
NASA Astrophysics Data System (ADS)
Doise, Jan; Bekaert, Joost; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel
2017-04-01
Insertion of a graphoepitaxy directed self-assembly process as a via patterning technology into integrated circuit fabrication is seriously considered for the 7-nm node and beyond. At these dimensions, a graphoepitaxy process using a cylindrical block copolymer that enables hole multiplication can alleviate costs by extending 193-nm immersion-based lithography and significantly reducing the number of masks that would be required per layer. To be considered for implementation, it needs to be proved that this approach can achieve the required pattern quality in terms of defects and variability using a representative, aperiodic design. The patterning of a via layer from an actual 7-nm node logic layout is demonstrated using immersion lithography and graphoepitaxy directed self-assembly in a fab-like environment. The performance of the process is characterized in detail on a full 300-mm wafer scale. The local variability in an edge placement error of the obtained patterns (4.0 nm 3σ for singlets) is in line with the recent results in the field and significantly less than of the prepattern (4.9 nm 3σ for singlets). In addition, it is expected that pattern quality can be further improved through an improved mask design and optical proximity correction. No major complications for insertion of the graphoepitaxy directed self-assembly into device manufacturing were observed.
Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca; Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca; Tan, Bo, E-mail: tanbo@ryerson.ca
2015-09-10
Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approachmore » to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel cancer cells while favoring the adhesion of normal cells. - Highlights: • Si platforms with cytophobic/philic patterns were developed to program cell growth. • Both nanotopography and chemistry contributed to the cytophobic property. • Cytophobic zones efficiently repel and drive HeLa cells to migrate to adhesive sites. • The approach enables cell patterning, directionality, channelling, and trapping. • This approach paves the way for developing anti-cancer platforms.« less
Method and apparatus for predicting the direction of movement in machine vision
NASA Technical Reports Server (NTRS)
Lawton, Teri B. (Inventor)
1992-01-01
A computer-simulated cortical network is presented. The network is capable of computing the visibility of shifts in the direction of movement. Additionally, the network can compute the following: (1) the magnitude of the position difference between the test and background patterns; (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern; and (3) the direction of a test pattern moved relative to a textured background. The direction of movement of an object in the field of view of a robotic vision system is detected in accordance with nonlinear Gabor function algorithms. The movement of objects relative to their background is used to infer the 3-dimensional structure and motion of object surfaces.
NASA Astrophysics Data System (ADS)
Yu, Qifeng; Liu, Xiaolin; Sun, Xiangyi
1998-07-01
Generalized spin filters, including several directional filters such as the directional median filter and the directional binary filter, are proposed for removal of the noise of fringe patterns and the extraction of fringe skeletons with the help of fringe-orientation maps (FOM s). The generalized spin filters can filter off noise on fringe patterns and binary fringe patterns efficiently, without distortion of fringe features. A quadrantal angle filter is developed to filter off the FOM. With these new filters, the derivative-sign binary image (DSBI) method for extraction of fringe skeletons is improved considerably. The improved DSBI method can extract high-density skeletons as well as common density skeletons.
Large-Scale Constraint-Based Pattern Mining
ERIC Educational Resources Information Center
Zhu, Feida
2009-01-01
We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…
Modification of Surface Energy via Direct Laser Ablative Surface Patterning
NASA Technical Reports Server (NTRS)
Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)
2015-01-01
Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.
Spatio-temporal patterns of bacteria caused by collective motion
NASA Astrophysics Data System (ADS)
Kitsunezaki, So
2006-04-01
In incubation experiments on bacterial colonies of Proteus mirabilis, collective motion of bacteria is found to generate macroscopic turbulent patterns on the surface of agar media. We propose a mathematical model to describe the time evolution of the positional and directional distributions of motile bacteria in such systems, and investigate this model both numerically and analytically. It is shown that as the average density of bacteria increases, nonuniform swarming patterns emerge from a uniform stationary state. For a sufficient large density, we find that spiral patterns are caused by interactions between the local bacteria densities and the rotational mode of the collective motion. Unidirectional spiral patterns similar to those observed in experiments appear in the case in which the equilibrium directional distribution is asymmetric.
Goltstein, Pieter M; Montijn, Jorrit S; Pennartz, Cyriel M A
2015-01-01
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.
Goltstein, Pieter M.; Montijn, Jorrit S.; Pennartz, Cyriel M. A.
2015-01-01
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity. PMID:25706867
Postural Coordination during Socio-motor Improvisation
Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193
Postural Coordination during Socio-motor Improvisation.
Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.
Localized direction selective responses in the dendrites of visual interneurons of the fly
2010-01-01
Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983
In-volume structuring of a bilayered polymer foil using direct laser interference patterning
NASA Astrophysics Data System (ADS)
Rößler, Florian; Günther, Katja; Lasagni, Andrés F.
2018-05-01
Periodic surface patterns can provide materials with special optical properties, which are usable in decorative or security applications. However, they can be sensitive to contact wear and thus their lifetime and functionality are limited. This study describes the use of direct laser interference patterning for structuring a multilayered polymer film at its interface creating periodic in-volume structures which are resistant to contact wear. The spatial period of the structures are varied in the range of 1.0 μm to 2.0 μm in order to produce decorative elements. The pattern formation at the interface is explained using cross sectional observations and a thermal simulation of the temperature evolution during the laser treatment at the interface. Both, the diffraction efficiency and direct transmission are characterized by light intensity measurements to describe the optical behavior of the produced periodic structures and a decorative application example is presented.
Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging
NASA Astrophysics Data System (ADS)
Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ
2015-01-01
Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)
Knitted Patterns as a Model for Anisotropy
ERIC Educational Resources Information Center
Cepic, Mojca
2012-01-01
Anisotropy is a difficult concept, although it is often met in everyday life. This paper describes a simple model--knitted patterns--having anisotropic elastic properties. The elastic constant is measured for the force applied in different directions with respect to the knitting direction. It is also shown that the deformation of the knitted…
National land-cover pattern data
Kurt H. Riitters; James D. Wickham; James E. Vogelmann; K. Bruce Jones
2000-01-01
Land cover and its spatial patterns are key ingredients in ecological studies that consider large regions and the impacts of human activities. Because humanity is a principal driver of land-cover change over large regions (Turner et al. 1990), land-cover data provide direct measures of human activity, and both direct and indirect measures of ecological conditions...
Dewetting of thin films on flexible substrates via direct-write laser exposure
NASA Astrophysics Data System (ADS)
Ferrer, Anthony Jesus
Microelectromechanical systems (MEMS) have enabled a wide variety of technologies both in the consumer space and in industrial/research areas. At the market level, such devices advance by the invention and innovation of production techniques. Additionally, there has been increased demand for flexible versions of such MEMS devices. Thin film patterning, represents a key technology for the realization of such flexible electronics. Patterns and methods that can be directly written into the thin film allow for design modification on the fly with the need for harsh chemicals and long etching steps. Laser-induced dewetting has the potential to create patterns in thin films at both the microscopic and nanoscopic level without wasting deposited material. This thesis presents the first demonstration of high-speed direct-write patterning of metallic thin films that uses a laser-induced dewetting phenomenon to prevent material loss. The ability to build film material with this technique is explored using various scanning geometries. Finally, demonstrations of direct-write dewetting of a variety of thin films will be presented with special consideration for high melting point metals deposited upon polymer substrates.
NASA Astrophysics Data System (ADS)
Mitra, Joydeep; Torres, Andres; Ma, Yuansheng; Pan, David Z.
2018-01-01
Directed self-assembly (DSA) has emerged as one of the most compelling next-generation patterning techniques for sub 7 nm via or contact layers. A key issue in enabling DSA as a mainstream patterning technique is the generation of grapho-epitaxy-based guiding pattern (GP) shapes to assemble the contact patterns on target with high fidelity and resolution. Current GP generation is mostly empirical, and limited to a very small number of via configurations. We propose the first model-based GP synthesis algorithm and methodology for on-target and robust DSA, on general via pattern configurations. The final postoptical proximity correction-printed GPs derived from our original synthesized GPs are resilient to process variations and continue to maintain the same DSA fidelity in terms of placement error and target shape.
Gelatin-based laser direct-write technique for the precise spatial patterning of cells.
Schiele, Nathan R; Chrisey, Douglas B; Corr, David T
2011-03-01
Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.
Liu, Shuo; Cui, Tie Jun; Zhang, Lei; Xu, Quan; Wang, Qiu; Wan, Xiang; Gu, Jian Qiang; Tang, Wen Xuan; Qing Qi, Mei; Han, Jia Guang; Zhang, Wei Li; Zhou, Xiao Yang; Cheng, Qiang
2016-10-01
The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.
Direct nano-patterning of graphene with helium ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naitou, Y., E-mail: yu-naitou@aist.go.jp; Iijima, T.; Ogawa, S.
2015-01-19
Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO{sub 2}/Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He{sup +}). Doses of 2.0 × 10{sup 16 }He{sup + }cm{sup −2} from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He{sup +} in a non-monotonic fashion. Increasing the dose from 2.0 × 10{sup 16} to 5.0 × 10{sup 16 }He{sup + }cm{sup −2} improved the spatialmore » resolution to several tens of nanometers. However, doses greater than 1.0 × 10{sup 17 }He{sup + }cm{sup −2} degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices.« less
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziwen; Xue, Zhongying; Zhang, Miao
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
Wang, Ziwen; Xue, Zhongying; Zhang, Miao; ...
2017-05-31
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications
NASA Astrophysics Data System (ADS)
Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.
2017-03-01
The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.
Carlson, Bruce A.
2010-01-01
Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge (EOD). In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals and band-pass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally-relevant stimulus information encoded into temporal patterns of activity by sensory neurons. PMID:19641105
Carlson, Bruce A
2009-07-29
Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.
Undirected learning styles and academic risk: Analysis of the impact of stress, strain and coping.
Kimatian, Stephen; Lloyd, Sara; Berger, Jeffrey; Steiner, Lorraine; McKay, Robert; Schwengal, Deborah
2017-01-01
Learning style inventories used in conjunction with a measure of academic achievement consistently show an association of meaning directed learning patterns with academic success, but have failed to show a clear association of undirected learning styles with academic failure. Using survey methods with anesthesia residents, this study questioned whether additional assessment of factors related to stress, strain, and coping help to better define the association between undirected learning styles and academic risk. Pearson chi squared tests. 296 subjects were enrolled from eight institutions with 142 (48%) completing the study. American Board of Anesthesiologists In Training Examinations (ITE) percentiles (ITE%) were used as a measure of academic achievement. The Vermunt Inventory of Learning Styles (ILS) was used to identify four learning patterns and 20 strategies, and the Osipow Stress Inventory-Revised (OSI-R) was used as a measure of six scales of occupational stress, four of personal strain, and four coping resources. Two learning patterns had significant relationship with ITE scores. As seen in previous studies, Meaning Directed Learning was beneficial for academic achievement while Undirected Learning was the least beneficial. Higher scores on Meaning Directed Learning correlated positively with higher ITE scores while higher Undirected and lower Meaning Directed patterns related negatively to ITE%. OSI-R measures of stress, strain and coping indicated that residents with Undirected learning patterns had higher scores on three scales related to stress, and 4 related to strain, while displaying lower scores on two scales related to coping. Residents with higher Meaning Directed patterns scored lower on two scales of stress and two scales of strain, with higher scores on two scales for coping resources. Low Meaning Directed and high Undirected learning patterns correlated with lower ITE percentiles, higher scores for stress and strain, and lower coping resources. This association suggests that successful remediation of at-risk residents must address stress, strain and coping if long term academic improvement is expected. Further research to identify the value of stress, strain, and coping screening and education is warranted.
Santos, S; Severo, M; Gaillard, R; Santos, A C; Barros, H; Oliveira, A
2016-11-01
It remains unknown whether the effects of prenatal exposures on child's adiposity reflect entirely intrauterine programming. We aimed to assess the effects of maternal gestational weight gain, diabetes and smoking on the child's body fat patterns, disentangling the direct (through intrauterine programming) and indirect (through birthweight) effects. We included 4747 singleton 7-year-old children from the Generation XXI birth cohort (Porto, Portugal). At birth, maternal and newborn's characteristics were obtained. Anthropometrics were measured at age 7 years and body fat patterns were identified by principal component analysis. Path analysis was used to quantify direct, indirect and total effects of gestational weight gain, diabetes and smoking on body fat patterns. Pattern 1 was characterized by strong factor loadings with body mass index, fat mass index and waist-to-height ratio (fat quantity) and pattern 2 with waist-to-hip ratio, waist-to-thigh ratio, and waist-to-weight ratio (fat distribution). The positive total effect of maternal gestational weight gain and diabetes on the child's fat quantity was mainly through a direct pathway, responsible for 91.7% and 83.7% of total effects, respectively (β = 0.022; 95% Confidence Interval (CI): 0.017, 0.027; β = 0.041; 95% CI: -0.011, 0.093). No effects on fat distribution were found. Maternal prenatal smoking had a positive direct effect on patterns 1 and 2, explaining 94.9% and 76.1% of total effects, respectively. The effects of maternal gestational weight gain, diabetes and smoking on a child's fat quantity seem to be mainly through intrauterine programming. Maternal smoking also showed a positive direct effect on child's fat distribution. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Dielectric fluid directional spreading under the action of corona discharge
NASA Astrophysics Data System (ADS)
Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai
2018-01-01
Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.
A hydrodynamic model of an outer hair cell
NASA Technical Reports Server (NTRS)
Jacobson, B. O.
1982-01-01
On the model it is possible to measure the force and the force direction for each individual hair as a function of the flow direction and velocity. Measurements were made at the man flow velocity .01 m/s, which is equivalent to a flow velocity in the real ear of about 1 micrometer/s. The kinematic viscosity of the liquid used in the model was 10,000 times higher than the viscosity of perilymph to attain hydrodynamic equality. Two different geometries for the sterocilia pattern were tested. First the force distribution for a W-shaped sterocilia pattern was recorded. This is the sterocilia pattern found in all real ears. It is found that the forces acting on the hairs are very regular and perpendicular to the legs of the W when the flow is directed from the outside of the W. When the flow is reversed, the forces are not reversed, but are much more irregular. This can eventually explain the half wave rectification of the nerve signals. As a second experiment, the force distribution for a V-shaped sterocilia pattern was recorded. Here the forces were irregular both when the flow was directed into the V and when it was directed against the edge of the V.
Wallace, Patricia S; Whishaw, Ian Q
2003-01-01
Previous work has described human reflexive grasp patterns in early infancy and visually guided reaching and grasping in late infancy. There has been no examination of hand movements in the intervening period. This was the purpose of the present study. We video recorded the spontaneous hand and digit movements made by alert infants over their first 5 months of age. Over this period, spontaneous hand and digit movements developed from fists to almost continuous, vacuous movements and then to self-directed grasping movements. Amongst the many hand and digit movements observed, four grasping patterns emerged during this period: fists, pre-precision grips associated with numerous digit postures, precision grips including the pincer grasp, and self-directed grasps. The finding that a wide range of independent digit movements and grasp patterns are displayed spontaneously by infants within their first 5 months of age is discussed in relation to the development of the motor system, including the suggestion that direct connections of the pyramidal tract are functional relatively early in infancy. It is also suggested that hand babbling, consisting of first vacuous and then self-directed movements, is preparatory to targeted reaching.
The influence of impact direction and axial loading on the bone fracture pattern.
Cohen, Haim; Kugel, Chen; May, Hila; Medlej, Bahaa; Stein, Dan; Slon, Viviane; Brosh, Tamar; Hershkovitz, Israel
2017-08-01
The effect of the direction of the impact and the presence of axial loading on fracture patterns have not yet been established in experimental 3-point bending studies. To reveal the association between the direction of the force and the fracture pattern, with and without axial loading. A Dynatup Model POE 2000 (Instron Co.) low energy pendulum impact machine was utilized to apply impact loading on fresh pig femoral bones (n=50). The bone clamp shaft was adjusted to position the bone for three-point bending with and without additional bone compression. Four different directions of the force were applied: anterior, posterior, lateral, and medial. The impacted aspect can be distinguished from the non-impacted aspects based on the fracture pattern alone (the most fractured one); the impact point can be identified on bare bones (the area from which all oblique lines radiate and/or the presence of a chip fragment). None of our experiments (with and without compression) yielded a "true" butterfly fracture, but instead, oblique radiating lines emerged from the point of impact (also known as "false" butterfly). Impacts on the lateral and anterior aspects of the bones produce more and longer fracture lines than impacts on the contralateral side; bones subjected to an impact with axial loading are significantly more comminuted and fragmented. Under axial loading, the number of fracture lines is independent of the impact direction. Our study presents an experimental model for fracture analysis and shows that the impact direction and the presence of axial loading during impact significantly affect the fracture pattern obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Accuracy of cast posts fabricated by the direct and the indirect techniques.
Rayyan, Mohammad R; Aldossari, Roa'a A; Alsadun, Sarah F; Hijazy, Fatimah R
2016-09-01
Patterns for custom cast posts and cores can be fabricated either by the direct or the indirect technique. Which technique is more accurate is unknown. The purpose of this in vitro study was to investigate the effect of pattern fabrication technique on the accuracy of post fit. Ten intact extracted premolar teeth with a single canal and similar dimensions received root canal treatment. The teeth were sectioned 2 mm above the cementoenamel junction. A total of 20 cast post and core patterns, 2 for each tooth, were fabricated, 10 with the direct technique and 10 with the indirect technique. Patterns were cast to produce 20 cast post and cores. Each tooth was scanned using a microcomputed tomography (μCT) system with a resolution of 14.5 μm, once with the post of the direct technique and once with the post of the indirect technique. Ct analyzer software was used to calculate the overall space between the post and canal walls and the space areas in 3 different standardized sections. The Student paired t test was used to determine any significant difference in the scores of the groups. The overall space between the canal walls and posts made with the direct technique ranged between 7.86 and 17.39 mm(3), with a mean value of 12.25 mm(3), whereas with the indirect technique, the space ranged between 6.68 and 18.02 mm(3), with a mean of 11.92 mm(3). No significant differences were found between the results of either technique (P>.05). Within the limitations of this study, neither the indirect nor direct pattern fabrication technique influenced the accuracy of post fitting. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels.
Wang, Zhi Jian; Hong, Wei; Wu, Zi Liang; Zheng, Qiang
2017-12-11
Morphing materials have promising applications in various fields, yet how to program the self-shaping process for specific configurations remains a challenge. Herein we show a versatile approach to control the buckling of individual domains and thus the outcome configurations of planar-patterned hydrogels. By photolithography, high-swelling disc gels were positioned in a non-swelling gel sheet; the swelling mismatch resulted in out-of-plain buckling of the disc gels. To locally control the buckling direction, masks with holes were used to guide site-specific swelling of the high-swelling gel under the holes, which built a transient through-thickness gradient and thus directed the buckling during the subsequent unmasked swelling process. Therefore, various configurations of an identical patterned hydrogel can be programmed by the pre-swelling step with different masks to encode the buckling directions of separate domains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.
2003-05-01
Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.
Pauers, Michael J; McKinnon, Jeffrey S; Ehlinger, Timothy J
2004-12-07
Speciation via intersexual selection on male nuptial colour pattern is thought to have been a major force in promoting the explosive speciation of African haplochromine cichlids, yet there is very little direct empirical evidence of directional preferences within populations. In this study, we used objective spectrophotometry and analyses based on visual physiology to determine whether females of the Katale population of Labeotropheus fuelleborni, a Lake Malawi haplochromine, prefer males that have higher chroma and more within-pattern colour contrast. In paired male preference tests, female Katale L. fuelleborni showed increasing preferences for males with more relatively saturated colours on their flanks. They also showed increasing preferences for males with relatively higher contrast levels among flank elements. This is the first empirical evidence, to our knowledge, for male colour as a directionally sexually selected trait within a haplochromine cichlid population.
Pauers, Michael J; McKinnon, Jeffrey S; Ehlinger, Timothy J
2004-01-01
Speciation via intersexual selection on male nuptial colour pattern is thought to have been a major force in promoting the explosive speciation of African haplochromine cichlids, yet there is very little direct empirical evidence of directional preferences within populations. In this study, we used objective spectrophotometry and analyses based on visual physiology to determine whether females of the Katale population of Labeotropheus fuelleborni, a Lake Malawi haplochromine, prefer males that have higher chroma and more within-pattern colour contrast. In paired male preference tests, female Katale L. fuelleborni showed increasing preferences for males with more relatively saturated colours on their flanks. They also showed increasing preferences for males with relatively higher contrast levels among flank elements. This is the first empirical evidence, to our knowledge, for male colour as a directionally sexually selected trait within a haplochromine cichlid population. PMID:15801599
The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns.
Snowden, R J; Treue, S; Andersen, R A
1992-01-01
We studied the response of single units to moving random dot patterns in areas V1 and MT of the alert macaque monkey. Most cells could be driven by such patterns; however, many cells in V1 did not give a consistent response but fired at a particular point during stimulus presentation. Thus different dot patterns can produce a markedly different response at any particular time, though the time averaged response is similar. A comparison of the directionality of cells in both V1 and MT using random dot patterns shows the cells of MT to be far more directional. In addition our estimates of the percentage of directional cells in both areas are consistent with previous reports using other stimuli. However, we failed to find a bimodality of directionality in V1 which has been reported in some other studies. The variance associated with response was determined for individual cells. In both areas the variance was found to be approximately equal to the mean response, indicating little difference between extrastriate and striate cortex. These estimates are in broad agreement (though the variance appears a little lower) with those of V1 cells of the anesthetized cat. The response of MT cells was simulated on a computer from the estimates derived from the single unit recordings. While the direction tuning of MT cells is quite wide (mean half-width at half-height approximately 50 degrees) it is shown that the cells can reliably discriminate much smaller changes in direction, and the performance of the cells with the smallest discriminanda were comparable to thresholds measured with human subjects using the same stimuli (approximately 1.1 degrees). Minimum discriminanda for individual cells occurred not at the preferred direction, that is, the peak of their tuning curves, but rather on the steep flanks of their tuning curves. This result suggests that the cells which may mediate the discrimination of motion direction may not be the cells most sensitive to that direction.
ERIC Educational Resources Information Center
Wang, Junhua; Zhu, Pinfan
2011-01-01
Scholars have consistently claimed that rhetorical patterns are culturally bound, and indirectness is a defining characteristic of Chinese writing. Through examining how the rhetorical mechanism of directness and indirectness is presented in 29 English business communication textbooks published in China, we explore how English business…
2008-03-01
patterns, determine positive directions, and rapidly drive process improvements. This thesis examines literature related to leadership, strategic...an effective mechanism to sense emerging patterns, determine positive directions, and rapidly drive process improvements. This thesis examines...VESSEL SIGHTING APPLICATION - MISLE LITE .............................42 B. RUGGEDIZED TABLET COMPUTER
ERIC Educational Resources Information Center
Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei
2012-01-01
This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…
Metal hierarchical patterning by direct nanoimprint lithography
Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.
2013-01-01
Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801
NASA Astrophysics Data System (ADS)
Oh, Seonghyeon; Han, Dandan; Shim, Hyeon Bo; Hahn, Jae W.
2018-01-01
Subwavelength features have been successfully demonstrated in near-field lithography. In this study, the point spread function (PSF) of a near-field beam spot from a plasmonic ridge nanoaperture is discussed with regard to the complex decaying characteristic of a non-propagating wave and the asymmetry of the field distribution for pattern design. We relaxed the shape complexity of the field distribution with pixel-based optical proximity correction (OPC) for simplifying the pattern image distortion. To enhance the pattern fidelity for a variety of arbitrary patterns, field-sectioning structures are formulated via convolutions with a time-modulation function and a transient PSF along the near-field dominant direction. The sharpness of corners and edges, and line shortening can be improved by modifying the original target pattern shape using the proposed approach by considering both the pattern geometry and directionality of the field decay for OPC in near-field lithography.
Oh, Seonghyeon; Han, Dandan; Shim, Hyeon Bo; Hahn, Jae W
2018-01-26
Subwavelength features have been successfully demonstrated in near-field lithography. In this study, the point spread function (PSF) of a near-field beam spot from a plasmonic ridge nanoaperture is discussed with regard to the complex decaying characteristic of a non-propagating wave and the asymmetry of the field distribution for pattern design. We relaxed the shape complexity of the field distribution with pixel-based optical proximity correction (OPC) for simplifying the pattern image distortion. To enhance the pattern fidelity for a variety of arbitrary patterns, field-sectioning structures are formulated via convolutions with a time-modulation function and a transient PSF along the near-field dominant direction. The sharpness of corners and edges, and line shortening can be improved by modifying the original target pattern shape using the proposed approach by considering both the pattern geometry and directionality of the field decay for OPC in near-field lithography.
Li, Feng-Rui; Wang, Tao; Zhang, Ai-Sheng; Zhao, Li-Ya; Kang, Ling-Fen; Chen, Wen
2005-07-01
Artemisia halodendron is a native sub-shrub that occurs mainly in moving and semi-fixed sandy lands in Inner Mongolia, China. Information on the spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron inhabiting moving sandy lands is very limited. The aim of this study was to examine wind-dispersed seed deposition patterns and post-dispersal recruitment of A. halodendron seedlings. * The spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron were examined by investigating the numbers of deposited seeds, emerged and surviving seedlings using sampling points at a range of distances from the parent plant in eight compass directions for two consecutive growing seasons. * Wind-dispersed seed deposition showed considerable variation between directions and years. Wind transported A. halodendron seeds only a few meters away from the parent plant in all eight directions. Seedling emergence and establishment also showed between-direction and between-year variability, but the spatial pattern of seedling distribution differed from that of seed deposition. Only a very small fraction (<1 %) of the deposited seeds emerged in the field and survived for long enough to be included in our seedling censuses at the end of the growing season. * The spatial variation in wind speed and frequency strongly affects the pattern of seed deposition, although the variation in seed deposition does not determine the spatial pattern of seedling recruitment. Seeds of A. halodendron are not dispersed very well by wind. The low probability of recruitment success for A. halodendron seedlings suggests that this species does not rely on seedling recruitment for its persistence and maintenance of population.
Yi, He; Bao, Xin-Yu; Tiberio, Richard; Wong, H-S Philip
2015-02-11
Directed self-assembly (DSA) is a promising lithography candidate for technology nodes beyond 14 nm. Researchers have shown contact hole patterning for random logic circuits using DSA with small physical templates. This paper introduces an alphabet approach that uses a minimal set of small physical templates to pattern all contacts configurations on integrated circuits. We illustrate, through experiments, a general and scalable template design strategy that links the DSA material properties to the technology node requirements.
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen
2015-01-01
We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915
NASA Astrophysics Data System (ADS)
Qin, Ling; Shen, Jun; Li, Qiudong; Shang, Zhao
2017-05-01
The effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy sample with abruptly varying cross-sections were investigated experimentally and numerically. The experimental results demonstrate that freckles were only observed at the bottom of larger cross-section. Numerical results indicate that this phenomenon should be attributed to the different convection patterns at front of solidification interface. As the withdrawal rate increased, the primary dendrites spacing has an obvious influence on freckle formation. A more in-depth investigation of the convection patterns can provide a better understanding of freckle formation and perhaps offer methods to minimize freckles in turbine blades.
On the orientation of stripes in fish skin patterning.
Míguez, David G; Muñuzuri, Alberto P
2006-11-20
This paper is focused on the study of the stripes orientation in the fish skin patterns. Based on microscopic observations of the pigment cells behavior at the embryonic stage, the key aspects of the pigmentation process are implemented in an experimental reaction-diffusion system. The experiment consists of a photosensitive Turing pattern of stripes growing directionally in one direction with controlled velocity. Different growth velocities of the system rearrange the stripes in the same three possible orientations observed in the skin of the colored fishes: parallel, oblique, and perpendicular. Our results suggest that the spreading velocity of the pigment cells in the fish dermis selects the orientation in the patterning processes.
Self-organization principles of intracellular pattern formation.
Halatek, J; Brauns, F; Frey, E
2018-05-26
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.
Effects of friction reduction of micro-patterned array of rough slider bearing
NASA Astrophysics Data System (ADS)
Kim, M.; Lee, D. W.; Jeong, J. H.; Chung, W. S.; Park, J. K.
2017-08-01
Complex micro-scale patterns have attracted interest because of the functionality that can be created using this type of patterning. This study evaluates the frictional reduction effects of various micro patterns on a slider bearing surface which is operating under mixed lubrication. Due to the rapid growth of contact area under mixed lubrication, it has become important to study the phenomenon of asperity contact in bearings with a heavy load. New analysis using the modified Reynolds equation with both the average flow model and the contact model of asperities is conducted for the rough slider bearing. A numerical analysis is performed to determine the effects of surface roughness on a lubricated bearing. Several dented patterns such as, dot pattern, dashed line patterns are used to evaluate frictional reduction effects. To verify the analytical results, friction test for the micro-patterned samples are performed. From comparing the frictional reduction effects of patterned arrays, the design of them can control the frictional loss of bearings. Our results showed that the design of pattern array on the bearing surface was important to the friction reduction of bearings. To reduce frictional loss, the longitudinal direction of them was better than the transverse direction.
Yang, Xiaomin; Wan, Lei; Xiao, Shuaigang; Xu, Yuan; Weller, Dieter K
2009-07-28
The directed self-assembly of block copolymer (BCP) offers a new route to perfect nanolithographic patterning at sub-50 nm length scale with molecular scale precision. We have explored the feasibility of using the BCP approach versus the conventional electron beam (e-beam) lithography to create highly dense dot patterns for bit-patterned media (BPM) applications. Cylinder-forming poly(styrene-b-methyl methacrylate) (PS-b-PMMA) directly self-assembled on a chemically prepatterned substrate. The nearly perfect hexagonal arrays of perpendicularly oriented cylindrical pores at a density of approximately 1 Terabit per square inch (Tb/in.(2)) are achieved over an arbitrarily large area. Considerable gains in the BCP process are observed relative to the conventional e-beam lithography in terms of the dot size variation, the placement accuracy, the pattern uniformity, and the exposure latitude. The maximum dimensional latitude in the cylinder-forming BCP patterns and the maximum skew angle that the BCP can tolerate have been investigated for the first time. The dimensional latitude restricts the formation of more than one lattice configuration in certain ranges. More defects in BCP patterns are observed when using low molecular weight BCP materials or on non-hexagonal prepatterns due to the dimensional latitude restriction. Finally, the limitations and challenges in the BCP approach that are associated with BPM applications will be briefly discussed.
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
Laser direct patterning of indium tin oxide for defining a channel of thin film transistor.
Wang, Jian-Xun; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik
2013-11-01
In this work, using a Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser, a direct patterning of indium tin oxide (ITO) channel was realized on glass substrates and the results were compared and analyzed in terms of the effect of repetition rate, scanning speed on etching characteristics. The results showed that the laser conditions of 40 kHz repetition rate with a scanning speed of 500 mm/s were appropriate for the channeling of ITO electrodes. The length of laser-patterned channel was maintained at about 55 microm. However, residual spikes (about 50 nm in height) of ITO were found to be formed at the edges of the laser ablated area and a few ITO residues remained on the glass substrate after laser scanning. By dipping the laser-ablated ITO film in ITO diluted etchant (ITO etchant/DI water: 1/10) at 50 degrees C for 3 min, the spikes and residual ITO were effectively removed. At last, using the laser direct patterning, a bottom-source-drain indium gallium zinc oxide thin film transistor (IGZO-TFT) was fabricated. It is successfully demonstrated that the laser direct patterning can be utilized instead of photolithography to simplify the fabrication process of TFT channel, resulting in the increase of productivity and reduction of cost.
Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells
Schiele, Nathan R.; Chrisey, Douglas B.
2011-01-01
Laser direct-writing provides a method to pattern living cells in vitro, to study various cell–cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research. PMID:20849381
Descriptive Assessment of Sleep Patterns among Community-Living Adults with Mental Retardation
ERIC Educational Resources Information Center
Luiselli, James K.; Magee, Christine; Sperry, James M.; Parker, Shawn
2005-01-01
There is little information about the sleep patterns of adults who have mental retardation and are supported in the community. In the present study, direct-care staff recorded sleep behaviors of 59 adults residing in 16 suburban group homes. Based on direct observation and measurement procedures, the adults averaged 7.9 hours of sleep each evening…
Pattern-Directed Processing of Knowledge from Texts.
ERIC Educational Resources Information Center
Thorndyke, Perry W.
A framework for viewing human text comprehension, memory, and recall is presented that assumes patterns of abstract conceptual relations are used to guide processing. These patterns consist of clusters of knowledge that encode prototypical co-occurrences of situations and events in narrative texts. The patterns are assumed to be a part of a…
Position control of desiccation cracks by memory effect and Faraday waves.
Nakayama, Hiroshi; Matsuo, Yousuke; Takeshi, Ooshida; Nakahara, Akio
2013-01-01
Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday waves, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node zones of the Faraday waves: in the case of stripe-patterned Faraday waves, the cracks are formed twice more frequently in the node zones than in the anti-node zones, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node zones, the memory of the square lattice pattern of Faraday waves makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday waves.
Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, Mikiko
2011-11-01
SHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis.
The polarization patterns of skylight reflected off wave water surface.
Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie
2013-12-30
In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.
NASA Astrophysics Data System (ADS)
Ro, Hyun Wook; Jones, Ronald L.; Peng, Huagen; Lee, Hae-Jeong; Lin, Eric K.; Karim, Alamgir; Yoon, Do Y.; Gidley, David W.; Soles, Christopher L.
2008-03-01
Direct patterning of low-dielectric constant (low-k) materials via nanoimprint lithography (NIL) has the potential to simplify fabrication processes and significantly reduce the manufacturing costs for semiconductor devices. We report direct imprinting of sub-100 nm features into a high modulus methylsilsesquioxane-based organosilicate glass (OSG) material. An excellent fidelity of the pattern transfer process is quantified with nm precision using critical dimension small angle X-ray scattering (CD-SAXS) and specular X-ray reflectivity (SXR). X-ray porosimetry (XRP) and positron annihilation lifetime spectroscopy (PALS) measurements indicate that imprinting increases the inherent microporosity of the methylsilsequioxane-based OSG material. When a porogen (pore generating material) is added, imprinting decreases the population of mesopores associated with the porogen while retaining the enhanced microporosity. The net effect is a decrease the pore interconnectivity. There is also evidence for a sealing effect that is interpreted as an imprint induced dense skin at the surface of the porous pattern.
A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns
NASA Astrophysics Data System (ADS)
Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav
2017-07-01
In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.
Work step indication with grid-pattern projection for demented senior people.
Uranishi, Yuki; Yamamoto, Goshiro; Asghar, Zeeshan; Pulli, Petri; Kato, Hirokazu; Oshiro, Osamu
2013-01-01
This paper proposes a work step indication method for supporting daily work with a grid-pattern projection. To support an independent life of demented senior people, it is desirable that an instruction is easy to understand visually and not complicated. The proposed method in this paper uses a range image sensor and a camera in addition to a projector. A 3D geometry of a target scene is measured by the range image sensor, and the grid-pattern is projected onto the scene directly. Direct projection of the work step is easier to be associated with the target objects around the assisted person, and the grid-pattern is a solution to indicate the spatial instruction. A prototype has been implemented and has demonstrated that the proposed grid-pattern projection is easy to show the work step.
Structural Pattern Recognition Techniques for Data Retrieval in Massive Fusion Databases
NASA Astrophysics Data System (ADS)
Vega, J.; Murari, A.; Rattá, G. A.; Castro, P.; Pereira, A.; Portas, A.
2008-03-01
Diagnostics of present day reactor class fusion experiments, like the Joint European Torus (JET), generate thousands of signals (time series and video images) in each discharge. There is a direct correspondence between the physical phenomena taking place in the plasma and the set of structural shapes (patterns) that they form in the signals: bumps, unexpected amplitude changes, abrupt peaks, periodic components, high intensity zones or specific edge contours. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behavior, i.e. discharges with "similar" patterns. Pattern recognition techniques are efficient tools to search for similar structural forms within the database in a fast an intelligent way. To this end, classification systems must be developed to be used as indexation methods to directly fetch the more similar patterns.
2017-01-01
Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943
Vadnjal, Ana Laura; Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H
2013-03-20
We present a method to determine micro and nano in-plane displacements based on the phase singularities generated by application of directional wavelet transforms to speckle pattern images. The spatial distribution of the obtained phase singularities by the wavelet transform configures a network, which is characterized by two quasi-orthogonal directions. The displacement value is determined by identifying the intersection points of the network before and after the displacement produced by the tested object. The performance of this method is evaluated using simulated speckle patterns and experimental data. The proposed approach is compared with the optical vortex metrology and digital image correlation methods in terms of performance and noise robustness, and the advantages and limitations associated to each method are also discussed.
Evolution of solidification texture during additive manufacturing.
Wei, H L; Mazumder, J; DebRoy, T
2015-11-10
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.
Reconfigurable antenna using plasma reflector
NASA Astrophysics Data System (ADS)
Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan
2018-02-01
This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.
A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation
NASA Astrophysics Data System (ADS)
Li, Yue-e.; Wang, Qiang
2011-11-01
This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.
Automatic Extraction of Destinations, Origins and Route Parts from Human Generated Route Directions
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Mitra, Prasenjit; Klippel, Alexander; Maceachren, Alan
Researchers from the cognitive and spatial sciences are studying text descriptions of movement patterns in order to examine how humans communicate and understand spatial information. In particular, route directions offer a rich source of information on how cognitive systems conceptualize movement patterns by segmenting them into meaningful parts. Route directions are composed using a plethora of cognitive spatial organization principles: changing levels of granularity, hierarchical organization, incorporation of cognitively and perceptually salient elements, and so forth. Identifying such information in text documents automatically is crucial for enabling machine-understanding of human spatial language. The benefits are: a) creating opportunities for large-scale studies of human linguistic behavior; b) extracting and georeferencing salient entities (landmarks) that are used by human route direction providers; c) developing methods to translate route directions to sketches and maps; and d) enabling queries on large corpora of crawled/analyzed movement data. In this paper, we introduce our approach and implementations that bring us closer to the goal of automatically processing linguistic route directions. We report on research directed at one part of the larger problem, that is, extracting the three most critical parts of route directions and movement patterns in general: origin, destination, and route parts. We use machine-learning based algorithms to extract these parts of routes, including, for example, destination names and types. We prove the effectiveness of our approach in several experiments using hand-tagged corpora.
The study on the effect of pattern density distribution on the STI CMP process
NASA Astrophysics Data System (ADS)
Sub, Yoon Myung; Hian, Bernard Yap Tzen; Fong, Lee It; Anak, Philip Menit; Minhar, Ariffin Bin; Wui, Tan Kim; Kim, Melvin Phua Twang; Jin, Looi Hui; Min, Foo Thai
2017-08-01
The effects of pattern density on CMP characteristics were investigated using specially designed wafer for the characterization of pattern-dependencies in STI CMP [1]. The purpose of this study is to investigate the planarization behavior based on a direct STI CMP used in cerium (CeO2) based slurry system in terms of pattern density variation. The minimal design rule (DR) of 180nm generation technology node was adopted for the mask layout. The mask was successfully applied for evaluation of a cerium (CeO2) abrasive based direct STI CMP process. In this study, we described a planarization behavior of the loading-effects of pattern density variation which were characterized with layout pattern density and pitch variations using masks mentioned above. Furthermore, the characterizing pattern dependent on the variations of the dimensions and spacing features, in thickness remaining after CMP, were analyzed and evaluated. The goal was to establish a concept of library method which will be used to generate design rules reducing the probability of CMP-related failures. Details of the characterization were measured in various layouts showing different pattern density ranges and the effects of pattern density on STI CMP has been discussed in this paper.
Pattern and polarization measurements of integrated-circuit spiral antennas at 10-μm wavelength
NASA Astrophysics Data System (ADS)
MacDonald, Michael E.; Grossman, Erich N.
1996-12-01
Radiation patterns are presented for planar equiangular spiral antennas at wavelengths of approximately 10 micrometers . These antennas are fabricated using integrated-circuit processes on silicon substrates and are coupled through dielectric lenses. Patterns are presented over a full 2D scan for orthogonal linear polarizations, and for left- circular (LCP) and right-circular (RCP) polarizations. The antennas respond preferentially to left-circularly polarized radiation, as expected for the left-handed sense of the spiral arms. Cross-polarization ratios as large as 10 dB in circular polarization are obtained, corresponding to an axial ratio of 1.2. No difference in response between horizontally and vertically polarized radiation is observed, as expected for circularly polarized antennas. Directivities as large as 14 dB in left-circular polarization have been obtained. The cross-polarized directivity is considerably lower than the co-polarized directivity. All patterns are approximately circularly symmetric about the (theta) equals 0 axis. The cross-polarization ratio and pattern symmetry strongly depend on the alignment of the antenna and detector response is antenna coupled, even at radiation wavelength of the same order of magnitude as the resolution limit of the optical lithography used to define the antenna geometry.
Kumar, Sunil; Pattanayek, Sudip K; Pereira, Gerald G
2014-01-14
We use molecular dynamics simulations to investigate the arrangement of polymer chains when absorbed onto a long, single-wall carbon nano-tube (SWCNT). We study the conformation and organization of the polymer chains on the SWCNT and their dependence on the tube's diameter and the rate of cooling. We use two types of cooling processes: direct quenching and gradual cooling. The radial density distribution function and bond orientational order parameter are used to characterize the polymer chain structure near the surface. In the direct cooling process, the beads of the polymer chain organize in lamella-like patterns on the surface of the SWCNT with the long axis of the lamella parallel to the axis of the SWCNT. In a stepwise, gradual cooling process, the polymer beads form a helical pattern on the surface of a relatively thick SWCNT, but form a lamella-like pattern on the surface of a very thin SWCNT. We develop a theoretical (free energy) model to explain this difference in pattern structures for the gradual cooling process and also provide a qualitative explanation for the pattern that forms from the direct cooling process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Hyo Seon; Kim, Do Han; Moni, Priya
2017-03-27
Directed self-assembly (DSA) of the domain structure in block copolymer (BCP) thin films is a promising approach for sub-10-nm surface patterning. DSA requires the control of interfacial properties on both interfaces of a BCP film to induce the formation of domains that traverse the entire film with a perpendicular orientation. Here we show a methodology to control the interfacial properties of BCP films that uses a polymer topcoat deposited by initiated chemical vapour deposition (iCVD). The iCVD topcoat forms a crosslinked network that grafts to and immobilizes BCP chains to create an interface that is equally attractive to both blocksmore » of the underlying copolymer. The topcoat, in conjunction with a chemically patterned substrate, directs the assembly of the grating structures in BCP films with a half-pitch dimension of 9.3 nm. As the iCVD topcoat can be as thin as 7 nm, it is amenable to pattern transfer without removal. As a result, the ease of vapour-phase deposition, applicability to high-resolution BCP systems and integration with pattern-transfer schemes are attractive properties of iCVD topcoats for industrial applications.« less
Oblique patterned etching of vertical silicon sidewalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David
A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.
Oblique patterned etching of vertical silicon sidewalls
NASA Astrophysics Data System (ADS)
Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.
2016-04-01
A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.
Oblique patterned etching of vertical silicon sidewalls
Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David; ...
2016-04-05
A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.
Anisotropic properties of periodically polarity-inverted zinc oxide structures
NASA Astrophysics Data System (ADS)
Park, J. S.; Minegishi, T.; Lee, J. W.; Hong, S. K.; Song, J. H.; Lee, J. Y.; Yoon, E.; Yao, T.
2010-06-01
We report on the anisotropic structural properties of periodically polarity-inverted (PPI) ZnO structures grown on patterned templates. The etching and growth rates along ⟨112¯0⟩ direction of ZnO structures are higher than those of ⟨101¯0⟩ direction of ZnO films. From the strain evaluation by Raman spectroscopy, compressive strains are observed in all PPI ZnO samples with different stripe pattern size and the smaller pattern size is more effective to residual stress relaxation. The detailed structures at transition region show relationship with the anisotropic crystal quality.
Direct observation of resonance scattering patterns in single silicon nanoparticles
NASA Astrophysics Data System (ADS)
Valuckas, Vytautas; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Luk'yanchuk, Boris; Kuznetsov, Arseniy I.
2017-02-01
We present the first direct observation of the scattering patterns of electric and magnetic dipole resonances excited in a single silicon nanosphere. Almost perfectly spherical silicon nanoparticles were fabricated and deposited on a 30 nm-thick silicon nitride membrane in an attempt to minimize particle—substrate interaction. Measurements were carried out at visible wavelengths by means of the Fourier microscopy in a dark-field illumination setup. The obtained back-focal plane images clearly reveal the characteristic scattering patterns associated with each resonance and are found to be in a good agreement with the simulated results.
Bertolo, Andrea; Blanchet, F. Guillaume; Magnan, Pierre; Brodeur, Philippe; Mingelbier, Marc; Legendre, Pierre
2012-01-01
Larval dispersal is a crucial factor for fish recruitment. For fishes with relatively small-bodied larvae, drift has the potential to play a more important role than active habitat selection in determining larval dispersal; therefore, we expect small-bodied fish larvae to be poorly associated with habitat characteristics. To test this hypothesis, we used as model yellow perch (Perca flavescens), whose larvae are among the smallest among freshwater temperate fishes. Thus, we analysed the habitat association of yellow perch larvae at multiple spatial scales in a large shallow fluvial lake by explicitly modelling directional (e.g. due to water currents) and non-directional (e.g. due to aggregation) spatial patterns. This allowed us to indirectly assess the relative roles of drift (directional process) and potential habitat choice on larval dispersal. Our results give weak support to the drift hypothesis, whereas yellow perch show a strong habitat association at unexpectedly small sizes, when compared to other systems. We found consistent non-directional patterns in larvae distributions at both broad and medium spatial scales but only few significant directional components. The environmental variables alone (e.g. vegetation) generally explained a significant and biologically relevant fraction of the variation in fish larvae distribution data. These results suggest that (i) drift plays a minor role in this shallow system, (ii) larvae display spatial patterns that only partially covary with environmental variables, and (iii) larvae are associated to specific habitats. By suggesting that habitat association potentially includes an active choice component for yellow perch larvae, our results shed new light on the ecology of freshwater fish larvae and should help in building more realistic recruitment models. PMID:23185585
He, Jianhui; Assanangkornchai, Sawitri; Cai, Le; McNeil, Edward
2016-02-01
Studies investigating alcohol consumption related factors have rarely focused on the relationship between acculturation, religion and drinking patterns. The objective of this study is to explore the predictors of drinking patterns and their mutual relationships, especially acculturation, ethnicity and religion. A cross-sectional household survey using a multistage systematic sampling technique was conducted in Yunnan Province of China. A revised Vancouver Index of Acculturation (VIA) and Alcohol Use Disorder Identification Test (AUDIT) Chinese version were used to measure acculturation and drinking patterns. Structural equation modeling (SEM) was used to explore the structures of how predictors affect drinking patterns. A total of 977 subjects aged 12-35 years were surveyed. A higher percentage of binge drinking was found among Lisu people. However, the proportion of drinking until intoxication was highest among Han. Gender and enculturation had both direct (standardized β=-0.193, -0.079) and indirect effects (standardized β=-0.126, 0.033) on risky drinking pattern; perceived risk of alcohol consumption (-0.065), family drinking environment (0.061), and friend drinking environment (0.352) affected risky drinking pattern directly, while education level (0.066), ethnicity (-0.038), acculturation (0.012), religious belief (-0.038), and age group (0.088) had indirect effects. Risky drinking pattern was associated with gender and aboriginal culture enculturation both directly and indirectly, and related to mainstream culture acculturation and religious belief indirectly. Other demographic (such as education level) and social family factors (friend drinking environment for example) also had effects on risky drinking pattern. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.
2012-03-01
Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.
Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui
2013-12-16
Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability ismore » monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...
2016-01-27
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali
2016-01-01
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257
NASA Astrophysics Data System (ADS)
Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.
2016-06-01
Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.
Development of template and mask replication using jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Brooks, Cynthia; Selinidis, Kosta; Doyle, Gary; Brown, Laura; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.
2010-09-01
The Jet and Flash Imprint Lithography (J-FILTM)1-7 process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105 imprints. This suggests that tens of thousands of templates/masks will be required. It is not feasible to employ electronbeam patterning directly to deliver these volumes. Instead, a "master" template - created by directly patterning with an electron-beam tool - will be replicated many times with an imprint lithography tool to produce the required supply of "working" templates/masks. In this paper, we review the development of the pattern transfer process for both template and mask replicas. Pattern transfer of resolutions down to 25nm has been demonstrated for bit patterned media replication. In addition, final resolution on a semiconductor mask of 28nm has been confirmed. The early results on both etch depth and CD uniformity are promising, but more extensive work is required to characterize the pattern transfer process.
Defect inspection of periodic patterns with low-order distortions
NASA Astrophysics Data System (ADS)
Khalaj, Babak H.; Aghajan, Hamid K.; Paulraj, Arogyaswami; Kailath, Thomas
1994-03-01
A self-reliance technique is developed for detecting defects in repeated pattern wafers and masks with low-order distortions. If the patterns are located on a perfect rectangular grid, it is possible to estimate the period of repeated patterns in both directions, and then produce a defect-free reference image for making comparison with the actual image. But in some applications, the repeated patterns are somehow shifted from their desired position on a rectangular grid, and the aforementioned algorithm cannot be directly applied. In these situations, to produce a defect-free reference image and locate the defected cells, it is necessary to estimate the amount of misalignment of each cell beforehand. The proposed technique first estimates the misalignment of repeated patterns in each row and column. After estimating the location of all cells in the image, a defect-free reference image is generated by averaging over all the cells and is compared with the input image to localize the possible defects.
Femtosecond laser patterning of biological materials
NASA Astrophysics Data System (ADS)
Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.
2011-03-01
This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.
Interferometric Laser Scanner for Direction Determination
Kaloshin, Gennady; Lukin, Igor
2016-01-01
In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841
Interferometric Laser Scanner for Direction Determination.
Kaloshin, Gennady; Lukin, Igor
2016-01-21
In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.
Martian Dune Ripples as Indicators of Recent Surface Wind Patterns
NASA Astrophysics Data System (ADS)
Johnson, M.; Zimbelman, J. R.
2015-12-01
Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won
2012-07-25
Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.
Turbomachinery noise studies of the AiResearch QCGAT engine with inflow control
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Chrulski, D. D.
1981-01-01
The AiResearch Quiet Clean General Aviation Turbofan engine was tested on an outdoor test stand to compare the acoustic performance of two inflow control devices (ICD's) of similar design, and three inlet lips of different external shape. Only small performance differences were found. Far-field directivity patterns calculated by applicable existing analyses were compared with the measured tone and broadband patterns. For some of these comparisons, tests were made with an ICD to reduce rotor/inflow disturbance interaction noise, or with the acoustic suppression panels in the inlet or bypass duct covered with aluminum tape to determine hard wall acoustic performance. The comparisons showed that the analytical expressions used predict many directivity pattern features and trends, but can deviate in shape from the measured patterns under certain engine operating conditions. Some patterns showed lobes from modes attributable to rotor/engine strut interaction sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guoliang; Nealey, Paul F.
Herein we have investigated the domain width distributions of block copolymers and their ternary blends after directed assembly on chemically patterned surfaces with and without density multiplication. On chemical patterns with density multiplication, the width of the interpolated block copolymer domains was bimodal. Once blended with the corresponding homopolymers, the block copolymers exhibited unimodal distributions of domain width due to the redistribution of homopolymers in the block copolymer domains. When the block copolymers were blended with hydroxyl-terminated homopolymers, the homopolymers with functional end-groups healed the chemical patterns and facilitated the formation of nanostructures with further improved domain width distributions. Lastly,more » it is demonstrated that the block copolymers achieved the most improved domain width distributions when directed to assemble without density multiplication on one-to-one chemical patterns generated by molecular transfer printing.« less
Statistical properties of bidimensional patterns generated from delayed and extended maps
NASA Astrophysics Data System (ADS)
Giacomelli, Giovanni; Lepri, Stefano; Politi, Antonio
1995-05-01
The space-time chaotic patterns associated with a class of dynamical systems ranging from delayed to extended maps are investigated. All the systems are constructed in such a way that the corresponding two-dimensional (2D) representation is characterized by the same updating rule in the bulk. The main difference among them is the direction of the ``time'' axis in the plane. Despite the different causality relations among the various models, the resulting patterns are shown to be statistically equivalent. In particular, the Kolmogorov-Sinai entropy density assumes always the same value. Therefore, it can be considered as an absolute indicator, measuring the amount of disorder of a 2D pattern. The Kaplan-Yorke dimension density is instead rule dependent: this indicator alone cannot be used to quantify the degrees of freedom of a given pattern; one must further specify the direction of propagation in the plane.
Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2016-01-01
We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249
NASA Astrophysics Data System (ADS)
Lee, Jae-Yong; Kim, Hyo-Jun; Kim, Young-Joo
2016-02-01
A semi-transparent screen with hemisphere micro-patterns was proposed and designed to enhance the brightness uniformity of the display image toward the driver for a direct-view type head-up display. The hemisphere micro-patterns were designed to consider the inclined angle of the windshield for efficient reflection and scattering toward to the driver. The density and radius of the hemisphere micro-patterns were adjusted as a function of position on the screen based on the geometrical calculation and analyzed by the commercial optical simulation tool based on a ray-tracing method. The designed hemisphere micro-patterns was fabricated by the thermal reflow method and evaluated to confirm the uniform illumination. From the results, the semi-transparent screen with variable micro-patterns shows the 91.9 % of brightness uniformity with the enhanced luminance compare to a screen without micro-patterns. A luminance of fabricated screen also shows good agreement with the simulation result to reflect the clear and bright driving information to the driver.
Laser fabrication of porous silicon-based platforms for cell culturing.
Peláez, Ramón-J; Afonso, Carmen-N; Vega, Fidel; Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso-Silván, Miguel; García-Ruiz, Josefa-P; Martín-Palma, Raúl-J
2013-11-01
In this study, we explore the selective culturing of human mesenchymal stem cells (hMSCs) on Si-based diffractive platforms. We demonstrate a single-step and flexible method for producing platforms on nanostructured porous silicon (nanoPS) based on the use of single pulses of an excimer laser to expose phase masks. The resulting patterns are typically 1D patterns formed by fringes or 2D patterns formed by circles. They are formed by alternate regions of almost unmodified nanoPS and regions where the nanoPS surface has melted and transformed into Si nanoparticles. The patterns are produced in relatively large areas (a few square millimeters) and can have a wide range of periodicities and aspect ratios. Direct binding, that is, with no previous functionalization of the pattern, alignment, and active polarization of hMSCs are explored. The results show the preferential direct binding of the hMSCs along the transformed regions whenever their width compares with the dimensions of the cells and they escape from patterns for smaller widths suggesting that the selectivity can be tailored through the pattern period. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazantsev, Victor; Pimashkin, Alexey; Department of Neurodynamics and Neurobiology, Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod
We propose two-layer architecture of associative memory oscillatory network with directional interlayer connectivity. The network is capable to store information in the form of phase-locked (in-phase and antiphase) oscillatory patterns. The first (input) layer takes an input pattern to be recognized and their units are unidirectionally connected with all units of the second (control) layer. The connection strengths are weighted using the Hebbian rule. The output (retrieved) patterns appear as forced-phase locked states of the control layer. The conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is shown that the system is capablemore » to recover patterns with a certain level of distortions or noises in their profiles. The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscillators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that translates memorized patterns into the spiking phase shifts at different time scales.« less
Photo-Induced Click Chemistry for DNA Surface Structuring by Direct Laser Writing.
Kerbs, Antonina; Mueller, Patrick; Kaupp, Michael; Ahmed, Ishtiaq; Quick, Alexander S; Abt, Doris; Wegener, Martin; Niemeyer, Christof M; Barner-Kowollik, Christopher; Fruk, Ljiljana
2017-04-11
Oligonucleotides containing photo-caged dienes were prepared and shown to react quantitatively in a light-induced Diels-Alder cycloaddition with functional maleimides in aqueous solution within minutes. Due to its high yield and fast rate, the reaction was exploited for DNA surface patterning with sub-micrometer resolution employing direct laser writing (DLW). Functional DNA arrays were written by direct laser writing (DLW) in variable patterns, which were further encoded with fluorophores and proteins through DNA directed immobilization. This mild and efficient light-driven platform technology holds promise for the fabrication of complex bioarrays with sub-micron resolution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolution of solidification texture during additive manufacturing
Wei, H. L.; Mazumder, J.; DebRoy, T.
2015-01-01
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246
Evolution of solidification texture during additive manufacturing
Wei, H. L.; Mazumder, J.; DebRoy, T.
2015-11-10
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Furthermore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numericalmore » modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch
2014-04-07
We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500 nm, depth of 50 nm, and a periodicity of 1 μm were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of themore » top p-GaN layer and the active region, respectively.« less
Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, Mikiko
2011-01-01
SHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis. PMID:21951467
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
47 CFR 73.155 - Periodic directional antenna performance recertification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...
Competing Processes of Sibling Influence: Observational Learning and Sibling Deidentification
ERIC Educational Resources Information Center
Whiteman, Shawn D.; McHale, Susan M.; Crouter, Ann C.
2007-01-01
Although commonly cited as explanations for patterns of sibling similarity and difference, observational learning and sibling deidentification processes have rarely been examined directly. Using a person-oriented approach, we identified patterns in adolescents' perceptions of sibling influences and connected these patterns to sibling similarities…
Kim, Sun-Jung; Lee, Jae Kyoo; Kim, Jin Won; Jung, Ji-Won; Seo, Kwangwon; Park, Sang-Bum; Roh, Kyung-Hwan; Lee, Sae-Rom; Hong, Yun Hwa; Kim, Sang Jeong; Lee, Yong-Soon; Kim, Sung June; Kang, Kyung-Sun
2008-08-01
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.
Effect Of Contrast On Perceived Motion Of A Plaid
NASA Technical Reports Server (NTRS)
Stone, L. S.; Watson, A. B.; Mulligan, J. B.
1992-01-01
Report desribes series of experiments examining effect of contrast on perception of moving plaids. Each plaid pattern used in experiments was sum of two drifting sinusoidal gratings of different orientations. One of many studies helping to show how brain processes visual information on moving patterns. When gratings forming plaid differ in contrast, apparent direction of motion of plaid biased up to 20 degrees toward direction of grating of higher contrast.
Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L
2017-01-01
Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.
Spatial interactions during bimanual coordination patterns: the effect of directional compatibility.
Bogaerts, H; Swinnen, S P
2001-04-01
Whereas previous bimanual coordination research has predominantly focused on the constraining role of timing, the present study addressed the role of spatial (i.e., directional) constraints during the simultaneous production of equilateral triangles with both upper limbs. In addition to coordination modes in which mirror-image and isodirectional movements were performed (compatible patterns), new modes were tested in which the left limb lagged with respect to the right by one triangle side (non-compatible patterns). This resulted in the experimental manipulation of directional compatibility between the limbs. In addition, triangles with either horizontal or vertical orientations were to be drawn in order to assess the role of static images on movement production. Results supported the important role of directional constraints in bimanual coordination. Furthermore, triangles in vertical orientations (with a vertical symmetry axis, i.e., one apex pointing up) were drawn more successfully than those in horizontal orientations (with a horizontal symmetry axis, i.e., one apex pointing left or right), suggesting that the static aspects of a geometric form may affect movement dynamics. Finally, evidence suggested that cognitive processes related to integration of the submovements into a unified plan mediate the performance of new coordination patterns. The implications of the present finding for clinical populations are discussed
Derivation of an optimal directivity pattern for sweet spot widening in stereo sound reproduction
NASA Astrophysics Data System (ADS)
Ródenas, Josep A.; Aarts, Ronald M.; Janssen, A. J. E. M.
2003-01-01
In this paper the correction of the degradation of the stereophonic illusion during sound reproduction due to off-center listening is investigated. The main idea is that the directivity pattern of a loudspeaker array should have a well-defined shape such that a good stereo reproduction is achieved in a large listening area. Therefore, a mathematical description to derive an optimal directivity pattern opt that achieves sweet spot widening in a large listening area for stereophonic sound applications is described. This optimal directivity pattern is based on parametrized time/intensity trading data coming from psycho-acoustic experiments within a wide listening area. After the study, the required digital FIR filters are determined by means of a least-squares optimization method for a given stereo base setup (two pair of drivers for the loudspeaker arrays and 2.5-m distance between loudspeakers), which radiate sound in a broad range of listening positions in accordance with the derived opt. Informal listening tests have shown that the opt worked as predicted by the theoretical simulations. They also demonstrated the correct central sound localization for speech and music for a number of listening positions. This application is referred to as ``Position-Independent (PI) stereo.''
How memory of direct animal interactions can lead to territorial pattern formation.
Potts, Jonathan R; Lewis, Mark A
2016-05-01
Mechanistic home range analysis (MHRA) is a highly effective tool for understanding spacing patterns of animal populations. It has hitherto focused on populations where animals defend their territories by communicating indirectly, e.g. via scent marks. However, many animal populations defend their territories using direct interactions, such as ritualized aggression. To enable application of MHRA to such populations, we construct a model of direct territorial interactions, using linear stability analysis and energy methods to understand when territorial patterns may form. We show that spatial memory of past interactions is vital for pattern formation, as is memory of 'safe' places, where the animal has visited but not suffered recent territorial encounters. Additionally, the spatial range over which animals make decisions to move is key to understanding the size and shape of their resulting territories. Analysis using energy methods, on a simplified version of our system, shows that stability in the nonlinear system corresponds well to predictions of linear analysis. We also uncover a hysteresis in the process of territory formation, so that formation may depend crucially on initial space-use. Our analysis, in one dimension and two dimensions, provides mathematical groundwork required for extending MHRA to situations where territories are defended by direct encounters. © 2016 The Author(s).
Uni-directional liquid spreading on asymmetric nanostructured surfaces
NASA Astrophysics Data System (ADS)
Chu, Kuang-Han; Xiao, Rong; Wang, Evelyn N.
2010-05-01
Controlling surface wettability and liquid spreading on patterned surfaces is of significant interest for a broad range of applications, including DNA microarrays, digital lab-on-a-chip, anti-fogging and fog-harvesting, inkjet printing and thin-film lubrication. Advancements in surface engineering, with the fabrication of various micro/nanoscale topographic features, and selective chemical patterning on surfaces, have enhanced surface wettability and enabled control of the liquid film thickness and final wetted shape. In addition, groove geometries and patterned surface chemistries have produced anisotropic wetting, where contact-angle variations in different directions resulted in elongated droplet shapes. In all of these studies, however, the wetting behaviour preserves left-right symmetry. Here, we demonstrate that we can harness the design of asymmetric nanostructured surfaces to achieve uni-directional liquid spreading, where the liquid propagates in a single preferred direction and pins in all others. Through experiments and modelling, we determined that the spreading characteristic is dependent on the degree of nanostructure asymmetry, the height-to-spacing ratio of the nanostructures and the intrinsic contact angle. The theory, based on an energy argument, provides excellent agreement with experimental data. The insights gained from this work offer new opportunities to tailor advanced nanostructures to achieve active control of complex flow patterns and wetting on demand.
Toward Abstracting the Communication Intent in Applications to Improve Portability and Productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mintz, Tiffany M; Hernandez, Oscar R; Kartsaklis, Christos
Programming with communication libraries such as the Message Passing Interface (MPI) obscures the high-level intent of the communication in an application and makes static communication analysis difficult to do. Compilers are unaware of communication libraries specifics, leading to the exclusion of communication patterns from any automated analysis and optimizations. To overcome this, communication patterns can be expressed at higher-levels of abstraction and incrementally added to existing MPI applications. In this paper, we propose the use of directives to clearly express the communication intent of an application in a way that is not specific to a given communication library. Our communicationmore » directives allow programmers to express communication among processes in a portable way, giving hints to the compiler on regions of computations that can be overlapped with communication and relaxing communication constraints on the ordering, completion and synchronization of the communication imposed by specific libraries such as MPI. The directives can then be translated by the compiler into message passing calls that efficiently implement the intended pattern and be targeted to multiple communication libraries. Thus far, we have used the directives to express point-to-point communication patterns in C, C++ and Fortran applications, and have translated them to MPI and SHMEM.« less
Derivation of an optimal directivity pattern for sweet spot widening in stereo sound reproduction.
Ródenas, Josep A; Aarts, Ronald M; Janssen, A J E M
2003-01-01
In this paper the correction of the degradation of the stereophonic illusion during sound reproduction due to off-center listening is investigated. The main idea is that the directivity pattern of a loudspeaker array should have a well-defined shape such that a good stereo reproduction is achieved in a large listening area. Therefore, a mathematical description to derive an optimal directivity pattern l(opt) that achieves sweet spot widening in a large listening area for stereophonic sound applications is described. This optimal directivity pattern is based on parametrized time/intensity trading data coming from psycho-acoustic experiments within a wide listening area. After the study, the required digital FIR filters are determined by means of a least-squares optimization method for a given stereo base setup (two pair of drivers for the loudspeaker arrays and 2.5-m distance between loudspeakers), which radiate sound in a broad range of listening positions in accordance with the derived l(opt). Informal listening tests have shown that the l(opt) worked as predicted by the theoretical simulations. They also demonstrated the correct central sound localization for speech and music for a number of listening positions. This application is referred to as "Position-Independent (PI) stereo."
Effective Light Directed Assembly of Building Blocks with Microscale Control.
Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung
2017-06-01
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The polarization compass dominates over idiothetic cues in path integration of desert ants.
Lebhardt, Fleur; Koch, Julja; Ronacher, Bernhard
2012-02-01
Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern.
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
47 CFR 73.151 - Field strength measurements to establish performance of directional antennas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... performance of directional antennas. 73.151 Section 73.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... measurements to establish performance of directional antennas. The performance of a directional antenna may be... directional antenna pattern, a total of six radials is sufficient. If two radials would be more than 90° apart...
NASA Astrophysics Data System (ADS)
Zeilinger, Gerold; Parra, Mauricio; Kober, Florian
2017-04-01
It is widely accepted, that drainage patterns are often controlled by tectonics/climate and geology/rheology. Classical drainage patterns can be found 1) in fault-and-thrust belt, where rives follow the valleys parallel or cut perpendicular to strike trough the ridges, forming a trellis pattern, 2) at dome structures where the drainage form a radial pattern or 3) rectangular patterns in strongly fractured regions. In this study, we focus on fault-and-thrust belts, that undergone different phases of tectonic activity. According to classical models, the deformation is propagating into the foreland, hence being youngest at the frontal part and getting successively older towards the axis of the orogen. Drainage patterns in the more interior parts of the orogenic wedge should be then less influenced by the direction of structures, as landscape evolution is changing to a tectonic passive stage. This relationship might represent the transience and maturity of drainage pattern evolution. Here we study drainage patterns of the Bolivian and the eastern Colombian Andes by comparing the relative orientation of the drainage network with the orogen structural grain. The drainage is extracted from Digital Elevation Models (SRTM 30 m) and indexed by their Strahler Order. Order 1 channels have an upstream area of 1 km2. The direction of all segments is analyzed by linear directional mean function that results in the mean orientation of input channels with approx. 500 m average length. The orientation of structures for different structural domains is calculated using the same function on digitized faults and fold-axis. Rose diagrams show the length-weighted directional distribution of structures, of higher (>= 4) and of lower order (<= 3) channels. The structural trend in the Bolivian Andes is controlled by the orocline, where a predominant NW-SE trend turns into an N-S trend at 18°S and where the eastern orogen comprise from west to east, the Eastern Cordillera (EC), the Interandean Zone and the Subandean Zone (SA), exhibiting a catchment relief of up to 5000 m. While the structural trend in the EC is predominately NW-SE with a uniform (no preferred orientation) distribution of lower order fluvial channels, it changes in the SA into a distinct N-S trend with a pronounced E-W orientation of lower order fluvial channels. A similar pattern is recognized in the Eastern Andes of Colombia, where the structural trend is NE-SW. The Eastern Cordillera comprise a frontal thin-skinned Neogene and Paleogene domain (FR) and the more interior lower Cretaceous an Upper Paleozoic thick-skinned region (IR). The trend of higher order channels is, as expected, parallel to the structures in the interior parts and perpendicular in the frontal part. However, the trend of lower order channels reveal no directional correlation to the structural trend in the interior, but a significant correlation to the structures in the frontal range that suffered relatively to the interior domains younger deformation phases. We therefore postulate a dependency of the directional evolution of drainage patterns on the relative timing of tectonic activity. The only weakly preferred orientation of drainages in the interior parts (EC and IR) suggests a balance between structural control and drainage occupation, and higher maturity of the landscape. In contrast, the distinct pattern of drainages oblique to the structural grain in the frontal ranges (SA and FR) highlights the alignment of tributaries and suggests an ongoing tectonic control on drainage orientation. We test the hypothesis whether the correlation between the direction of small order rivers and the direction of structures can be used as a proxy for relative tectonic activity, which might be relevant in questions on 1) dominance of tectonics over climate, 2) dynamics of deformation propagation in fault-and-thrust-belts and 3) occurrence of higher erosion rates despite "limited" relief or threshold slopes. Ongoing efforts will investigate the possibility to quantify or compare relative tectonic activity across sites.
Interdisciplinary team communication among forensic nurses and rape victim advocates.
Patterson, Debra
2014-01-01
Victim advocates and forensic nurses provide integrated care to address the complex legal, medical, and mental health needs of rape survivors. Research suggests that conflict exists between nurses and advocates, but it remains unknown how their communication patterns contribute to or resolve these conflicts. Utilizing a qualitative case study approach, the current study interviewed 24 nurses and advocates from a Midwest organization to better understand team communication patterns when addressing conflicts. The findings suggest that most nurses communicate concerns directly while advocates avoid direct communication. Factors that influenced direct and indirect communication and their implications for practice will be discussed.
A single-cell spiking model for the origin of grid-cell patterns
Kempter, Richard
2017-01-01
Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386
Reinhardt, Hendrik M; Bücker, Kerstin; Hampp, Norbert A
2015-05-04
Laser-induced reorganization and simultaneous fusion of nanoparticles is introduced as a versatile concept for pattern formation on surfaces. The process takes advantage of a phenomenon called laser-induced periodic surface structures (LIPSS) which originates from periodically alternating photonic fringe patterns in the near-field of solids. Associated photonic fringe patterns are shown to reorganize randomly distributed gold nanoparticles on a silicon wafer into periodic gold nanostructures. Concomitant melting due to optical heating facilitates the formation of continuous structures such as periodic gold nanowire arrays. Generated patterns can be converted into secondary structures using directed assembly or self-organization. This includes for example the rotation of gold nanowire arrays by arbitrary angles or their fragmentation into arrays of aligned gold nanoparticles.
Changes in Muscle and Joint Coordination in Learning to Direct Forces
Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.
2008-01-01
While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988
Changes in muscle and joint coordination in learning to direct forces.
Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A
2008-08-01
While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.
Sound-diffracting flap in the ear of a bat generates spatial information.
Müller, Rolf; Lu, Hongwang; Buck, John R
2008-03-14
Sound diffraction by the mammalian ear generates source-direction information. We have obtained an immediate quantification of this information from numerical predictions. We demonstrate the power of our approach by showing that a small flap in a bat's pinna generates useful information over a large set of directions in a central band of frequencies: presence of the flap more than doubled the solid angle with direction information above a given threshold. From the workings of the employed information measure, the Cramér-Rao lower bound, we can explain how physical shape is linked to sensory information via a strong sidelobe with frequency-dependent orientation in the directivity pattern. This method could be applied to any other mammal species with pinnae to quantify the relative importance of pinna structures' contributions to directional information and to facilitate interspecific comparisons of pinna directivity patterns.
NASA Astrophysics Data System (ADS)
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
New well pattern optimization methodology in mature low-permeability anisotropic reservoirs
NASA Astrophysics Data System (ADS)
Qin, Jiazheng; Liu, Yuetian; Feng, Yueli; Ding, Yao; Liu, Liu; He, Youwei
2018-02-01
In China, lots of well patterns were designed before people knew the principal permeability direction in low-permeability anisotropic reservoirs. After several years’ production, it turns out that well line direction is unparallel with principal permeability direction. However, traditional well location optimization methods (in terms of the objective function such as net present value and/or ultimate recovery) are inapplicable, since wells are not free to move around in a mature oilfield. Thus, the well pattern optimization (WPO) of mature low-permeability anisotropic reservoirs is a significant but challenging task, since the original well pattern (WP) will be distorted and reconstructed due to permeability anisotropy. In this paper, we investigate the destruction and reconstruction of WP when the principal permeability direction and well line direction are unparallel. A new methodology was developed to quantitatively optimize the well locations of mature large-scale WP through a WPO algorithm on the basis of coordinate transformation (i.e. rotating and stretching). For a mature oilfield, large-scale WP has settled, so it is not economically viable to carry out further infill drilling. This paper circumvents this difficulty by combining the WPO algorithm with the well status (open or shut-in) and schedule adjustment. Finally, this methodology is applied to an example. Cumulative oil production rates of the optimized WP are higher, and water-cut is lower, which highlights the potential of the WPO methodology application in mature large-scale field development projects.
Future direction of direct writing
NASA Astrophysics Data System (ADS)
Kim, Nam-Soo; Han, Kenneth N.
2010-11-01
Direct write technology using special inks consisting of finely dispersed metal nanoparticles in liquid is receiving an undivided attention in recent years for its wide range of applicability in modern electronic industry. The application of this technology covers radio frequency identification-tag (RFID-tag), flexible-electronics, organic light emitting diodes (OLED) display, e-paper, antenna, bumpers used in flip-chip, underfilling, frit, miniresistance applications and biological uses, artificial dental applications and many more. In this paper, the authors have reviewed various direct write technologies on the market and discussed their advantages and shortfalls. Emphasis has given on microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and ink-jet technologies. All of these technologies allow printing various patterns without employing a mask or a resist with an enhanced speed with the aid of computer. MDDW and M3D are capable of drawing patterns in three-dimension and MDDW, in particular, is capable of writing nanoinks with high viscosity. However, it is still far away for direct write to be fully implemented in the commercial arena. One of the hurdles to overcome is in manufacturing conductive inks which are chemically and physically stable, capable of drawing patterns with acceptable conductivity, and also capable of drawing patterns with acceptable adhesiveness with the substrates. The authors have briefly discussed problems involved in manufacturing nanometal inks to be used in various writing devices. There are numerous factors to be considered in manufacturing such inks. They are reducing agents, concentrations, oxidation, compact ability allowing good conductivity, and stability in suspension.
NASA Astrophysics Data System (ADS)
Gutsch, Manuela; Choi, Kang-Hoon; Hanisch, Norbert; Hohle, Christoph; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas
2014-10-01
Many efforts were spent in the development of EUV technologies, but from a customer point of view EUV is still behind expectations. In parallel since years maskless lithography is included in the ITRS roadmap wherein multi electron beam direct patterning is considered as an alternative or complementary approach for patterning of advanced technology nodes. The process of multi beam exposures can be emulated by single beam technologies available in the field. While variable shape-beam direct writers are already used for niche applications, the integration capability of e-beam direct write at advanced nodes has not been proven, yet. In this study the e-beam lithography was implemented in the BEoL processes of the 28nm SRAM technology. Integrated 300mm wafers with a 28nm back-end of line (BEoL) stack from GLOBALFOUNDRIES, Dresden, were used for the experiments. For the patterning of the Metal layer a Mix and Match concept based on the sequence litho - etch - litho - etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. E-beam patterning results of BEoL Metal and Via layers are presented using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMS-CNT. Etch results are shown and compared to the POR. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.
Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography
He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling
2016-01-01
With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment. PMID:26902520
Evaluation of chevron patterns for use on traffic control devices in street and highway work zones.
DOT National Transportation Integrated Search
1980-01-01
The chevron pattern consists of alternate orange and white stripes that form an arrow pointing in the direction in which traffic is being diverted. The objectives of this research were (1) to select the most effective design for the chevron pattern, ...
In Pursuit of Excellence? Discursive Patterns in European Higher Education Research
ERIC Educational Resources Information Center
Ramirez, Francisco O.; Tiplic, Dijana
2014-01-01
European higher education is awash with educational reform initiatives that purport to transform universities into better-managed higher quality organizations that more directly contribute to national development. This exploratory study examines patterns of research discourse in higher education in Europe. We argue that these patterns are changing…
Spatial image modulation to improve performance of computed tomography imaging spectrometer
NASA Technical Reports Server (NTRS)
Bearman, Gregory H. (Inventor); Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor)
2010-01-01
Computed tomography imaging spectrometers ("CTIS"s) having patterns for imposing spatial structure are provided. The pattern may be imposed either directly on the object scene being imaged or at the field stop aperture. The use of the pattern improves the accuracy of the captured spatial and spectral information.
Lightning attachment patterns and flight conditions for storm hazards, 1980
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Keyser, G. L., Jr.; Deal, P. L.
1982-01-01
As part of the NASA Langley Research Center Storm Hazards Program, 69 thunderstorm pentrations were made in 1980 with an F-106B airplane in order to record direct strike lightning data and the associated flight conditions. Ground based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Center in Virginia. In 1980, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 6 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept flash patterns. This report presents pilot descriptions of the direct strikes to the airplane, shows the strike attachment patterns that were found, and discusses the implications of the patterns with respect to aircraft protection design. The flight conditions are also included. Finally, the lightning strike scenarios for three U.S. Air Force F-106A airplanes which were struck during routine operations are given in the appendix to this paper.
NASA Astrophysics Data System (ADS)
Urbánek, Michal; Flajšman, Lukáš; Křižáková, Viola; Gloss, Jonáš; Horký, Michal; Schmid, Michael; Varga, Peter
2018-06-01
Focused ion beam irradiation of metastable Fe78Ni22 thin films grown on Cu(100) substrates is used to create ferromagnetic, body-centered cubic patterns embedded into paramagnetic, face-centered-cubic surrounding. The structural and magnetic phase transformation can be controlled by varying parameters of the transforming gallium ion beam. The focused ion beam parameters such as the ion dose, number of scans, and scanning direction can be used not only to control a degree of transformation but also to change the otherwise four-fold in-plane magnetic anisotropy into the uniaxial anisotropy along a specific crystallographic direction. This change is associated with a preferred growth of specific crystallographic domains. The possibility to create magnetic patterns with continuous magnetization transitions and at the same time to create patterns with periodical changes in magnetic anisotropy makes this system an ideal candidate for rapid prototyping of a large variety of nanostructured samples. Namely, spin-wave waveguides and magnonic crystals can be easily combined into complex devices in a single fabrication step.
Bhandaru, Nandini; Goohpattader, Partho Sarathi; Faruqui, Danish; Mukherjee, Rabibrata; Sharma, Ashutosh
2015-03-17
Ultrathin (<100 nm) unstable polymer films exposed to a solvent vapor dewet by the growth of surface instability, the wavelength (λ) of which depends on the film thickness (h(f)). While the dewetting of a flat polymer thin film results in random structures, we show that the dewetting of a prepatterned film results in myriad ordered mesoscale morphologies under specific conditions. Such a film undergoes rupture over the thinnest parts when the initial local thickness of these zones (h(rm)) is lower than a limiting thickness h(lim) ≈ 10 nm. Additionally, the width of the pattern grooves (l(s)) must be wider than λ(s) corresponding to a flat film having a thickness of h(rm) for pattern-directed dewetting to take place over surface-tension-induced flattening. We first present an experimentally obtained morphology phase diagram that captures the conditions where a transition from surface-tension-induced flattening to pattern-directed-rupture takes place. Subsequently, we show the versatility of this technique in achieving a variety of aligned mesopatterns starting from a prepatterned film with simple grating geometry. The morphology of the evolving patterns depends on several parameters such as the initial film thickness (h(f)), prepattern amplitude (h(st)), duration of solvent vapor exposure (SVE), and wettability of the stamp used for patterning. Periodic rupture of the film at regular intervals imposes directionality on the evolving patterns, resulting in isolated long threads/cylindrical ridges of polymers, which subsequently disintegrate into an aligned array of droplets due to Rayleigh-Plateau instability under specific conditions. Other patterns such as a double periodic array of droplets and an array of holes are also possible to obtain. The evolution can be interrupted at any intermediate stage by terminating the solvent vapor annealing, allowing the creation of pattern morphology on demand. The created patterns are significantly miniaturized in size as compared to features obtained from dewetting a flat film with the same hf.
Overlay improvement by exposure map based mask registration optimization
NASA Astrophysics Data System (ADS)
Shi, Irene; Guo, Eric; Chen, Ming; Lu, Max; Li, Gordon; Li, Rivan; Tian, Eric
2015-03-01
Along with the increased miniaturization of semiconductor electronic devices, the design rules of advanced semiconductor devices shrink dramatically. [1] One of the main challenges of lithography step is the layer-to-layer overlay control. Furthermore, DPT (Double Patterning Technology) has been adapted for the advanced technology node like 28nm and 14nm, corresponding overlay budget becomes even tighter. [2][3] After the in-die mask registration (pattern placement) measurement is introduced, with the model analysis of a KLA SOV (sources of variation) tool, it's observed that registration difference between masks is a significant error source of wafer layer-to-layer overlay at 28nm process. [4][5] Mask registration optimization would highly improve wafer overlay performance accordingly. It was reported that a laser based registration control (RegC) process could be applied after the pattern generation or after pellicle mounting and allowed fine tuning of the mask registration. [6] In this paper we propose a novel method of mask registration correction, which can be applied before mask writing based on mask exposure map, considering the factors of mask chip layout, writing sequence, and pattern density distribution. Our experiment data show if pattern density on the mask keeps at a low level, in-die mask registration residue error in 3sigma could be always under 5nm whatever blank type and related writer POSCOR (position correction) file was applied; it proves random error induced by material or equipment would occupy relatively fixed error budget as an error source of mask registration. On the real production, comparing the mask registration difference through critical production layers, it could be revealed that registration residue error of line space layers with higher pattern density is always much larger than the one of contact hole layers with lower pattern density. Additionally, the mask registration difference between layers with similar pattern density could also achieve under 5nm performance. We assume mask registration excluding random error is mostly induced by charge accumulation during mask writing, which may be calculated from surrounding exposed pattern density. Multi-loading test mask registration result shows that with x direction writing sequence, mask registration behavior in x direction is mainly related to sequence direction, but mask registration in y direction would be highly impacted by pattern density distribution map. It proves part of mask registration error is due to charge issue from nearby environment. If exposure sequence is chip by chip for normal multi chip layout case, mask registration of both x and y direction would be impacted analogously, which has also been proved by real data. Therefore, we try to set up a simple model to predict the mask registration error based on mask exposure map, and correct it with the given POSCOR (position correction) file for advanced mask writing if needed.
... baldness. Medicines that treat male pattern baldness include: Minoxidil (Rogaine), a solution that is applied directly to ... slows hair loss. It works slightly better than minoxidil. Hair loss returns when you stop using this ...
NASA Astrophysics Data System (ADS)
Terakado, Nobuaki; Takahashi, Ryosuke; Takahashi, Yoshihiro; Fujiwara, Takumi
2017-05-01
The control of heat flow has become increasingly important in energy saving and harvesting. Among various thermal management materials, spinon thermal conductivity materials are promising for heat flow control at microscales because they exhibit high, anisotropic thermal conductivity resulting from spin chains. However, there has been only little development of the materials for controlling heat flow. Here, we present the line patterning of the spin chain structure on a SrCuO2 nanocrystalline film by laser scanning. When the polarization direction of laser light was orthogonal to the scanning direction, we found that the spin-chain structure anisotropically grew on the patterned line.
To use or not to use (direct laser interference patterning), that is the question
NASA Astrophysics Data System (ADS)
Lasagni, A. F.; Roch, T.; Berger, J.; Kunze, T.; Lang, V.; Beyer, E.
2015-03-01
Direct Laser Interference Patterning (DLIP) has shown to be a fabrication technology capable of producing large area periodic surface patterns on almost any kind of material. The produced structures have been used in the past to provide surfaces with new enhanced properties. On the other hand, the industrial use of this technology is still at the beginning due to the lack of appropriate and affordable systems, especially for small and medium enterprises. In this paper, the use of DLIP for the fabrication of periodic structures using different structuring strategies and optical concepts is discussed. Different technological challenges are addressed.
Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang
2015-04-29
The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the mechanical properties and bioactivities of the scaffolds, might have great potential in vascular tissue engineering application.
Movement coordination patterns between the foot joints during walking.
Arnold, John B; Caravaggi, Paolo; Fraysse, François; Thewlis, Dominic; Leardini, Alberto
2017-01-01
In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction), anti-phase (opposite directions), proximal or distal joint dominant. In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint coordination patterns due to lower limb pathologies or following injuries.
Stable structural color patterns displayed on transparent insect wings.
Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein
2011-01-11
Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.
Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming
2018-04-01
Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of HF Heating Array Directivity Pattern on the Frequency Response of Generated ELF/VLF.
1983-01-01
radiators ....... ............ 4 1-2 HF heating array ........ ................... 9 1-3 HF heating array element ...... ................ 9 1-4 View of top...elements looking down at pyramid ....... 9 1-5 Non-planar log-periodic antenna semi-structure dimensions ............ . ....... 10 l-6a Power gain vs...22 1-8 Orientation of 4- and 8-element arrays .. ......... .. 24 1- 9 Comparison of experimental and theoretical patterns. . . 27 1-10 Directive
2012-01-01
We have developed a method for obtaining a direct pattern of silver nanoparticles (NPs) on porous silicon (p-Si) by means of inkjet printing (IjP) of a silver salt. Silver NPs were obtained by p-Si mediated in-situ reduction of Ag+ cations using solutions based on AgNO3 which were directly printed on p-Si according to specific geometries and process parameters. The main difference with respect to existing literature is that normally, inkjet printing is applied to silver (metal) NP suspensions, while in our experiment the NPs are formed after jetting the solution on the reactive substrate. We performed both optical and scanning electron microscopes on the NPs traces, correlating the morphology features with the IjP parameters, giving an insight on the synthesis kinetics. The patterned NPs show good performances as SERS substrates. PMID:22953722
Mantle Flow Implications across Easter and Southern Africa from Shear Wave Splitting Measurements
NASA Astrophysics Data System (ADS)
Ramirez, C.; Nyblade, A.; Bagley, B. C.; Mulibo, G. D.; Tugume, F.; Wysession, M. E.; Wiens, D.; van der Meijde, M.
2015-12-01
In this study, we present new shear wave splitting results from broadband seismic stations in Botswana and Namibia, and combine them with previous results from stations in Kenya, Uganda, Tanzania, Malawi, Zambia, South Africa, Mozambique, Zimbabwe, and Angola to further examine the pattern of seismic anisotropy across southern Africa. The new results come from stations in northern Namibia and Botswana, which help to fill in large gaps in data coverage. Our preliminary results show that fast polarization directions overall trend in a NE orientation. The most noticeable measurements that deviate from this pattern are located around the Archean Tanzania Craton in eastern Africa. The general NE pattern of fast polarization directions is attributed to mantle flow linked to the African superplume. Smaller scale variations from this general direction can be explained by shape anisotropy in the lithosphere in magmatic regions in the East African rift system and to fossil anisotropy in the Precambrian lithosphere.
Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.
Ramot, Michal; Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex
2017-09-16
The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
Animating streamlines with repeated asymmetric patterns for steady flow visualization
NASA Astrophysics Data System (ADS)
Yeh, Chih-Kuo; Liu, Zhanping; Lee, Tong-Yee
2012-01-01
Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
NASA Astrophysics Data System (ADS)
Jolly, Arthur D.; Matoza, Robin S.; Fee, David; Kennedy, Ben M.; Iezzi, Alexandra M.; Fitzgerald, Rebecca H.; Austin, Allison C.; Johnson, Richard
2017-10-01
We obtained an unprecedented view of the acoustic radiation from persistent strombolian volcanic explosions at Yasur volcano, Vanuatu, from the deployment of infrasound sensors attached to a tethered aerostat. While traditional ground-based infrasound arrays may sample only a small portion of the eruption pressure wavefield, we were able to densely sample angular ranges of 200° in azimuth and 50° in takeoff angle by placing the aerostat at 38 tethered loiter positions around the active vent. The airborne data joined contemporaneously collected ground-based infrasound and video recordings over the period 29 July to 1 August 2016. We observe a persistent variation in the acoustic radiation pattern with average eastward directed root-mean-square pressures more than 2 times larger than in other directions. The observed radiation pattern may be related to both path effects from the crater walls, and source directionality.
Tan, Chao; Zhao, Jia; Dong, Feng
2015-03-01
Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo
2015-08-13
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu
2015-08-01
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Cytocompatibility of Direct Laser Interference-patterned Titanium Surfaces for Implants.
Hartjen, Philip; Nada, Ola; Silva, Thiago Gundelwein; Precht, Clarissa; Henningsen, Anders; Holthaus, Marzellus GROßE; Gulow, Nikolai; Friedrich, Reinhard E; Hanken, Henning; Heiland, Max; Zwahr, Christoph; Smeets, Ralf; Jung, Ole
2017-01-01
In an effort to generate titanium surfaces for implants with improved osseointegration, we used direct laser interference patterning (DLIP) to modify the surface of pure titanium grade 4 of four different structures. We assessed in vitro cytoxicity and cell attachment, as well as the viability and proliferation of cells cultured directly on the surfaces. Attachment of the cells to the modified surfaces was comparably good compared to that of cells on grit-blasted and acid-etched reference titanium surfaces. In concordance with this, viability and proliferation of the cells directly cultured on the specimens were similar on all the titanium surfaces, regardless of the laser modification, indicating good cytocompatibility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Directional constraint of endpoint force emerges from hindlimb anatomy.
Bunderson, Nathan E; McKay, J Lucas; Ting, Lena H; Burkholder, Thomas J
2010-06-15
Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb.
Directional constraint of endpoint force emerges from hindlimb anatomy
Bunderson, Nathan E.; McKay, J. Lucas; Ting, Lena H.; Burkholder, Thomas J.
2010-01-01
Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb. PMID:20511528
Perceived spatial displacement of motion-defined contours in peripheral vision.
Fan, Zhao; Harris, John
2008-12-01
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging patterns, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern.
Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J
2017-01-01
During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned ‘ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials. PMID:27893712
Photocatalytic surface patterning of cellulose using diazonium salts and visible light.
Schroll, Peter; Fehl, Charlie; Dankesreiter, Stephan; König, Burkhard
2013-10-14
Coumarin-functionalized cellulose sheets were chemically modified using a visible light catalyzed "Photo-Meerwein" arylation. Use of a photomask to pattern the surface resulted in directly visible images.
NASA Astrophysics Data System (ADS)
Mehrübeoğlu, Mehrübe; McLauchlan, Lifford
2006-02-01
The goal of this project was to detect the intensity of traffic on a road at different times of the day during daytime. Although the work presented utilized images from a section of a highway, the results of this project are intended for making decisions on the type of intervention necessary on any given road at different times for traffic control, such as installation of traffic signals, duration of red, green and yellow lights at intersections, and assignment of traffic control officers near school zones or other relevant locations. In this project, directional patterns are used to detect and count the number of cars in traffic images over a fixed area of the road to determine local traffic intensity. Directional patterns are chosen because they are simple and common to almost all moving vehicles. Perspective vision effects specific to each camera orientation has to be considered, as they affect the size and direction of patterns to be recognized. In this work, a simple and fast algorithm has been developed based on horizontal directional pattern matching and perspective vision adjustment. The results of the algorithm under various conditions are presented and compared in this paper. Using the developed algorithm, the traffic intensity can accurately be determined on clear days with average sized cars. The accuracy is reduced on rainy days when the camera lens contains raindrops, when there are very long vehicles, such as trucks or tankers, in the view, and when there is very low light around dusk or dawn.
Paths and patterns: the biology and physics of swimming bacterial populations
NASA Technical Reports Server (NTRS)
Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.
1995-01-01
The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.
Acoustic transmitters used in survival and telemetry studies are often surgically implanted in fish. While this is a well-established method, it has the potential to affect health, behavior, and survival, thus affecting study results. Much research has been done to try to minimize the harmful effects caused by the transmitter and tagging process. In 2009, we first investigated the use of a bi-directional knotless (barbed) suture material in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that it resulted in higher tag retention than the simple interrupted suture pattern; however, the occurrence of ulceration and redness increased. The objective of thismore » study was to refine the suturing patterns of the bi-directional knotless suture and retest suture performance in juvenile Chinook salmon. We tested the bi-directional suture using 3 different suture patterns and two needle types: 6-Point (12-mm needle circumference), Wide “N” (12-mm needle circumference), Wide “N” Knot 12 (12-mm needle circumference), and Wide “N” Knot 18 (18-mm needle circumference).« less
Central Pattern Generation and the Motor Infrastructure for Suck, Respiration, and Speech
ERIC Educational Resources Information Center
Barlow, Steven M.; Estep, Meredith
2006-01-01
The objective of the current report is to review experimental findings on centrally patterned movements and sensory and descending modulation of central pattern generators (CPGs) in a variety of animal and human models. Special emphasis is directed toward speech production muscle systems, including the chest wall and orofacial complex during…
ERIC Educational Resources Information Center
Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.
2013-01-01
Examining children's physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children's cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol…
NASA Astrophysics Data System (ADS)
Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann
2018-03-01
Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.
Ground-based measurements of inflight antenna patterns for imaging radar systems
NASA Astrophysics Data System (ADS)
Seifert, Pedro; Lentz, Harald; Zink, Manfred; Heel, Franz
1992-11-01
An approach is presented on how to determine the inflight antenna pattern in the cross-track direction for air- and spaceborne synthetic aperture radar (SAR) systems. In the 1991 Oberpfaffenhofen DC-8/E-SAR calibration campaign there was a good opportunity to test ground-based measurement equipment comprising 18 precision calibration receivers and nine polarimetric active radar calibrators (PARC's), all operating in C-band. These devices were designed and manufactured by the Institute of Navigation at the University of Stuttgart (INS). These instruments are capable of handling various pulse lengths, PRF's, and have a very high dynamic range. Together with precise internal clocks, these instruments are suitable for recording the actual radar transmit pulse shape for the later evaluation of the desired inflight antenna pattern. Lining up these devices in the cross-track direction, each receiver yields an azimuth cut of the three-dimensional antenna pattern. The elevation pattern was then obtained by time correlation of these azimuth cuts. Further results concerning pulse shapes, squint angles, and H-V pattern misalignment are presented.
[Analysis of the swimming pattern and the velocity of bacteria using video tracking method].
Shigematsu, M
1997-04-01
The swimming patterns and the velocities of several flagellated bacteria were measured by a computer assisted video tracking method. The moving path of the individual bacterium revealed that the bacterium frequently changed its swimming direction and velocity. The velocity among bacterial strains varies widely. In low viscous environment. Campylobacter jejuni has characteristic swimming pattern with frequent changes in their swimming direction. As the viscosity increase, C. jejuni increases its velocity at a little higher viscosity of 3 centipoise (cP) and secondly increases at about 40 cP. Different from other flagellated bacteria, the swimming pattern of C. jejuni in these two velocity peaks were changed. C. jejuni exhibited continuously forward moving path in the first peak, but in the second it repeated back and forth swimming pattern. We thus assumed that C. jejuni may use a different swimming mode in high viscous media from the original mode mediated by the propelling force of the flagella. This method is useful for a detail analysis of bacterial movement and moving patterns in different environmental conditions.
Sub-10-nm suspended nano-web formation by direct laser writing
NASA Astrophysics Data System (ADS)
Wang, Sihao; Yu, Ye; Liu, Hailong; Lim, Kevin T. P.; Madurai Srinivasan, Bharathi; Zhang, Yong Wei; Yang, Joel K. W.
2018-06-01
A diffraction-limited three-dimensional (3D) direct laser writing (DLW) system based on two-photon polymerization can routinely pattern structures at the 100 nm length scale. Several schemes have been developed to improve the patterning resolution of 3D DLW but often require customized resist formulations or multi-wavelength exposures. Here, we introduce a scheme to produce suspended nano-webs with feature sizes below 10 nm in IP-Dip resist using sub-threshold exposure conditions in a commercial DLW system. The narrowest suspended lines (nano-webs) measured 7 nm in width. Larger ∼20 nm nano-webs were patterned with ∼80% yield at increased laser powers. In addition, closely spaced nano-gaps with a center-to-center distance of 33 nm were produced by patterning vertically displaced suspended lines followed by metal deposition and liftoff. We provide hypotheses and present preliminary results for a mechanism involving the initiation of a percolative path and a strain-induced narrowing in the nano-web formation. Our approach allows selective features to be patterned with dimensions comparable to the sub-10 nm patterning capability of electron-beam lithography (EBL).
Patterning of supported lipid bilayers and proteins using material selective nitrodopamine-mPEG.
Spycher, Philipp R; Hall, Heike; Vogel, Viola; Reimhult, Erik
2015-01-01
We present a generic patterning process by which biomolecules in a passivated background are patterned directly from physiological buffer to microfabricated surfaces without the need for further processing. First, nitrodopamine-mPEG is self-assembled to selectively render TiO2 patterns non-fouling to biomolecule adsorption on hydrophilic and adhesive glass surfaces. After the controlled TiO2 passivation, the biomolecules can be directly adsorbed from solution in a single step creating large scale micropatterned and highly homogeneous arrays of biomolecules with very high pattern definition. We demonstrate the formation of fluid supported lipid bilayers (SLBs) down to the single μm-level limited only by the photolithographic process. Non-specific adsorption of lipid vesicles to the TiO2 background was found to be almost completely suppressed. The SLB patterns can be further selectively functionalized with retained mobility, which we demonstrate through biotin-streptavidin coupling. We envision this single step patterning approach to be very beneficial for membrane-based biosensors and for pattering of cells on a passivated background with complex, sub-cellular geometries; in each application the adherent areas have a tunable mobility of interaction sites controlled by the fluidity of the membrane.
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Filz, R. C.; Rich, F. J.; Sagalyn, P. L.
1992-01-01
A number of interesting discoloration patterns are clearly evident on MOOO2-1 which resides on the three faces of the Long Duration Exposure Facility (LDEF). Most interesting is the pattern of blue oxidation on polished single crystal silicon apparently produced by scattered or direct ram oxygen atoms along the earth face. A complete explanation for the patterns has not yet been obtained. All honeycomb outgassing holes have a small discoloration ring around them that varies in color. The shadow cast by a suspended wire on the earth face surface is not easily explained by either solar photons or by ram flux. The shadows and the dark/light regions cannot be explained consistently by the process of solar ultraviolet paint-darkening modulated by ram flux oxygen bleaching of the paint.
Volumetric display containing multiple two-dimensional color motion pictures
NASA Astrophysics Data System (ADS)
Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.
2014-06-01
We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.
Time-dependent patterns in quasivertical cylindrical binary convection.
Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol
2018-02-01
This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α≈0.036rad=2^{∘} strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.
Time-dependent patterns in quasivertical cylindrical binary convection
NASA Astrophysics Data System (ADS)
Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol
2018-02-01
This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.
Stable structural color patterns displayed on transparent insect wings
Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H.; Kjærandsen, Jostein
2011-01-01
Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns—wing interference patterns (WIPs)—in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution. PMID:21199954
Three-Tone Chemical Patterns for Block Copolymer Directed Self-Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Lance D.; Seidel, Robert N.; Chen, Xuanxuan
Chemical patterns for directed self-assembly (DSA) of lamellaeforming block copolymers (BCP) with density multiplication can be fabricated by patterning resist on a cross-linked polystyrene layer, etching to create guide stripes, and depositing end-grafted brushes in between the stripes as background. To date, two-tone chemical patterns have been targeted with the guide stripes preferentially wet by one block of the copolymer and the background chemistry weakly preferentially wet by the other block. In the course of fabricating chemical patterns in an all-track process using 300 mm wafers, it was discovered that the etching process followed by brush grafting could produce amore » three-tone pattern. We characterized the three regions of the chemical patterns with a combination of SEM, grazing-incidence small-angle X-ray scattering (GISAXS), and assessment of BCP-wetting behavior, and evaluated the DSA behavior on patterns over a range of guide stripe widths. In its best form, the three-tone pattern consists of guide stripes preferentially wet by one block of the copolymer, each flanked by two additional stripes that wet the other block of the copolymer, with a third chemistry as the background. Three-tone patterns guide three times as many BCP domains as two-tone patterns and thus have the potential to provide a larger driving force for the system to assemble into the desired architecture with fewer defects in shorter time and over a larger process window.« less
FPGA implementation of adaptive beamforming in hearing aids.
Samtani, Kartik; Thomas, Jobin; Varma, G Abhinav; Sumam, David S; Deepu, S P
2017-07-01
Beamforming is a spatial filtering technique used in hearing aids to improve target sound reception by reducing interference from other directions. In this paper we propose improvements in an existing architecture present for two omnidirectional microphone array based adaptive beamforming for hearing aid applications and implement the same on Xilinx Artix 7 FPGA using VHDL coding and Xilinx Vivado ® 2015.2. The nulls are introduced in particular directions by combination of two fixed polar patterns. This combination can be adaptively controlled to steer the null in the direction of noise. The beamform patterns and improvements in SNR values obtained from experiments in a conference room environment are analyzed.
Morgani, Sophie M; Metzger, Jakob J; Nichols, Jennifer
2018-01-01
During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species. PMID:29412136
NASA Astrophysics Data System (ADS)
Chang, Tien-Li; Chen, Zhao-Chi
2015-12-01
The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm2. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.
Davatzikos, Christos
2016-10-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.
Davatzikos, Christos
2017-01-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582
Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H
2001-04-01
The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.
Allen, Cerisse E; Beldade, Patrícia; Zwaan, Bas J; Brakefield, Paul M
2008-03-26
There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection. Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters. The two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus. Both characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.
Demonstration of lithography patterns using reflective e-beam direct write
NASA Astrophysics Data System (ADS)
Freed, Regina; Sun, Jeff; Brodie, Alan; Petric, Paul; McCord, Mark; Ronse, Kurt; Haspeslagh, Luc; Vereecke, Bart
2011-04-01
Traditionally, e-beam direct write lithography has been too slow for most lithography applications. E-beam direct write lithography has been used for mask writing rather than wafer processing since the maximum blur requirements limit column beam current - which drives e-beam throughput. To print small features and a fine pitch with an e-beam tool requires a sacrifice in processing time unless one significantly increases the total number of beams on a single writing tool. Because of the uncertainty with regards to the optical lithography roadmap beyond the 22 nm technology node, the semiconductor equipment industry is in the process of designing and testing e-beam lithography tools with the potential for high volume wafer processing. For this work, we report on the development and current status of a new maskless, direct write e-beam lithography tool which has the potential for high volume lithography at and below the 22 nm technology node. A Reflective Electron Beam Lithography (REBL) tool is being developed for high throughput electron beam direct write maskless lithography. The system is targeting critical patterning steps at the 22 nm node and beyond at a capital cost equivalent to conventional lithography. Reflective Electron Beam Lithography incorporates a number of novel technologies to generate and expose lithographic patterns with a throughput and footprint comparable to current 193 nm immersion lithography systems. A patented, reflective electron optic or Digital Pattern Generator (DPG) enables the unique approach. The Digital Pattern Generator is a CMOS ASIC chip with an array of small, independently controllable lens elements (lenslets), which act as an array of electron mirrors. In this way, the REBL system is capable of generating the pattern to be written using massively parallel exposure by ~1 million beams at extremely high data rates (~ 1Tbps). A rotary stage concept using a rotating platen carrying multiple wafers optimizes the writing strategy of the DPG to achieve the capability of high throughput for sparse pattern wafer levels. The lens elements on the DPG are fabricated at IMEC (Leuven, Belgium) under IMEC's CMORE program. The CMOS fabricated DPG contains ~ 1,000,000 lens elements, allowing for 1,000,000 individually controllable beamlets. A single lens element consists of 5 electrodes, each of which can be set at controlled voltage levels to either absorb or reflect the electron beam. A system using a linear movable stage and the DPG integrated into the electron optics module was used to expose patterns on device representative wafers. Results of these exposure tests are discussed.
Dickson, M.L.; Broster, B.E.; Parkhill, M.A.
2004-01-01
Striations and dispersal patterns for till clasts and matrix geochemistry are used to define flow directions of glacial transport across an area of about 800km2 in the Charlo-Atholville area of north-central New Brunswick. A total of 170 clast samples and 328 till matrix samples collected for geochemical analysis across the region, were analyzed for a total of 39 elements. Major lithologic contacts used here to delineate till clast provenance were based on recent bedrock mapping. Eleven known mineral occurrences and a gossan are used to define point source targets for matrix geochemical dispersal trains and to estimate probable distance and direction of transport from unknown sources. Clast trains are traceable for distances of approximately 10 km, whereas till geochemical dispersal patterns are commonly lost within 5 km of transport. Most dispersal patterns reflect more than a single direction of glacial transport. These data indicate that a single till sheet, 1-4 m thick, was deposited as the dominant ice-flow direction fluctuated between southeastward, eastward, and northward over the study area. Directions of early flow represent changes in ice sheet dominance, first from the northwest and then from the west. Locally, eastward and northward flow represent the maximum erosive phases. The last directions of flow are likely due to late glacial ice sheet drawdown towards the valley outlet at Baie des Chaleurs.
Determining the direction of tooth grinding: an in vitro study.
ten Berge, F; te Poel, J; Ranjitkar, S; Kaidonis, J A; Lobbezoo, F; Hughes, T E; Townsend, G C
2012-08-01
The analysis of microwear patterns, including scratch types and widths, has enabled reconstruction of the dietary habits and lifestyles of prehistoric and modern humans. The aim of this in vitro study was to determine whether an assessment of microwear features of experimental scratches placed on enamel, perpendicularly to the direction of grinding, could predict the grinding direction. Experimental scratches were placed using a scalpel blade on standardised wear facets that had been prepared by wearing opposing enamel surfaces in an electromechanical tooth wear machine. These control 'baseline' facets (with unworn experimental scratches) were subjected to 50 wear cycles, so that differential microwear could be observed on the leading and trailing edges of the 'final' facets. In Group 1 (n=28), the 'footprint' microwear patterns corresponding to the known grinding direction of specimens in the tooth wear machine were identified. Then, they were used to predict the direction of tooth grinding blindly in the same sample after a 2-week intermission period. To avoid overfitting the predictive model, its sensitivity was also cross-validated in a new sample (Group 2, n=14). A crescent-shaped characteristic observed in most experimental scratches matched the grinding direction on all occasions. The best predictor of the direction of grinding was a combined assessment of the leading edge microwear pattern and the crescent characteristic (82.1% in Group 1 and 92.9% in Group 2). In conclusion, a simple scratch test can determine the direction of tooth grinding with high reliability, although further improvement in sensitivity is desirable. © 2012 Blackwell Publishing Ltd.
Photocatalytic Surface Patterning of Cellulose using Diazonium Salts and Visible Light
Schroll, Peter; Fehl, Charlie; Dankesreiter, Stephan
2013-01-01
Coumarin-functionalized cellulose sheets were chemically modified using a visible light catalyzed “Photo-Meerwein” arylation. Use of a photomask to pattern the surface resulted in directly visible images. PMID:23963264
Atac, M.; McKay, T.A.
1998-04-21
An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.
Atac, Muzaffer; McKay, Timothy A.
1998-01-01
An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.
NASA Astrophysics Data System (ADS)
Tan, Xianyu; Showman, Adam
2016-10-01
Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the typical cloud-induced turbulent circulation, and in particular, the large flux variability for some objects can be attributed to the global-scale patterns of temperature anomaly and cloud formation caused by atmospheric waves.
Classifying Community Colleges Based on Students' Patterns of Use
ERIC Educational Resources Information Center
Bahr, Peter Riley
2013-01-01
In this study, I draw on Bahr's ("Research in Higher Education" 51:724-749, 2010; New Directions for Institutional Research S1:33-48, 2011) behavioral typology of first-time community college students to examine college-level variation in students' patterns of use of 105 community colleges in California. I find that students' patterns of…
Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku
2010-12-07
A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartsaklis, Christos; Hernandez, Oscar R
Interrogating the structure of a program for patterns of interest is attractive to the broader spectrum of software engineering. The very approach by which a pattern is constructed remains a concern for the source code mining community. This paper presents a pattern programming model, for the C and Fortran programming languages, using a compiler directives approach. We discuss our specification, called HERCULES/PL, throughout a number of examples and show how different patterns can be constructed, plus some preliminary results.
Cooperative Security in the Pacific Basin. The 1988 Pacific Symposium,
1990-01-01
show the same pattern which Taiwan established and Singapore is following closely. Among the four Asian NICs Hong Kong led the pattern early, followed...government, have become a driving force for the tri- angular trade pattern among the United States, Japan, and the East Asian countries. JAPANESE DIRECT...Division of roles between the United States and Japan in East Asia has unintentionally effected a triangular trade pattern among the United States, Japan
Prescribed burning weather in Minnesota.
Rodney W. Sando
1969-01-01
Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.
NASA Astrophysics Data System (ADS)
Kamińska, Anna
2010-01-01
The relationship between karst of chalk and tectonics in the interfluve of the middle Wieprz and Bug Rivers has been already examined by Maruszczak (1966), Harasimiuk (1980) and Dobrowolski (1998). Investigating the connection of the karst formation course and the substratum structure, the direction of the landforms and their spatial pattern were analysed and compared later to the structural pattern. The obvious completion of the collected data is a quantity analysis using statistical methods. This paper deals with the characteristics of such quantity analysis. By using the tools of the directional statistics, the following indexes have been calculated: the mean vector orientation, the length of the vector mean, strength of the vector mean, the Batschelet variance, as well as determined confidence intervals for the mean vector. In order to examine the distribution structure of these forms, the selected methods of the spatial statistics have been used-angular wavelet analysis (Rosenberg 2004) and the semivariogram analysis (Namysłowska-Wilczyńska 2006). On the basis of conducted analyses, it is possible to describe in detail the regularities in spatial distribution of the surface karst forms in the interfluve of the middle Wieprz and Bug Rivers. The orientation analysis reveals an important feature of their direction-along with a rise in the size of surface karst forms, the level of concentration around the mean vector orientation increases. Primary karst forms point out poor concentration along the longitudinal direction whereas complex forms are clearly concentrated along the WNW-ESE direction. Hence, only after clumping of the primary forms into the complex ones, the convergence of the surface karst forms direction with the direction of the main faults in the Meso-Cenozoic complex is visible (after A. Henkiel 1984). The results of the wavelet analysis modified by Rosenberg (2004) have indicated significant directions of the clumping of the surface karst forms. A clear difference in the distribution of these forms in west and east areas is noticed. Whereas the west area is dominated by the W-E, NW-SE, N-S directions, the karst forms in the east are concentrated along the NE-SW direction. The semivariogram analysis has confirmed the importance of the W-E and NE-SW directions. Moreover, this analysis has indicated which areas are characterized by the poor karst forms direction. It is a region where the Kock-Wasylów dislocation zone crosses the Święcica dislocation zone in the north-east part of the analysed area. The south-east region is the second such area. The picture of the spatial pattern one confirms the previous results (Dobrowolski 1998) and refers clearly to the structural pattern of this area. Nevertheless, the analyses mentioned above have shown the dominance of the W-E direction over the NW-SE one. The obtained results of the spatial and direction analyses expand and confirm hitherto information about the relation between the spatial pattern of the karst landforms and the tectonics in the interfluve of the middle Wieprz and Bug Rivers.
Direct laser interference patterning of metallic sleeves for roll-to-roll hot embossing
NASA Astrophysics Data System (ADS)
Lang, Valentin; Rank, Andreas; Lasagni, Andrés. F.
2017-03-01
Surfaces equipped with periodic patterns with feature sizes in the micrometer, submicrometer and nanometer range present outstanding surface properties. Many of these surfaces can be found on different plants and animals. However, there are few methods capable to produce such patterns in a one-step process on relevant technological materials. Direct laser interference patterning (DLIP) provides both high resolution as well as high throughput. Recently, fabrication rates up to 1 m2·min-1 could be achieved. However, resolution was limited to a few micrometers due to typical thermal effects that arise when nanosecond pulsed laser systems are used. Therefore, this study introduces an alternative to ns-DLIP for the fabrication of multi-scaled micrometer and submicrometer structures on nickel surfaces using picosecond pulses (10 ps at a wavelength of 1064 nm). Due to the nature of the interaction process of the metallic surfaces with the ultrashort laser pulses, it was not only possible to directly transfer the shape of the interference pattern intensity distribution to the material (with spatial periods ranging from 1.5 μm to 5.7 μm), but also to selectively obtain laser induce periodic surface structures with feature sizes in the submicrometer and nanometer range. Finally, the structured nickel sleeves are utilized in a roll-to-roll hot embossing unit for structuring of polymer foils. Processing speeds up to 25 m·min-1 are reported.
Control of magnetic anisotropy in (Ga,Mn)as by lithography-induced strain relaxation.
Wenisch, J; Gould, C; Ebel, L; Storz, J; Pappert, K; Schmidt, M J; Kumpf, C; Schmidt, G; Brunner, K; Molenkamp, L W
2007-08-17
We report control of magnetic anisotropy in epitaxial (Ga,Mn)As by anisotropic strain relaxation in patterned structures. The strain in the structures is characterized using reciprocal space mapping by x-ray techniques. The magnetic anisotropy before patterning of the layer, which shows biaxial easy axes along [100] and [010], is replaced by a hard axis in the direction of large elastic strain relaxation and a uniaxial easy axis in the direction where pseudomorphic conditions are retained.
The importance of direct immunofluorescence in pemphigus herpetiformis diagnosis*
de Faria, Paula Carolina Pessanha; Cruz, Camila Caberlon; Abulafia, Luna Azulay; Maceira, Juan Manuel Pineiro; Cassia, Flávia de Freire; Medeiros, Paula Mota
2017-01-01
Pemphigus herpetiformis is an autoimmune bullous disease, that combines clinical features of dermatitis herpetiformis and linear IgA bullous dermatosis and immunological characteristics of pemphigus, which makes this disease peculiar and this diagnosis rarely suspected in the first evaluation of the patient. The reported case is of a patient with clinically bullous disease similar to dermatitis herpetiformis, whose multiple biopsies were inconclusive, and only after direct immunofluorescence with a pemphigus pattern (intraepidermal intercellular pattern) the confirmation of the diagnosis was possible. PMID:29267475
Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard
2009-12-01
Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean concentration and number of concentration peaks above a certain threshold level-can possibly lead to different assessments of spatial concentration distribution patterns.
Feasibility of e-paper made with cellulose
NASA Astrophysics Data System (ADS)
Yoo, K. H.; Han, K. J.; Chen, Yi; Kang, K. S.; Kim, Jaehwan
2008-03-01
Cellulose is a beneficial material that has low cost, light weight, high compatibility, and biodegradability. Recently electro-active paper (EAPap) composed with cellulose was discovered as a smart material for application to variety industrial fields such as smart wall-paper, actuator, and magic carpet. It also exhibited actuator property through ion migration and piezoelectric effect. Since cellulose acetate (CA) film has optically transparent property, we focused on optical field application, such as electronic paper, prismsheet, and polarized film. Since CA can be easily dissolved in variety of organic solvent, various weight % (from 1 to 25 wt. %) of CA solution in acetone was prepared. Polydimethylsilane (PDMS) master pattern was fabricated on the silicone wafer. CA solution was poured to the master mold and dried using spin-coating or tape casting method. Various shape and height patterns, such as circle, honeycomb, and rectangular patterns were fabricated using 12 wt. % CA solution. The resulting pattern showed uniform size in the large area without defect. These patterns can be utilized as a substrate and cell pattern for the electronic paper. To investigate saponification (SA) effect to convert CA to regenerated cellulose, CA film was immersed into the sodium methoxide solution in methanol for various times. The fabricated CA films were stretched and immersed into the sodium methoxide solution in methanol to desubstitute the acetate group. These regenerated cellulose films have larger mechanical strength than CA films. Although the UV-visible transmittance was decreased as increasing SA time, the transmittance of the further SA process and stretched film backed up near untreated CA film. Although the cross-sectional image of the saponified and unstretched CA film did not have specific directional structure, the cross-sectional FESEM image of the saponified and stretched CA film had one directional fiber structure. The fiber was aligned to the stretched direction. Most of the compositions were one directional ordered nanofibers having diameter of approximately 30nm.
MicroRNA networks in mouse lung organogenesis.
Dong, Jie; Jiang, Guoqian; Asmann, Yan W; Tomaszek, Sandra; Jen, Jin; Kislinger, Thomas; Wigle, Dennis A
2010-05-26
MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.
EUV lithography reticles fabricated without the use of a patterned absorber
Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.
2006-05-23
Absorber material used in conventional EUVL reticles is eliminated by introducing a direct modulation in the complex-valued reflectance of the multilayer. A spatially localized energy source such as a focused electron or ion beam directly writes a reticle pattern onto the reflective multilayer coating. Interdiffusion is activated within the film by an energy source that causes the multilayer period to contract in the exposed regions. The contraction is accurately determined by the energy dose. A controllable variation in the phase and amplitude of the reflected field in the reticle plane is produced by the spatial modulation of the multilayer period. This method for patterning an EUVL reticle has the advantages (1) avoiding the process steps associated with depositing and patterning an absorber layer and (2) providing control of the phase and amplitude of the reflected field with high spatial resolution.
Method for fabricating reticles for EUV lithography without the use of a patterned absorber
Stearns, Daniel G [Los Altos, CA; Sweeney, Donald W [San Ramon, CA; Mirkarimi, Paul B [Sunol, CA
2003-10-21
Absorber material used in conventional EUVL reticles is eliminated by introducing a direct modulation in the complex-valued reflectance of the multilayer. A spatially localized energy source such as a focused electron or ion beam directly writes a reticle pattern onto the reflective multilayer coating. Interdiffusion is activated within the film by an energy source that causes the multilayer period to contract in the exposed regions. The contraction is accurately determined by the energy dose. A controllable variation in the phase and amplitude of the reflected field in the reticle plane is produced by the spatial modulation of the multilayer period. This method for patterning an EUVL reticle has the advantages of (1) avoiding the process steps associated with depositing and patterning an absorber layer and (2) providing control of the phase and amplitude of the reflected field with high spatial resolution.
Influence of Running on Pistol Shot Hit Patterns.
Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T
2016-01-01
In shooting scene reconstructions, risk assessment of the situation can be important for the legal system. Shooting accuracy and precision, and thus risk assessment, might be correlated with the shooter's physical movement and experience. The hit patterns of inexperienced and experienced shooters, while shooting stationary (10 shots) and in running motion (10 shots) with a semi-automatic pistol, were compared visually (with confidence ellipses) and statistically. The results show a significant difference in precision (circumference of the hit patterns) between stationary shots and shots fired in motion for both inexperienced and experienced shooters. The decrease in precision for all shooters was significantly larger in the y-direction than in the x-direction. The precision of the experienced shooters is overall better than that of the inexperienced shooters. No significant change in accuracy (shift in the hit pattern center) between stationary shots and shots fired in motion can be seen for all shooters. © 2015 American Academy of Forensic Sciences.
Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.
2016-12-06
This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less
Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.
Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L
2012-09-04
A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.
Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G
2011-10-01
The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.
Growth-mediated autochemotactic pattern formation in self-propelling bacteria
NASA Astrophysics Data System (ADS)
Mukherjee, Mrinmoy; Ghosh, Pushpita
2018-01-01
Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.
Benkeser, David; Coe, Norma B.; Engelberg, Ruth A.; Teno, Joan M.; Curtis, J. Randall
2016-01-01
Abstract Background: Terminal intensive care unit (ICU) stays represent an important target to increase value of care. Objective: To characterize patterns of daily costs of ICU care at the end of life and, based on these patterns, examine the role for palliative care interventions in enhancing value. Design: Secondary analysis of an intervention study to improve quality of care for critically ill patients. Setting/Patients: 572 patients who died in the ICU between 2003 and 2005 at a Level-1 trauma center. Methods: Data were linked with hospital financial records. Costs were categorized into direct fixed, direct variable, and indirect costs. Patterns of daily costs were explored using generalized estimating equations stratified by length of stay, cause of death, ICU type, and insurance status. Estimates from the literature of effects of palliative care interventions on ICU utilization were used to simulate potential cost savings under different time horizons and reimbursement models. Main Results: Mean cost for a terminal ICU stay was 39.3K ± 45.1K. Direct fixed costs represented 45% of total hospital costs, direct variable costs 20%, and indirect costs 34%. Day of admission was most expensive (mean 9.6K ± 7.6K); average cost for subsequent days was 4.8K ± 3.4K and stable over time and patient characteristics. Conclusions: Terminal ICU stays display consistent cost patterns across patient characteristics. Savings can be realized with interventions that align care with patient preferences, helping to prevent unwanted ICU utilization at end of life. Cost modeling suggests that implications vary depending on time horizon and reimbursement models. PMID:27813724
NASA Astrophysics Data System (ADS)
Rocha, Humberto; Dias, Joana M.; Ferreira, Brígida C.; Lopes, Maria C.
2013-05-01
Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem.
Berle, Christine; Cobbin, Deirdre; Smith, Narelle; Zaslawski, Christopher
2011-11-01
Pattern diagnosis is an integral aspect of Chinese medicine (CM). CM differentiates biomedical diseases into patterns, based upon the patient's symptoms and signs. Pattern identification (PI) is used to diagnose, direct the treatment principle and determine the treatment protocol. Most CM research has used fixed formula treatments for Western-defined diseases with outcomes measured using objective biomedical markers. This article presents an innovative method used in a randomised controlled pilot study using acupuncture for participants with hepatitis C virus. Each participant's CM patterns were identified and quantified at baseline which directed the treatment protocol for the treatment group. Data identified that while each participant expressed different patterns at baseline all participants displayed multiple patterns. Six patterns showed some expression by all 16 participants; Liver (Gan) yin vacuity expressing a group aggregate mean percentage of 47.2, binding depression of Liver qi 46.9, and Liver Kidney (Shen) yin vacuity 45.1. Further sub category gender grouping revealed that pattern ranking changed with gender; Liver yin vacuity (male 53.4%, female 51.93%), binding depression of Liver qi (male 50.0%, female 42.86%) and Liver Kidney yin vacuity (male 42.9%, female 47.96%). The quantification of CM patterns described in this article permitted statistical evaluation of presenting CM patterns. Although this methodology is in its infancy it may have potential use in the integration of PI with rigorous evidence based clinical research. Biomedical markers often do not relate to symptom/signs and therefore this innovative measure may offer an additional CM evaluation methodology and further CM PI understanding.
SDR (Systems Directed Reading): An Overview.
ERIC Educational Resources Information Center
Baugo Community Schools, Elkhart, IN.
The objective of this project for kindergarten through fifth grade is to interest public and private educational institutions in the systematization of elementary school reading programs. Facets of Systems Directed Reading (SDR) include the use of a differentiated staffing pattern; experienced language arts unit leaders guiding and directing all…
Directional Radio-Frequency Identification Tag Reader
NASA Technical Reports Server (NTRS)
Medelius, Pedro J.; Taylor, John D.; Henderson, John J.
2004-01-01
A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).
Direct laser interference patterning for decreased bacterial attachment
NASA Astrophysics Data System (ADS)
Guenther, Denise; Valle, Jaoine; Burgui, Saioa; Gil, Carmen; Solano, Cristina; Toledo-Arana, Alejandro; Helbig, Ralf; Werner, Carsten; Lasa, Inigo; Lasagni, Andrés. F.
2016-03-01
In the past 15 years, many efforts were made to create functionalized artificial surfaces showing special anti-bacterial and anti-biofouling properties. Thereby, the topography of medical relevant materials plays an important role. However, the targeted fabrication of promising surface structures like hole-, lamella- and pyramid-like patterns with feature sizes in the sub-micrometer range in a one-step process is still a challenge. Optical and e-beam lithography, molding and selfassembly layers show a great potential to design topographies for this purpose. At the same time, most of these techniques are based on sequential processes, require masks or molds and thus are very device relevant and time consuming. In this work, we present the Direct Laser Interference Patterning (DLIP) technology as a capable method for the fast, flexible and direct fabrication of periodic micrometer- and submicrometer structures. This method offers the possibility to equip large plain areas and curved devices with 1D, 2D and 3D patterns. Simple 1D (e.g. lines) and complex 3D (e.g. lamella, pillars) patterns with periodic distances from 0.5 μm to 5 μm were fabricated on polymeric materials (polyimide, polystyrene). Subsequently, we characterized the adhesion behavior of Staphylococcus epidermidis and S. aureus bacteria under in vitro and in vivo conditions. The results revealed that the topographies have a significant impact on bacteria adhesion. On the one side, one-dimensional line-like structures especially with dimensions of the bacteria enhanced microbe attachment. While on the other hand, complex three-dimensional patterns prevented biofilm formation even after implantation and contamination in living organisms.
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-03-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-07-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
NASA Astrophysics Data System (ADS)
Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan
2016-03-01
How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.
NASA Astrophysics Data System (ADS)
Obata, Kotaro; Schonewille, Adam; Slobin, Shayna; Hohnholz, Arndt; Unger, Claudia; Koch, Jürgen; Suttmann, Oliver; Overmeyer, Ludger
2017-09-01
The hybrid technique of aerosol jet printing and ultraviolet (UV) laser direct writing was developed for 2D patterning of thin film UV curable polydimethylsiloxane (PDMS). A dual atomizer module in an aerosol jet printing system generated aerosol jet streams from material components of the UV curable PDMS individually and enables the mixing in a controlled ratio. Precise control of the aerosol jet printing achieved the layer thickness of UV curable PDMS as thin as 1.6 μm. This aerosol jet printing system is advantageous because of its ability to print uniform thin-film coatings of UV curable PDMS on planar surfaces as well as free-form surfaces without the use of solvents. In addition, the hybrid 2D patterning using the combination of UV laser direct writing and aerosol jet printing achieved selective photo-initiated polymerization of the UV curable PDMS layer with an X-Y resolution of 17.5 μm.
Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback
Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex
2017-01-01
The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. PMID:28917059
Baseline acoustic levels of the NASA Active Noise Control Fan rig
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.
1996-01-01
Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.
Calculating cellulose diffraction patterns
USDA-ARS?s Scientific Manuscript database
Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...
Deposition of Aerosols in the Lung: Physiological Factors
Ventilation and mechanics of breathing are an integral part of respiratory physiology that directly affect aerosol transport and deposition in the lung. Although natural breathing pattern varies widely among individuals, breathing pattern is controllable, and by using an appropri...
Palmer, A. Richard
1996-01-01
Phylogenetic analyses of asymmetry variation offer a powerful tool for exploring the interplay between ontogeny and evolution because (i) conspicuous asymmetries exist in many higher metazoans with widely varying modes of development, (ii) patterns of bilateral variation within species may identify genetically and environmentally triggered asymmetries, and (iii) asymmetries arising at different times during development may be more sensitive to internal cytoplasmic inhomogeneities compared to external environmental stimuli. Using four broadly comparable asymmetry states (symmetry, antisymmetry, dextral, and sinistral), and two stages at which asymmetry appears developmentally (larval and postlarval), I evaluated relations between ontogenetic and phylogenetic patterns of asymmetry variation. Among 140 inferred phylogenetic transitions between asymmetry states, recorded from 11 classes in five phyla, directional asymmetry (dextral or sinistral) evolved directly from symmetrical ancestors proportionally more frequently among larval asymmetries. In contrast, antisymmetry, either as an end state or as a transitional stage preceding directional asymmetry, was confined primarily to postlarval asymmetries. The ontogenetic origin of asymmetry thus significantly influences its subsequent evolution. Furthermore, because antisymmetry typically signals an environmentally triggered asymmetry, the phylogenetic transition from antisymmetry to directional asymmetry suggests that many cases of laterally fixed asymmetries evolved via genetic assimilation. PMID:8962039
Cadotte, Alex J.; DeMarse, Thomas B.; Mareci, Thomas H.; Parekh, Mansi; Talathi, Sachin S.; Hwang, Dong-Uk; Ditto, William L.; Ding, Mingzhou; Carney, Paul R.
2010-01-01
An understanding of the in vivo spatial emergence of abnormal brain activity during spontaneous seizure onset is critical to future early seizure detection and closed-loop seizure prevention therapies. In this study, we use Granger causality (GC) to determine the strength and direction of relationships between local field potentials (LFPs) recorded from bilateral microelectrode arrays in an intermittent spontaneous seizure model of chronic temporal lobe epilepsy before, during, and after Racine grade partial onset generalized seizures. Our results indicate distinct patterns of directional GC relationships within the hippocampus, specifically from the CA1 subfield to the dentate gryus, prior to and during seizure onset. Our results suggest sequential and hierarchical temporal relationships between the CA1 and dentate gyrus within and across hippocampal hemispheres during seizure. Additionally, our analysis suggests a reversal in the direction of GC relationships during seizure, from an abnormal pattern to more anatomically expected pattern. This reversal correlates well with the observed behavioral transition from tonic to clonic seizure in time-locked video. These findings highlight the utility of GC to reveal dynamic directional temporal relationships between multichannel LFP recordings from multiple brain regions during unprovoked spontaneous seizures. PMID:20304005
Cadotte, Alex J; DeMarse, Thomas B; Mareci, Thomas H; Parekh, Mansi B; Talathi, Sachin S; Hwang, Dong-Uk; Ditto, William L; Ding, Mingzhou; Carney, Paul R
2010-05-30
An understanding of the in vivo spatial emergence of abnormal brain activity during spontaneous seizure onset is critical to future early seizure detection and closed-loop seizure prevention therapies. In this study, we use Granger causality (GC) to determine the strength and direction of relationships between local field potentials (LFPs) recorded from bilateral microelectrode arrays in an intermittent spontaneous seizure model of chronic temporal lobe epilepsy before, during, and after Racine grade partial onset generalized seizures. Our results indicate distinct patterns of directional GC relationships within the hippocampus, specifically from the CA1 subfield to the dentate gyrus, prior to and during seizure onset. Our results suggest sequential and hierarchical temporal relationships between the CA1 and dentate gyrus within and across hippocampal hemispheres during seizure. Additionally, our analysis suggests a reversal in the direction of GC relationships during seizure, from an abnormal pattern to more anatomically expected pattern. This reversal correlates well with the observed behavioral transition from tonic to clonic seizure in time-locked video. These findings highlight the utility of GC to reveal dynamic directional temporal relationships between multichannel LFP recordings from multiple brain regions during unprovoked spontaneous seizures. (c) 2010 Elsevier B.V. All rights reserved.
Direction of information flow in large-scale resting-state networks is frequency-dependent.
Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J
2016-04-05
Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.
Nanopatterns by phase separation of patterned mixed polymer monolayers
Huber, Dale L; Frischknecht, Amalie
2014-02-18
Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).
VHF Omnidirectional Radio Range (VOR) Electromagnetic Spectrum Measurements.
1978-10-18
MAINTENANCE AND INSPECTION OF VOR, DVOR FACILITIES. 9-42 mouce & Io 10/18/78 Page 9-1 VHF OMNI-DIRECTIONAL RADIO RANGE (VOR) ELECTROMAGNETIC SPECTRUM...developed by the rotating sideband pattern 0r Pattern shown at North 00 North position Reference30 R--Variable ....uRlerent Cardioid-shaped Field Pattern...to their respective antenna pairs (which are 1800 out of phase with each other). This combination creates a two lobe field pattern rotating at 30 rps
Horváth, G; Varjú, D
1995-06-01
The grass shrimp (Palaemonetes vulgaris) orients itself by means of the polarization pattern of the sky visible through Snell's window of the water surface. The celestial polarization pattern viewed from water is distorted and modified because of refraction and repolarization of skylight at the air-water interface. This work provides a quantitative account of the repolarization of skylight transmitted through a flat water surface. The degree and direction of linear polarization, the transmissivity and the shape of the refraction-polarization oval are calculated at the air-water interface as functions of the polarization characteristics and the incident angle of partially linearly polarized incoming light. Two-dimensional patterns of linear polarization ellipses and of the degree and direction of polarization of skylight are presented for different zenith distances of the sun. The corresponding underwater refraction-polarization patterns are computed. Transmissivity patterns of a flat water surface are calculated for unpolarized light of an overcast sky and for partially polarized light of clear skies as a function of the zenith distance of the sun. The role of these refraction-polarization patterns in orientation and polarization vision of the grass shrimp (P. vulgaris) and rainbow trout (Oncorhyncus mykiss) is reviewed. The effects of cloud cover, surface waves and water turbidity on the refraction-polarization patterns are briefly discussed.
NASA Technical Reports Server (NTRS)
Hung, R. J.
1995-01-01
A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.
Nanostructures and functional materials fabricated by interferometric lithography.
Xia, Deying; Ku, Zahyun; Lee, S C; Brueck, S R J
2011-01-11
Interferometric lithography (IL) is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium, such as a photoresist, that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with IL are a platform for further fabrication of nanostructures and growth of functional materials and are building blocks for devices. This article provides a brief review of IL technologies and focuses on various applications for nanostructures and functional materials based on IL including directed self-assembly of colloidal nanoparticles, nanophotonics, semiconductor materials growth, and nanofluidic devices. Perspectives on future directions for IL and emerging applications in other fields are presented.
Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu
2013-11-01
Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.
Wind-driven circulation patterns in a shallow estuarine lake: St Lucia, South Africa
NASA Astrophysics Data System (ADS)
Schoen, Julia H.; Stretch, Derek D.; Tirok, Katrin
2014-06-01
The spatiotemporal structure of wind-driven circulation patterns and associated water exchanges or residence times can drive important bio-hydrodynamic interactions in shallow lakes and estuaries. The St Lucia estuarine lake in South Africa is an example of such a system. It is a UNESCO World Heritage Site and RAMSAR wetland of international importance but no detailed research on its circulation patterns has previously been undertaken. In this study, a hydrodynamic model was used to investigate the structure of these circulations to provide insights into their role in transport and water exchange processes. A strong diurnal temporal pattern of wind speeds, together with directional switching between two dominant directions, drives intermittent water exchanges and mixing between the lake basins. “High speed flows in shallow nearshore areas with slower upwind counter-flows in deeper areas, linked by circulatory gyres, are key features of the circulation”. These patterns are strongly influenced by the complex geometry of St Lucia and constrictions in the system. Water exchange time scales are non-homogeneous with some basin extremities having relatively long residence times. The influence of the circulation patterns on biological processes is discussed.
NASA Astrophysics Data System (ADS)
Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi
2017-01-01
Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.
NASA Astrophysics Data System (ADS)
Xiong, Shisheng; Chapuis, Yves-Andre; Wan, Lei; Gao, He; Li, Xiao; Ruiz, Ricardo; Nealey, Paul F.
2016-10-01
We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10-3. For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer.
NASA Astrophysics Data System (ADS)
Norris, R.; Miller, N.; Wassenaar, L.; Hobson, K.
2010-12-01
Each spring, millions of monarch butterflies (Danaus plexippus) migrate up to 3000 km from central Mexico to re-colonize eastern North America. However, despite centuries of research, the patterns of re-colonization are not well understood. We combined stable-hydrogen (δD) and -carbon (δ13C) isotope measurements with demographic models to test (1) whether individuals sampled in the northern part of the breeding range in the Great Lakes originate directly from Mexico or are second generation individuals born in the southern US and (2) to estimate whether populations on the eastern seaboard migrate longitudinally over the Appalachians or originate directly from the Gulf Coast. In the Great Lakes, we found that the majority of individuals were second-generation monarchs born in the Gulf Coast and Central regions of the US. However, 25% individuals originated directly from Mexico and we estimated that these individuals produced the majority of offspring born in the Great Lakes region during June. On the eastern seaboard, we found the majority of monarchs (88%) originated in the mid-west and Great Lakes regions, providing the first direct evidence that second generation monarchs born in June complete a (trans-) longitudinal migration across the Appalachian mountains. The remaining individuals (12%) originated from parents that migrated directly from the Gulf coast during early spring. Our results demonstrate how stable isotopes, when combined with ecological data, can provide insights into patterns of connectivity in migratory insects that have been impossible to test using conventional techniques. The migration patterns presented here have important implications for predicting future changes in population size and for developing effective conservation plans for this species.
Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen
2015-01-01
Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.
Magnetic intermittency of solar wind turbulence in the dissipation range
NASA Astrophysics Data System (ADS)
Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua
2016-04-01
The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.
Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen
2015-01-01
Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels. PMID:26317668
Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis
NASA Astrophysics Data System (ADS)
Zimmer, Walter M. X.; Tyack, Peter L.; Johnson, Mark P.; Madsen, Peter T.
2005-03-01
The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 μPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks >20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 μPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 μPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 μPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives..
Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices
NASA Astrophysics Data System (ADS)
Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.
2003-07-01
The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.
Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices.
Yan, Hao; LaBean, Thomas H; Feng, Liping; Reif, John H
2003-07-08
The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.
Kwak, Tae Joon; Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J Rudi; Chang, Woo-Jin
2016-01-01
The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.
Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J. Rudi; Chang, Woo-Jin
2016-01-01
The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids. PMID:27814386
Landform elevation suggests ecohydrologic footprints in subsurface geomorphology
NASA Astrophysics Data System (ADS)
Watts, A. C.; Watts, D.; Kaplan, D. A.; Mclaughlin, D. L.; Heffernan, J. B.; Martin, J. B.; Murray, A.; Osborne, T.; Cohen, M. J.; Kobziar, L. N.
2012-12-01
Many landscapes exhibit patterns in their arrangement of biota, or in their surface geomorphology as a result of biotic activity. Examples occur around the globe and include northern peatlands, Sahelian savannas, and shallow marine reefs. Such self-organized patterning is strongly suggestive of coupled, reciprocal feedbacks (i.e. locally positive, and distally negative) among biota and their environment. Much research on patterned landscapes has concerned emergent biogeomorphologic surfaces such as those found in peatlands, or the influence of biota on soil formation or transport. Our research concerns ecohydrologic feedbacks hypothesized to produce patterned occurrence of depressions in a subtropical limestone karst landscape. Our findings show strong evidence of self-organized patterning, in the form of overdispersed dissolution basins. Distributions of randomized bedrock elevation measurements on the landscape are bimodal, with means clustered about either higher- or lower-elevation modes. Measurements on the thin mantle of soil overlying this landscape, however, display reduced bimodality and mode separation. These observations indicate abiotic processes in diametric opposition to the biogenic forces which may be responsible for generating landscape pattern. Correlograms show higher spatial autocorrelation among soil measurements compared to bedrock measurements, and measurements of soil-layer thickness show high negative correlation with bedrock elevation. Our results are consistent with predictions of direct ecohydrologic feedbacks that would produce patterned "footprints" directly on bedrock, and of abiotic processes operating to obfuscate this pattern. The study suggests new steps to identify biogeochemical mechanisms for landscape patterning: an "ecological drill" by which plant communities modify geology.
Effect of topological patterning on self-rolling of nanomembranes.
Chen, Cheng; Song, Pengfei; Meng, Fanchao; Ou, Pengfei; Liu, Xinyu; Song, Jun
2018-08-24
The effects of topological patterning (i.e., grating and rectangular patterns) on the self-rolling behaviors of heteroepitaxial strained nanomembranes have been systematically studied. An analytical modeling framework, validated through finite-element simulations, has been formulated to predict the resultant curvature of the patterned nanomembrane as the pattern thickness and density vary. The effectiveness of the grating pattern in regulating the rolling direction of the nanomembrane has been demonstrated and quantitatively assessed. Further to the rolling of nanomembranes, a route to achieve predictive design of helical structures has been proposed and showcased. The present study provides new knowledge and mechanistic guidance towards predictive control and tuning of roll-up nanostructures via topological patterning.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-03-27
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-01-01
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975
Neill, Erica; Rossell, Susan Lee
2013-02-28
Semantic memory deficits in schizophrenia (SZ) are profound, yet there is no research comparing implicit and explicit semantic processing in the same participant sample. In the current study, both implicit and explicit priming are investigated using direct (LION-TIGER) and indirect (LION-STRIPES; where tiger is not displayed) stimuli comparing SZ to healthy controls. Based on a substantive review (Rossell and Stefanovic, 2007) and meta-analysis (Pomarol-Clotet et al., 2008), it was predicted that SZ would be associated with increased indirect priming implicitly. Further, it was predicted that SZ would be associated with abnormal indirect priming explicitly, replicating earlier work (Assaf et al., 2006). No specific hypotheses were made for implicit direct priming due to the heterogeneity of the literature. It was hypothesised that explicit direct priming would be intact based on the structured nature of this task. The pattern of results suggests (1) intact reaction time (RT) and error performance implicitly in the face of abnormal direct priming and (2) impaired RT and error performance explicitly. This pattern confirms general findings regarding implicit/explicit memory impairments in SZ whilst highlighting the unique pattern of performance specific to semantic priming. Finally, priming performance is discussed in relation to thought disorder and length of illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Misperception of exocentric directions in auditory space
Arthur, Joeanna C.; Philbeck, John W.; Sargent, Jesse; Dopkins, Stephen
2008-01-01
Previous studies have demonstrated large errors (over 30°) in visually perceived exocentric directions (the direction between two objects that are both displaced from the observer’s location; e.g., Philbeck et al., in press). Here, we investigated whether a similar pattern occurs in auditory space. Blindfolded participants either attempted to aim a pointer at auditory targets (an exocentric task) or gave a verbal estimate of the egocentric target azimuth. Targets were located at 20° to 160° azimuth in the right hemispace. For comparison, we also collected pointing and verbal judgments for visual targets. We found that exocentric pointing responses exhibited sizeable undershooting errors, for both auditory and visual targets, that tended to become more strongly negative as azimuth increased (up to −19° for visual targets at 160°). Verbal estimates of the auditory and visual target azimuths, however, showed a dramatically different pattern, with relatively small overestimations of azimuths in the rear hemispace. At least some of the differences between verbal and pointing responses appear to be due to the frames of reference underlying the responses; when participants used the pointer to reproduce the egocentric target azimuth rather than the exocentric target direction relative to the pointer, the pattern of pointing errors more closely resembled that seen in verbal reports. These results show that there are similar distortions in perceiving exocentric directions in visual and auditory space. PMID:18555205
Method of lift-off patterning thin films in situ employing phase change resists
Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio
2014-09-23
Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films
Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.
2013-01-01
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.
Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S
2013-12-03
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.
Federico, Alejandro; Kaufmann, Guillermo H
2009-08-01
We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.
Surface waves on floating liquids induced by ultrasound field
NASA Astrophysics Data System (ADS)
Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.
2013-01-01
We demonstrate a kind of wave pattern on the surface of floating liquids in a modulated ultrasound field. The waves are related to the liquid/solid phase transformation process. The nucleation sites of the eutectics locate at the center of these waves, and the eutectic growth direction is parallel to the propagation direction of the waves. It is revealed that such wave phenomenon can be ascribed to the interaction between ultrasound and eutectic growth at the liquid/solid interface. This result may provide a potential method for fabricating wave patterned surfaces on eutectic alloys.
Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan
2017-06-26
Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.
Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset
Solomon, Selina S; Tailby, Chris; Gharaei, Saba; Camp, Aaron J; Bourne, James A; Solomon, Samuel G
2011-01-01
Abstract The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from single units in area MT of anaesthetized marmosets, a New World monkey. We show through quantitative analyses that some neurons (35 of 185; 19%) are capable of signalling pattern motion (‘pattern cells’). Across several dimensions, the visual response of pattern cells in marmosets is indistinguishable from that of pattern cells in macaques. Other neurons respond to the motion of oriented contours in a pattern (‘component cells’) or show intermediate properties. In addition, we encountered a subset of neurons (22 of 185; 12%) insensitive to sinusoidal gratings but very responsive to plaids and other two-dimensional patterns and otherwise indistinguishable from pattern cells. We compared the response of each cell class to drifting gratings and dot fields. In pattern cells, directional selectivity was similar for gratings and dot fields; in component cells, directional selectivity was weaker for dot fields than gratings. Pattern cells were more likely to have stronger suppressive surrounds, prefer lower spatial frequencies and prefer higher speeds than component cells. We conclude that pattern motion sensitivity is a feature of some neurons in area MT of both New and Old World monkeys, suggesting that this functional property is an important stage in motion analysis and is likely to be conserved in humans. PMID:21946851
Bulimia: The Transgenerational View.
ERIC Educational Resources Information Center
Roberto, Laura Giat
1986-01-01
Within families with bulimia, certain interactional patterns enable and perpetuate the patient's binge-eating and purging symptoms. A transgenerational treatment method is proposed, which intervenes in ongoing dysfunctional patterns, and provides a frame for creating a therapeutic metaphor ("legacy") to direct the therapy. Rationale and stages of…
Estimating Landscape Pattern Metrics from a Sample of Land Cover
Although landscape pattern metrics can be computed directly from wall-to-wall land-cover maps, statistical sampling offers a practical alternative when complete coverage land-cover information is unavailable. Partitioning a region into spatial units (“blocks”) to create a samplin...
NASA Astrophysics Data System (ADS)
Moon, Joon-Young; Kim, Junhyeok; Ko, Tae-Wook; Kim, Minkyung; Iturria-Medina, Yasser; Choi, Jee-Hyun; Lee, Joseph; Mashour, George A.; Lee, Uncheol
2017-04-01
Identifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.
Steiner, Lisa; Burgess-Limerick, Robin; Porter, William
2014-03-01
The authors examine the pattern of direction errors made during the manipulation of a physical simulation of an underground coal mine bolting machine to assess the directional control-response compatibility relationships associated with the device and to compare these results to data obtained from a virtual simulation of a generic device. Directional errors during the manual control of underground coal roof bolting equipment are associated with serious injuries. Directional control-response relationships have previously been examined using a virtual simulation of a generic device; however, the applicability of these results to a specific physical device may be questioned. Forty-eight participants randomly assigned to different directional control-response relationships manipulated horizontal or vertical control levers to move a simulated bolter arm in three directions (elevation, slew, and sump) as well as to cause a light to become illuminated and raise or lower a stabilizing jack. Directional errors were recorded during the completion of 240 trials by each participant Directional error rates are increased when the control and response are in opposite directions or if the direction of the control and response are perpendicular.The pattern of direction error rates was consistent with experiments obtained from a generic device in a virtual environment. Error rates are increased by incompatible directional control-response relationships. Ensuring that the design of equipment controls maintains compatible directional control-response relationships has potential to reduce the errors made in high-risk situations, such as underground coal mining.
Two-dimensional acousto-optic processor using circular antenna array with a Butler matrix
NASA Astrophysics Data System (ADS)
Lee, Jim P.
1992-09-01
A two-dimensional acousto-optic signal processor is shown to be useful for providing simultaneous spectrum analysis and direction finding of radar signals over an instantaneous field of view of 360 deg. A system analysis with emphasis on the direction-finding aspect of this new architecture is presented. The peak location of the optical pattern provides a direct measure of bearing, independent of signal frequency. In addition, the sidelobe levels of the pattern can be effectively reduced using amplitude weighting. Performance parameters, such as mainlobe beamwidth, peak-sidelobe level, and pointing error, are analyzed as a function of the Gaussian laser illumination profile and the number of channels. Finally, a comparison with a linear antenna array architecture is also discussed.
NASA Astrophysics Data System (ADS)
Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji
2014-03-01
A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.
2006-01-01
The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.
Genescà, Meritxell; Svensson, U Peter; Taraldsen, Gunnar
2015-04-01
Ground reflections cause problems when estimating the direction of arrival of aircraft noise. In traditional methods, based on the time differences between the microphones of a compact array, they may cause a significant loss of accuracy in the vertical direction. This study evaluates the use of first-order directional microphones, instead of omnidirectional, with the aim of reducing the amplitude of the reflected sound. Such a modification allows the problem to be treated as in free field conditions. Although further tests are needed for a complete evaluation of the method, the experimental results presented here show that under the particular conditions tested the vertical angle error is reduced ∼10° for both jet and propeller aircraft by selecting an appropriate directivity pattern. It is also shown that the final level of error depends on the vertical angle of arrival of the sound, and that the estimates of the horizontal angle of arrival are not influenced by the directivity pattern of the microphones nor by the reflective properties of the ground.
Development of a directivity controlled piezoelectric transducer for sound reproduction
NASA Astrophysics Data System (ADS)
Bédard, Magella; Berry, Alain
2005-04-01
One of the inherent limitations of loudspeaker systems in audio reproduction is their inability to reproduce the possibly complex acoustic directivity patterns of real sound sources. For music reproduction for example, it may be desirable to separate diffuse field and direct sound components and project them with different directivity patterns. Because of their properties, poly (vinylidene fluoride) (PVDF) films offer lot of advantages for the development of electroacoustic transducers. A system of piezoelectric transducers made with PVDF that show a controllable directivity was developed. A cylindrical omnidirectional piezoelectric transducer is used to produce an ambient field, and a piezoelectric transducers system, consisting of a series of curved sources placed around a cylinder frame, is used to produce a sound field with a given directivity. To develop the system, a numerical model was generated with ANSYS Multiphysics TM8.1 and used to calculate the mechanical response of the piezoelectric transducer. The acoustic radiation of the driver was then computed using the Kirchoff-Helmoltz theorem. Numerical and experimental results of the mechanical and acoustical response of the system will be shown.
Ilknur, Turna; Pabuççuoglu, Uğur; Akin, Ciler; Lebe, Banu; Gunes, Ali Tahsin
2006-01-01
Although papulopustular lesions are common in patients with Behçet's disease (BD), clinically they may not be differentiated from other diseases with papulopustular presentation such as acne vulgaris or folliculitis. Therefore, there is disagreement as to whether they should be used as a diagnostic criterion in BD. The aim of this study was to determine whether the histopathologic evaluation of the papulopustular lesions may assist in the diagnosis of BD. Eighteen patients with BD and 16 control patients consisting of eleven patients with bacterial folliculitis and five patients with acne vulgaris were included in the study. After the detailed histopathologic evaluation by two pathologists who were blinded to the clinical diagnoses, the histopathologic findings were classified into three patterns as follows; pattern I: vasculitis (lymphocytic or leucocytoclastic); pattern II: folliculitis and/or perifolliculitis; pattern III: superficial and/or deep perivascular, and/or interstitial dermatitis. In addition, direct immunofluorescence studies were performed in order to evaluate the deposition of IgM, IgG, IgA, C3, or fibrinogen in dermal blood vessels. 27.8% of the patients with BD (5 patients) revealed lymphocytic vasculitis, while none of the control group did; and the difference was found statistically significant (P=0.046). The rate of pattern II which included folliculitis and/or perifolliculitis was 50.0% in control patients and 16.7% in the patients with BD; and the difference was found statistically significant (P=0.038). No difference was found between the two groups with regard to pattern III or direct immunofluorescence findings (P>0.05). Our results indicate that only vasculitic changes can be useful when histopathological features of papulopustular lesions are to be employed as a diagnostic criterion in patients with suspected BD.
Robinson, Stacey L.; McCool, Brian A.
2015-01-01
Background Ethanol drinking pattern has emerged as an important factor in the development, maintenance, and health consequences of alcohol use disorders in humans. The goal of these studies was to further our understanding of this important factor through refinement of an operant rodent model of ethanol consumption capable of drinking pattern microstructural analysis. We evaluated measures of total consumption, appetitive behavior, and drinking microstructure for ethanol and water at baseline and assessed alterations induced by two treatments previously shown to significantly alter gross ethanol appetitive and consummatory behaviors in opposing directions. Methods Male Long Evans rats were trained on an FR1 operant paradigm which allowed for continuous liquid access until an 8 second pause in consumption resulted in termination of liquid access. Total appetitive and consummatory behaviors were assessed in addition to microstructural drinking pattern for both ethanol and water during a five day baseline drinking period, after chronic intermittent ethanol vapor exposure, and following administration of a cannabinoid receptor antagonist SR141716a. Results As in previous operant studies, ethanol vapor exposure resulted in increases in ethanol-directed responding, total consumption, and rate of intake. Further, striking differential alterations to ethanol and water bout size, duration, and lick pattern occurred consistent with alterations in hedonic evaluation. Vapor additionally specifically reduced the number of ethanol-directed lever presses which did not result in subsequent consumption. SR141716a administration reversed many of these effects. Conclusions The addition of microstructural analysis to operant self-administration by rodents provides a powerful and translational tool for the detection of specific alterations in ethanol drinking pattern which may enable insights into neural mechanisms underlying specific components of drug consumption. PMID:26037631
Robinson, Stacey L; McCool, Brian A
2015-10-01
Ethanol drinking pattern has emerged as an important factor in the development, maintenance, and health consequences of alcohol use disorders in humans. The goal of these studies was to further our understanding of this important factor through refinement of an operant rodent model of ethanol consumption capable of drinking pattern microstructural analysis. We evaluated measures of total consumption, appetitive behavior, and drinking microstructure for ethanol and water at baseline and assessed alterations induced by two treatments previously shown to significantly alter gross ethanol appetitive and consummatory behaviors in opposing directions. Male Long-Evans rats were trained on an FR1 operant paradigm which allowed for continuous liquid access until an 8 second pause in consumption resulted in termination of liquid access. Total appetitive and consummatory behaviors were assessed in addition to microstructural drinking pattern for both ethanol and water during a five day baseline drinking period, after chronic intermittent ethanol vapor exposure, and following administration of a cannabinoid receptor antagonist SR141716a. As in previous operant studies, ethanol vapor exposure resulted in increases in ethanol-directed responding, total consumption, and rate of intake. Further, striking differential alterations to ethanol and water bout size, duration, and lick pattern occurred consistent with alterations in hedonic evaluation. Vapor additionally specifically reduced the number of ethanol-directed lever presses which did not result in subsequent consumption. SR141716a administration reversed many of these effects. The addition of microstructural analysis to operant self-administration by rodents provides a powerful and translational tool for the detection of specific alterations in ethanol drinking pattern which may enable insights into neural mechanisms underlying specific components of drug consumption. Copyright © 2015 Elsevier Inc. All rights reserved.
Dhungel, Bidur; Otaki, Joji M
2009-11-01
Butterfly wing color patterns can be changed by the application of a temperature shock or pharmacological agents such as tungstate, producing a distinctive type of elemental modification called the TS (temperature shock) type. Heterochronic uncoupling between the signaling and reception steps during the color-pattern determination process has been proposed as a mechanism for TS-type changes. As an extension of this hypothesis, both the parafocal element (PFE) and the eyespot in the same wing compartment are considered to be determined by morphogenic signal(s) emitted from the same eyespot focus. However, these models need to be examined with additional experimental data. Furthermore, there is controversy as to whether the action of tungstate on wing color patterns is direct or Indirect. Using a species of nymphalid butterfly (Junonia orithya), we have devised a simple method for the local application of pharmacological agents directly on developing wings of pupae. Local tungstate application resulted in reduced eyespots and circular dislocated PFEs in the eyespot-less compartments only on the treated wing, demonstrating that tungstate directly induces color-pattern changes on wings. We further examined the eyespot-PFE relationship in normal and cold-shocked Individuals, showing that an eyespot can be superimposed on a PFE and vice versa, probably depending on the timing of their fate determination. Taken together, we propose a two-morphogen model for the normal color-pattern determination, in which the morphogenic signals for the eyespot and PFE are different from each other despite their Identical origin. This two-morphogen model is compatible with the heterochronic uncoupling model for TS-type changes.
Langevin Dynamics Deciphers the Motility Pattern of Swimming Parasites
NASA Astrophysics Data System (ADS)
Zaburdaev, Vasily; Uppaluri, Sravanti; Pfohl, Thomas; Engstler, Markus; Friedrich, Rudolf; Stark, Holger
2011-05-01
The parasite African trypanosome swims in the bloodstream of mammals and causes the highly dangerous human sleeping sickness. Cell motility is essential for the parasite’s survival within the mammalian host. We present an analysis of the random-walk pattern of a swimming trypanosome. From experimental time-autocorrelation functions for the direction of motion we identify two relaxation times that differ by an order of magnitude. They originate from the rapid deformations of the cell body and a slower rotational diffusion of the average swimming direction. Velocity fluctuations are athermal and increase for faster cells whose trajectories are also straighter. We demonstrate that such a complex dynamics is captured by two decoupled Langevin equations that decipher the complex trajectory pattern by referring it to the microscopic details of cell behavior.
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.
Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.
Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael
2006-08-01
The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.
NASA Astrophysics Data System (ADS)
Singh, S. S.; Veerla, S.; Sharma, V.; Pandey, A. K.; Pal, P.
2016-02-01
Micromirrors with a tilt angle of 45° are widely used in optical switching and interconnect applications which require 90° out of plane reflection. Silicon wet bulk micromachining based on surfactant added TMAH is usually employed to fabricate 45° slanted walls at the < 1 0 0> direction on Si≤ft\\{0 0 1\\right\\} wafers. These slanted walls are used as 45° micromirrors. However, the appearance of a precise 45° ≤ft\\{0 1 1\\right\\} wall is subject to the accurate identification of the < 1 0 0> direction. In this paper, we present a simple technique based on pre-etched patterns for the identification of < 1 0 0> directions on the Si≤ft\\{0 0 1\\right\\} surface. The proposed pre-etched pattern self-aligns itself at the < 1 0 0> direction while becoming misaligned at other directions. The < 1 0 0> direction is determined by a simple visual inspection of pre-etched patterns and does not need any kind of measurement. To test the accuracy of the proposed method, we fabricated a 32 mm long rectangular opening with its sides aligned along the < 1 0 0> direction, which is determined using the proposed technique. Due to the finite etch rate of the ≤ft\\{1 1 0\\right\\} plane, undercutting occurred, which was measured at 12 different locations along the longer edge of the rectangular strip. The mean of these undercutting lengths, measured perpendicular to the mask edge, is found to be 13.41 μm with a sub-micron standard deviation of 0.38 μm. This level of uniform undercutting indicates that our method of identifying the < 1 0 0> direction is precise and accurate. The developed method will be extremely useful in fabricating arrays of 45° micromirrors.
Bailey, James A; Casanova, Ruby S; Bufkin, Kim
2006-07-01
In using infrared or infrared-enhanced photography to examine gunshot residue (GSR) on dark-colored clothing, the GSR particles are microscopically examined directly on the fabric followed by the modified Griess test (MGT) for nitrites. In conducting the MGT, the GSR is transferred to treated photographic paper for visualization. A positive reaction yields an orange color on specially treated photographic paper. The examiner also evaluates the size of the powder pattern based on the distribution of nitrite reaction sites or density. A false-positive reaction can occur using the MGT due to contaminants or dyes that produce an orange cloud reaction as well. A method for enhancing visualization of the pattern produced by burned and partially unburned powder is by treatment of the fabric with a solution of sodium hypochlorite. In order to evaluate the results of sodium hypochlorite treatment for GSR visualization, the MGT was used as a reference pattern. Enhancing GSR patterns on dark or multicolored clothing was performed by treating the fabric with an application of 5.25% solution of sodium hypochlorite. Bleaching the dyes in the fabric enhances visualization of the GSR pattern by eliminating the background color. Some dyes are not affected by sodium hypochlorite; therefore, bleaching may not enhance the GSR patterns in some fabrics. Sodium hypochlorite provides the investigator with a method for enhancing GSR patterns directly on the fabric. However, this study is not intended to act as a substitute for the MGT or Sodium Rhodizonate test.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Interactions of the polarization and the sun compass in path integration of desert ants.
Lebhardt, Fleur; Ronacher, Bernhard
2014-08-01
Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky's polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant's compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao; Liu, Yadong; Wan, Lei
2016-03-15
We demonstrated here for the first time that the stereochemistry of polylactide (PLA) blocks affected the assembly behaviors of PS-b-PLA on chemical patterns. Two PS-b-PLA block copolymers, where the PLA block is either racemic (PDLLA) or left-handed (PLLA), were synthesized and directed to assemble on chemical patterns with a wide range of L-s/L-o. PS-b-PDLLA was stretched up to 70% on chemical patterns, while PS-b-PLLA was only stretched by 20%. The assembly behavior of PS-b-PDLLA was different from AB diblock copolymer, but similar to that of ABA triblock copolymer. The high stretchability might be attributed to the formation of stereocomplexes inmore » PDLLA blocks. Compared to ABA triblock copolymers, stereocomplexed diblock copolymers have much faster assembly kinetics. This observation provides a new concept to achieve large process windows by the introduction of specific interactions, for example, H-bonding, supramolecular interaction, and sterecomplexation, between polymer chains.« less
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi
2018-06-01
The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.
K Jawed, M; Hadjiconstantinou, N G; Parks, D M; Reis, P M
2018-03-14
We develop and perform continuum mechanics simulations of carbon nanotube (CNT) deployment directed by a combination of surface topography and rarefied gas flow. We employ the discrete elastic rods method to model the deposition of CNT as a slender elastic rod that evolves in time under two external forces, namely, van der Waals (vdW) and aerodynamic drag. Our results confirm that this self-assembly process is analogous to a previously studied macroscopic system, the "elastic sewing machine", where an elastic rod deployed onto a moving substrate forms nonlinear patterns. In the case of CNTs, the complex patterns observed on the substrate, such as coils and serpentines, result from an intricate interplay between van der Waals attraction, rarefied aerodynamics, and elastic bending. We systematically sweep through the multidimensional parameter space to quantify the pattern morphology as a function of the relevant material, flow, and geometric parameters. Our findings are in good agreement with available experimental data. Scaling analysis involving the relevant forces helps rationalize our observations.
Ecosystem properties self-organize in response to a directional fog-vegetation interaction.
Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O
2014-05-01
Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.
Microscale Patterning of Thermoplastic Polymer Surfaces by Selective Solvent Swelling
Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L.
2012-01-01
A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of microns, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication. PMID:22900539
Patterned Cell Alignment in Response to Macroscale Curvature
NASA Astrophysics Data System (ADS)
Bade, Nathan; Kamien, Randall; Assoian, Richard; Stebe, Kathleen
The formation of spatial behavior patterns in tissues is a long-standing problem in biology. Decades of research have focused on understanding how biochemical signaling and morphogen gradients establish cell patterns during development and tissue morphogenesis. Here, we show that geometry and physical cues can drive organization and pattern formation. We find that mouse embryonic fibroblasts and human vascular smooth muscle cells sense curvature differently when in monolayers than when isolated on surfaces with various amounts of Gaussian curvature. While the long, apical stress fibers within these cells align in the direction of minimum curvature on cylindrical substrates, a subpopulation of stress fibers beneath the nucleus aligns in the circumferential direction and is bent maximally. We find dramatic reorganization of the actin cytoskeleton upon activation of RhoA, which is associated with increased contractility of the fibers. Thus, stress fiber alignment is likely a result of a complex balance between energy penalties associated with stress fiber bending, contractility, and the dynamics of F-actin assembly.
NASA Astrophysics Data System (ADS)
Garner, Grant Parker
The directed self assembly of block copolymers is an exciting complimentary technique for the fabrication of nanoscale structures for lithographic applications. Typically a directed self assembly process is driven through substrates with chemical (chemoepitaxy) or topographical (graphoepitaxy) guiding features. These patterning strategies have led to the ability to assemble structures with a high degree of perfection over large areas. However, a guiding pattern has not been created which assembles the desired features with a defect density that is commensurate with industrial standards of 1 defect/100cm 2. This work focuses on using molecular simulations on the Theoretically Informed Coarse Grained model to provide design rules for substrate patterns which drive the assembly of desired, device-oriented morphologies. Prior to the work presented in Chapter 2, the TICG model has been used in conjunction with a chemical pattern that is approximated as a hard-impenetrable surface. As many experimental systems use polymer brushes to help guide the polymer melt deposited on the substrate, this work analyzes the consequences of such an assumption by comparing a model where the polymer brush is explicitly implemented to the hard-wall substrate used in the past. Then, a methodology which utilizes a evolutionary optimization method is used to map the parameters of the more detailed model to the hard-surface model. This provides a qualitative understanding of how to interpret the model parameters used in previous works in the context of real experimental pattern designs. Chapter 3 discuss the concept of competitive assemblies in regards to defining a thermodynamic processing window in design space for assembling lines-and-spaces. The most competitive assembly to the desired orientation of the lamella is defined as a rotation of assembled lamella to the underlying pattern. Thermodynamic integration is used to calculate the free-energy difference between these assemblies over chemical patterns with varied design parameters. Local maximums in the free-energy difference are observed over pattern designs that are in qualitatively agreement with the pattern designs which produce the most perfect assemblies in experiments. The analysis is extended to study how choice of chemistry impacts this thermodynamic selection for the desired morphology. Finally, Chapter 4 provides insight into the kinetics of patterned directed self-assembly by investigating cylinder forming block copolymers within cylindrical confinements. Through the use of the string method, the minimum free-energy path between a defective state and the desired assembled morphology is calculated and clear transition states are highlighted. The effects of key parameters of the confinement design on the calculated minimum free energy path are calculated to identify design rules which should lead to a better understanding of optimal connement design for eliminating defects. In addition, a specific modification to existing cylindrical confinements is discussed as a possibility for tackling the problem of placement accuracy for a cylinder that is assembled within the confinement.
NASA Astrophysics Data System (ADS)
Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi
2009-06-01
We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.
Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices
Yan, Hao; LaBean, Thomas H.; Feng, Liping; Reif, John H.
2003-01-01
The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping. PMID:12821776
NASA Astrophysics Data System (ADS)
Pena, Ana; Wang, Zengbo; Whitehead, David; Li, Lin
2010-11-01
A practical approach to a well-known technique of laser micro/nano-patterning by optical near fields is presented. It is based on surface patterning by scanning a Gaussian laser beam through a self-assembled monolayer of silica micro-spheres on a single-crystalline silicon (Si) substrate. So far, the outcome of this kind of near-field patterning has been related to the simultaneous, parallel surface-structuring of large areas either by top hat or Gaussian laser intensity distributions. We attempt to explore the possibility of using the same technique in order to produce single, direct writing of features. This could be of advantage for applications in which only some areas need to be patterned (i.e. local area selective patterning) or single lines are required (e.g. a particular micro/nano-fluidic channel). A diode pumped Nd:YVO4 laser system (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) with a computer-controlled 3 axis galvanometer beam scanner was employed to write user-defined patterns through the particle lens array on the Si substrate. After laser irradiation, the obtained patterns which are in the micro-scale were composed of sub-micro/micro-holes or bumps. The micro-pattern resolution depends on the dimension of both the micro-sphere’s diameter and the beam’s spot size. The developed technique could potentially be employed to fabricate photonic crystal structures mimicking nature’s butterfly wings and anti-reflective “moth eye” arrays for photovoltaic cells.
Directed functional connectivity matures with motor learning in a cortical pattern generator.
Day, Nancy F; Terleski, Kyle L; Nykamp, Duane Q; Nick, Teresa A
2013-02-01
Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning.
Directed functional connectivity matures with motor learning in a cortical pattern generator
Day, Nancy F.; Terleski, Kyle L.; Nykamp, Duane Q.
2013-01-01
Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning. PMID:23175804
Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B
1986-11-01
We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.
Orlenko, Alena; Chi, Peter B; Liberles, David A
2017-05-25
Understanding the genotype-phenotype map is fundamental to our understanding of genomes. Genes do not function independently, but rather as part of networks or pathways. In the case of metabolic pathways, flux through the pathway is an important next layer of biological organization up from the individual gene or protein. Flux control in metabolic pathways, reflecting the importance of mutation to individual enzyme genes, may be evolutionarily variable due to the role of mutation-selection-drift balance. The evolutionary stability of rate limiting steps and the patterns of inter-molecular co-evolution were evaluated in a simulated pathway with a system out of equilibrium due to fluctuating selection, population size, or positive directional selection, to contrast with those under stabilizing selection. Depending upon the underlying population genetic regime, fluctuating population size was found to increase the evolutionary stability of rate limiting steps in some scenarios. This result was linked to patterns of local adaptation of the population. Further, during positive directional selection, as with more complex mutational scenarios, an increase in the observation of inter-molecular co-evolution was observed. Differences in patterns of evolution when systems are in and out of equilibrium, including during positive directional selection may lead to predictable differences in observed patterns for divergent evolutionary scenarios. In particular, this result might be harnessed to detect differences between compensatory processes and directional processes at the pathway level based upon evolutionary observations in individual proteins. Detecting functional shifts in pathways reflects an important milestone in predicting when changes in genotypes result in changes in phenotypes.
2013-01-01
Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment. PMID:23855907
Receptive fields of locust brain neurons are matched to polarization patterns of the sky.
Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram
2014-09-22
Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Low-Voltage Continuous Electrospinning Patterning.
Li, Xia; Li, Zhaoying; Wang, Liyun; Ma, Guokun; Meng, Fanlong; Pritchard, Robyn H; Gill, Elisabeth L; Liu, Ye; Huang, Yan Yan Shery
2016-11-30
Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.
Reynolds, Andy M; Schultheiss, Patrick; Cheng, Ken
2014-01-07
We suggest that the Australian desert ant Melophorus bagoti approximates a Lévy search pattern by using an intrinsic bi-exponential walk and does so when a Lévy search pattern is advantageous. When attempting to locate its nest, M. bagoti adopt a stereotypical search pattern. These searches begin at the location where the ant expects to find the nest, and comprise loops that start and end at this location, and are directed in different azimuthal directions. Loop lengths are exponentially distributed when searches are in visually familiar surroundings and are well described by a mixture of two exponentials when searches are in unfamiliar landscapes. The latter approximates a power-law distribution, the hallmark of a Lévy search. With the aid of a simple analytically tractable theory, we show that an exponential loop-length distribution is advantageous when the distance to the nest can be estimated with some certainty and that a bi-exponential distribution is advantageous when there is considerable uncertainty regarding the nest location. The best bi-exponential search patterns are shown to be those that come closest to approximating advantageous Lévy looping searches. The bi-exponential search patterns of M. bagoti are found to approximate advantageous Lévy search patterns. Copyright © 2013. Published by Elsevier Ltd.
Chiva, M; Saperas, N; Ribes, E
2011-12-01
In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei Copyright © 2011 Elsevier Ltd. All rights reserved.
Comparison of self-reported and observed water contact in an S. mansoni endemic village in Brazil.
Friedman, J F; Kurtis, J D; McGarvey, S T; Fraga, A L; Silveira, A; Pizziolo, V; Gazzinelli, G; LoVerde, P; Corrêa-Oliveira, R
2001-03-30
Estimates of exposure are critical for immuno-epidemiologic and intervention studies in human schistosomiasis. Direct observation of human water contact patterns is both costly and time consuming. To address these issues, we determined whether individuals residing in a Schistosoma mansoni endemic village in Brazil could accurately self-report their water contact patterns. We compared the results of a water contact questionnaire to the present gold standard, direct observation of water contact in 86 volunteers, aged 8--29. We administered a survey to estimate volunteers' frequency and type of water contact and directly measured each volunteers' water contact patterns during 5 weeks of detailed water contact observations. We found a poor correlation between self reported frequency of contact and directly observed exposure (rho=0.119, P=NS). The questionnaire data was supplemented by information about average body surface area of exposure and duration of contact for specific activities derived from observations of this cohort. This 'supplemented questionnaire' data was significantly correlated with their exposure index (rho=0.227, P=0.05). It provides a starting point from which questionnaires may develop to provide a more cost-effective and less labor intensive method of assessing water contact exposure at the level of the individual.
The Internet: Trends and Directions.
ERIC Educational Resources Information Center
Anderson, Byron
1996-01-01
Examines current trends and directions in information technology and telecommunications. Discusses legislation; mergers and acquisitions; Internet service providers; fiscal control in libraries and the pooling of electronic information access through consortiums; demand for more bandwidth; technology selection; Internet usage patterns; the…
The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil.
Louzada, Maria Laura da Costa; Ricardo, Camila Zancheta; Steele, Euridice Martinez; Levy, Renata Bertazzi; Cannon, Geoffrey; Monteiro, Carlos Augusto
2018-01-01
To estimate the dietary share of ultra-processed foods and to determine its association with the overall nutritional quality of diets in Brazil. Cross-sectional. Brazil. A representative sample of 32 898 Brazilians aged ≥10 years was studied. Food intake data were collected. We calculated the average dietary content of individual nutrients and compared them across quintiles of energy share of ultra-processed foods. Then we identified nutrient-based dietary patterns, and evaluated the association between quintiles of dietary share of ultra-processed foods and the patterns' scores. The mean per capita daily dietary energy intake was 7933 kJ (1896 kcal), with 58·1 % from unprocessed or minimally processed foods, 10·9 % from processed culinary ingredients, 10·6 % from processed foods and 20·4 % from ultra-processed foods. Consumption of ultra-processed foods was directly associated with high consumption of free sugars and total, saturated and trans fats, and with low consumption of protein, dietary fibre, and most of the assessed vitamins and minerals. Four nutrient-based dietary patterns were identified. 'Healthy pattern 1' carried more protein and micronutrients, and less free sugars. 'Healthy pattern 2' carried more vitamins. 'Healthy pattern 3' carried more dietary fibre and minerals and less free sugars. 'Unhealthy pattern' carried more total, saturated and trans fats, and less dietary fibre. The dietary share of ultra-processed foods was inversely associated with 'healthy pattern 1' (-0·16; 95 % CI -0·17, -0·15) and 'healthy pattern 3' (-0·18; 95 % CI -0·19, -0·17), and directly associated with 'unhealthy pattern' (0·17; 95 % CI 0·15, 0·18). Dietary share of ultra-processed foods determines the overall nutritional quality of diets in Brazil.
Dog-directed speech: why do we use it and do dogs pay attention to it?
Ben-Aderet, Tobey; Gallego-Abenza, Mario
2017-01-01
Pet-directed speech is strikingly similar to infant-directed speech, a peculiar speaking pattern with higher pitch and slower tempo known to engage infants' attention and promote language learning. Here, we report the first investigation of potential factors modulating the use of dog-directed speech, as well as its immediate impact on dogs' behaviour. We recorded adult participants speaking in front of pictures of puppies, adult and old dogs, and analysed the quality of their speech. We then performed playback experiments to assess dogs' reaction to dog-directed speech compared with normal speech. We found that human speakers used dog-directed speech with dogs of all ages and that the acoustic structure of dog-directed speech was mostly independent of dog age, except for sound pitch which was relatively higher when communicating with puppies. Playback demonstrated that, in the absence of other non-auditory cues, puppies were highly reactive to dog-directed speech, and that the pitch was a key factor modulating their behaviour, suggesting that this specific speech register has a functional value in young dogs. Conversely, older dogs did not react differentially to dog-directed speech compared with normal speech. The fact that speakers continue to use dog-directed with older dogs therefore suggests that this speech pattern may mainly be a spontaneous attempt to facilitate interactions with non-verbal listeners. PMID:28077769
Dog-directed speech: why do we use it and do dogs pay attention to it?
Ben-Aderet, Tobey; Gallego-Abenza, Mario; Reby, David; Mathevon, Nicolas
2017-01-11
Pet-directed speech is strikingly similar to infant-directed speech, a peculiar speaking pattern with higher pitch and slower tempo known to engage infants' attention and promote language learning. Here, we report the first investigation of potential factors modulating the use of dog-directed speech, as well as its immediate impact on dogs' behaviour. We recorded adult participants speaking in front of pictures of puppies, adult and old dogs, and analysed the quality of their speech. We then performed playback experiments to assess dogs' reaction to dog-directed speech compared with normal speech. We found that human speakers used dog-directed speech with dogs of all ages and that the acoustic structure of dog-directed speech was mostly independent of dog age, except for sound pitch which was relatively higher when communicating with puppies. Playback demonstrated that, in the absence of other non-auditory cues, puppies were highly reactive to dog-directed speech, and that the pitch was a key factor modulating their behaviour, suggesting that this specific speech register has a functional value in young dogs. Conversely, older dogs did not react differentially to dog-directed speech compared with normal speech. The fact that speakers continue to use dog-directed with older dogs therefore suggests that this speech pattern may mainly be a spontaneous attempt to facilitate interactions with non-verbal listeners. © 2017 The Author(s).
Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood.
Hohmann, Christopher; Milles, Bianca; Schinke, Michael; Schroeter, Michael; Ulzheimer, Jochen; Kraft, Peter; Kleinschnitz, Christoph; Lehmann, Paul V; Kuerten, Stefanie
2014-09-16
B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.
Gustafson, Alison; Jilcott Pitts, Stephanie; McDonald, Jordan; Ford, Hannah; Connelly, Paige; Gillespie, Rachel; Liu, Emily; Bush, Heather; Brancato, Candace; Babatande, Toyin; Mullins, Janet
2017-01-01
Background: Obesity rates are higher among rural versus urban adolescents. To examine possible mechanisms for the rural-urban adolescent obesity disparity, we examined the direct and indirect effects of food purchasing patterns, and the home, school, and consumer food environments on dietary intake among rural adolescents. Methods: A baseline survey was conducted among adolescents in eight rural high schools (four in Eastern Kentucky, and four in Eastern North Carolina). Participants answered questions about food purchasing patterns, dietary intake, home food availability, and demographics. The school and consumer food environments were assessed using validated measures from the School Meals Cost Study (United States Department of Agriculture-Mathematica) and the Nutrition Environment Measurement Survey for Stores, Restaurants, and Corner Stores. Results: Of 432 adolescents, 55% were normal weight, 24% were overweight, and 21% were obese. There was a direct association between unhealthy food purchasing patterns (shopping frequently at gas stations, fast food, and dollar stores) and consuming more added sugars, when compared to those with a healthy shopping pattern (shopping less frequently at gas stations, fast food, and dollar stores) [Odds Ratio = 2.41 (95% CI (confidence interval) 0.99, 3.82)]. Those who reported always having fruits and vegetables in the home consumed more servings of fruits and vegetables [OR = 0.31 cups (95% CI 0.22, 0.44)] compared to those who reported never having fruits and vegetables in the home. Adolescents attending a school with a low healthy food availability score consumed fewer servings of fruits and vegetables [−0.001 (95% CI −0.001, 0.0001)] compared to those attending a school with a high healthy food availability score. Conclusions: There are direct associations between food purchasing patterns, the home and school food environments, and dietary intake among rural adolescents. These cross-sectional results informed the development of the “Go Big and Bring it Home” program, a text messaging intervention to improve adolescents’ fruit, vegetable, and healthy beverage intake. PMID:29065444
Gustafson, Alison; Jilcott Pitts, Stephanie; McDonald, Jordan; Ford, Hannah; Connelly, Paige; Gillespie, Rachel; Liu, Emily; Bush, Heather; Brancato, Candace; Babatande, Toyin; Mullins, Janet
2017-10-21
Background : Obesity rates are higher among rural versus urban adolescents. To examine possible mechanisms for the rural-urban adolescent obesity disparity, we examined the direct and indirect effects of food purchasing patterns, and the home, school, and consumer food environments on dietary intake among rural adolescents. Methods : A baseline survey was conducted among adolescents in eight rural high schools (four in Eastern Kentucky, and four in Eastern North Carolina). Participants answered questions about food purchasing patterns, dietary intake, home food availability, and demographics. The school and consumer food environments were assessed using validated measures from the School Meals Cost Study (United States Department of Agriculture-Mathematica) and the Nutrition Environment Measurement Survey for Stores, Restaurants, and Corner Stores. Results : Of 432 adolescents, 55% were normal weight, 24% were overweight, and 21% were obese. There was a direct association between unhealthy food purchasing patterns (shopping frequently at gas stations, fast food, and dollar stores) and consuming more added sugars, when compared to those with a healthy shopping pattern (shopping less frequently at gas stations, fast food, and dollar stores) [Odds Ratio = 2.41 (95% CI (confidence interval) 0.99, 3.82)]. Those who reported always having fruits and vegetables in the home consumed more servings of fruits and vegetables [OR = 0.31 cups (95% CI 0.22, 0.44)] compared to those who reported never having fruits and vegetables in the home. Adolescents attending a school with a low healthy food availability score consumed fewer servings of fruits and vegetables [-0.001 (95% CI -0.001, 0.0001)] compared to those attending a school with a high healthy food availability score. Conclusions : There are direct associations between food purchasing patterns, the home and school food environments, and dietary intake among rural adolescents. These cross-sectional results informed the development of the "Go Big and Bring it Home" program, a text messaging intervention to improve adolescents' fruit, vegetable, and healthy beverage intake.
Technological innovations for a sustainable business model in the semiconductor industry
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2014-09-01
Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.
Toppi, J; Petti, M; Vecchiato, G; Cincotti, F; Salinari, S; Mattia, D; Babiloni, F; Astolfi, L
2013-01-01
Partial Directed Coherence (PDC) is a spectral multivariate estimator for effective connectivity, relying on the concept of Granger causality. Even if its original definition derived directly from information theory, two modifies were introduced in order to provide better physiological interpretations of the estimated networks: i) normalization of the estimator according to rows, ii) squared transformation. In the present paper we investigated the effect of PDC normalization on the performances achieved by applying the statistical validation process on investigated connectivity patterns under different conditions of Signal to Noise ratio (SNR) and amount of data available for the analysis. Results of the statistical analysis revealed an effect of PDC normalization only on the percentages of type I and type II errors occurred by using Shuffling procedure for the assessment of connectivity patterns. No effects of the PDC formulation resulted on the performances achieved during the validation process executed instead by means of Asymptotic Statistic approach. Moreover, the percentages of both false positives and false negatives committed by Asymptotic Statistic are always lower than those achieved by Shuffling procedure for each type of normalization.
Peripheral neuropathies associated with antibodies directed to intracellular neural antigens.
Antoine, J-C
2014-10-01
Antibodies directed to intracellular neural antigens have been mainly described in paraneoplastic peripheral neuropathies and mostly includes anti-Hu and anti-CV2/CRMP5 antibodies. These antibodies occur with different patterns of neuropathy. With anti-Hu antibody, the most frequent manifestation is sensory neuronopathy with frequent autonomic involvement. With anti-CV2/CRMP5 the neuropathy is more frequently sensory and motor with an axonal or mixed demyelinating and axonal electrophysiological pattern. The clinical pattern of these neuropathies is in keeping with the cellular distribution of HuD and CRMP5 in the peripheral nervous system. Although present in high titer, these antibodies are probably not directly responsible for the neuropathy. Pathological and experimental studies indicate that cytotoxic T-cells are probably the main effectors of the immune response. These disorders contrast with those in which antibodies recognize a cell surface antigen and are probably responsible for the disease. The neuronal cell death and axonal degeneration which result from T-cell mediated immunity explains why treating these disorders remains challenging. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Influence of Solar Irradiance on Polar Ionospheric Convection
NASA Astrophysics Data System (ADS)
Burrell, A. G.; Yeoman, T. K.; Stephen, M.; Lester, M.
2016-12-01
Plasma convection over the poles shows the result of direct interactions between the terrestrial atmosphere, magnetosphere, and the sun. The paths that the ionospheric plasma takes in the polar cap form a variety of patterns, which have been shown to depend strongly on the direction of the Interplanetary Magnetic Field (IMF) and the reconnection rate. While the IMF and level of geomagnetic activity clearly alter the plasma convection patterns, the influence of changing solar irradiance is also important. The solar irradiance and magnetospheric particle precipitation regulate the rate of plasma production, and thus the ionospheric conductivity. Previous work has demonstrated how season alters the convection patterns observed over the poles, demonstrating the importance that solar photoionisation has on plasma convection. This study investigates the role of solar photoionisation on convection more directly, using measurements of ionospheric convection made by the Super Dual Auroral Radar Network (SuperDARN) and solar irradiance observations made by the Solar EUV Experiment (SEE) to explore the influence of the solar cycle on ionospheric convection, and the implications this may have on magnetosphere-ionosphere coupling.
The Articulatory In-Out Effect Resists Oral Motor Interference
ERIC Educational Resources Information Center
Lindau, Berit; Topolinski, Sascha
2018-01-01
People prefer words with inward directed consonantal patterns (e.g., MENIKA) compared to outward patterns (KENIMA), because inward (outward) articulation movements resemble positive (negative) mouth actions such as swallowing (spitting). This effect might rely on covert articulation simulations, or subvocalizations, since it occurs also under…
Microstrip Antenna Generates Circularly Polarized Beam
NASA Technical Reports Server (NTRS)
Huang, J.
1986-01-01
Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.
Mating patterns have direct application to: conservation because of their influence on structuring genetic diversity within and among populations and on maintaining that diversity over time. We measured population and family outcrossing rates, biparental inbreeding correlation of...
ERIC Educational Resources Information Center
Jeong, Hyeonjeong; Hashizume, Hiroshi; Sugiura, Motoaki; Sassa, Yuko; Yokoyama, Satoru; Shiozaki, Shuken; Kawashima, Ryuta
2011-01-01
This study used functional magnetic resonance imaging (fMRI) to identify differences in the neural processes underlying direct and semidirect interviews. We examined brain activation patterns while 20 native speakers of Japanese participated in direct and semidirect interviews in both Japanese (first language [L1]) and English (second language…
Sekerel, Bulent Enis; Seyhun, Oznur
2017-09-01
To evaluate practice patterns in the management of cow's milk protein allergy (CMPA) and associated economic burden of disease on health service in Turkey. This study was based on experts' views on the practice patterns in management of CMPA manifesting with either proctocolitis or eczema symptoms and, thereby, aimed to estimate economic burden of CMPA. Practice patterns were determined via patient flow charts developed by experts using the modified Delphi method for CMPA presented with proctocolitis and eczema. Per patient total 2-year direct medical costs were calculated, including cost items of physician visits, laboratory tests, and treatment. According to the consensus opinion of experts, 2-year total direct medical cost from a payer perspective and societal perspective was calculated to be $US2,116.05 and $US2,435.84, respectively, in an infant with CMPA presenting with proctocolitis symptoms, and $US4,001.65 and $US4,828.90, respectively, in an infant with CMPA presenting with eczema symptoms. Clinical nutrition was the primary cost driver that accounted for 89-92% of 2-year total direct medical costs, while the highest total direct medical cost estimated from a payer perspective and societal perspective was noted for the management of an exclusively formula-fed infant presenting either with proctocolitis ($US3,743.85 and $US4,025.63, respectively) or eczema ($US6,854.10 and $US7,917.30, respectively). The first line use of amino acid based formula (AAF) was associated with total direct cost increment $US1,848.08 and $US3,444.52 in the case of proctocolitis and eczema, respectively. Certain limitations to this study should be considered. First, being focused only on direct costs, the lack of data on indirect costs or intangible costs of illness seems to be a major limitation of the present study, which likely results in a downward bias in the estimates of the economic cost of CMPA. Second, given the limited number of studies concerning epidemiology and practice patterns in CMPA in Turkey, use of expert clinical opinion of the panel members rather than real-life data on practice patterns that were used to identify direct medical costs might raise a concern with the validity and reliability of the data. Also, while this was a three-step study with six experts included in the first stage (developing local guidelines for diagnosis, treatment, and follow-up of infants with CMPA in Turkey) and 410 pediatricians included in the second stage (a cross-sectional questionnaire-survey to determine pediatricians' awareness and practice of CMPA in infants and children), only four members were included in the present Delphi panel, which allows a limited discussion. Third, lack of sensitivity analyses and exclusion of indirect costs and costs related to alterations in quality of life, behavior of infants, and general well-being of infants and their parents from the cost-analysis seems to be another limitation that may have caused under-estimation of relative cost-effectiveness of the formulae. Fourth, calculation of costs per local guidelines rather than real-life practice patterns is another limitation that, otherwise, would extend the knowledge achieved in the current study. Notwithstanding these limitations, the present expert panel provided practice patterns in the management of CMPA and an estimate of the associated costs, depending on the symptom profile at initial admission for the first time in Turkey. In conclusion, in providing the first health economic data on CMPA in Turkey, the findings revealed that CMPA imposes a substantial burden on the Turkish healthcare system from both a payer perspective and societal perspective, and indicated clinical nutrition as a primary cost driver. Management of infants presenting with eczema, exclusively formula-fed infants, and first line use of AAF were associated with higher estimates for 2-year direct medical costs.
Frankel, Arthur
2015-01-01
The decay of the Fourier spectral amplitudes of S waves over distances of 10–80 km near Charlevoix, Quebec, was determined using waveforms from seven earthquakes with MN 3.3–5.4. The S‐wave spectral amplitudes were corrected for site response and source amplitude by normalizing the coda‐wave spectrum at a fixed time after the origin time. The amplitude decay with distance was found to be less steep as the frequency increases from 1 to 14, contrary to what would be expected from anelastic and scattering attenuation for a point source with an isotropic radiation pattern. The decay at 14 Hz indicates that the geometrical spreading at distances less than 80 km is less steep than R−1.05. The steeper distance decay of the low‐frequency spectrum appears to be an artifact of the radiation pattern and rupture directivity, which affect the low‐frequency amplitude more than the high frequency. Synthetic seismograms were made for a horizontally layered crust for the Mw 4.6 Rivière du Loup earthquake and an Mw 3.3 event. The decay with distance of the 1 Hz spectral amplitudes of the synthetics is similar to that observed for the Rivière du Loup earthquake, indicating that radiation pattern and rupture directivity are important factors in determining the attenuation with distance at 1 Hz. For the Mw 3.3 earthquake, the distance decay of the 1 Hz spectral amplitudes was found to be sensitive to the focal mechanism. This study demonstrates that estimates of geometrical spreading made using 1 Hz amplitudes can be contaminated by radiation pattern and directivity effects and may not be applicable for constructing ground‐motion prediction equations for sources with other focal mechanisms and rupture behavior.
Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns
NASA Astrophysics Data System (ADS)
Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.
2015-11-01
Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.
Neural mechanisms of single corrective steps evoked in the standing rabbit
Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.
2017-01-01
Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990
Ichthyoplankton spatial pattern in the inner shelf off Bahía Blanca Estuary, SW Atlantic Ocean
NASA Astrophysics Data System (ADS)
Hoffmeyer, Mónica Susana; Clara, Menéndez María; Florencia, Biancalana; Mabel, Nizovoy Alicia; Ramón, Torres Eduardo
2009-09-01
This study focuses on the composition, abundance and distribution of ichthyoplankton in the inner shelf area off Bahía Blanca Estuary on the SW Atlantic Ocean during late spring. Eggs and larvae of Brevoortia aurea, Engraulis anchoita, Parona signata, Sciaenidae spp. - such as Cynoscion guatucupa and Micropogonias furnieri -, and Odontesthes argentinensis were found. Species richness was low probably as a result of season and shallow depths. Ichthyoplankton abundance reached values close to 10 000 per 10 m -3 (eggs) and 4000 per 10 m -3 (larvae) and displayed a spatial distribution pattern with maximum abundance values restricted to a band parallel to the coast. Differences between egg and larval patterns, probably derived from a different displacement and hydrodynamic behavior, were observed. Egg and larvae distribution patterns were found related with spawning areas and to directly depend on salinity and mesozooplankton. The larvae distribution pattern, in particular, was found to inversely depend on particulate organic carbon. In addition, the geographic location of egg and larvae maxima strongly coincided with a saline front reported for this area in springtime, thus suggesting a direct relationship with it.
NASA Astrophysics Data System (ADS)
Xu, Kui; Hockey, Mary Ann; Calderas, Eric; Guerrero, Douglas; Sweat, Daniel; Fiehler, Jeffrey
2017-03-01
High-χ block copolymers for directed self-assembly (DSA) patterning that do not need topcoat or solvent annealing have been developed. A variety of functionalities have been successfully added into the block copolymers, such as balanced surface energy between the polymer blocks, outstandingly high χ, tunable glass transition temperature (Tg), and selective crosslinking. Perpendicular orientation control, as desired for patterning, of the block copolymers can be simply achieved by thermal annealing due to the equal surface energy of the polymer blocks at the annealing temperatures, which allows avoiding solvent annealing or top-coat. The χ value can be tuned up to achieve L0 as low as 8-10 nm for lamellar-structured block copolymers and hole/pillar size as small as 5-6 nm for cylinder-structured block copolymers. The Tg of the block copolymers can be tuned to improve the kinetics of thermal annealing by enhancing the polymer chain mobility. Block-selective crosslinking facilitates the pattern transfer by mitigating pattern collapse during wet etching and improving oxygen plasma etching selectivity between the polymer blocks. This paper provides an introductory review of our high-χ block copolymer materials with various functionalities for achieving improved DSA performance.
Fixture for forming evaporative pattern (EPC) process patterns
Turner, Paul C.; Jordan, Ronald R.; Hansen, Jeffrey S.
1993-01-01
A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.
Parrish, R Ryley; Day, Jeremy J; Lubin, Farah D
2012-07-01
DNA methylation is an epigenetic modification that is essential for the development and mature function of the central nervous system. Due to the relevance of this modification to the transcriptional control of gene expression, it is often necessary to examine changes in DNA methylation patterns with both gene and single-nucleotide resolution. Here, we describe an in-depth basic protocol for direct bisulfite sequencing of DNA isolated from brain tissue, which will permit direct assessment of methylation status at individual genes as well as individual cytosine molecules/nucleotides within a genomic region. This method yields analysis of DNA methylation patterns that is robust, accurate, and reproducible, thereby allowing insights into the role of alterations in DNA methylation in brain tissue.
NASA Astrophysics Data System (ADS)
Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo
2013-03-01
In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.
Laser Direct Write Synthesis of Lead Halide Perovskites
Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.; ...
2016-09-05
Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less
Laser Direct Write Synthesis of Lead Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Stanley S.; Swartzentruber, Brian S.; Janish, Matthew T.
Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. In this study, we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We also demonstrate arbitrary pattern formation of crystalline CH 3NH 3PbBr 3 on a range of substrates and fabricate and characterize a microscale photodetectormore » using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.« less
Decoding negative affect personality trait from patterns of brain activation to threat stimuli.
Fernandes, Orlando; Portugal, Liana C L; Alves, Rita de Cássia S; Arruda-Sanchez, Tiago; Rao, Anil; Volchan, Eliane; Pereira, Mirtes; Oliveira, Letícia; Mourao-Miranda, Janaina
2017-01-15
Pattern recognition analysis (PRA) applied to functional magnetic resonance imaging (fMRI) has been used to decode cognitive processes and identify possible biomarkers for mental illness. In the present study, we investigated whether the positive affect (PA) or negative affect (NA) personality traits could be decoded from patterns of brain activation in response to a human threat using a healthy sample. fMRI data from 34 volunteers (15 women) were acquired during a simple motor task while the volunteers viewed a set of threat stimuli that were directed either toward them or away from them and matched neutral pictures. For each participant, contrast images from a General Linear Model (GLM) between the threat versus neutral stimuli defined the spatial patterns used as input to the regression model. We applied a multiple kernel learning (MKL) regression combining information from different brain regions hierarchically in a whole brain model to decode the NA and PA from patterns of brain activation in response to threat stimuli. The MKL model was able to decode NA but not PA from the contrast images between threat stimuli directed away versus neutral with a significance above chance. The correlation and the mean squared error (MSE) between predicted and actual NA were 0.52 (p-value=0.01) and 24.43 (p-value=0.01), respectively. The MKL pattern regression model identified a network with 37 regions that contributed to the predictions. Some of the regions were related to perception (e.g., occipital and temporal regions) while others were related to emotional evaluation (e.g., caudate and prefrontal regions). These results suggest that there was an interaction between the individuals' NA and the brain response to the threat stimuli directed away, which enabled the MKL model to decode NA from the brain patterns. To our knowledge, this is the first evidence that PRA can be used to decode a personality trait from patterns of brain activation during emotional contexts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hashemi, Hassan; Asharlous, Amir; Yekta, Abbasali; Ostadimoghaddam, Hadi; Mohebi, Masumeh; Aghamirsalim, Mohamadreza; Khabazkhoob, Mehdi
2018-04-03
To evaluate the relationship patterns between astigmatism axes of fellow eyes (rule similarity and symmetry) and to determine the prevalence of each pattern in the studied population. This population-based study was conducted in 2015 in Iran. All participants had tests for visual acuity, objective refraction, subjective refraction (if cooperative), and assessment of eye health at the slit-lamp. Axis symmetry was based on two different patterns: direct (equal axes) and mirror (mirror image symmetry) or enantiomorphism. Bilateral astigmatism was classified as isorule if fellow eyes had the same orientation (e.g. both eyes were with-the-rule) and as anisorule if otherwise. Of the total cases of bilateral astigmatism, 80% were isorule, and in the studied population, the prevalence of isorule and anisorule astigmatism was 14.89% and 3.53%, respectively. The prevalence of isorule increased with age (p<0.001). The prevalence of both isorule and anisorule increased at higher degrees of spherical ametropia (p<0.001). Median inter-ocular axis difference was 10° in mirror symmetry and 20° in direct symmetry with no significant difference between two genders (p>0.288). Both symmetry patterns reduced with age (p<0.001). Among cases of bilateral astigmatism, 15.5% and 19.8% had exact direct and mirror symmetry, respectively. Bilateral astigmatism is mainly isorule in the population and anisorule astigmatism is rare. The enantiomorphism is the most common pattern in the population of bilateral astigmatism. Copyright © 2018 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
CDUCT-LaRC Status - Shear Layer Refraction and Noise Radiation
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Farassat, F.
2006-01-01
A proposed boundary condition accounting for shear layer effects within the Ffowcs Williams-Hawkings radiation module of the CDUCT-LaRC code is investigated. The development and numerical justification of the boundary condition formulation are reviewed. An initial assessment of the effectiveness of the shear layer correction is conducted through comparison with experimental data. Preliminary results indicate that the correction provides physically meaningful modifications of the baseline predicted directivity patterns. Trends of peak directivity steepening and shifting that appeared in predicted patterns were found to follow similar structures in measured data, particularly at higher radiation angles.
Asymmetric vortex pair in the wake of a circular cylinder
NASA Astrophysics Data System (ADS)
Iosilevskii, G.; Seginer, A.
1994-10-01
Stationary configurations of two asymmetric point vortices in the wake of an infinite circular cylinder, spinning or not about its axis, are analytically investigated using an ideal fluid approximation. Four different vortex configurations (patterns) in the wake of a spinning cylinder are found in the case when vortex asymmetry is weak; each configuration is associated with a certain direction of the Magnus force. The qualitative relation between a pattern and a direction of the Magnus force is in agreement with experimental data. Also obtained are asymmetrical vortex configurations in the wake of a nonspinning cylinder.
Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R
2013-05-31
We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.
Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J
2013-01-01
A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.
Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria
NASA Astrophysics Data System (ADS)
Kitsunezaki, S.
In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.
Multi-Level Sequential Pattern Mining Based on Prime Encoding
NASA Astrophysics Data System (ADS)
Lianglei, Sun; Yun, Li; Jiang, Yin
Encoding is not only to express the hierarchical relationship, but also to facilitate the identification of the relationship between different levels, which will directly affect the efficiency of the algorithm in the area of mining the multi-level sequential pattern. In this paper, we prove that one step of division operation can decide the parent-child relationship between different levels by using prime encoding and present PMSM algorithm and CROSS-PMSM algorithm which are based on prime encoding for mining multi-level sequential pattern and cross-level sequential pattern respectively. Experimental results show that the algorithm can effectively extract multi-level and cross-level sequential pattern from the sequence database.
Large area micro-/nano-structuring using direct laser interference patterning
NASA Astrophysics Data System (ADS)
Lasagni, Andrés. F.; Kunze, Tim; Bieda, Matthias; Günther, Denise; Gärtner, Anne; Lang, Valentin; Rank, Andreas; Roch, Teja
2016-03-01
Smart surfaces are a source of innovation in the 21st Century. Potential applications can be found in a wide range of fields where improved optical, mechanical or biological properties can enhance the functions of products. In the last years, a method called Direct Laser Interference Patterning (DLIP) has demonstrated to be capable of fabricating a wide range of periodic surface patterns even with resolution at the nanometer and sub-micrometer scales. This article describes recent advances of the DLIP method to process 2D and 3D parts. Firstly, the possibility to fabricate periodic arrays on metallic substrates with sub-micrometer resolution is shown. After that, different concepts to process three dimensional parts are shown, including the use of Cartesian translational stages as well as an industrial robot arm. Finally, some application examples are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strons, Philip; Bailey, James L.
Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less
Microinterferometer transducer
Corey, III, Harry S.
1979-01-01
An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.
Aberrant Pattern of Scanning in Prosopagnosia Reflects Impaired Face Processing
ERIC Educational Resources Information Center
Stephan, Blossom Christa Maree; Caine, Diana
2009-01-01
Visual scanpath recording was used to investigate the information processing strategies used by a prosopagnosic patient, SC, when viewing faces. Compared to controls, SC showed an aberrant pattern of scanning, directing attention away from the internal configuration of facial features (eyes, nose) towards peripheral regions (hair, forehead) of the…
ERIC Educational Resources Information Center
Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.
2014-01-01
Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…
Trumper, David L.; Kim, Won-jong; Williams, Mark E.
1997-05-20
Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.
Patterns and Correlates of Research Productivity in Population Scientists.
ERIC Educational Resources Information Center
Richards, James M., Jr.
Although a concern with population issues has gone out of fashion, the problems underlying that concern have not disappeared. Solving these problems would be facilitated by increased knowledge produced by scientists working directly on population issues. A study was conducted to explore patterns and correlates of research productivity of members…
EVALUATION OF GROUNDWATER FLOW PATTERNS AROUND A DUAL-SCREENED GROUNDWATER CIRCULATION WELL
Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective...
ERIC Educational Resources Information Center
Mellard, Daryl; Scanlon, David
2006-01-01
A strategic instruction model introduced into adult basic education classrooms yields insight into the feasibility of using direct and explicit instruction with adults with learning disabilities or other cognitive barriers to learning. Ecobehavioral assessment was used to describe and compare instructor-learner interaction patterns during learning…
Prolegomenon to the Study of "Brother" as a Male Family Role.
ERIC Educational Resources Information Center
Arkin, William
1979-01-01
Directs the reader to sibling gender relationships. Patterns of intimacy in brother-brother and brother-sister relationships are identified. Masculine gender role patterns were expressed more frequently than classic sibling rivalry. Sisters, not mothers, were discovered to be the primary socializing agent for some of men's intimate relationships…
Two dimensional Fourier transform methods for fringe pattern analysis
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Bhat, G.
An overview of the use of FFTs for fringe pattern analysis is presented, with emphasis on fringe patterns containing displacement information. The techniques are illustrated via analysis of the displacement and strain distributions in the direction perpendicular to the loading, in a disk under diametral compression. The experimental strain distribution is compared to the theoretical, and the agreement is found to be excellent in regions where the elasticity solution models well the actual problem.
Pattern recognition methods and air pollution source identification. [based on wind direction
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.
1978-01-01
Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.
3-D laser patterning process utilizing horizontal and vertical patterning
Malba, Vincent; Bernhardt, Anthony F.
2000-01-01
A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.
Consistency functional map propagation for repetitive patterns
NASA Astrophysics Data System (ADS)
Wang, Hao
2017-09-01
Repetitive patterns appear frequently in both man-made and natural environments. Automatically and robustly detecting such patterns from an image is a challenging problem. We study repetitive pattern alignment by embedding segmentation cue with a functional map model. However, this model cannot tackle the repetitive patterns directly due to the large photometric and geometric variations. Thus, a consistency functional map propagation (CFMP) algorithm that extends the functional map with dynamic propagation is proposed to address this issue. This propagation model is acquired in two steps. The first one aligns the patterns from a local region, transferring segmentation functions among patterns. It can be cast as an L norm optimization problem. The latter step updates the template segmentation for the next round of pattern discovery by merging the transferred segmentation functions. Extensive experiments and comparative analyses have demonstrated an encouraging performance of the proposed algorithm in detection and segmentation of repetitive patterns.
Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data.
Zhang, Junpeng; Le, Thuc Duy; Liu, Lin; Liu, Bing; He, Jianfeng; Goodall, Gregory J; Li, Jiuyong
2014-12-01
Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important problem that interests many biologists and medical researchers. A number of computational methods have been proposed to infer miRNA-mRNA regulatory relationships, and are mostly based on the statistical associations between miRNAs and mRNAs discovered in observational data. The miRNA-mRNA regulatory relationships identified by these methods can be both direct and indirect regulations. However, differentiating direct regulatory relationships from indirect ones is important for biologists in experimental designs. In this paper, we present a causal discovery based framework (called DirectTarget) to infer direct miRNA-mRNA causal regulatory relationships in heterogeneous data, including expression profiles of miRNAs and mRNAs, and miRNA target information. DirectTarget is applied to the Epithelial to Mesenchymal Transition (EMT) datasets. The validation by experimentally confirmed target databases suggests that the proposed method can effectively identify direct miRNA-mRNA regulatory relationships. To explore the upstream regulators of miRNA regulation, we further identify the causal feedforward patterns (CFFPs) of TF-miRNA-mRNA to provide insights into the miRNA regulation in EMT. DirectTarget has the potential to be applied to other datasets to elucidate the direct miRNA-mRNA causal regulatory relationships and to explore the regulatory patterns. Copyright © 2014 Elsevier Inc. All rights reserved.
Doyle, T.W.; Krauss, K.W.; Wells, C.J.
2009-01-01
The Everglades ecosystem contains the largest contiguous tract of mangrove forest outside the tropics that were also coincidentally intersected by a major Category 5 hurricane. Airborne videography was flown to capture the landscape pattern and process of forest damage in relation to storm trajectory and circulation. Two aerial video transects, representing different topographic positions, were used to quantify forest damage from video frame analysis in relation to prevailing wind force, treefall direction, and forest height. A hurricane simulation model was applied to reconstruct wind fields corresponding to the ground location of each video frame and to correlate observed treefall and destruction patterns with wind speed and direction. Mangrove forests within the storm's eyepath and in the right-side (forewind) quadrants suffered whole or partial blowdowns, while left-side (backwind) sites south of the eyewall zone incurred moderate canopy reduction and defoliation. Sites along the coastal transect sustained substantially more storm damage than sites along the inland transect which may be attributed to differences in stand exposure and/or stature. Observed treefall directions were shown to be non-random and associated with hurricane trajectory and simulated forewind azimuths. Wide-area sampling using airborne videography provided an efficient adjunct to limited ground observations and improved our spatial understanding of how hurricanes imprint landscape-scale patterns of disturbance. ?? 2009 The Society of Wetland Scientists.
Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior
NASA Astrophysics Data System (ADS)
Meco, Edi; Lampe, Kyle J.
2018-02-01
Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.
Wang, Jin; Zhang, Chen; Wang, Yuanyuan
2017-05-30
In photoacoustic tomography (PAT), total variation (TV) based iteration algorithm is reported to have a good performance in PAT image reconstruction. However, classical TV based algorithm fails to preserve the edges and texture details of the image because it is not sensitive to the direction of the image. Therefore, it is of great significance to develop a new PAT reconstruction algorithm to effectively solve the drawback of TV. In this paper, a directional total variation with adaptive directivity (DDTV) model-based PAT image reconstruction algorithm, which weightedly sums the image gradients based on the spatially varying directivity pattern of the image is proposed to overcome the shortcomings of TV. The orientation field of the image is adaptively estimated through a gradient-based approach. The image gradients are weighted at every pixel based on both its anisotropic direction and another parameter, which evaluates the estimated orientation field reliability. An efficient algorithm is derived to solve the iteration problem associated with DDTV and possessing directivity of the image adaptively updated for each iteration step. Several texture images with various directivity patterns are chosen as the phantoms for the numerical simulations. The 180-, 90- and 30-view circular scans are conducted. Results obtained show that the DDTV-based PAT reconstructed algorithm outperforms the filtered back-projection method (FBP) and TV algorithms in the quality of reconstructed images with the peak signal-to-noise rations (PSNR) exceeding those of TV and FBP by about 10 and 18 dB, respectively, for all cases. The Shepp-Logan phantom is studied with further discussion of multimode scanning, convergence speed, robustness and universality aspects. In-vitro experiments are performed for both the sparse-view circular scanning and linear scanning. The results further prove the effectiveness of the DDTV, which shows better results than that of the TV with sharper image edges and clearer texture details. Both numerical simulation and in vitro experiments confirm that the DDTV provides a significant quality improvement of PAT reconstructed images for various directivity patterns.
Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix
2016-01-01
Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the neural populations at the seed-point, suggestive of greater directional coupling from the seed out to the site electrodes. PMID:26747745
Infant feeding patterns and eczema in children in the first 6 years of life.
Soto-Ramírez, N; Kar, S; Zhang, H; Karmaus, W
2017-10-01
Modes of infant feeding such as direct and indirect breastfeeding, and formula feeding, and their combinations may play a role in child health. The aim was to investigate which feeding patterns in the first 6 months pose risks of eczema/skin allergy in children up to 6 years compared to direct breastfeeding for at least 3 months. The Infant Feeding Practices Study II in the United States and its 6-year follow-up provided data on feeding modes in infancy and doctor's diagnosed eczema/skin allergy in the first 6 years of life (1387 infants), based on parental reports. Different feeding patterns were identified. Log-linear models were used to estimate prevalence ratios (PRs) of feeding patterns for doctor's diagnosed eczema/skin allergy in the first 6 years of life, adjusting for confounders. Compared to "direct breastfeeding for at least 3 months" (DBF3m), the combination of "direct feeding at the breast (DBF), pumping and feeding breast milk (BM), and formula (FF) in the first months" (DBF/BM/FF) showed a statistically significant higher risk of eczema/skin allergy in the first 6 years of life (PR = 1.46), adjusting for confounders. DBF combined with BM for the first 3 months followed by mixed feeding also had an increased risk (PR = 1.26), although not statistically significant. Formula feeding introduced since birth had no effect on eczema. Among the confounders, paternal eczema and race/ethnicity (Hispanic vs White) were associated with a higher risk of eczema/skin allergy. Mixed infant feeding may carry a higher risk of eczema/skin allergy compared to direct feeding at the breast. The recent epidemic of pumping and feeding in the United States and the use of mixed infant feeding modes requires additional studies to provide appropriate and renewed assessments of the risks of feeding modes for the future development of allergies. © 2017 John Wiley & Sons Ltd.
Porter, D; Michael, S; Kirkwood, C
2010-09-01
A pattern of postural deformity was observed in a previous study that included an association between direction of spinal curvature and direction of windsweeping with more windswept deformities occurring to the right and lateral spinal curvatures occurring convex to the left. The direction of this pattern was found to be associated with preferred lying posture in early life. The aim of this study was to test the association between foetal position and both the preferred lying posture after birth, and the direction of subsequent postural deformity in non-ambulant children with cerebral palsy (CP). A retrospective cohort study was carried out involving 60 participants at level five on the gross motor function classification for CP. Foetal position during the last month of pregnancy was taken from antenatal records and parents were interviewed to identify preferred lying posture in the first year of life. At the time of the physical assessment ages ranged from 1 year and 1 month to 19 years with a median age of 13 years and 1 month. Foetal presentation was found to be associated with the preferred lying posture with participants carried in a left occipito-anterior/lateral position more likely to adopt a supine head right lying posture, and vice versa. An association was also observed between the foetal position and asymmetrical postural deformity occurring later in life with participants carried in a left occipito-anterior/lateral presentation more likely to have a convex left spinal curve, a lower left pelvic obliquity, and a windswept hip pattern to the right. Clinicians should be aware of the association between foetal presentation, asymmetrical lying posture, and the direction of subsequent postural deformity for severely disabled children. A hypothesis is described that might help to explain these findings.
2017-01-01
Background: Observational studies have shown that higher body mass index (BMI) is associated with increased risk of developing disordered eating patterns. However, the causal direction of this relation remains ambiguous. Objective: We used Mendelian randomization (MR) to infer the direction of causality between BMI and disordered eating in childhood, adolescence, and adulthood. Design: MR analyses were conducted with a genetic score as an instrumental variable for BMI to assess the causal effect of BMI at age 7 y on disordered eating patterns at age 13 y with the use of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 4473). To examine causality in the reverse direction, MR analyses were used to estimate the effect of the same disordered eating patterns at age 13 y on BMI at age 17 y via a split-sample approach in the ALSPAC. We also investigated the causal direction of the association between BMI and eating disorders (EDs) in adults via a two-sample MR approach and publically available genome-wide association study data. Results: MR results indicated that higher BMI at age 7 y likely causes higher levels of binge eating and overeating, weight and shape concerns, and weight-control behavior patterns in both males and females and food restriction in males at age 13 y. Furthermore, results suggested that higher levels of binge eating and overeating in males at age 13 y likely cause higher BMI at age 17 y. We showed no evidence of causality between BMI and EDs in adulthood in either direction. Conclusions: This study provides evidence to suggest a causal effect of higher BMI in childhood and increased risk of disordered eating at age 13 y. Furthermore, higher levels of binge eating and overeating may cause higher BMI in later life. These results encourage an exploration of the ways to break the causal chain between these complex phenotypes, which could inform and prevent disordered eating problems in adolescence. PMID:28747331
Reed, Zoe E; Micali, Nadia; Bulik, Cynthia M; Davey Smith, George; Wade, Kaitlin H
2017-09-01
Background: Observational studies have shown that higher body mass index (BMI) is associated with increased risk of developing disordered eating patterns. However, the causal direction of this relation remains ambiguous. Objective: We used Mendelian randomization (MR) to infer the direction of causality between BMI and disordered eating in childhood, adolescence, and adulthood. Design: MR analyses were conducted with a genetic score as an instrumental variable for BMI to assess the causal effect of BMI at age 7 y on disordered eating patterns at age 13 y with the use of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) ( n = 4473). To examine causality in the reverse direction, MR analyses were used to estimate the effect of the same disordered eating patterns at age 13 y on BMI at age 17 y via a split-sample approach in the ALSPAC. We also investigated the causal direction of the association between BMI and eating disorders (EDs) in adults via a two-sample MR approach and publically available genome-wide association study data. Results: MR results indicated that higher BMI at age 7 y likely causes higher levels of binge eating and overeating, weight and shape concerns, and weight-control behavior patterns in both males and females and food restriction in males at age 13 y. Furthermore, results suggested that higher levels of binge eating and overeating in males at age 13 y likely cause higher BMI at age 17 y. We showed no evidence of causality between BMI and EDs in adulthood in either direction. Conclusions: This study provides evidence to suggest a causal effect of higher BMI in childhood and increased risk of disordered eating at age 13 y. Furthermore, higher levels of binge eating and overeating may cause higher BMI in later life. These results encourage an exploration of the ways to break the causal chain between these complex phenotypes, which could inform and prevent disordered eating problems in adolescence.
Discovering discovery patterns with Predication-based Semantic Indexing.
Cohen, Trevor; Widdows, Dominic; Schvaneveldt, Roger W; Davies, Peter; Rindflesch, Thomas C
2012-12-01
In this paper we utilize methods of hyperdimensional computing to mediate the identification of therapeutically useful connections for the purpose of literature-based discovery. Our approach, named Predication-based Semantic Indexing, is utilized to identify empirically sequences of relationships known as "discovery patterns", such as "drug x INHIBITS substance y, substance y CAUSES disease z" that link pharmaceutical substances to diseases they are known to treat. These sequences are derived from semantic predications extracted from the biomedical literature by the SemRep system, and subsequently utilized to direct the search for known treatments for a held out set of diseases. Rapid and efficient inference is accomplished through the application of geometric operators in PSI space, allowing for both the derivation of discovery patterns from a large set of known TREATS relationships, and the application of these discovered patterns to constrain search for therapeutic relationships at scale. Our results include the rediscovery of discovery patterns that have been constructed manually by other authors in previous research, as well as the discovery of a set of previously unrecognized patterns. The application of these patterns to direct search through PSI space results in better recovery of therapeutic relationships than is accomplished with models based on distributional statistics alone. These results demonstrate the utility of efficient approximate inference in geometric space as a means to identify therapeutic relationships, suggesting a role of these methods in drug repurposing efforts. In addition, the results provide strong support for the utility of the discovery pattern approach pioneered by Hristovski and his colleagues. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hegedüs, Ramón; Barta, András; Bernáth, Balázs; Benno Meyer-Rochow, Victor; Horváth, Gábor
2007-08-01
Radiance, color, and polarization of the light in forests combine to create complex optical patterns. Earlier sporadic polarimetric studies in forests were limited by the narrow fields of view of the polarimeters used in such studies. Since polarization patterns in the entire upper hemisphere of the visual environment of forests could be important for forest-inhabiting animals that make use of linearly polarized light for orientation, we measured 180° field-of-view polarization distributions in Finnish forests. From a hot air balloon we also measured the polarization patterns of Hungarian grasslands lit by the rising sun. We found that the pattern of the angle of polarization α of sunlit grasslands and sunlit tree canopies was qualitatively the same as that of the sky. We show here that contrary to an earlier assumption, the α-pattern characteristic of the sky always remains visible underneath overhead vegetation, independently of the solar elevation and the sky conditions (clear or partly cloudy with visible sun's disc), provided the foliage is sunlit and not only when large patches of the clear sky are visible through the vegetation. Since the mirror symmetry axis of the α-pattern of the sunlit foliage is the solar-antisolar meridian, the azimuth direction of the sun, occluded by vegetation, can be assessed in forests from this polarization pattern. Possible consequences of this robust polarization feature of the optical environment in forests are briefly discussed with regard to polarization-based animal navigation.
Color pattern evolution in Vanessa butterflies (Nymphalidae: Nymphalini): non-eyespot characters.
Abbasi, Roohollah; Marcus, Jeffrey M
2015-01-01
A phylogenetic approach was used to study color pattern evolution in Vanessa butterflies. Twenty-four color pattern elements from the Nymphalid ground plan were identified on the dorsal and ventral surfaces of the fore- and hind wings. Eyespot characters were excluded and will be examined elsewhere. The evolution of each character was traced over a Bayesian phylogeny of Vanessa reconstructed from 7750 DNA base pairs from 10 genes. Generally, the correspondence between character states on the same surface of the two wings is stronger on the ventral side compared to the dorsal side. The evolution of character states on both sides of a wing correspond with each other in most extant species, but the correspondence between dorsal and ventral character states is much stronger in the forewing than in the hindwing. The dorsal hindwing of many species of Vanessa is covered with an extended Basal Symmetry System and the Discalis I pattern element is highly variable between species, making this wing surface dissimilar to the other wing surfaces. The Basal Symmetry System and Discalis I may contribute to behavioral thermoregulation in Vanessa. Overall, interspecific directional character state evolution of non-eyespot color patterns is relatively rare in Vanessa, with a majority of color pattern elements showing non-variable, non-directional, or ambiguous character state evolution. The ease with which the development of color patterns can be modified, including character state reversals, has likely made important contributions to the production of color pattern diversity in Vanessa and other butterfly groups. © 2014 Wiley Periodicals, Inc.
Considerations for fine hole patterning for the 7nm node
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei
2016-03-01
One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.
Structure analysis of polymerized phospholipid bilayer by TED and direct methods.
Stevens, M; Longo, M; Dorset, D L; Spence, J
2002-04-01
This paper describes the use of elastic energy filtered transmission electron diffraction combined with Direct Methods in order to study the structure of thin Langmuir-Blodgett films of a radiation sensitive diacetylene polymer (DC8.9PC). We obtain a potential map for one projection by direct phasing of zone axis patterns, and discuss experimental problems and possible solutions.
Redundancy reduction explains the expansion of visual direction space around the cardinal axes.
Perrone, John A; Liston, Dorion B
2015-06-01
Motion direction discrimination in humans is worse for oblique directions than for the cardinal directions (the oblique effect). For some unknown reason, the human visual system makes systematic errors in the estimation of particular motion directions; a direction displacement near a cardinal axis appears larger than it really is whereas the same displacement near an oblique axis appears to be smaller. Although the perceptual effects are robust and are clearly measurable in smooth pursuit eye movements, all attempts to identify the neural underpinnings for the oblique effect have failed. Here we show that a model of image velocity estimation based on the known properties of neurons in primary visual cortex (V1) and the middle temporal (MT) visual area of the primate brain produces the oblique effect. We also provide an explanation for the unusual asymmetric patterns of inhibition that have been found surrounding MT neurons. These patterns are consistent with a mechanism within the visual system that prevents redundant velocity signals from being passed onto the next motion-integration stage, (dorsal Medial superior temporal, MSTd). We show that model redundancy-reduction mechanisms within the MT-MSTd pathway produce the oblique effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
The spatial patterns of directional phenotypic selection.
Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M
2013-11-01
Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.
Footprints reveal direct evidence of group behavior and locomotion in Homo erectus
Hatala, Kevin G.; Roach, Neil T.; Ostrofsky, Kelly R.; Wunderlich, Roshna E.; Dingwall, Heather L.; Villmoare, Brian A.; Green, David J.; Harris, John W. K.; Braun, David R.; Richmond, Brian G.
2016-01-01
Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790
Using a signal cancellation technique to assess adaptive directivity of hearing aids.
Wu, Yu-Hsiang; Bentler, Ruth A
2007-07-01
The directivity of an adaptive directional microphone hearing aid (DMHA) cannot be assessed by the method that calls for presenting a "probe" signal from a single loudspeaker to the DMHA that moves to different angles. This method is invalid because the probe signal itself changes the polar pattern. This paper proposes a method for assessing the adaptive DMHA using a "jammer" signal, presented from a second loudspeaker rotating with the DMHA, that simulates a noise source and freezes the polar pattern. Measurement at each angle is obtained by two sequential recordings from the DMHA, one using an input of a probe and a jammer, and the other with an input of the same probe and a phase-inverted jammer. After canceling out the jammer, the remaining response to the probe signal can be used to assess the directivity. In this paper, the new method is evaluated by comparing responses from five adaptive DMHAs to different jammer intensities and locations. This method was shown to be an accurate and reliable way to assess the directivity of the adaptive DMHA in a high-intensity-jammer condition.
Collevatti, R G; Schoereder, J H; Campos, L A
2000-02-01
We studied flight distance and directionality of bee pollinators on the tropical shrub weed Triumfetta semitriloba Jacq. (Tiliaceae), addressing (1) within- and between-plant movement pattern; (2) distances flown between plants; (3) flight directionality. Flowering plants were distributed in well-delimited clumps, in each of two pasture areas (A1 and A2) and one area of forest gap (A3), in Viçosa, southeastern Brazil. Five solitary bee species, Augochlorella michaelis, Augochloropsis cupreola, Pseudocentron paulistana, Ceratinula sp., Melissodes sexcincta, and two social bee, Plebeia droryana, P. cf. nigriceps were observed. All species moved mainly to the nearest flower on the same individual plant and, in between-plant movements, to the first or second nearest neighbor. All species moved non-randomly, presenting a flight directionality in departures (maintenance of flight direction), but with a high frequency of turn angles. It is suggested that this foraging behavior pattern occurred because of the resource quantity and quality (pollen or nectar), and environmental characteristics such as flower density and resource distribution.
Wei, Chong; Au, Whitlow W L; Song, Zhongchang; Zhang, Yu
2016-02-01
The relative role of the various structures in the head of the baiji (Lipotes vexillifer) is examined. A finite element approach was applied to numerically simulate the acoustic propagation through a dolphin's head to examine the relative role of the skull, air sacs, and melon in the formation of the biosonar beam in the vertical plane. The beam pattern obtained with the whole head in place is compared with the beam pattern when the air sac is removed and the other structures (skull and melon) are in place, with only the skull removed, and finally with only the melon removed. The beam pattern with the air sacs and skull intact and the melon removed closely resembled the beam pattern for the complete head, suggesting that the melon has a minor role in the formation of the beam. The beam pattern for the other two cases had very little resemblance to the beam pattern for the whole head. The air sacs seem to have a role of directing propagation of the signal toward the front and the skull prevents the sound propagating below the rostrum. The beam patterns along with a correlation analysis showed that the melon had only a slight influence on the shape and direction of the beam. The resultant beam exiting the head of the dolphin is the result of complex reflection processes within the head of the animal.
An intracellular analysis of the visual responses of neurones in cat visual cortex.
Douglas, R J; Martin, K A; Whitteridge, D
1991-01-01
1. Extracellular and intracellular recordings were made from neurones in the visual cortex of the cat in order to compare the subthreshold membrane potentials, reflecting the input to the neurone, with the output from the neurone seen as action potentials. 2. Moving bars and edges, generated under computer control, were used to stimulate the neurones. The membrane potential was digitized and averaged for a number of trials after stripping the action potentials. Comparison of extracellular and intracellular discharge patterns indicated that the intracellular impalement did not alter the neurones' properties. Input resistance of the neurone altered little during stable intracellular recordings (30 min-2 h 50 min). 3. Intracellular recordings showed two distinct patterns of membrane potential changes during optimal visual stimulation. The patterns corresponded closely to the division of S-type (simple) and C-type (complex) receptive fields. Simple cells had a complex pattern of membrane potential fluctuations, involving depolarizations alternating with hyperpolarizations. Complex cells had a simple single sustained plateau of depolarization that was often followed but not preceded by a hyperpolarization. In both simple and complex cells the depolarizations led to action potential discharges. The hyperpolarizations were associated with inhibition of action potential discharge. 4. Stimulating simple cells with non-optimal directions of motion produced little or no hyperpolarization of the membrane in most cases, despite a lack of action potential output. Directional complex cells always produced a single plateau of depolarization leading to action potential discharge in both the optimal and non-optimal directions of motion. The directionality could not be predicted on the basis of the position of the hyperpolarizing inhibitory potentials found in the optimal direction. 5. Stimulation of simple cells with non-optimal orientations occasionally produced slight hyperpolarizations and inhibition of action potential discharge. Complex cells, which had broader orientation tuning than simple cells, could show marked hyperpolarization for non-optimal orientations, but this was not generally the case. 6. The data do not support models of directionality and orientation that rely solely on strong inhibitory mechanisms to produce stimulus selectivity. PMID:1804981
Multicomponent patterned ultrathin carbon nanomembranes by laser ablation
NASA Astrophysics Data System (ADS)
Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel
2018-01-01
Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.
A model of growth restraints to explain the development and evolution of tooth shapes in mammals.
Osborn, Jeffrey W
2008-12-07
The problem investigated here is control of the development of tooth shape. Cells at the growing soft tissue interface between the ectoderm and mesoderm in a tooth anlage are observed to buckle and fold into a template for the shape of the tooth crown. The final shape is created by enamel secreted onto the folds. The pattern in which the folds develop is generally explained as a response to the pattern in which genes are locally expressed at the interface. This congruence leaves the problem of control unanswered because it does not explain how either pattern is controlled. Obviously, cells are subject to Newton's laws of motion so that mechanical forces and constraints must ultimately cause the movements of cells during tooth morphogenesis. A computer model is used to test the hypothesis that directional resistances to growth of the epithelial part of the interface could account for the shape into which the interface folds. The model starts with a single epithelial cell whose growth is constrained by 4 constant directional resistances (anterior, posterior, medial and lateral). The constraints force the growing epithelium to buckle and fold. By entering into the model different values for these constraints the modeled epithelium is induced to buckle and fold into the different shapes associated with the evolution of a human upper molar from that of a reptilian ancestor. The patterns and sizes of cusps and the sequences in which they develop are all correctly reproduced. The model predicts the changes in the 4 directional constraints necessary to develop and evolve from one tooth shape into another. I conclude more generally expressed genes that control directional resistances to growth, not locally expressed genes, may provide the information for the shape into which a tooth develops.
Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao
This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less
Porter, David; Michael, Shona; Kirkwood, Craig
2007-12-01
To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/ dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Cross-sectional observational study. Posture management services in three centres in the UK. Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. A total of 747 participants were included in the study, aged 6-80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P<0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P=0.007), hips subluxed on the left (P=0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P=0.03) were observed. The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed.
Michael, Shona; Kirkwood, Craig
2008-01-01
Objective: To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Design: Cross-sectional observational study. Setting: Posture management services in three centres in the UK. Subjects: Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Main measures: Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. Results: A total of 747 participants were included in the study, aged 6–80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P < 0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P = 0.007), hips subluxed on the left (P = 0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P = 0.03) were observed. Conclusions: The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed. PMID:18042604
Laser-based direct-write techniques for cell printing
Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B
2016-01-01
Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088
Effect of a Dielectric Overlay on a Linearly Tapered Slot Antenna Excited by a Coplanar Waveguide
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Lee, Richard Q.; Perl, Thomas D.; Silvestro, John
1993-01-01
The effect of a dielectric overlay on a linearly tapered slot antenna (LTSA) is studied. The LTSA under study has very wide bandwidth and excellent radiation patterns. A dielectric overlay improves the patterns and directivity of the antenna by increasing the electrical length and effective aperture of the antenna. A dielectric overlay can also be used to reduce the physical length of the antenna without compromising the pattern quality.
Two-Dimensional Animal-Like Fractals in Thin Films
NASA Astrophysics Data System (ADS)
Gao, Hong-jun; Xue, Zeng-quan; Wu, Quan-de; Pang, Shi-jin
1996-02-01
We present a few unique animal-like fractal patterns in ionized-cluster-beam deposited fullerene-tetracyanoquinodimethane thin films. The fractal patterns consisting of animal-like aggregates such as "fishes" and "quasi-seahorses" have been characterized by transmission electron microscopy. The results indicate that the small aggregates of the animal-like body are composed of many single crystals whose crystalline directions are generally different. The formation of the fractal patterns can be attributed to the cluster-diffusion-limited aggregation.
Clustering Of Left Ventricular Wall Motion Patterns
NASA Astrophysics Data System (ADS)
Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.
1982-11-01
A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.
A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems
Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing
2012-01-01
An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849
Self-Directed Teacher Learning in Collaborative Contexts
ERIC Educational Resources Information Center
Slavit, David; Roth McDuffie, Amy
2013-01-01
Two related case studies of secondary mathematics teachers examine the roles and conditions helpful in initiating, directing, and/or supporting teachers' own professional development. Using multiple data sources from school-based and professional settings, we applied analytic induction to identify patterns of similarities and differences in…
Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation.
Kuc, Roman
2010-11-01
A protruding noseleaf and concave pinna structures suggest that some bats may use these to enhance their echolocation capabilities. This paper considers two possible mechanisms that each exploit the combination of direct and delayed acoustic paths to achieve more complex emission or sensitivity echolocation patterns. The first is an emission mechanism, in which the protruding noseleaf vibrates to emit sound in both the forward and backward directions, and pinna structures reflect the backward emission to enhance the forward beam. The second is a reception mechanism, which has a direct echo path to the ear canal and a delayed path involving pinna structures reflecting onto the noseleaf and then into the ear canal. A model using Davis' Round-eared Bat illustrates that such direct and delayed acoustic paths provide target elevation cues. The model demonstrates the delayed pinna component can increase the on-axis emission strength, narrow the beam width, and sculpt frequency-dependent beam patterns useful for echolocation.
NASA Astrophysics Data System (ADS)
Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu
2017-09-01
A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.
Noise radiation directivity from a wind-tunnel inlet with inlet vanes and duct wall linings
NASA Technical Reports Server (NTRS)
Soderman, P. T.; Phillips, J. D.
1986-01-01
The acoustic radiation patterns from a 1/15th scale model of the Ames 80- by 120-Ft Wind Tunnel test section and inlet have been measured with a noise source installed in the test section. Data were acquired without airflow in the duct. Sound-absorbent inlet vanes oriented parallel to each other, or splayed with a variable incidence relative to the duct long axis, were evaluated along with duct wall linings. Results show that splayed vans tend to spread the sound to greater angles than those measured with the open inlet. Parallel vanes narrowed the high-frequency radiation pattern. Duct wall linings had a strong effect on acoustic directivity by attenuating wall reflections. Vane insertion loss was measured. Directivity results are compared with existing data from square ducts. Two prediction methods for duct radiation directivity are described: one is an empirical method based on the test data, and the other is a analytical method based on ray acoustics.
Ha, S; Matej, S; Ispiryan, M; Mueller, K
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M
1995-05-05
A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.
NASA Astrophysics Data System (ADS)
Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
Klees, Marcel; Hombrecher, Katja; Gladtke, Dieter
2017-12-15
During this study the occurrence of polychlorinated biphenyls (PCBs) in the surrounding of an e-waste recycling facility in North-Rhine Westphalia was analysed. PCB levels were analysed in curly kale, spruce needles, street dusts and dusts. Conspicuously high PCB concentrations in curly kale and spruce needles were found directly northwards of the industrial premises. Furthermore a concentration gradient originating from the industrial premises to the residential areas in direction southwest to northeast was evident. Homologue patterns of highly PCB contaminated dusts and street dusts were comparable to the homologue patterns of PCB in curly kale and spruce needles. This corroborates the suspicion that the activities at the e-waste recycling facility were responsible for the elevated PCB levels in curly kale and spruce needles. The utilization of multiple linear regression of wind direction data and analysed PCB concentrations in spruce needles proved that the e-waste recycling facility caused the PCB emissions to the surrounding. Additionally, this evaluation enabled the calculation of source specific accumulation constants for certain parts of the facility. Consequently the different facility parts contribute with different impacts to the PCB levels in bioindicators. Copyright © 2017 Elsevier B.V. All rights reserved.
Azimuthal sound localization in the European starling (Sturnus vulgaris): I. Physical binaural cues.
Klump, G M; Larsen, O N
1992-02-01
The physical measurements reported here test whether the European starling (Sturnus vulgaris) evaluates the azimuth direction of a sound source with a peripheral auditory system composed of two acoustically coupled pressure-difference receivers (1) or of two decoupled pressure receivers (2). A directional pattern of sound intensity in the free-field was measured at the entrance of the auditory meatus using a probe microphone, and at the tympanum using laser vibrometry. The maximum differences in the sound-pressure level measured with the microphone between various speaker positions and the frontal speaker position were 2.4 dB at 1 and 2 kHz, 7.3 dB at 4 kHz, 9.2 dB at 6 kHz, and 10.9 dB at 8 kHz. The directional amplitude pattern measured by laser vibrometry did not differ from that measured with the microphone. Neither did the directional pattern of travel times to the ear. Measurements of the amplitude and phase transfer function of the starling's interaural pathway using a closed sound system were in accord with the results of the free-field measurements. In conclusion, although some sound transmission via the interaural canal occurred, the present experiments support the hypothesis 2 above that the starling's peripheral auditory system is best described as consisting of two functionally decoupled pressure receivers.
Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices
ERIC Educational Resources Information Center
Hsu, Keng Hao
2009-01-01
Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…
Event Perception and Pattern Perception in Early Infancy.
ERIC Educational Resources Information Center
Vurpillot, Eliane
Human infants are sensitive from birth to some intrinsic properties of objects; they are also sensitive to position. During the first weeks of life, pertinent dimensions of differentiation between objects are relative to global properties of the entire object or pattern. Position is defined by the direction of a displacement: the trajectory…
Direct Measures of Character Mislocalizations with Masked/Unmasked Exposures.
ERIC Educational Resources Information Center
Chastain, Garvin; And Others
Butler (1980) compared errors representing intrusions and mislocalizations on 3x3 letter displays under pattern-mask versus no-mask conditions and found that pattern masking increased character mislocalization errors (naming a character in the display but not in the target position as being the target) over intrusion errors (naming a character not…
Diversity in Pathways to Parenthood: Patterns, Implications, and Emerging Research Directions
ERIC Educational Resources Information Center
Smock, Pamela J.; Greenland, Fiona Rose
2010-01-01
This review examines and synthesizes recent research on pathways to parenthood. We begin by providing basic information about patterns, differentials, and trends and discussing adoption and new reproductive technologies. We next turn to several areas of inquiry that became particularly prominent in the last decade: the continued "decoupling" of…
Trumper, D.L.; Kim, W.; Williams, M.E.
1997-05-20
Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.
Highway Safety: Trends in Highway Fatalities 1975-1987
1990-03-01
pattern of fatalities as the overall trend. This pattern applies to many of the general fatality statis- tics we present, and, in all cases, it serves as a...Fatalities 1975-87 Appemfx IV Vehicle-Related Statistics Figure IV.17: Vehicle Fatalities by Direction of Principal Impacto NNNumber of PddUlsils lwam 0 1975
Frequent Frames as a Cue for Grammatical Categories in Child Directed Speech
ERIC Educational Resources Information Center
Mintz, Toben H.
2003-01-01
This paper introduces the notion of frequent frames, distributional patterns based on co-occurrence patterns of words in sentences, then investigates the usefulness of this information in grammatical categorization. A frame is defined as two jointly occurring words with one word intervening. Qualitative and quantitative results from distributional…
76 FR 56428 - Southern Cross Transmission LLC; Pattern Power Marketing LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TX11-1-000] Southern Cross Transmission LLC; Pattern Power Marketing LLC; Notice of Filing Take notice that on September 6, 2011, pursuant... Marketing LLC (PPM) jointly filed an application requesting that the Commission direct (1) the City of...
PATTERNS OF MASTERY AND CONFLICT RESOLUTION AT THE ELEMENTARY SCHOOL LEVEL.
ERIC Educational Resources Information Center
MINUCHIN, PATRICIA; AND OTHERS
EFFORTS WERE DIRECTED TOWARD THE EXPLORATION OF CONNECTIONS BETWEEN THE HOME AND SCHOOL BACKGROUND INFLUENCES OF FOURTH-GRADE CHILDREN, AND THE PATTERNS OF RESPONSE THROUGH WHICH CHILDREN MASTER CHALLENGE, REACT TO OPPORTUNITY, AND EXPRESS AND HANDLE CONFLICT. THIS CURRENT RESEARCH WAS BUILT UPON AN EARLIER STUDY WHICH ASSESSED THE EFFECTS OF…
Pattern Separation and Goal-Directed Behavior in the Aged Canine
ERIC Educational Resources Information Center
Snigdha, Shikha; Yassa, Michael A.; deRivera, Christina; Milgram, Norton W.; Cotman, Carl W.
2017-01-01
The pattern separation task has recently emerged as a behavioral model of hippocampus function and has been used in several pharmaceutical trials. The canine is a useful model to evaluate a multitude of hippocampal-dependent cognitive tasks that parallel those in humans. Thus, this study was designed to evaluate the suitability of pattern…
NASA Astrophysics Data System (ADS)
Song, Yongli; Zhang, Tonghua; Tadé, Moses O.
2009-12-01
The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.
Directed self-assembly of virus particles at nanoscale chemical templates
NASA Astrophysics Data System (ADS)
Chung, Sung-Wook; Cheung, Chin Li; Chatterji, Anju; Lin, Tianwei; Johnson, Jack; de Yoreo, Jim
2006-03-01
Because viruses can be site-specifically engineered to present catalytic, electronic, and optical moieties, they are attractive as building blocks for hierarchical nanostructures. We report results using scanned probe nanolithography to direct virus organization into 1D and 2D patterns and in situ AFM investigations of organization dynamics as pattern geometry, inter-viral potential, virus flux, and virus-pattern interaction are varied. Cowpea Mosaic Virus was modified to present surface sites with histidine (His) or cysteine (Cys) groups. Flat gold substrates were patterned with 10-100nm features of alkyl thiols terminated by Ni-NTA or meleimide groups to reversibly and irreversibly bind to the Hys and Cys groups, respectively. We show how assembly kinetics, degree of ordering and cluster-size distribution at these templates depend on the control parameters and present a physical picture of virus assembly at templates that incorporates growth dynamics of small-molecule epitaxial systems and condensation dynamics of colloidal systems. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Simultaneous mixing and pumping using asymmetric microelectrodes
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Sung, Hyung Jin; Smith, Charles G.
2007-10-01
This study proposes ideas for simultaneous mixing and pumping using asymmetric microelectrode arrays. The driving force of the mixing and pumping was based on electroosmotic flows induced by alternating current (ac) electric fields on asymmetric microelectrodes. The key idea was to bend/incline the microelectrodes like diagonal/herringbone shapes. Four patterns of the asymmetric electrode arrays were considered depending on the shape of electrode arrays. For the diagonal shape, repeated and staggered patterns of the electrode arrays were studied. For the herringbone shape, diverging and converging patterns were examined. These microelectrode patterns forced fluid flows in the lateral direction leading to mixing and in the channel direction leading to pumping. Three-dimensional numerical simulations were carried out using the linear theories of ac electro-osmosis. The performances of the mixing and pumping were assessed in terms of the mixing efficiency and the pumping flow rate. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls.
A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle
NASA Astrophysics Data System (ADS)
Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo
2015-12-01
As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.