Science.gov

Sample records for directs zebrafish period2

  1. The Zebrafish Period2 Protein Positively Regulates the Circadian Clock through Mediation of Retinoic Acid Receptor (RAR)-related Orphan Receptor α (Rorα)*

    PubMed Central

    Wang, Mingyong; Zhong, Zhaomin; Zhong, Yingbin; Zhang, Wei; Wang, Han

    2015-01-01

    We report the characterization of a null mutant for zebrafish circadian clock gene period2 (per2) generated by transcription activator-like effector nuclease and a positive role of PER2 in vertebrate circadian regulation. Locomotor experiments showed that per2 mutant zebrafish display reduced activities under light-dark and 2-h phase delay under constant darkness, and quantitative real time PCR analyses showed up-regulation of cry1aa, cry1ba, cry1bb, and aanat2 but down-regulation of per1b, per3, and bmal1b in per2 mutant zebrafish, suggesting that Per2 is essential for the zebrafish circadian clock. Luciferase reporter assays demonstrated that Per2 represses aanat2 expression through E-box and enhances bmal1b expression through the Ror/Rev-erb response element, implicating that Per2 plays dual roles in the zebrafish circadian clock. Cell transfection and co-immunoprecipitation assays revealed that Per2 enhances bmal1b expression through binding to orphan nuclear receptor Rorα. The enhancing effect of mouse PER2 on Bmal1 transcription is also mediated by RORα even though it binds to REV-ERBα. Moreover, zebrafish Per2 also appears to have tissue-specific regulatory roles in numerous peripheral organs. These findings help define the essential functions of Per2 in the zebrafish circadian clock and in particular provide strong evidence for a positive role of PER2 in the vertebrate circadian system. PMID:25544291

  2. The zebrafish period2 protein positively regulates the circadian clock through mediation of retinoic acid receptor (RAR)-related orphan receptor α (Rorα).

    PubMed

    Wang, Mingyong; Zhong, Zhaomin; Zhong, Yingbin; Zhang, Wei; Wang, Han

    2015-02-13

    We report the characterization of a null mutant for zebrafish circadian clock gene period2 (per2) generated by transcription activator-like effector nuclease and a positive role of PER2 in vertebrate circadian regulation. Locomotor experiments showed that per2 mutant zebrafish display reduced activities under light-dark and 2-h phase delay under constant darkness, and quantitative real time PCR analyses showed up-regulation of cry1aa, cry1ba, cry1bb, and aanat2 but down-regulation of per1b, per3, and bmal1b in per2 mutant zebrafish, suggesting that Per2 is essential for the zebrafish circadian clock. Luciferase reporter assays demonstrated that Per2 represses aanat2 expression through E-box and enhances bmal1b expression through the Ror/Rev-erb response element, implicating that Per2 plays dual roles in the zebrafish circadian clock. Cell transfection and co-immunoprecipitation assays revealed that Per2 enhances bmal1b expression through binding to orphan nuclear receptor Rorα. The enhancing effect of mouse PER2 on Bmal1 transcription is also mediated by RORα even though it binds to REV-ERBα. Moreover, zebrafish Per2 also appears to have tissue-specific regulatory roles in numerous peripheral organs. These findings help define the essential functions of Per2 in the zebrafish circadian clock and in particular provide strong evidence for a positive role of PER2 in the vertebrate circadian system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  4. ZFIN, the Zebrafish Model Organism Database: updates and new directions

    PubMed Central

    Ruzicka, Leyla; Bradford, Yvonne M.; Frazer, Ken; Howe, Douglas G.; Paddock, Holly; Ramachandran, Sridhar; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri E.; Eagle, Anne E.; Fashena, David; Kalita, Patrick; Knight, Jonathan; Mani, Prita; Martin, Ryan; Moxon, Sierra A. T.; Pich, Christian; Schaper, Kevin; Shao, Xiang; Westerfield, Monte

    2015-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for genetic and genomic data from zebrafish (Danio rerio) research. ZFIN staff curate detailed information about genes, mutants, genotypes, reporter lines, sequences, constructs, antibodies, knockdown reagents, expression patterns, phenotypes, gene product function, and orthology from publications. Researchers can submit mutant, transgenic, expression, and phenotype data directly to ZFIN and use the ZFIN Community Wiki to share antibody and protocol information. Data can be accessed through topic-specific searches, a new site-wide search, and the data-mining resource ZebrafishMine (http://zebrafishmine.org). Data download and web service options are also available. ZFIN collaborates with major bioinformatics organizations to verify and integrate genomic sequence data, provide nomenclature support, establish reciprocal links and participate in the development of standardized structured vocabularies (ontologies) used for data annotation and searching. ZFIN-curated gene, function, expression, and phenotype data are available for comparative exploration at several multi-species resources. The use of zebrafish as a model for human disease is increasing. ZFIN is supporting this growing area with three major projects: adding easy access to computed orthology data from gene pages, curating details of the gene expression pattern changes in mutant fish, and curating zebrafish models of human diseases. PMID:26097180

  5. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  6. Direct visualization of replication dynamics in early zebrafish embryos.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Okochi, Nanami; Hattori, Kaede; Ogata, Shin; Takebayashi, Shin-Ichiro; Ogata, Masato; Tamaru, Yutaka; Okumura, Katsuzumi

    2016-05-01

    We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.

  7. Toxicity induced by Basic Violet 14, Direct Red 28 and Acid Red 26 in zebrafish larvae.

    PubMed

    Shen, Bing; Liu, Hong-Cui; Ou, Wen-Bin; Eilers, Grant; Zhou, Sheng-Mei; Meng, Fan-Guo; Li, Chun-Qi; Li, Yong-Quan

    2015-12-01

    Basic Violet 14, Direct Red 28 and Acid Red 26 are classified as carcinogenic dyes in the European textile ecology standard, despite insufficient toxicity data. In this study, the toxicity of these dyes was assessed in a zebrafish model, and the underlying toxic mechanisms were investigated. Basic Violet 14 and Direct Red 28 showed acute toxicity with a LC50 value at 60.63 and 476.84 µg ml(-1) , respectively, whereas the LC50 of Acid Red 26 was between 2500 and 2800 µg ml(-1) . Treatment with Basic Violet 14, Direct Red 28 and Acid Red 26 resulted in common developmental abnormalities including delayed yolk sac absorption and swimming bladder deflation. Hepatotoxicity was observed in zebrafish treated with Basic Violet 14, and cardiovascular toxicity was found in zebrafish treated with Acid Red 26 at concentrations higher than 2500 µg ml(-1) . Basic Violet 14 also caused significant up-regulation of GCLC gene expression in a dose-dependent manner whereas Acid Red 26 induced significant up-regulation of NKX2.5 and down-regulation of GATA4 at a high concentration in a dose-dependent manner. These results suggest that Basic Violet 14, Direct Red 28 and Acid Red 26 induce developmental and organ-specific toxicity, and oxidative stress may play a role in the hepatotoxicity of Basic Violet 14, the suppressed GATA4 expression may have a relation to the cardiovascular toxicity of Acid Red 26. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Lineage relationship of direct-developing melanocytes and melanocyte stem cells in the zebrafish.

    PubMed

    Tryon, Robert C; Higdon, Charles W; Johnson, Stephen L

    2011-01-01

    Previous research in zebrafish has demonstrated that embryonic and larval regeneration melanocytes are derived from separate lineages. The embryonic melanocytes that establish the larval pigment pattern do not require regulative melanocyte stem cell (MSC) precursors, and are termed direct-developing melanocytes. In contrast, the larval regeneration melanocytes that restore the pigment pattern after ablation develop from MSC precursors. Here, we explore whether embryonic melanocytes and MSCs share bipotent progenitors. Furthermore, we explore when fate segregation of embryonic melanocytes and MSCs occurs in zebrafish development. In order to achieve this, we develop and apply a novel lineage tracing method. We first demonstrate that Tol2-mediated genomic integration of reporter constructs from plasmids injected at the 1-2 cell stage occurs most frequently after the midblastula transition but prior to shield stage, between 3 and 6 hours post-fertilization. This previously uncharacterized timing of Tol2-mediated genomic integration establishes Tol2-mediated transposition as a means for conducting lineage tracing in zebrafish. Combining the Tol2-mediated lineage tracing strategy with a melanocyte regeneration assay previously developed in our lab, we find that embryonic melanocytes and larval regeneration melanocytes are derived from progenitors that contribute to both lineages. We estimate 50-60 such bipotent melanogenic progenitors to be present in the shield-stage embryo. Furthermore, our examination of direct-developing and MSC-restricted lineages suggests that these are segregated from bipotent precursors after the shield stage, but prior to the end of convergence and extension. Following this early fate segregation, we estimate approximately 100 embryonic melanocyte and 90 MSC-restricted lineages are generated to establish or regenerate the zebrafish larval pigment pattern, respectively. Thus, the dual strategies of direct-development and MSC-derived development

  9. Lineage Relationship of Direct-Developing Melanocytes and Melanocyte Stem Cells in the Zebrafish

    PubMed Central

    Tryon, Robert C.; Higdon, Charles W.; Johnson, Stephen L.

    2011-01-01

    Previous research in zebrafish has demonstrated that embryonic and larval regeneration melanocytes are derived from separate lineages. The embryonic melanocytes that establish the larval pigment pattern do not require regulative melanocyte stem cell (MSC) precursors, and are termed direct-developing melanocytes. In contrast, the larval regeneration melanocytes that restore the pigment pattern after ablation develop from MSC precursors. Here, we explore whether embryonic melanocytes and MSCs share bipotent progenitors. Furthermore, we explore when fate segregation of embryonic melanocytes and MSCs occurs in zebrafish development. In order to achieve this, we develop and apply a novel lineage tracing method. We first demonstrate that Tol2-mediated genomic integration of reporter constructs from plasmids injected at the 1–2 cell stage occurs most frequently after the midblastula transition but prior to shield stage, between 3 and 6 hours post-fertilization. This previously uncharacterized timing of Tol2-mediated genomic integration establishes Tol2-mediated transposition as a means for conducting lineage tracing in zebrafish. Combining the Tol2-mediated lineage tracing strategy with a melanocyte regeneration assay previously developed in our lab, we find that embryonic melanocytes and larval regeneration melanocytes are derived from progenitors that contribute to both lineages. We estimate 50–60 such bipotent melanogenic progenitors to be present in the shield-stage embryo. Furthermore, our examination of direct-developing and MSC-restricted lineages suggests that these are segregated from bipotent precursors after the shield stage, but prior to the end of convergence and extension. Following this early fate segregation, we estimate approximately 100 embryonic melanocyte and 90 MSC-restricted lineages are generated to establish or regenerate the zebrafish larval pigment pattern, respectively. Thus, the dual strategies of direct-development and MSC

  10. Nanog suppresses the expression of vasa by directly regulating nlk1 in the early zebrafish embryo.

    PubMed

    Liu, Yanhua; Xue, Weiwei; Zhu, Lin; Ye, Ding; Zhu, Xiaoqin; Wang, Huannan; Sun, Yonghua; Deng, Fengjiao

    2017-07-28

    Nanog is a homeodomain transcription factor that is essential for maintenance of pluripotency and self-renewal of embryonic stem cells (ESCs). In the present study, we demonstrate that zebrafish Nanog (zNanog) directly binds to the promoter region of zebrafish nlk1 (znlk1) by ChIP-Seq analysis and that it up-regulates the expression of znlk1 in fibroblast-like embryonic cells of Danio rerio (ZEM-2S cells) and in zebrafish embryos at 30% epiboly both at the mRNA and protein levels. In addition, compared with control (MO-C) embryos at 30% epiboly, the mRNA and protein expression of vasa and the numbers of vasa-positive cells were increased in embryos injected with zNanog morpholino (MO-zNanog). Further, injection of znlk1 mRNA into zNanog-depleted embryos restored the expression of vasa and the number of vasa-positive cells. These data indicated that zNanog up-regulates the expression of znlk1 through directly binding to the znlk1 promoter, thereby suppressing the expression of vasa. Vasa is a marker gene for PGCs. Our results suggest that zNanog plays a role in restraint of PGC cell number through regulating the expression of znlk1 in the early embryonic development. The current results provide fundamental information to support further investigation regarding the regulatory mechanism of zNanog during the development of PGCs. Copyright © 2017. Published by Elsevier B.V.

  11. Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly

    PubMed Central

    Bensch, Robert; Song, Sungmin; Ronneberger, Olaf; Driever, Wolfgang

    2013-01-01

    Summary Epiboly is the first coordinated cell movement in most vertebrates and marks the onset of gastrulation. During zebrafish epiboly, enveloping layer (EVL) and deep cells spread over the vegetal yolk mass with a concomitant thinning of the deep cell layer. A prevailing model suggests that deep cell radial intercalations directed towards the EVL would drive deep cell epiboly. To test this model, we have globally recorded 3D cell trajectories for zebrafish blastomeres between sphere and 50% epiboly stages, and developed an image analysis framework to determine intercalation events, intercalation directionality, and migration speed for cells at specific positions within the embryo. This framework uses Voronoi diagrams to compute cell-to-cell contact areas, defines a feature-based spatio-temporal model for intercalation events and fits an anatomical coordinate system to the recorded datasets. We further investigate whether epiboly defects in MZspg mutant embryos devoid of Pou5f1/Oct4 may be caused by changes in intercalation behavior. In wild-type and mutant embryos, intercalations orthogonal to the EVL occur with no directional bias towards or away from the EVL, suggesting that there are no directional cues that would direct intercalations towards the EVL. Further, we find that intercalation direction is independent of the previous intercalation history of individual deep cells, arguing against cues that would program specific intrinsic directed migration behaviors. Our data support a dynamic model in which deep cells during epiboly migrate into space opening between the EVL and the yolk syncytial layer. Genetic programs determining cell motility may control deep cell dynamic behavior and epiboly progress. PMID:23951411

  12. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition

    PubMed Central

    Grama, Abhinav; Engert, Florian

    2012-01-01

    The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons. PMID:22969706

  13. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish

    PubMed Central

    Ellett, Felix; Pase, Luke; Hayman, John W.; Andrianopoulos, Alex

    2011-01-01

    Macrophages and neutrophils play important roles during the innate immune response, phagocytosing invading microbes and delivering antimicrobial compounds to the site of injury. Functional analyses of the cellular innate immune response in zebrafish infection/inflammation models have been aided by transgenic lines with fluorophore-marked neutrophils. However, it has not been possible to study macrophage behaviors and neutrophil/macrophage interactions in vivo directly because there has been no macrophage-only reporter line. To remove this roadblock, a macrophage-specific marker was identified (mpeg1) and its promoter used in mpeg1-driven transgenes. mpeg1-driven transgenes are expressed in macrophage-lineage cells that do not express neutrophil-marking transgenes. Using these lines, the different dynamic behaviors of neutrophils and macrophages after wounding were compared side-by-side in compound transgenics. Macrophage/neutrophil interactions, such as phagocytosis of senescent neutrophils, were readily observed in real time. These zebrafish transgenes provide a new resource that will contribute to the fields of inflammation, infection, and leukocyte biology. PMID:21084707

  14. Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells.

    PubMed

    Smith, Kelly A; Chocron, Sonja; von der Hardt, Sophia; de Pater, Emma; Soufan, Alexander; Bussmann, Jeroen; Schulte-Merker, Stefan; Hammerschmidt, Matthias; Bakkers, Jeroen

    2008-02-01

    We have used high-resolution 4D imaging of cardiac progenitor cells (CPCs) in zebrafish to investigate the earliest left-right asymmetric movements during cardiac morphogenesis. Differential migratory behavior within the heart field was observed, resulting in a rotation of the heart tube. The leftward displacement and rotation of the tube requires hyaluronan synthase 2 expression within the CPCs. Furthermore, by reducing or ectopically activating BMP signaling or by implantation of BMP beads we could demonstrate that BMP signaling, which is asymmetrically activated in the lateral plate mesoderm and regulated by early left-right signals, is required to direct CPC migration and cardiac rotation. Together, these results support a model in which CPCs migrate toward a BMP source during development of the linear heart tube, providing a mechanism by which the left-right axis drives asymmetric development of the vertebrate heart.

  15. The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation.

    PubMed

    Majumdar, A; Drummond, I A

    2000-06-01

    In zebrafish, the pronephric glomerulus occupies a midline position underneath the notochord and is vascularized through angiogenic capillary ingrowth from the dorsal aorta. The midline mutants floating head (flh), sonic you (syu), and you-too (yot) provide the opportunity to study glomerular differentiation in the absence of the notochord and vascularization from the dorsal aorta. In flh, syu, and yot mutants, glomeruli differentiate at ectopic lateral positions within the embryo and contain morphologically identifiable podocyte and endothelial cell types. In the absence of the dorsal aorta, endothelia from an alternate source are recruited by podocytes during glomerular vascularization to make functional glomeruli. Our results suggest that midline signals are required for proper glomerular morphogenesis but not for the differentiation of podocytes. Podocytes appear to play an important role in directing cellular recruitment events leading to glomerular differentiation. Furthermore, we find defects in sclerotomal development that correlate with defects in glomerular morphogenesis suggesting a possible link between the formation of these embryonic structures.

  16. EFFECT-DIRECTED ANALYSIS OF ELIZABETH RIVER POREWATER: DEVELOPMENTAL TOXICITY IN ZEBRAFISH (DANIO RERIO)

    PubMed Central

    Fang, Mingliang; Getzinger, Gordon J.; Cooper, Ellen M.; Clark, Bryan W.; Garner, Lindsey V.T.; Di Giulio, Richard T.; Ferguson, P. Lee; Stapleton, Heather M.

    2015-01-01

    In the present study, effect-directed analysis was used to identify teratogenic compounds in porewater collected from a Superfund site along the Elizabeth River estuary (VA, USA). Zebrafish (Danio rerio) exposed to the porewater displayed acute developmental toxicity and cardiac teratogenesis, presumably because of elevated sediment levels of polycyclic aromatic hydrocarbons (PAHs) from historical creosote use. Pretreatment of porewater with several physical and chemical particle removal methods revealed that colloid-bound chemicals constituted the bulk of the observed toxicity. Size-exclusive chromatography and normal-phase high-performance liquid chromatography were used to fractionate Elizabeth River porewater. Acute toxicity of porewater extracts and extract fractions was assessed as the pericardial area in embryonic zebrafish. The most toxic fraction contained several known aryl hydrocarbon receptor (AhR) agonists (e.g., 1,2-benzofluorene and 1,2-benzanthracene) and cytochrome P450 A1 (CPY1A) inhibitors (e.g., dibenzothiophene and fluoranthene). The second most toxic fraction contained known AhR agonists (e.g., benzo[a]pyrene and indeno[1,2,3-cd]pyrene). Addition of a CYP1A inhibitor, fluoranthene, increased toxicity in all active porewater fractions, suggesting synergism between several contaminants present in porewaters. The results indicate that the observed acute toxicity associated with Elizabeth River porewater results from high concentrations of AhR agonistic PAHs and mixture effects related to interactions between compounds co-occurring at the Elizabeth River site. However, even after extensive fractionation and chemical characterization, it remains plausible that some active compounds in Elizabeth River porewater remain unidentified. PMID:25196082

  17. Effect-directed analysis of Elizabeth River porewater: developmental toxicity in zebrafish (Danio rerio).

    PubMed

    Fang, Mingliang; Getzinger, Gordon J; Cooper, Ellen M; Clark, Bryan W; Garner, Lindsey V T; Di Giulio, Richard T; Ferguson, P Lee; Stapleton, Heather M

    2014-12-01

    In the present study, effect-directed analysis was used to identify teratogenic compounds in porewater collected from a Superfund site along the Elizabeth River estuary (VA, USA). Zebrafish (Danio rerio) exposed to the porewater displayed acute developmental toxicity and cardiac teratogenesis, presumably because of elevated sediment levels of polycyclic aromatic hydrocarbons (PAHs) from historical creosote use. Pretreatment of porewater with several physical and chemical particle removal methods revealed that colloid-bound chemicals constituted the bulk of the observed toxicity. Size-exclusive chromatography and normal-phase high-performance liquid chromatography were used to fractionate Elizabeth River porewater. Acute toxicity of porewater extracts and extract fractions was assessed as the pericardial area in embryonic zebrafish. The most toxic fraction contained several known aryl hydrocarbon receptor (AhR) agonists (e.g., 1,2-benzofluorene and 1,2-benzanthracene) and cytochrome P450 A1 (CPY1A) inhibitors (e.g., dibenzothiophene and fluoranthene). The second most toxic fraction contained known AhR agonists (e.g., benzo[a]pyrene and indeno[1,2,3-cd]pyrene). Addition of a CYP1A inhibitor, fluoranthene, increased toxicity in all active porewater fractions, suggesting synergism between several contaminants present in porewaters. The results indicate that the observed acute toxicity associated with Elizabeth River porewater results from high concentrations of AhR agonistic PAHs and mixture effects related to interactions between compounds co-occurring at the Elizabeth River site. However, even after extensive fractionation and chemical characterization, it remains plausible that some active compounds in Elizabeth River porewater remain unidentified.

  18. The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields.

    PubMed

    Huang, Ling; Cormie, Peter; Messerli, Mark A; Robinson, Kenneth R

    2009-04-01

    Many cells respond directionally to small DC electrical fields (EFs) by an unknown mechanism, but changes in intracellular Ca(2+) are widely assumed to be involved. We have used zebrafish (Danio rerio) keratocytes in an effort to understand the nature of the EF-cell interaction. We find that the adult zebrafish integument drives substantial currents outward through wounds produced by scale removal, establishing that keratocytes near the wound will experience endogenous EFs. Isolated keratocytes in culture turn toward the cathode in fields as small as 7 mV mm(-1), and the response is independent of cell size. Epidermal sheets are similarly sensitive. The frequency of intracellular Ca(2+) spikes and basal Ca(2+) levels were increased by EFs, but the spikes were not a necessary aspect of migration or EF response. Two-photon imaging failed to detect a pattern of gradients of Ca(2+) across the lamellipodia during normal or EF-induced turning but did detect a sharp, stable Ca(2+) gradient at the junction of the lamellipodium and the cell body. We conclude that gradients of Ca(2+) within the lamellipodium are not required for the EF response. Immunostaining revealed an anode to cathode gradient of integrin beta1 during EF-induced turning, and interference with integrin function attenuated the EF response. Neither electrophoretic redistribution of membrane proteins nor asymmetric perturbations of the membrane potential appear to be involved in the EF response, and we propose a new model in which hydrodynamic forces generated by electro-osmotic water flow mediate EF-cell interactions via effects on focal adhesions.

  19. The kinematics of directional control in the fast start of zebrafish larvae.

    PubMed

    Nair, Arjun; Azatian, Grigor; McHenry, Matthew J

    2015-12-01

    Larval fish use the 'fast start' escape response to rapidly evade the strike of a predator with a three-dimensional (3D) maneuver. Although this behavior is essential for the survival of fishes, it is not clear how its motion is controlled by the motor system of a larval fish. As a basis for understanding this control, we measured the high-speed kinematics of the body of zebrafish (Danio rerio) larvae when executing the fast start in a variety of directions. We found that the angular excursion in the lateral direction is correlated with the yaw angle in the initial stage of bending (stage 1). In this way, larvae moved in a manner similar to that reported for adult fish. However, larvae also have the ability to control the elevation of a fast start. We found that escapes directed downwards or upwards were achieved by pitching the body throughout the stages of the fast start. Changes in the pitching angle in each stage were significantly correlated with the elevation angle of the trajectory. Therefore, as a larva performs rapid oscillations in yaw that contribute to undulatory motion, the elevation of an escape is generated by more gradual and sustained changes in pitch. These observations are consistent with a model of motor control where elevation is directed through the differential activation of the epaxial and hypaxial musculature. This 3D motion could serve to enhance evasiveness by varying elevation without slowing the escape from a predator.

  20. Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish

    PubMed Central

    Lesaffre, Brigitte; Joliot, Alain; Prochiantz, Alain; Volovitch, Michel

    2007-01-01

    Background Modifications in Pax6 homeogene expression produce strong eye phenotypes. This suggested to us that eye development might be an appropriate model to verify if homeoprotein intercellular passage has important functions in early development. Similar to other homeoproteins, Pax6 has two domains that enable secretion and internalization by live cells and, thus, intercellular passage. In principle, a straightforward way to test the hypothesis would be to mutate one of the two sequences to produce a 'cell autonomous only' Pax6. However, this was not possible because these sequences are in the homeodomain and their modification would affect Pax6 transcriptional properties. We have thus developed an approach aimed at blocking Pax6 only in the extracellular milieu of developing zebrafish embryos. Results A first strategy was to inject a one-cell embryo with a mRNA encoding a secreted single-chain anti-Pax6 antibody. A second, complementary, strategy was to inject a Pax6 antibody in the blastula extracellular milieu. In both cases, 'dissymmetric eyes', 'one eye only' and 'no eye' phenotypes were produced. In most cases, lens phenotypes paralleled retina malformations. Although eye phenotypes were analyzed 30 hours post-fertilization, there was a strong correlation between early eye field asymmetry, early asymmetry in Pax6 expression and later-occurring eye malformations. Several controls were introduced, demonstrating that the effect is specific to Pax6 and cannot be explained by intracellular antibody activities. Conclusion This study supports the hypothesis that the Pax6 transcription factor is also a signaling molecule with direct non-cell autonomous activity. PMID:17229313

  1. Poised regeneration of zebrafish melanocytes involves direct differentiation and concurrent replenishment of tissue-resident progenitor cells

    PubMed Central

    Iyengar, Sharanya; Kasheta, Melissa; Ceol, Craig J.

    2015-01-01

    SUMMARY Efficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which these cells execute the regenerative process is largely obscure. Here, we have identified tissue-resident progenitor cells that mediate regeneration of zebrafish stripe melanocytes and defined how these cells reconstitute pigmentation. Nearly all regeneration melanocytes arise through direct differentiation of progenitor cells. Wnt signaling is activated prior to differentiation, and inhibition of Wnt signaling impairs regeneration. Additional progenitors divide symmetrically to sustain the pool of progenitor cells. Combining direct differentiation with symmetric progenitor divisions may serve as a means to rapidly repair injured tissue while preserving the capacity to regenerate. PMID:26073020

  2. Poised Regeneration of Zebrafish Melanocytes Involves Direct Differentiation and Concurrent Replenishment of Tissue-Resident Progenitor Cells.

    PubMed

    Iyengar, Sharanya; Kasheta, Melissa; Ceol, Craig J

    2015-06-22

    Efficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which these cells execute the regenerative process is largely obscure. Here, we have identified tissue-resident progenitor cells that mediate regeneration of zebrafish stripe melanocytes and defined how these cells reconstitute pigmentation. Nearly all regeneration melanocytes arise through direct differentiation of progenitor cells. Wnt signaling is activated prior to differentiation, and inhibition of Wnt signaling impairs regeneration. Additional progenitors divide symmetrically to sustain the pool of progenitor cells. Combining direct differentiation with symmetric progenitor divisions may serve as a means to rapidly repair injured tissue while preserving the capacity to regenerate.

  3. Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish

    PubMed Central

    Asaoka, Yoichi; Mano, Hiroaki; Kojima, Daisuke; Fukada, Yoshitaka

    2002-01-01

    The pineal gland, sharing morphological and biochemical similarities with the retina, plays a unique and central role in the photoneuroendocrine system. The unique development of the pineal gland is directed by a specific combination of the expressed genes, but little is known about the regulatory mechanism underlying the pineal-specific gene expression. We isolated a 1.1-kbp fragment upstream of the zebrafish exo-rhodopsin (exorh) gene, which is expressed specifically in the pineal gland. Transgenic analysis using an enhanced green fluorescent protein reporter gene demonstrated that the proximal 147-bp region of the exorh promoter is sufficient to direct pineal-specific expression. This region contains three copies of a putative cone rod homeobox (Crx)/Otx-binding site, which is known to be required for expression of both retina- and pineal-specific genes. Deletion and mutational analyses of the exorh promoter revealed that a previously uncharacterized sequence TGACCCCAATCT termed pineal expression-promoting element (PIPE) is required for pineal-specific promoter activity in addition to the Crx/Otx-binding sites. By using the zebrafish rhodopsin (rh) promoter that drives retina-specific expression, we created a reporter construct having ectopic PIPE in the rh promoter at a position equivalent to that in the exorh promoter by introducing five nucleotide changes. Such a slight modification in the rh promoter induced ectopic enhanced green fluorescent protein expression in the pineal gland without affecting its retinal expression. These results identify PIPE as a critical cis-element contributing to the pineal-specific gene expression, in combination with the Crx/Otx-binding site(s). PMID:12438694

  4. Effect-directed analysis reveals inhibition of zebrafish uptake transporter Oatp1d1 by caulerpenyne, a major secondary metabolite from the invasive marine alga Caulerpa taxifolia.

    PubMed

    Marić, P; Ahel, M; Senta, I; Terzić, S; Mikac, I; Žuljević, A; Smital, T

    2017-05-01

    Caulerpa taxifolia is a marine alga of tropical and subtropical distribution and a well-known invasive species in several temperate regions. Its invasiveness mainly stems from the production of secondary metabolites, some of which are toxic or repellent substances. In this study we investigated the possible inhibitory effects of C. taxifolia secondary metabolites on the activity of two zebrafish (Danio rerio) uptake transporters that transport organic anions (Oatp1d1) and cations (Oct1). Both transporters were transiently transfected and overexpressed in human embryonic kidney HEK293T cells. Transport activity assays using lucifer yellow (LY) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as model substrates were applied for the determination of Oatp1d1 and Oct1 interactors. A two-step Effect-Directed Analysis (EDA) procedure was applied for the separation and identification of compounds. We identified caulerpenyne (CYN) as the major metabolite in C. taxifolia and reveal its potent inhibitory effect towards zebrafish Oatp1d1 as well as weak effect on zebrafish Oct1 transport. The observed effect was confirmed by testing CYN purified from C. taxifolia, resulting in an IC50 of 17.97 μM, and a weak CYN interaction was also determined for the zebrafish Oct1 transporter. Finally, using Michaelis-Menten kinetics experiments, we identified CYN as a non-competitive inhibitor of the zebrafish Oatp1d1. In conclusion, this study describes a novel mechanism of biological activity in C. taxifolia, shows that CYN was a potent non-competitive inhibitor of zebrafish Oatp1d1, and demonstrates that EDA can be reliably used for characterization of environmentally relevant complex biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model.

    PubMed

    Ran, Chao; Hu, Jun; Liu, Wenshu; Liu, Zhi; He, Suxu; Dan, Bui Chau Truc; Diem, Nguyen Ngoc; Ooi, Ei Lin; Zhou, Zhigang

    2016-05-01

    Essential oils (EOs) are commonly used as animal feed additives. Information is lacking on the mechanisms driving the beneficial effects of EOs in animals, especially the role played by the intestinal microbiota of the host. The purpose of this study was to clarify the relative contribution of direct effects of EOs on the physiology and immune system of tilapia and indirect effects mediated by the intestinal microbiota by using a germ-free zebrafish model. Juvenile hybrid tilapia were fed a control diet or 1 of 4 treatment diets containing 60-800 mg Next Enhance 150 (NE) (an EO product containing equal levels of thymol and carvacrol)/kg for 6 wk. The key humoral and cellular innate immune parameters were evaluated after the feeding period. In another experiment, the gut microbiota of tilapia fed a control or an NE diet (200 mg/kg) for 2 wk were transferred to 3-d postfertilization (dpf) germ-free (GF) zebrafish, and the expression of genes involved in innate immunity and tight junctions was evaluated in zebrafish at 6 dpf. Lastly, NE was directly applied to 3-dpf GF zebrafish at 3 doses ranging from 0.2 to 20 mg/L, and the direct effect of NE on zebrafish was evaluated after 1 and 3 d. NE supplementation at 200 mg/kg enhanced phagocytosis activity of head kidney macrophages (×1.36) (P < 0.05) and plasma lysozyme activity (×1.69) of tilapia compared with the control (P < 0.001), indicating an immunostimulatory effect. Compared with those colonized with control microbiota, GF zebrafish colonized with NE microbiota showed attenuated induction of immune response marker genes serum amyloid a (Saa; ×0.62), interleukin 1β (Il1β; ×0.29), and interleukin 8 (Il8; ×0.62) (P < 0.05). NE treatment of GF zebrafish at 2 and 20 mg/L for 1 d upregulated the expression of Il1β (×2.44) and Claudin1 (×1.38), respectively (P < 0.05), whereas at day 3 the expression of Occludin2 was higher (×3.30) in the 0.2-mg NE/L group compared with the GF control (P < 0.05). NE may affect

  6. Rx3 and Shh direct anisotropic growth and specification in the zebrafish tuberal/anterior hypothalamus

    PubMed Central

    Muthu, Victor; Eachus, Helen; Ellis, Pam; Brown, Sarah

    2016-01-01

    In the developing brain, growth and differentiation are intimately linked. Here, we show that in the zebrafish embryo, the homeodomain transcription factor Rx3 coordinates these processes to build the tuberal/anterior hypothalamus. Analysis of rx3 chk mutant/rx3 morphant fish and EdU pulse-chase studies reveal that rx3 is required to select tuberal/anterior hypothalamic progenitors and to orchestrate their anisotropic growth. In the absence of Rx3 function, progenitors accumulate in the third ventricular wall, die or are inappropriately specified, the shh+ anterior recess does not form, and its resident pomc+, ff1b+ and otpb+ Th1+ cells fail to differentiate. Manipulation of Shh signalling shows that Shh coordinates progenitor cell selection and behaviour by acting as an on-off switch for rx3. Together, our studies show that Shh and Rx3 govern formation of a distinct progenitor domain that elaborates patterning through its anisotropic growth and differentiation. PMID:27317806

  7. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly.

    PubMed

    Li, Jingyun; Yue, Yunyun; Dong, Xiaohua; Jia, Wenshuang; Li, Kui; Liang, Dong; Dong, Zhangji; Wang, Xiaoxiao; Nan, Xiaoxi; Zhang, Qinxin; Zhao, Qingshun

    2015-04-17

    Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.

  8. Zebrafish hoxd4a Acts Upstream of meis1.1 to Direct Vasculogenesis, Angiogenesis and Hematopoiesis

    PubMed Central

    Amali, Aseervatham Anusha; Sie, Lawrence; Winkler, Christoph; Featherstone, Mark

    2013-01-01

    Mice lacking the 4th-group paralog Hoxd4 display malformations of the anterior vertebral column, but are viable and fertile. Here, we report that zebrafish embryos having decreased function of the orthologous hoxd4a gene manifest striking perturbations in vasculogenesis, angiogenesis and primitive and definitive hematopoiesis. These defects are preceded by reduced expression of the hemangioblast markers scl1, lmo2 and fli1 within the posterior lateral plate mesoderm (PLM) at 13 hours post fertilization (hpf). Epistasis analysis revealed that hoxd4a acts upstream of meis1.1 but downstream of cdx4 as early as the shield stage in ventral-most mesoderm fated to give rise to hemangioblasts, leading us to propose that loss of hoxd4a function disrupts hemangioblast specification. These findings place hoxd4a high in a genetic hierarchy directing hemangioblast formation downstream of cdx1/cdx4 and upstream of meis1.1. An additional consequence of impaired hoxd4a and meis1.1 expression is the deregulation of multiple Hox genes implicated in vasculogenesis and hematopoiesis which may further contribute to the defects described here. Our results add to evidence implicating key roles for Hox genes in their initial phase of expression early in gastrulation. PMID:23554940

  9. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway.

    PubMed

    Formstone, Caroline J; Mason, Ivor

    2005-06-15

    The seven-transmembrane protocadherin, Flamingo, functions in a number of processes during Drosophila development, including planar cell polarity (PCP). To assess the role(s) of Flamingo1/Celsr1 (Fmi1) during vertebrate embryogenesis we have exploited the zebrafish system, identifying two Fmi1 orthologues (zFmi1a and zFmi1b) and employing morpholinos to induce mis-splicing of zebrafish fmi1 mRNAs, to both imitate mutations identified in Drosophila flamingo and generate novel aberrant Flamingo proteins. We demonstrate that in the zebrafish gastrula, Fmi1 proteins function in concert with each other and with the vertebrate PCP proteins, Wnt11 and Strabismus, to mediate convergence and extension during gastrulation, without altering early dorso-ventral patterning. We show that zebrafish Fmi1a promotes extension of the entire antero-posterior axis of the zebrafish gastrula including prechordal plate and ventral diencephalic precursors. However, while we show that control over axial extension is autonomous, we find that Fmi1a is not required within lateral cells undergoing dorsal convergence.

  10. Featured organism: Danio rerio, the zebrafish.

    PubMed

    Wixon, J

    2000-09-30

    The zebrafish has long been a favourite model for the study of vertebrate development. Here we provide an overview of the current state of knowledge and resources for the study of this fish, with comments on the future direction of zebrafish genomics from Professor Mark Fishman and Dr Stephen Wilson.

  11. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erbα and indirectly via Cebpb/(C/ebpβ) in zebrafish

    PubMed Central

    Huang, Guodong; Zhang, Fanmiao; Ye, Qiang; Wang, Han

    2016-01-01

    ABSTRACT Autophagy is a highly conserved intracellular degradation system, and recently was shown to display circadian rhythms in mice. The mechanisms underlying circadian regulation of autophagy, however, are still unclear. Here, we observed that numbers of autophagosomes and autolysosomes exhibit daily rhythms in the zebrafish liver, and cebpb/(c/ebpβ) and various autophagy genes are rhythmically expressed in zebrafish larvae but significantly upregulated in per1b and TALEN-generated nr1d1/rev-erbα mutant fish, indicating that both Per1b and Nr1d1 play critical roles in autophagy rhythms. Luciferase reporter and ChIP assays show that the circadian clock directly regulates autophagy genes through Nr1d1, and also regulates transcription of cebpb through Per1b. We also found that fasting leads to altered expression of both circadian clock genes and autophagy genes in zebrafish adult peripheral organs. Further, transcriptome analysis reveals multiple functions of Nr1d1 in zebrafish. Taken together, these findings provide evidence for how the circadian clock regulates autophagy, imply that nutritional signaling affects both circadian regulation and autophagy activities in peripheral organs, and shed light on how circadian gene mutations act through autophagy to contribute to common metabolic diseases such as obesity. PMID:27171500

  12. The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish.

    PubMed

    Drummond, Bridgette E; Li, Yue; Marra, Amanda N; Cheng, Christina N; Wingert, Rebecca A

    2017-01-01

    The simplified and genetically conserved zebrafish pronephros is an excellent model to examine the cryptic processes of cell fate decisions during the development of nephron segments as well as the origins of associated endocrine cells that comprise the corpuscles of Stannius (CS). Using whole mount in situ hybridization, we found that transcripts of the zebrafish genes t-box 2a (tbx2a) and t-box 2b (tbx2b), which belong to the T-box family of transcription factors, were expressed in the caudal intermediate mesoderm progenitors that give rise to the distal pronephros and CS. Deficiency of tbx2a, tbx2b or both tbx2a/b reduced the size of the distal late (DL) segment, which was accompanied by a proximal convoluted segment (PCT) expansion. Further, tbx2a/b deficiency led to significantly larger CS clusters. These phenotypes were also observed in embryos with the from beyond (fby)(c144) mutation, which encodes a premature stop codon in the tbx2b T-box sequence. Conversely, overexpression of tbx2a and tbx2b in wild-type embryos expanded the DL segment where cells were comingled with the adjacent DE, and also decreased CS cell number, but notably did not alter PCT development-providing independent evidence that tbx2a and tbx2b are each necessary and sufficient to promote DL fate and suppress CS genesis. Epistasis studies indicated that tbx2a acts upstream of tbx2b to regulate the DL and CS fates, and likely has other targets as well. Retinoic acid (RA) addition and inhibition studies revealed that tbx2a and tbx2b are negatively regulated by RA signaling. Interestingly, the CS cell expansion that typifies tbx2a/b deficiency also occurred when blocking Notch signaling with the chemical DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). Ectopic activation of Notch in Tg(hsp70::Gal4; UAS::NICD)(NICD) embryos led to a reduced CS post heat-shock induction. To further examine the link between the tbx2a/b genes and Notch during CS formation, DAPT

  13. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer.

    PubMed

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-03-18

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.

  14. Zebrafish in hematology: sushi or science?

    PubMed Central

    Carradice, Duncan

    2008-01-01

    After a decade of the “modern era” of zebrafish hematology research, what have been their major contributions to hematology and what challenges does the model face? This review argues that, in hematology, zebrafish have demonstrated their suitability, are proving their utility, have supplied timely and novel discoveries, and are poised for further significant contributions. It presents an overview of the anatomy, physiology, and genetics of zebrafish hematopoiesis underpinning their use in hematology research. Whereas reverse genetic techniques enable functional studies of particular genes of interest, forward genetics remains zebrafish's particular strength. Mutants with diverse and interesting hematopoietic defects are emerging from multiple genetic screens. Some mutants model hereditary blood diseases, occasionally leading to disease genes first; others provide insights into developmental hematology. Models of malignant hematologic disorders provide tools for drug-target and pharmaceutics discovery. Numerous transgenic zebrafish with fluorescently marked blood cells enable live-cell imaging of inflammatory responses and host-pathogen interactions previously inaccessible to direct observation in vivo, revealing unexpected aspects of leukocyte behavior. Zebrafish disease models almost uniquely provide a basis for efficient whole animal chemical library screens for new therapeutics. Despite some limitations and challenges, their successes and discovery potential mean that zebrafish are here to stay in hematology research. PMID:18182572

  15. Zebrafish in hematology: sushi or science?

    PubMed

    Carradice, Duncan; Lieschke, Graham J

    2008-04-01

    After a decade of the "modern era" of zebrafish hematology research, what have been their major contributions to hematology and what challenges does the model face? This review argues that, in hematology, zebrafish have demonstrated their suitability, are proving their utility, have supplied timely and novel discoveries, and are poised for further significant contributions. It presents an overview of the anatomy, physiology, and genetics of zebrafish hematopoiesis underpinning their use in hematology research. Whereas reverse genetic techniques enable functional studies of particular genes of interest, forward genetics remains zebrafish's particular strength. Mutants with diverse and interesting hematopoietic defects are emerging from multiple genetic screens. Some mutants model hereditary blood diseases, occasionally leading to disease genes first; others provide insights into developmental hematology. Models of malignant hematologic disorders provide tools for drug-target and pharmaceutics discovery. Numerous transgenic zebrafish with fluorescently marked blood cells enable live-cell imaging of inflammatory responses and host-pathogen interactions previously inaccessible to direct observation in vivo, revealing unexpected aspects of leukocyte behavior. Zebrafish disease models almost uniquely provide a basis for efficient whole animal chemical library screens for new therapeutics. Despite some limitations and challenges, their successes and discovery potential mean that zebrafish are here to stay in hematology research.

  16. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.

    PubMed

    Trivedi, Chintan A; Bollmann, Johann H

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  17. Histocompatibility and Hematopoietic Transplantation in the Zebrafish

    PubMed Central

    de Jong, Jill L. O.; Zon, Leonard I.

    2012-01-01

    The zebrafish has proven to be an excellent model for human disease, particularly hematopoietic diseases, since these fish make similar types of blood cells as humans and other mammals. The genetic program that regulates the development and differentiation of hematopoietic cells is highly conserved. Hematopoietic stem cells (HSCs) are the source of all the blood cells needed by an organism during its lifetime. Identifying an HSC requires a functional assay, namely, a transplantation assay consisting of multilineage engraftment of a recipient and subsequent serial transplant recipients. In the past decade, several types of hematopoietic transplant assays have been developed in the zebrafish. An understanding of the major histocompatibility complex (MHC) genes in the zebrafish has lagged behind transplantation experiments, limiting the ability to perform unbiased competitive transplantation assays. This paper summarizes the different hematopoietic transplantation experiments performed in the zebrafish, both with and without immunologic matching, and discusses future directions for this powerful experimental model of human blood diseases. PMID:22778744

  18. Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells.

    PubMed

    Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez

    2015-04-20

    Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells.

  19. Sphingosine-1-phosphate receptors regulate individual cell behaviours underlying the directed migration of prechordal plate progenitor cells during zebrafish gastrulation.

    PubMed

    Kai, Masatake; Heisenberg, Carl-Philipp; Tada, Masazumi

    2008-09-01

    During vertebrate gastrulation, cells forming the prechordal plate undergo directed migration as a cohesive cluster. Recent studies revealed that E-cadherin-mediated coherence between these cells plays an important role in effective anterior migration, and that platelet-derived growth factor (Pdgf) appears to act as a guidance cue in this process. However, the mechanisms underlying this process at the individual cell level remain poorly understood. We have identified miles apart (mil) as a suppressor of defective anterior migration of the prospective prechordal plate in silberblick (slb)/wnt11 mutant embryos, in which E-cadherin-mediated coherence of cell movement is reduced. mil encodes Edg5, a sphingosine-1-phosphate (S1P) receptor belonging to a family of five G-protein-coupled receptors (S1PRs). S1P is a lipid signalling molecule that has been implicated in regulating cytoskeletal rearrangements, cell motility and cell adhesion in a variety of cell types. We examined the roles of Mil in anterior migration of prechordal plate progenitor cells and found that, in slb embryos injected with mil-MO, cells migrate with increased motility but decreased directionality, without restoring the coherence of cell migration. This indicates that prechordal plate progenitor cells can migrate effectively as individuals, as well as in a coherent cluster of cells. Moreover, we demonstrate that Mil regulates cell motility and polarisation through Pdgf and its intracellular effecter PI3K, but modulates cell coherence independently of the Pdgf/PI3K pathway, thus co-ordinating cell motility and coherence. These results suggest that the net migration of prechordal plate progenitors is determined by different parameters, including motility, persistence and coherence.

  20. Zebrafish teratogenicity testing.

    PubMed

    Brannen, Kimberly C; Charlap, Jeffrey H; Lewis, Elise M

    2013-01-01

    As a model for teratogenicity research, zebrafish are gaining popularity and creditability. Zebrafish embryos have been proven to be a highly valuable tool in genetics and developmental biology research and have advanced our understanding of a number of known developmental toxicants. It has yet to be determined conclusively how reliably a zebrafish embryo screening assay predicts what will happen in mammalian models, but results from initial assessments have been encouraging. Here we have presented procedures for the basic care of a zebrafish colony to support embryo production, embryo collection and culturing, and teratogenicity experiments.

  1. The Zebrafish Secretome

    PubMed Central

    2008-01-01

    Abstract The secretome is a functionally rich proteome subset, including cellular membrane and extracellular proteins processed through the secretory pathway. In this study, Danio rerio and Homo sapiens RefSeq proteins were analyzed with SignalP, TargetP, Phobius, and pTarget algorithms. About 16.5% of the zebrafish proteome and 17.0% of the human proteome possessed predicted N-terminal signal sequences. Nearly half of these proteins were subsequently classified as soluble, as they lacked predicted transmembrane domains. The soluble proteins were further subclassified, predicting 1345 (3.8%) zebrafish and 1207 (3.2%) human proteins as extracellular. Comparison of the zebrafish and human soluble secretome proteins identified 372 as orthologs, on the basis of reciprocal BLAST best hits. The computational characterization of the zebrafish proteins found many more members of the secretome than annotated in the SwissProt database. Only 180 of the 2078 zebrafish SwissProt protein entries, and 995 of the 19,294 human SwissProt protein entries were annotated with secreted protein locales. A specific investigation of the fibroblast growth factor and matrix metalloproteinase (MMP) protein families confirmed the prediction data and generated annotation of three additional putative MMP zebrafish proteins. This study presents the first known published description of the zebrafish secretome since the completion of the zebrafish genome sequencing project. PMID:18554177

  2. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  3. Electroporation of adult zebrafish.

    PubMed

    Rao, N Madhusudhana; Rambabu, K Murali; Rao, S Harinarayana

    2008-01-01

    We generated transient transgenic zebrafish by applying electrical pulses subsequent to injection of DNA into muscle tissue of 3-6-month old adult zebrafish. Electroporation parameters, such as number of pulses, voltage, and amount of plasmid DNA, were optimized and found that 6 pulses of 40 V/cm at 15 mug/fish increased the luciferase expression by 10-fold compared with those in controls. By measuring the expression of luciferase, in vivo by electroporation in adult zebrafish and in vitro using fish cell line (Xiphophorus xiphidium A2 cells), the strength of three promoters (CMV, human EF-1alpha, and Xenopus EF-1alpha) was compared. Subsequent to electroporation after injecting DNA in the mid region of zebrafish, expression of green fluorescent protein was found far away from the site of injection in the head and the tail sections. Thus, electroporation in adult zebrafish provides a rapid way of testing the behavior of gene sequences in the whole organism.

  4. Detection of Autofluorescent Mycobacterium Chelonae in Living Zebrafish

    PubMed Central

    Whipps, Christopher M.; Moss, Larry G.; Sisk, Dana M.; Murray, Katrina N.; Tobin, David M.

    2014-01-01

    Abstract Mycobacterium chelonae is widespread in aquatic environments and can cause mycobacteriosis with low virulence in zebrafish. The risk of infection in zebrafish is exacerbated in closed-recirculating aquatic systems where rapidly growing mycobacteria can live on biofilms, as well as in zebrafish tissues. We have discovered a method of identifying and visualizing M. chelonae infections in living zebrafish using endogenous autofluorescence. Infected larvae are easily identified and can be excluded from experimental results. Because infection may reduce fertility in zebrafish, the visualization of active infection in contaminated eggs of transparent casper females simplifies screening. Transparent fish are also particularly useful as sentinels that can be examined periodically for the presence of autofluorescence, which can then be tested directly for M. chelonae. PMID:24451037

  5. Detection of autofluorescent Mycobacterium chelonae in living zebrafish.

    PubMed

    Whipps, Christopher M; Moss, Larry G; Sisk, Dana M; Murray, Katrina N; Tobin, David M; Moss, Jennifer B

    2014-02-01

    Mycobacterium chelonae is widespread in aquatic environments and can cause mycobacteriosis with low virulence in zebrafish. The risk of infection in zebrafish is exacerbated in closed-recirculating aquatic systems where rapidly growing mycobacteria can live on biofilms, as well as in zebrafish tissues. We have discovered a method of identifying and visualizing M. chelonae infections in living zebrafish using endogenous autofluorescence. Infected larvae are easily identified and can be excluded from experimental results. Because infection may reduce fertility in zebrafish, the visualization of active infection in contaminated eggs of transparent casper females simplifies screening. Transparent fish are also particularly useful as sentinels that can be examined periodically for the presence of autofluorescence, which can then be tested directly for M. chelonae.

  6. Analysis of myostatin gene structure, expression and function in zebrafish.

    PubMed

    Xu, Cheng; Wu, Gang; Zohar, Yonathan; Du, Shao-Jun

    2003-11-01

    Myostatin is a member of the TGF-beta family that functions as a negative regulator of skeletal muscle development and growth in mammals. Recently, Myostatin has also been identified in fish; however, its role in fish muscle development and growth remains unknown. We have reported here the isolation and characterization of myostatin genomic gene from zebrafish and analysis of its expression in zebrafish embryos, larvae and adult skeletal muscles. Our data showed that myostatin was weakly expressed in early stage zebrafish embryos, and strongly expressed in swimming larvae, juvenile and skeletal muscles of adult zebrafish. Transient expression analysis revealed that the 1.2 kb zebrafish myostatin 5' flanking sequence could direct green fluorescent protein (GFP) expression predominantly in muscle cells, suggesting that the myostatin 5' flanking sequence contained regulatory elements required for muscle expression. To determine the biological function of Myostatin in fish, we generated a transgenic line that overexpresses the Myostatin prodomain in zebrafish skeletal muscles using a muscle-specific promoter. The Myostatin prodomain could act as a dominant negative and inhibit Myostatin function in skeletal muscles. Transgenic zebrafish expressing the Myostatin prodomain exhibited no significant change in myogenic gene expression and differentiation of slow and fast muscle cells at their embryonic stage. The transgenic fish, however, exhibited an increased number of myofibers in skeletal muscles, but no significant difference in fiber size. Together, these data demonstrate that Myostatin plays an inhibitory role in hyperplastic muscle growth in zebrafish.

  7. Conservation and Early Expression of Zebrafish Tyrosine Kinases Support the Utility of Zebrafish as a Model for Tyrosine Kinase Biology

    PubMed Central

    Challa, Anil Kumar

    2013-01-01

    Abstract Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome. PMID:23234507

  8. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology.

    PubMed

    Challa, Anil Kumar; Chatti, Kiranam

    2013-09-01

    Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome.

  9. Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species.

    PubMed

    Dahm, Ralf; Geisler, Robert

    2006-01-01

    In recent years, the zebrafish has become one of the most prominent vertebrate model organisms used to study the genetics underlying development, normal body function, and disease. The growing interest in zebrafish research was paralleled by an increase in tools and methods available to study zebrafish. While zebrafish research initially centered on mutagenesis screens (forward genetics), recent years saw the establishment of reverse genetic methods (morpholino knock-down, TILLING). In addition, increasingly sophisticated protocols for generating transgenic zebrafish have been developed and microarrays are now available to characterize gene expression on a near genome-wide scale. The identification of loci underlying specific traits is aided by genetic, physical, and radiation hybrid maps of the zebrafish genome and the zebrafish genome project. As genomic resources for aquacultural species are increasingly being generated, a meaningful interaction between zebrafish and aquacultural research now appears to be possible and beneficial for both sides. In particular, research on nutrition and growth, stress, and disease resistance in the zebrafish can be expected to produce results applicable to aquacultural fish, for example, by improving husbandry and formulated feeds. Forward and reverse genetics approaches in the zebrafish, together with the known conservation of synteny between the species, offer the potential to identify and verify candidate genes for quantitative trait loci (QTLs) to be used in marker-assisted breeding. Moreover, some technologies from the zebrafish field such as TILLING may be directly transferable to aquacultural research and production.

  10. Irf6 directly regulates Klf17 in zebrafish periderm and Klf4 in murine oral epithelium, and dominant-negative KLF4 variants are present in patients with cleft lip and palate

    PubMed Central

    Liu, Huan; Leslie, Elizabeth J.; Jia, Zhonglin; Smith, Tiffany; Eshete, Mekonen; Butali, Azeez; Dunnwald, Martine; Murray, Jeffrey; Cornell, Robert A.

    2016-01-01

    Non-syndromic (NS) cleft lip with or without cleft palate (CL/P) is a common disorder with a strong genetic underpinning. Genome-wide association studies have detected common variants associated with this disorder, but a large portion of the genetic risk for NSCL/P is conferred by unidentified rare sequence variants. Mutations in IRF6 (Interferon Regulatory Factor 6) and GRHL3 (Grainyhead-like 3) cause Van der Woude syndrome, which includes CL/P. Both genes encode members of a regulatory network governing periderm differentiation in model organisms. Here, we report that Krüppel-like factor 17 (Klf17), like Grhl3, acts downstream of Irf6 in this network in zebrafish periderm. Although Klf17 expression is absent from mammalian oral epithelium, a close homologue, Klf4, is expressed in this tissue and is required for the differentiation of epidermis. Chromosome configuration capture and reporter assays indicated that IRF6 directly regulates an oral-epithelium enhancer of KLF4. To test whether rare missense variants of KLF4 contribute risk for NSCL/P, we sequenced KLF4 in approximately 1000 NSCL/P cases and 300 controls. By one statistical test, missense variants of KLF4 as a group were enriched in cases versus controls. Moreover, two patient-derived KLF4 variants disrupted periderm differentiation upon forced expression in zebrafish embryos, suggesting that they have dominant-negative effect. These results indicate that rare NSCL/P risk variants can be found in members of the gene regulatory network governing periderm differentiation. PMID:26692521

  11. Rapid analysis of hypolipidemic drugs in a live zebrafish assay.

    PubMed

    Zhou, Juan; Xu, Yi-Qiao; Guo, Sheng-Ya; Li, Chun-Qi

    2015-01-01

    Hyperlipidemia is the most common form of dyslipidemia, which is the key risk factor for cardiovascular disease and stroke. The development of effective and safe drug treatments for hyperlipidemia has been proven challenging. In this study, taking advantage of the transparency of larval zebrafish, we developed a zebrafish hyperlipidemia model for drug screening and efficacy assessment. Zebrafish at 5 d.p.f (days post fertilization) were fed with 0.1% egg yolk for 48 h (hours), followed by drug treatment for 24h or 48 h. Tested drugs were administered into the zebrafish by direct soaking. Drug effect was evaluated based on quantitative analysis of Oil Red O (ORO) in zebrafish vena caudalis. All 5 human hypolipidemic drugs (simvastatin, lovastatin, ezetimibe, bezafibrate and hyodesoxycholic acid) showed significant hypolipidemic effects (p<0.01) in a dose-dependent manner in the zebrafish hyperlipidemia model. 'We also found a well-known Chinese tea Pu-erh tea significantly reduced lipids in this model (p<0.001 and p<0.01). Our results demonstrate that the zebrafish hyperlipidemia model developed and validated in this study could be used for in vivo hyperlipidemia studies and drug screening and for assessing hypolipidemic drugs with different mechanisms. Copyright © 2014. Published by Elsevier Inc.

  12. Measuring zebrafish turning rate.

    PubMed

    Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio

    2015-06-01

    Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.

  13. Tracking zebrafish larvae in group – Status and perspectives☆

    PubMed Central

    Martineau, Pierre R.; Mourrain, Philippe

    2013-01-01

    Video processing is increasingly becoming a standard procedure in zebrafish behavior investigations as it enables higher research throughput and new or better measures. This trend, fostered by the ever increasing performance-to-price ratio of the required recording and processing equipment, should be expected to continue in the foreseeable future, with video-processing based methods permeating more and more experiments and, as a result, expanding the very role of behavioral studies in zebrafish research. To assess whether the routine video tracking of zebrafish larvae directly in the Petri dish is a capability that can be expected in the near future, the key processing concepts are discussed and illustrated on published zebrafish studies when available or other animals when not. PMID:23707495

  14. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  15. Chromatin modification in zebrafish development.

    PubMed

    Cayuso Mas, Jordi; Noël, Emily S; Ober, Elke A

    2011-01-01

    The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.

  16. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    PubMed

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing.

  17. Mycobacteriosis in zebrafish colonies.

    PubMed

    Whipps, Christopher M; Lieggi, Christine; Wagner, Robert

    2012-01-01

    Mycobacteriosis, a chronic bacterial infection, has been associated with severe losses in some zebrafish facilities and low-level mortalities and unknown impacts in others. The occurrence of at least six different described species (Mycobacterium abscessus, M. chelonae, M. fortuitum, M. haemophilum, M. marinum, M. peregrinum) from zebrafish complicates diagnosis and control because each species is unique. As a generalization, mycobacteria are often considered opportunists, but M. haemophilum and M. marinum appear to be more virulent. Background genetics of zebrafish and environmental conditions influence the susceptibility of fish and progression of disease, emphasizing the importance of regular monitoring and good husbandry practices. A combined approach to diagnostics is ultimately the most informative, with histology as a first-level screen, polymerase chain reaction for rapid detection and species identification, and culture for strain differentiation. Occurrence of identical strains of Mycobacterium in both fish and biofilms in zebrafish systems suggests transmission can occur when fish feed on infected tissues or tank detritus containing mycobacteria. Within a facility, good husbandry practices and sentinel programs are essential for minimizing the impacts of mycobacteria. In addition, quarantine and screening of animals coming into a facility is important for eliminating the introduction of the more severe pathogens. Elimination of mycobacteria from an aquatic system is likely not feasible because these species readily establish biofilms on surfaces even in extremely low nutrient conditions. Risks associated with each commonly encountered species need to be identified and informed management plans developed. Basic research on the growth characteristics, disinfection, and pathogenesis of zebrafish mycobacteria is critical moving forward.

  18. Mycobacteriosis in Zebrafish Colonies

    PubMed Central

    Whipps, Christopher M.; Lieggi, Christine; Wagner, Robert

    2016-01-01

    Mycobacteriosis, a chronic bacterial infection, has been associated with severe losses in some zebrafish facilities and low-level mortalities and unknown impacts in others. The occurrence of at least six different described species (Mycobacterium abscessus, M. chelonae, M. fortuitum, M. haemophilum, M. marinum, M. peregrinum) from zebrafish complicates diagnosis and control because each species is unique. As a generalization, mycobacteria are often considered opportunists, but M. haemophilum and M. marinum appear to be more virulent. Background genetics of zebrafish and environmental conditions influence the susceptibility of fish and progression of disease, emphasizing the importance of regular monitoring and good husbandry practices. A combined approach to diagnostics is ultimately the most informative, with histology as a first-level screen, polymerase chain reaction for rapid detection and species identification, and culture for strain differentiation. Occurrence of identical strains of Mycobacterium in both fish and biofilms in zebrafish systems suggests transmission can occur when fish feed on infected tissues or tank detritus containing mycobacteria. Within a facility, good husbandry practices and sentinel programs are essential for minimizing the impacts of mycobacteria. In addition, quarantine and screening of animals coming into a facility is important for eliminating the introduction of the more severe pathogens. Elimination of mycobacteria from an aquatic system is likely not feasible because these species readily establish biofilms on surfaces even in extremely low nutrient conditions. Risks associated with each commonly encountered species need to be identified and informed management plans developed. Basic research on the growth characteristics, disinfection, and pathogenesis of zebrafish mycobacteria is critical moving forward. PMID:23382341

  19. Dystrophic muscle improvement in zebrafish via increased heme oxygenase signaling

    PubMed Central

    Kawahara, Genri; Gasperini, Molly J.; Myers, Jennifer A.; Widrick, Jeffrey J.; Eran, Alal; Serafini, Peter R.; Alexander, Matthew S.; Pletcher, Mathew T.; Morris, Carl A.; Kunkel, Louis M.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is caused by a lack of the dystrophin protein and has no effective treatment at present. Zebrafish provide a powerful in vivo tool for high-throughput therapeutic drug screening for the improvement of muscle phenotypes caused by dystrophin deficiency. Using the dystrophin-deficient zebrafish, sapje, we have screened a total of 2640 compounds with known modes of action from three drug libraries to identify modulators of the disease progression. Six compounds that target heme oxygenase signaling were found to rescue the abnormal muscle phenotype in sapje and sapje-like, while upregulating the inducible heme oxygenase 1 (Hmox1) at the protein level. Direct Hmox1 overexpression by injection of zebrafish Hmox1 mRNA into fertilized eggs was found to be sufficient for a dystrophin-independent restoration of normal muscle via an upregulation of cGMP levels. In addition, treatment of mdx5cv mice with the PDE5 inhibitor, sildenafil, which was one of the six drugs impacting the Hmox1 pathway in zebrafish, significantly increased the expression of Hmox1 protein, thus making Hmox1 a novel target for the improvement of dystrophic symptoms. These results demonstrate the translational relevance of our zebrafish model to mammalian models and support the use of zebrafish to screen for new drugs to treat human DMD. The discovery of a small molecule and a specific therapeutic pathway that might mitigate DMD disease progression could lead to significant clinical implications. PMID:24234649

  20. High magnetic field induced otolith fusion in the zebrafish larvae

    PubMed Central

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an “all-or-none” manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  1. An In Vivo Method to Quantify Lymphangiogenesis in Zebrafish

    PubMed Central

    Hoffman, Scott J.; Psaltis, Peter J.; Clark, Karl J.; Spoon, Daniel B.; Chue, Colin D.; Ekker, Stephen C.; Simari, Robert D.

    2012-01-01

    Background Lymphangiogenesis is a highly regulated process involved in the pathogenesis of disease. Current in vivo models to assess lymphangiogenesis are largely unphysiologic. The zebrafish is a powerful model system for studying development, due to its rapid growth and transparency during early stages of life. Identification of a network of trunk lymphatic capillaries in zebrafish provides an opportunity to quantify lymphatic growth in vivo. Methods and Results Late-phase microangiography was used to detect trunk lymphatic capillaries in zebrafish 2- and 3-days post-fertilization. Using this approach, real-time changes in lymphatic capillary development were measured in response to modulators of lymphangiogenesis. Recombinant human vascular endothelial growth factor (VEGF)-C added directly to the zebrafish aqueous environment as well as human endothelial and mouse melanoma cell transplantation resulted in increased lymphatic capillary growth, while morpholino-based knockdown of vegfc and chemical inhibitors of lymphangiogenesis added to the aqueous environment resulted in decreased lymphatic capillary growth. Conclusion Lymphatic capillaries in embryonic and larval zebrafish can be quantified using late-phase microangiography. Human activators and small molecule inhibitors of lymphangiogenesis, as well as transplanted human endothelial and mouse melanoma cells, alter lymphatic capillary development in zebrafish. The ability to rapidly quantify changes in lymphatic growth under physiologic conditions will allow for broad screening of lymphangiogenesis modulators, as well as help define cellular roles and elucidate pathways of lymphatic development. PMID:23028871

  2. Zebrafish models of cerebrovascular disease.

    PubMed

    Walcott, Brian P; Peterson, Randall T

    2014-04-01

    Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.

  3. Attraction rules: germ cell migration in zebrafish.

    PubMed

    Raz, Erez; Reichman-Fried, Michal

    2006-08-01

    The migration of zebrafish primordial germ cell towards the region where the gonad develops is guided by the chemokine SDF-1a. Recent studies show that soon after their specification, the cells undergo a series of morphological alterations before they become motile and are able to respond to attractive cues. As migratory cells, primordial germ cells move towards their target while correcting their path upon exiting a cyclic phase in which morphological cell polarity is lost. In the following stages, the cells gather at specific locations and move as cell clusters towards their final target. In all of these stages, zebrafish germ cells respond as individual cells to alterations in the shape of the sdf-1a expression domain, by directed migration towards their target - the position where the gonad develops.

  4. Social dominance modulates eavesdropping in zebrafish

    PubMed Central

    Abril-de-Abreu, Rodrigo; Cruz, Ana S.; Oliveira, Rui F.

    2015-01-01

    Group living animals may eavesdrop on signalling interactions between conspecifics and integrate it with their own past social experience in order to optimize the use of relevant information from others. However, little is known about this interplay between public (eavesdropped) and private social information. To investigate it, we first manipulated the dominance status of bystander zebrafish. Next, we either allowed or prevented bystanders from observing a fight. Finally, we assessed their behaviour towards the winners and losers of the interaction, using a custom-made video-tracking system and directional analysis. We found that only dominant bystanders who had seen the fight revealed a significant increase in directional focus (a measure of attention) towards the losers of the fights. Furthermore, our results indicate that information about the fighters' acquired status was collected from the signalling interaction itself and not from post-interaction status cues, which implies the existence of individual recognition in zebrafish. Thus, we show for the first time that zebrafish, a highly social model organism, eavesdrop on conspecific agonistic interactions and that this process is modulated by the eavesdroppers' dominance status. We suggest that this type of integration of public and private information may be ubiquitous in social learning processes. PMID:26361550

  5. Somitogenesis in zebrafish.

    PubMed

    Holley, S A; Nüsslein-Volhard, C

    2000-01-01

    Both genetic and embryological studies in the zebrafish, Danio rerio, have contributed to our general understanding of how somites form and differentiate. In the zebrafish, mutants have been isolated that have specific effects on virtually every aspect of somite development. The fss-type mutants, defining 5 genes, affect somite segmentation and epithelialization. The you-type mutants, comprising 7 genes, and mutants in another 13 genes defective in notochord formation, have somites with abnormal pattern and morphology. Eighteen genes have been identified that are required for the differentiation and maintenance of the somitic musculature, and 2 genes have been identified that are involved in the development of motoneurons that innervate the somitic musculature. The true utility of the zebrafish lies in the ability to combine genetic analysis with embryological experimentation. Such analysis of somite segmentation suggests that homologues of both the Drosophila pair-rule and segment polarity genes, her1 and Sonic hedge-hog, respectively, are involved generating periodicity during somitogenesis. The Sonic hedge-hog protein secreted from the notochord also induces the formation of specific muscle types including the slow muscle fibers which are initially induced in the medial somite and undergo a series of morphological transitions including migration through the somite to the lateral surface where they complete their differentiation. The role of the notochord in patterning the somite is also demonstrated by its involvement in regulating the permissiveness of the somite to the extension of axons of primary motoneurons.

  6. Zebrafish Models for Dyslipidemia and Atherosclerosis Research

    PubMed Central

    Schlegel, Amnon

    2016-01-01

    Atherosclerotic cardiovascular disease is the leading cause of death. Elevated circulating concentrations of lipids are a central pathogenetic driver of atherosclerosis. While numerous effective therapies for this condition have been developed, there is substantial unmet need for this pandemic illness. Here, I will review nutritional, physiological, genetic, and pathological discoveries in the emerging zebrafish model for studying dyslipidemia and atherosclerosis. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of dyslipidemia and atherosclerosis targets are stressed through summary of recent findings. An emerging literature shows that zebrafish, through retention of a cetp ortholog gene and high sensitivity to ingestion of excess cholesterol, rapidly develops hypercholesterolemia, with a pattern of distribution of lipid species in lipoprotein particles similar to humans. Furthermore, recent studies leveraging the optical transparency of zebrafish larvae to monitor the fate of these ingested lipids have provided exciting insights to the development of dyslipidemia and atherosclerosis. Future directions for investigation are considered, with particular attention to the potential for in vivo cell biological study of atherosclerotic plaques. PMID:28018294

  7. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.

    PubMed

    Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen

    2014-08-01

    A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.

  8. The influence of temperature on adult zebrafish sensitivity to pentylenetetrazole.

    PubMed

    Menezes, Fabiano Peres; Da Silva, Rosane Souza

    2017-09-01

    Pentylenetetrazole (PTZ) is one of the most valuable drugs used to induce seizure-like state in zebrafish especially considering the pharmacological screening for anticonvulsants and the study of basic mechanisms of epilepsy. Here, the effect of gender, weight and changes in temperature on latency to adult zebrafish reach classical seizure states induced by PTZ (10mM) was evaluated. Gender and weight (200-250mg versus 400-500mg) did not affect the profile of response to PTZ. When water temperature was changed from 22 to 30°C the lower temperature increased the latency time to reach seizure states and the higher temperature significantly decreased it, in comparison to the control group maintained at 26°C. The blockage of kainate receptors by DNQX (10μM) were unable to prevent the increased susceptibility of adult zebrafish exposed to hyperthermia and PTZ-induced seizures. The NMDA block by MK-801 (2.5μM) prevented the additive effect of hyperthermia on PTZ effects in adult zebrafish. This report emphasize that PTZ model in adult zebrafish exhibits no confounder factors from gender and weight, but water temperature is able to directly affect the response to PTZ, especially through a mechanism related to NMDA receptors. Copyright © 2017. Published by Elsevier B.V.

  9. Ozone promotes regeneration by regulating the inflammatory response in zebrafish.

    PubMed

    Hao, Kenan; Li, Yanhao; Feng, Jianyu; Zhang, Wenqing; Zhang, Yiyue; Ma, Ning; Zeng, Qingle; Pang, Huajin; Wang, Chunyan; Xiao, Lijun; He, Xiaofeng

    2015-09-01

    Ozone is thought to advance wound healing by inhibiting inflammation, but the mechanism of this phenomenon has not been determined. Although the zebrafish is often used in regeneration experiments, there has been no report of zebrafish treated with ozonated water. We successfully established a zebrafish model of ozonated water treatment and demonstrate that ozonated water stimulates the regeneration of the zebrafish caudal fin, its mechanism, and time dependence. The growth rate of the caudal fin and the number of neutrophils migrating to the caudal fin wound after resection were higher in the experimental (ozonated) group than in the control group, preliminarily confirming that ozone-promoted regeneration is related to the stimulation of an early inflammatory response by ozone. Ozone modulated the expression of tumor necrosis factor-α (TNF-α) in two ways by regulating interleukin 10 (IL-10) expression. Therefore, ozone promotes tissue regeneration by regulating the inflammatory pathways. This effect of ozone in an experimental zebrafish model is demonstrated for the first time, confirming its promotion of wound healing and the mechanism of its effect in tissue regeneration. These results will open up new directions for ozone and regeneration research.

  10. Zebrafish (Danio rerio) embryos as a model for testing proteratogens.

    PubMed

    Weigt, Stefan; Huebler, Nicole; Strecker, Ruben; Braunbeck, Thomas; Broschard, Thomas H

    2011-03-15

    Zebrafish embryos have been shown to be a useful model for the detection of direct acting teratogens. This communication presents a protocol for a 3-day in vitro zebrafish embryo teratogenicity assay and describes results obtained for 10 proteratogens: 2-acetylaminofluorene, benzo[a]pyrene, aflatoxin B(1), carbamazepine, phenytoin, trimethadione, cyclophosphamide, ifosfamide, tegafur and thio-TEPA. The selection of the test substances accounts for differences in structure, origin, metabolism and water solubility. Apart from 2-acetylaminofluorene, which mainly produces lethal effects, all proteratogens tested were teratogenic in zebrafish embryos exposed for 3 days. The test substances and/or the substance class produced characteristic patterns of fingerprint endpoints. Several substances produced effects that could be identified already at 1 dpf (days post fertilization), whereas the effects of others could only be identified unambiguously after hatching at ≥ 3 dpf. The LC₅₀ and EC₅₀ values were used to calculate the teratogenicity index (TI) for the different substances, and the EC₂₀ values were related to human plasma concentrations. Results lead to the conclusion that zebrafish embryos are able to activate proteratogenic substances without addition of an exogenous metabolic activation system. Moreover, the teratogenic effects were observed at concentrations relevant to human exposure data. Along with other findings, our results indicate that zebrafish embryos are a useful alternative method for traditional teratogenicity testing with mammalian species.

  11. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. © 2015 SETAC.

  12. Nicotinic involvement in memory function in zebrafish.

    PubMed

    Levin, Edward D; Chen, Elaine

    2004-01-01

    Zebrafish are an emerging model for the study of the molecular mechanisms of brain function. To conduct studies of the neural bases of behavior in zebrafish, we must understand the behavioral function of zebrafish and how it is altered by perturbations of brain function. This study determined nicotine actions on memory function in zebrafish. With the methods that we have developed to assess memory in zebrafish using delayed spatial alternation (DSA), we determined the dose effect function of acute nicotine on memory function in zebrafish. As in rodents and primates, low nicotine doses improve memory in zebrafish, while high nicotine doses have diminished effect and can impair memory. This study shows that nicotine affects memory function in zebrafish much like in rats, mice, monkeys and humans. Now, zebrafish can be used to help understand the molecular mechanisms crucial to nicotine effects on memory.

  13. Spatial and Temporal Control of Transgene Expression in Zebrafish

    PubMed Central

    Stankunas, Kryn

    2014-01-01

    Transgenic zebrafish research has provided valuable insights into gene functions and cell behaviors directing vertebrate development, physiology, and disease models. Most approaches use constitutive transgene expression and therefore do not provide control over the timing or levels of transgene induction. We describe an inducible gene expression system that uses new tissue-specific zebrafish transgenic lines that express the Gal4 transcription factor fused to the estrogen-binding domain of the human estrogen receptor. We show these Gal4-ERT driver lines confer rapid, tissue-specific induction of UAS-controlled transgenes following tamoxifen exposure in both embryos and adult fish. We demonstrate how this technology can be used to define developmental windows of gene function by spatiotemporal-controlled expression of constitutively active Notch1 in embryos. Given the array of existing UAS lines, the modular nature of this system will enable many previously intractable zebrafish experiments. PMID:24643048

  14. Genome editing using artificial site-specific nucleases in zebrafish.

    PubMed

    Hisano, Yu; Ota, Satoshi; Kawahara, Atsuo

    2014-01-01

    Zebrafish is a model vertebrate suitable for genetic analysis. Forward genetic analysis via chemical mutagenesis screening has established a variety of zebrafish mutants that are defective in various types of organogenesis, and the genes responsible for the individual mutants have been identified from genome mapping. On the other hand, reverse genetic analysis via targeted gene disruption using embryonic stem (ES) cells (e.g., knockout mouse) can uncover gene functions by investigating the phenotypic effects. However, this approach is mostly limited to mice among the vertebrate models because of the difficulty in establishing ES cells. Recently, new gene targeting technologies, such as the transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems, have been developed: that can directly introduce genome modifications at the targeted genomic locus. Here, we summarize these new and powerful genome editing techniques for the study of zebrafish.

  15. Zebrafish: A Model for the Study of Addiction Genetics

    PubMed Central

    Klee, Eric W; Schneider, Henning; Clark, Karl; Cousin, Margot; Ebbert, Jon; Hooten, Michael; Karpyak, Victor; Warner, David; Ekker, Stephen

    2013-01-01

    Drug abuse and dependence are multifaceted disorders with complex genetic underpinnings. Identifying specific genetic correlates is challenging and may be more readily accomplished by defining endophenotypes specific for addictive disorders. Symptoms and syndromes, including acute drug response, consumption, preference, and withdrawal, are potential endophenotypes characterizing addiction that have been investigated using model organisms. We present a review of major genes involved in serotonergic, dopaminergic, GABAergic, and adrenoreceptor signaling that are considered to be directly involved in nicotine, opioid, cannabinoid, and ethanol use and dependence. The zebrafish genome encodes likely homologs of the vast majority of these loci. We also review the known expression patterns of these genes in zebrafish. The information presented in this review provides support for the use of zebrafish as a viable model for studying genetic factors related to drug addiction. Expansion of investigations into drug response using model organisms holds the potential to advance our understanding of drug response and addiction in humans. PMID:22207143

  16. Zebrafish Assays of Ciliopathies

    PubMed Central

    Zaghloul, Norann A.; Katsanis, Nicholas

    2013-01-01

    In light of the growing list of human disorders associated with their dysfunction, primary cilia have recently come to attention as being important regulators of developmental signaling pathways and downstream processes. These organelles, present on nearly every vertebrate cell type, are highly conserved structures allowing for study across a range of species. Zebrafish, in particular, have emerged as useful organisms in which to explore the consequences of ciliary dysfunction and to model human ciliopathies. Here, we present a range of useful techniques that allow for investigation of various aspects of ciliary function. The described assays capitalize on the hallmark gastrulation defects associated with ciliary defects as well as relative ease of visualization of cilia in whole-mount embryos. Further, we describe our recently developed assay for querying functionality of human gene variants in live developing embryos. Finally, a current catalog of known zebrafish ciliary mutant lines is included. The techniques presented here provide a basic toolkit for in vivo investigation of both the biological and genetic mechanisms underlying a growing class of human diseases. PMID:21951534

  17. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    PubMed

    Wood, A J; Currie, P D

    2014-11-01

    fish, a model of MDC1A. Secondly high-throughput small molecule screens not only provide effective therapies, but also an alternative strategy for investigating CMD in zebrafish. In this instance insight into disease mechanism is derived in reverse. Zebrafish models are therefore clearly of critical importance in the advancement of regenerative medicine strategies in CMD. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation.

  18. Evolutionary conservation of CCND1-ORAOV1-FGF19-FGF4 locus from zebrafish to human.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2003-07-01

    The CCND1-ORAOV1-FGF19-FGF4-FGF3-FLJ10261-FADD-PPFIA1-EMS1 locus on human chromosome 11q13 is frequently amplified in esophageal cancer, breast cancer, and bladder tumors. FGF19, FGF4 and FGF3 genes are implicated in embryogenesis and carcinogenesis. We proposed in 2002 the hypothesis that mouse Fgf15 might be the ortholog of human FGF19 based on comparative genomics. Here, we identified zebrafish fgf19 and oraov1 genes by using bioinformatics to demonstrate the hypothesis. Zebrafish fgf19 gene, consisting of three exons, was located around nucleotide position 121802-124963 of zebrafish genome draft sequence AL929586.12 in the reverse orientation. Zebrafish fgf19 (209 aa) was more homologous to chicken fgf19 and human FGF19 than to rodent Fgf15. Zebrafish oraov1 gene, consisting of five exons, was located around nucleotide position 112172-115838 of AL929586.12 in the reverse orientation. Zebrafish oraov1 protein (141 aa) was more homologous to human ORAOV1 than to rodent Oraov1. The CCND1-ORAOV1-FGF19-FGF4 locus was well conserved between human and zebrafish genomes in the order of genes, in the direction of genes, and in the exon-intron structure. Rat Ccnd1-Oraov1-Fgf15-Fgf4 locus was synthenic to mouse Ccnd1-Oraov1 (also known as 2210010N10Rik)-Fgf15-Fgf4 locus. Fgf15, homologous to human FGF19 and zebrafish fgf19, was located on the synthenic locus of human FGF19 and zebrafish fgf19 within rodent genomes. Based on the evolutionary conservation of the CCND1-ORAOV1-FGF19-FGF4 locus from zebrafish to human, it was concluded that Fgf15 gene is the rodent ortholog of human FGF19 gene.

  19. Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish.

    PubMed

    Tsachaki, Maria; Meyer, Arne; Weger, Benjamin; Kratschmar, Denise V; Tokarz, Janina; Adamski, Jerzy; Belting, Heinz-Georg; Affolter, Markus; Dickmeis, Thomas; Odermatt, Alex

    2017-02-01

    Zebrafish are widely used as model organism. Their suitability for endocrine studies, drug screening and toxicity assessements depends on the extent of conservation of specific genes and biochemical pathways between zebrafish and human. Glucocorticoids consist of inactive 11-keto (cortisone and 11-dehydrocorticosterone) and active 11β-hydroxyl forms (cortisol and corticosterone). In mammals, two 11β-hydroxysteroid dehydrogenases (11β-HSD1 and 11β-HSD2) interconvert active and inactive glucocorticoids, allowing tissue-specific regulation of glucocorticoid action. Furthermore, 11β-HSDs are involved in the metabolism of 11-oxy androgens. As zebrafish and other teleost fish lack a direct homologue of 11β-HSD1, we investigated whether they can reduce 11-ketosteroids. We compared glucocorticoid and androgen metabolism between human and zebrafish using recombinant enzymes, microsomal preparations and zebrafish larvae. Our results provide strong evidence for the absence of 11-ketosteroid reduction in zebrafish. Neither human 11β-HSD3 nor the two zebrafish 11β-HSD3 homologues, previously hypothesized to reduce 11-ketosteroids, converted cortisone and 11-ketotestosterone (11KT) to their 11β-hydroxyl forms. Furthermore, zebrafish microsomes were unable to reduce 11-ketosteroids, and exposure of larvae to cortisone or the synthetic analogue prednisone did not affect glucocorticoid-dependent gene expression. Additionally, a dual-role of 11β-HSD2 by inactivating glucocorticoids and generating the main fish androgen 11KT was supported. Thus, due to the lack of 11-ketosteroid reduction, zebrafish and other teleost fish exhibit a limited tissue-specific regulation of glucocorticoid action, and their androgen production pathway is characterized by sustained 11KT production. These findings are of particular significance when using zebrafish as a model to study endocrine functions, stress responses and effects of pharmaceuticals. © 2017 Society for Endocrinology.

  20. Thrombin Generation in Zebrafish Blood

    PubMed Central

    Hemker, Coenraad; Lindhout, Theo; Kelchtermans, Hilde; de Laat, Bas

    2016-01-01

    To better understand hypercoagulability as an underlying cause for thrombosis, the leading cause of death in the Western world, new assays to study ex vivo coagulation are essential. The zebrafish is generally accepted as a good model for human hemostasis and thrombosis, as the hemostatic system proved to be similar to that in man. Their small size however, has been a hurdle for more widespread use in hemostasis related research. In this study we developed a method that enables the measurement of thrombin generation in a single drop of non-anticoagulated zebrafish blood. Pre-treatment of the fish with inhibitors of FXa and thrombin, resulted in a dose dependent diminishing of thrombin generation, demonstrating the validity of the assay. In order to establish the relationship between whole blood thrombin generation and fibrin formation, we visualized the resulting fibrin network by scanning electron microscopy. Taken together, in this study we developed a fast and reliable method to measure thrombin generation in whole blood collected from a single zebrafish. Given the similarities between coagulation pathways of zebrafish and mammals, zebrafish may be an ideal animal model to determine the effect of novel therapeutics on thrombin generation. Additionally, because of the ease with which gene functions can be silenced, zebrafish may serve as a model organism for mechanistical research in thrombosis and hemostasis. PMID:26872266

  1. Zebrafish: A marvel of high-throughput biology for 21st century toxicology

    PubMed Central

    Bugel, Sean M.; Tanguay, Robert L.; Planchart, Antonio

    2015-01-01

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing. PMID:25678986

  2. Zebrafish: A marvel of high-throughput biology for 21(st) century toxicology.

    PubMed

    Bugel, Sean M; Tanguay, Robert L; Planchart, Antonio

    2014-09-07

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.

  3. Proteomic analysis of zebrafish caudal fin regeneration.

    PubMed

    Saxena, Sandeep; Singh, Sachin K; Lakshmi, Mula G Meena; Meghah, Vuppalapaty; Bhatti, Bhawna; Swamy, Cherukuvada V Brahmendra; Sundaram, Curam S; Idris, Mohammed M

    2012-06-01

    The epimorphic regeneration of zebrafish caudal fin is rapid and complete. We have analyzed the biomechanism of zebrafish caudal fin regeneration at various time points based on differential proteomics approaches. The spectrum of proteome changes caused by regeneration were analyzed among controls (0 h) and 1, 12, 24, 48, and 72 h postamputation involving quantitative differential proteomics analysis based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization and differential in-gel electrophoresis Orbitrap analysis. A total of 96 proteins were found differentially regulated between the control nonregenerating and regenerating tissues of different time points for having at least 1.5-fold changes. 90 proteins were identified as differentially regulated for regeneration based on differential in-gel electrophoresis analysis between the control and regenerating tissues. 35 proteins were characterized for its expression in all of the five regenerating time points against the control samples. The proteins identified and associated with regeneration were found to be directly allied with various molecular, biological, and cellular functions. Based on network pathway analysis, the identified proteome data set for regeneration was majorly associated in maintaining cellular structure and architecture. Also the proteins were found associated for the cytoskeleton remodeling pathway and cellular immune defense mechanism. The major proteins that were found differentially regulated during zebrafish caudal fin regeneration includes keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal α1 actin, and structural proteins. Annexin A1 was found to be exclusively undergoing phosphorylation during regeneration. The obtained differential proteome and the direct association of the various proteins might lead to a new understanding of the regeneration mechanism.

  4. Period-2: a tumor suppressor gene in breast cancer

    PubMed Central

    Xiang, Shulin; Coffelt, Seth B; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-01-01

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2) gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose) polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels. PMID:18334030

  5. Period-2: a tumor suppressor gene in breast cancer.

    PubMed

    Xiang, Shulin; Coffelt, Seth B; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-03-11

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2) gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose) polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels.

  6. Budget Period 2 Summary Report Part 2: Hywind Maine Project

    SciTech Connect

    Driscoll, Frederick; Platt, Andrew; Sirnivas, Senu

    2015-08-15

    This project was performed under the Work for Others—Funds in Agreement FIA-14-1793 between Statoil and the Alliance for Sustainable Energy, manager and operator of the National Renewable Energy Laboratory (NREL). To support the development of a 6-MW spar-mounted offshore wind turbine, Statoil funded NREL to perform tasks in the following three categories: 1. Design and analysis 2. Wake modeling 3. Concept resource assessment. This study expands upon the work conducted in Budget Period 1 (BP1) to investigate the influence of the wake generated from an upstream turbine on a downstream turbine using Computational Fluid Dynamics (CFD) high-fidelity modeling tool. Simulator fOr Wind Farms Application (SOWFA) [1] is an NREL high fidelity modeling tool that couples OpenFOAM [2] CFD and NREL’s Aero-Elastic code Fatigue, Aerodynamics, Structures, and Turbulence (FAST)[3]. In BP1 the configuration was based on Hywind-3MW at 140 m water depth in the Gulf of Maine; however this study for Budget Period 2 (BP2) the configuration investigated is based on Hywind-6MW at 220 m water depth off the coast of Boston. The objectives were to perform two-turbines One-Way Coupling (OWC), three-turbines Two-Way Coupling (TWC), and to investigate wind power plant optimization.

  7. INDUCED AND SPONTANEOUS NEOPLASIA IN ZEBRAFISH.

    EPA Science Inventory

    To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors, and to compare zebrafish tumors with human tumors. To determine whether the commonly-used germ line mutagen, ethylnitrosourea (ENU) induces tumors, we ...

  8. INDUCED AND SPONTANEOUS NEOPLASIA IN ZEBRAFISH.

    EPA Science Inventory

    To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors, and to compare zebrafish tumors with human tumors. To determine whether the commonly-used germ line mutagen, ethylnitrosourea (ENU) induces tumors, we ...

  9. Behavioral effects of bidirectional modulation of brain monoamines by reserpine and d-amphetamine in zebrafish

    PubMed Central

    Kyzar, Evan; Stewart, Adam Michael; Landsman, Samuel; Collins, Christopher; Gebhardt, Michael; Robinson, Kyle; Kalueff, Allan V.

    2013-01-01

    Brain monoamines play a key role in the regulation of behavior. Reserpine depletes monoamines, and causes depression and hypoactivity in humans and rodents. In contrast, d-amphetamine increases brain monoamines’ levels, and evokes hyperactivity and anxiety. However, the effects of these agents on behavior and in relation to monoamine levels remain poorly understood, necessitating further experimental studies to understand their psychotropic action. Zebrafish (Danio rerio) are rapidly emerging as a promising model organism for drug screening and translational neuroscience research. Here, we have examined the acute and long-term effects of reserpine and d-amphetamine on zebrafish behavior in the novel tank test. Overall, d-amphetamine (5 and 10 mg/L) evokes anxiogenic-like effects in zebrafish acutely, but not 7 days later. In contrast, reserpine (20 and 40 mg/L) did not evoke overt acute behavioral effects, but markedly reduced activity 7 days later, resembling motor retardation observed in depression and/or Parkinson’s disease. Three-dimensional ‘temporal’ (X, Y, Time) reconstructions of zebrafish locomotion further supports these findings, confirming the utility of 3D-based video-tracking analyses in zebrafish models of drug action. Our results show that zebrafish are highly sensitive to drugs bi-directionally modulating brain monoamines, generally paralleling rodent and clinical findings. Collectively, this emphasizes the potential of zebrafish tests to model complex brain disorders associated with monoamine dysregulation. PMID:23827499

  10. Maintenance of Zebrafish Lines at the European Zebrafish Resource Center

    PubMed Central

    Borel, Nadine; Ferg, Marco; Maier, Jana Viktoria; Strähle, Uwe

    2016-01-01

    Abstract We have established a European Zebrafish Resource Center (EZRC) at the KIT. This center not only maintains and distributes a large number of existing mutant and transgenic zebrafish lines but also gives zebrafish researchers access to screening services and technologies such as imaging and high-throughput sequencing, provided by the Institute of Toxicology and Genetics (ITG). The EZRC maintains and distributes the stock collection of the Nüsslein-Volhard laboratory, comprising over 2000 publicly released mutations, as frozen sperm samples. Within the framework of the ZF-HEALTH EU project, the EZRC distributes over 10,000 knockout mutations from the Sanger Institute (United Kingdom), as well as over 100 mutant and transgenic lines from other sources. In this article, we detail the measures we have taken to ensure the health of our fish, including hygiene, quarantine, and veterinary inspections. PMID:27351617

  11. Zebrafish Sensitivity to Botulinum Neurotoxins

    PubMed Central

    Chatla, Kamalakar; Gaunt, Patricia S.; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A.

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  12. The Zebrafish Neurophenome Database (ZND): a dynamic open-access resource for zebrafish neurophenotypic data.

    PubMed

    Kyzar, Evan; Zapolsky, Ivan; Green, Jeremy; Gaikwad, Siddharth; Pham, Mimi; Collins, Christopher; Roth, Andrew; Stewart, Adam Michael; St-Pierre, Paul; Hirons, Budd; Kalueff, Allan V

    2012-03-01

    Zebrafish (Danio rerio) are widely used in neuroscience research, where their utility as a model organism is rapidly expanding. Low cost, ease of experimental manipulations, and sufficient behavioral complexity make zebrafish a valuable tool for high-throughput studies in biomedicine. To complement the available repositories for zebrafish genetic information, there is a growing need for the collection of zebrafish neurobehavioral and neurological phenotypes. For this, we are establishing the Zebrafish Neurophenome Database (ZND; www.tulane.edu/∼znpindex/search ) as a new dynamic online open-access data repository for behavioral and related physiological data. ZND, currently focusing on adult zebrafish, combines zebrafish neurophenotypic data with a simple, easily searchable user interface, which allow scientists to view and compare results obtained by other laboratories using various treatments in different testing paradigms. As a developing community effort, ZND is expected to foster innovative research using zebrafish by federating the growing body of zebrafish neurophenotypic data.

  13. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  14. Mapping of zebrafish research: a global outlook.

    PubMed

    Kinth, Priyamvadah; Mahesh, Gopalakrishnan; Panwar, Yatish

    2013-12-01

    On the basis of analysis of 17,151 records on zebrafish identified from Zebrafish Information Network: the zebrafish model organism database and Web of Science, the research performance on this model organism has been evaluated. The earliest research work on zebrafish as reflected in the databases goes back to 1951. After a rather slow growth till the 1980s, research on zebrafish gained momentum in the 1990s. Analysis shows a rapid and consistent increase in the publication output with 226 publications in the year 1996, to 1929 publications in the year 2012. The prominent areas of zebrafish research, journals, and leading authors as reflected from the research output have been identified. USA is the most productive country with 8196 articles. The most frequently used keywords were also determined to gain insights about the research trends and some of the commonly used keywords other than zebrafish and Danio rerio are development, retina, and gene expression.

  15. Quantifying Aggressive Behavior in Zebrafish.

    PubMed

    Teles, Magda C; Oliveira, Rui F

    2016-01-01

    Aggression is a complex behavior that influences social relationships and can be seen as adaptive or maladaptive depending on the context and intensity of expression. A model organism suitable for genetic dissection of the underlying neural mechanisms of aggressive behavior is still needed. Zebrafish has already proven to be a powerful vertebrate model organism for the study of normal and pathological brain function. Despite the fact that zebrafish is a gregarious species that forms shoals, when allowed to interact in pairs, both males and females express aggressive behavior and establish dominance hierarchies. Here, we describe two protocols that can be used to quantify aggressive behavior in zebrafish, using two different paradigms: (1) staged fights between real opponents and (2) mirror-elicited fights. We also discuss the methodology for the behavior analysis, the expected results for both paradigms, and the advantages and disadvantages of each paradigm in face of the specific goals of the study.

  16. Coupled mutagenesis screens and genetic mapping in zebrafish.

    PubMed Central

    Rawls, John F; Frieda, Matthew R; McAdow, Anthony R; Gross, Jason P; Clayton, Chad M; Heyen, Candy K; Johnson, Stephen L

    2003-01-01

    Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping. PMID:12663538

  17. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs. PMID:27699119

  18. Object recognition memory in zebrafish.

    PubMed

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of acute ethanol administration on zebrafish tail-beat motion.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2015-11-01

    Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening.

  20. Through the Looking Glass: Visualizing Leukemia Growth, Migration, and Engraftment Using Fluorescent Transgenic Zebrafish

    PubMed Central

    Moore, Finola E.; Langenau, David M.

    2012-01-01

    Zebrafish have emerged as a powerful model of development and cancer. Human, mouse, and zebrafish malignancies exhibit striking histopathologic and molecular similarities, underscoring the remarkable conservation of genetic pathways required to induce cancer. Zebrafish are uniquely suited for large-scale studies in which hundreds of animals can be used to investigate cancer processes. Moreover, zebrafish are small in size, optically clear during development, and amenable to genetic manipulation. Facile transgenic approaches and new technologies in gene inactivation have provided much needed genomic resources to interrogate the function of specific oncogenic and tumor suppressor pathways in cancer. This manuscript focuses on the unique attribute of labeling leukemia cells with fluorescent proteins and directly visualizing cancer processes in vivo including tumor growth, dissemination, and intravasation into the vasculature. We will also discuss the use of fluorescent transgenic approaches and cell transplantation to assess leukemia-propagating cell frequency and response to chemotherapy. PMID:22829834

  1. Sensorimotor computation underlying phototaxis in zebrafish.

    PubMed

    Wolf, Sébastien; Dubreuil, Alexis M; Bertoni, Tommaso; Böhm, Urs Lucas; Bormuth, Volker; Candelier, Raphaël; Karpenko, Sophia; Hildebrand, David G C; Bianco, Isaac H; Monasson, Rémi; Debrégeas, Georges

    2017-09-21

    Animals continuously gather sensory cues to move towards favourable environments. Efficient goal-directed navigation requires sensory perception and motor commands to be intertwined in a feedback loop, yet the neural substrate underlying this sensorimotor task in the vertebrate brain remains elusive. Here, we combine virtual-reality behavioural assays, volumetric calcium imaging, optogenetic stimulation and circuit modelling to reveal the neural mechanisms through which a zebrafish performs phototaxis, i.e. actively orients towards a light source. Key to this process is a self-oscillating hindbrain population (HBO) that acts as a pacemaker for ocular saccades and controls the orientation of successive swim-bouts. It further integrates visual stimuli in a state-dependent manner, i.e. its response to visual inputs varies with the motor context, a mechanism that manifests itself in the phase-locked entrainment of the HBO by periodic stimuli. A rate model is developed that reproduces our observations and demonstrates how this sensorimotor processing eventually biases the animal trajectory towards bright regions.Active locomotion requires closed-loop sensorimotor co ordination between perception and action. Here the authors show using behavioural, imaging and modelling approaches that gaze orientation during phototaxis behaviour in larval zebrafish is related to oscillatory dynamics of a neuronal population in the hindbrain.

  2. Navigational strategies underlying phototaxis in larval zebrafish.

    PubMed

    Chen, Xiuye; Engert, Florian

    2014-01-01

    Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel "Virtual Circle" assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.

  3. Navigational strategies underlying phototaxis in larval zebrafish

    PubMed Central

    Chen, Xiuye; Engert, Florian

    2014-01-01

    Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel “Virtual Circle” assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms. PMID:24723859

  4. A student team in a University of Michigan biomedical engineering design course constructs a microfluidic bioreactor for studies of zebrafish development.

    PubMed

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Ali, Shahid; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H; Takayama, Shuichi; Barald, Kate F

    2009-06-01

    The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the semester, students learned engineering and biology experimental design, chip microfabrication, mathematical modeling, zebrafish husbandry, principles of developmental biology, fluid dynamics, microscopy, and basic molecular biology theory and techniques. The team worked to maximize each person's contribution and presented weekly written and oral reports. Two postdoctoral fellows, a graduate student, and three faculty instructors coordinated and directed the team in an optimal blending of engineering, molecular, and developmental biology skill sets. The students presented two posters, including one at the Zebrafish meetings in Madison, Wisconsin (June 2008).

  5. A Student Team in a University of Michigan Biomedical Engineering Design Course Constructs a Microfluidic Bioreactor for Studies of Zebrafish Development

    PubMed Central

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Ali, Shahid; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H.; Takayama, Shuichi

    2009-01-01

    Abstract The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the semester, students learned engineering and biology experimental design, chip microfabrication, mathematical modeling, zebrafish husbandry, principles of developmental biology, fluid dynamics, microscopy, and basic molecular biology theory and techniques. The team worked to maximize each person's contribution and presented weekly written and oral reports. Two postdoctoral fellows, a graduate student, and three faculty instructors coordinated and directed the team in an optimal blending of engineering, molecular, and developmental biology skill sets. The students presented two posters, including one at the Zebrafish meetings in Madison, Wisconsin (June 2008). PMID:19292670

  6. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  7. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-07-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.

  8. Functional aging and gradual senescence in zebrafish.

    PubMed

    Kishi, Shuji

    2004-06-01

    Zebrafish (Danio rerio) has been recognized as a powerful model for genetic studies in developmental biology. Recently, the zebrafish system also has given insights into several human diseases such as neurodegenerative, hematopoietic, and cardiovascular disease, and cancer. Because aging processes affect these and various other human disorders, it is important to compare zebrafish and mammalian senescence. However, the aging process of zebrafish remains largely unexplored, and little is known about functional aging and senescence in zebrafish. In our initial studies to assess aging phenotypes in zebrafish, we have identified several potential aging biomarkers in an ongoing search for suitable ones on zebrafish aging. In aging zebrafish, we detected senescence-associated beta-galactosidase activity in skin and oxidized protein accumulation in muscle. On the other hand, we did not observe lipofuscin granules (aging pigments), which accumulate in postmitotic cells, in muscle of zebrafish with advancing age. Consistently, there were continuously proliferating myocytes that incorporated BrdU in muscle tissues of the aged fish. Moreover, we demonstrated that zebrafish have constitutively abundant telomerase activity in adult somatic tissues implicating unlimited replicative ability of cells throughout their lives. Although some stress-associated markers are upregulated and minor histological changes are observed during the aging process of zebrafish, our studies together with other evidence of remarkable reproductive and regenerative abilities suggest that zebrafish show very gradual senescence. By using those biological and biochemical aging markers already characterized in normal zebrafish, transgenic fish analyses and genetic mutant fish screens can be readily performed. These efforts will help to elucidate the role and molecular mechanisms of common or different pathways of aging among vertebrates from fish to humans and also will contribute to the discovery of

  9. Evaluation of xenoestrogenic potential of propylparaben in zebrafish (Danio rerio).

    PubMed

    Mikula, Premysl; Dobsíková, Radka; Svobodová, Zdenka; Jarkovský, Jirí

    2006-12-01

    Xenoestrogenic potential of propylparaben (PP), one of the most commonly used preservatives in drugs, cosmetics and food, was investigated in vivo using zebrafish (Danio rerio). Juvenile zebrafish (20 days post hatching) were exposed to three different concentrations of propylparaben (PP) dissolved in ethanol and added into the water. After 20 days of exposure the fish were euthanized and vitellogenin concentrations in their whole body homogenates were measured by the method of direct sandwich ELISA. Simultaneously, vitellogenin concentrations in either fish from the control group (exposed to solvent without the substance tested) and in fish from the positive control group (exposed to natural estrogen 17beta-estradiol) were measured. Vitellogenin concentration in whole body homogenates of control fish was 400 (396-540) ng/ml(-1) (geometric mean (95% CI)). Zebrafish exposure to propylparaben at the concentrations of 0.1; 0.4 and 0.9 mg/l(-1) elicited statistically significant decline (P<0.001) of vitellogenin production, i.e. geometric means of vitellogenin concentrations in whole body homogenates were 240 (186-311); 218 (175-270) and 270 (234-311) ng/ml(-1), respectively. Conversely, the geometric mean of vitellogenin concentration in whole body homogenates of zebrafish exposed to 100 ng/ml(-1) of 17beta-estradiol (positive control) was significantly higher (P<0.001) than values in all other groups, i.e. 35,553 (16,860-74,968) ng/ml(-1). Our results suggest an antiestrogenic potential of propylparaben tested in vivo in juvenile zebrafish (Danio rerio). The estrogenic effect of 17beta-estradiol was confirmed.

  10. Microsporidiosis in Zebrafish Research Facilities

    PubMed Central

    Sanders, Justin L.; Watral, Virginia; Kent, Michael L.

    2014-01-01

    Pseudoloma neurophilia (Microsporidia) is the most common pathogen detected in zebrafish (Danio rerio) from research facilities. The parasite infects the central nervous system and muscle and may be associated with emaciation and skeletal deformities. However, many fish exhibit sub-clinical infections. Another microsporidium, Pleistophora hyphessobryconis, has recently been detected in a few zebrafish facilities. Here, we review the methods for diagnosis and detection, modes of transmission, and approaches used to control microsporidia in zebrafish, focusing on P. neurophilia. The parasite can be readily transmitted by feeding spores or infected tissues, and we show that cohabitation with infected fish is also an effective means of transmission. Spores are released from live fish in various manners, including through the urine, feces, and sex products during spawning. Indeed, P. neurophilia infects both the eggs and ovarian tissues, where we found concentrations ranging from 12,000 to 88,000 spores per ovary. Hence, various lines of evidence support the conclusion that maternal transmission is a route of infection: spores are numerous in ovaries and developing follicles in infected females, spores are present in spawned eggs and water from spawning tanks based on polymerase chain reaction tests, and larvae are very susceptible to the infection. Furthermore, egg surface disinfectants presently used in zebrafish laboratories are ineffective against microsporidian spores. At this time, the most effective method for prevention of these parasites is avoidance. PMID:23382342

  11. Contextual fear conditioning in zebrafish.

    PubMed

    Kenney, Justin W; Scott, Ian C; Josselyn, Sheena A; Frankland, Paul W

    2017-10-01

    Zebrafish are a genetically tractable vertebrate that hold considerable promise for elucidating the molecular basis of behavior. Although numerous recent advances have been made in the ability to precisely manipulate the zebrafish genome, much less is known about many aspects of learning and memory in adult fish. Here, we describe the development of a contextual fear conditioning paradigm using an electric shock as the aversive stimulus. We find that contextual fear conditioning is modulated by shock intensity, prevented by an established amnestic agent (MK-801), lasts at least 14 d, and exhibits extinction. Furthermore, fish of various background strains (AB, Tu, and TL) are able to acquire fear conditioning, but differ in fear extinction rates. Taken together, we find that contextual fear conditioning in zebrafish shares many similarities with the widely used contextual fear conditioning paradigm in rodents. Combined with the amenability of genetic manipulation in zebrafish, we anticipate that our paradigm will prove to be a useful complementary system in which to examine the molecular basis of vertebrate learning and memory. © 2017 Kenney et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Zebrafish sex: a complicated affair

    PubMed Central

    Liew, Woei Chang

    2014-01-01

    In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differentiation mechanisms of zebrafish (Danio rerio). We show that the data obtained from most studies are compatible with polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation. Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will result in further deepening of our knowledge as well as identification of additional pathways and genes associated with these processes in the near future. PMID:24148942

  13. Behavioural fever in zebrafish larvae.

    PubMed

    Rey, Sonia; Moiche, Visila; Boltaña, Sebastian; Teles, Mariana; MacKenzie, Simon

    2017-02-01

    Behavioural fever has been reported in different species of mobile ectotherms including the zebrafish, Danio rerio, in response to exogenous pyrogens. In this study we report, to our knowledge for the first time, upon the ontogenic onset of behavioural fever in zebrafish (Danio rerio) larvae. For this, zebrafish larvae (from first feeding to juveniles) were placed in a continuous thermal gradient providing the opportunity to select their preferred temperature. The novel thermal preference aquarium was based upon a continuous vertical column system and allows for non-invasive observation of larvae vertical distribution under isothermal (TR at 28 °C) and thermal gradient conditions (TCH: 28-32 °C). Larval thermal preference was assessed under both conditions with or without an immersion challenge, in order to detect the onset of the behavioural fever response. Our results defined the onset of the dsRNA induced behavioural fever at 18-20 days post fertilization (dpf). Significant differences were observed in dsRNA challenged larvae, which prefer higher temperatures (1-4 °C increase) throughout the experimental period as compared to non-challenged larvae. In parallel we measured the abundance of antiviral transcripts; viperin, gig2, irf7, trim25 and Mxb mRNAs in dsRNA challenged larvae under both thermal regimes: TR and TCh. Significant increases in the abundance of all measured transcripts were recorded under thermal choice conditions signifying that thermo-coupling and the resultant enhancement of the immune response to dsRNA challenge occurs from 18 dpf onwards in the zebrafish. The results are of importance as they identify a key developmental stage where the neuro-immune interface matures in the zebrafish likely providing increased resistance to viral infection.

  14. Development of social behavior in young zebrafish.

    PubMed

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R; Wilson, Stephen W

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1-3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish.

  15. Glial Cell Development and Function in Zebrafish

    PubMed Central

    Lyons, David A.; Talbot, William S.

    2015-01-01

    The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligodendrocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function. PMID:25395296

  16. Development of social behavior in young zebrafish

    PubMed Central

    Dreosti, Elena; Lopes, Gonçalo; Kampff, Adam R.; Wilson, Stephen W.

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1–3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish. PMID:26347614

  17. Functional development of the circadian clock in the zebrafish pineal gland.

    PubMed

    Ben-Moshe, Zohar; Foulkes, Nicholas S; Gothilf, Yoav

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model.

  18. Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish

    PubMed Central

    Williams, Caitlin; Bryson-Richardson, Robert J.

    2016-01-01

    Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days post-fertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function. PMID:27842370

  19. Multiplicity of hypoxia-inducible transcription factors and their connection to the circadian clock in the zebrafish.

    PubMed

    Pelster, Bernd; Egg, Margit

    2015-01-01

    modified life cycle of erythrocytes and an altered patterning of the vascular bed, leading to even higher mortality rates of chronodisrupted animals. Hif protein, in turn, is known to affect the circadian clock pathway in zebrafish. Previously, we demonstrated that Hif-1α directly binds to defined E-boxes of the period 1 gene, leading to a sustained dampening of its oscillation amplitude. Here we show that Hif-1α also binds to the promoter of the period 2 gene, indicating that multiple connections between the Hif signaling pathway and the circadian clock exist. The redundancy of the coupling between both pathways might be evidence for the coevolution of both circuits after the great oxygenation event about 2.5 billion years ago. Coupling the circadian clock and the hypoxic signaling pathway may have conferred selective advantages by facilitating a coordinated response of cells and organisms to alternating day-night cycles and concomitant variable food availabilities in the face of varying oxygen supply.

  20. Zebrafish Social Behavior in the Wild.

    PubMed

    Suriyampola, Piyumika S; Shelton, Delia S; Shukla, Rohitashva; Roy, Tamal; Bhat, Anuradha; Martins, Emília P

    2016-02-01

    Wild zebrafish exhibit a wide range of behavior. We found abundant wild zebrafish in flowing rivers and still water, in large, tightly-knit groups of hundreds of individuals, as well as in small, loose shoals. In two still-water populations, zebrafish were quite small in body size, common, and in tight groups of up to 22 fish. As in earlier laboratory studies, these zebrafish exhibited very low levels of aggression. In slowly flowing water in central India, zebrafish were relatively rare and gathered in small shoals (4-12 fish), often with other small fish, such as Rasbora daniconius. These stream zebrafish were larger in body size (27 mm TL) and much more aggressive than those in still water. In a second river population with much faster flowing water, zebrafish were abundant and again relatively large (21 mm TL). These zebrafish occurred in very large (up to 300 individuals) and tightly-knit (nearest-neighbor distances up to 21 mm) groups that exhibited collective rheotaxis and almost no aggression. This remarkable variation in social behavior of wild zebrafish offers an opportunity for future studies of behavioral genetics, development, and neuroscience.

  1. Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation

    PubMed Central

    Takebe, Akira; Furutani, Toshiki; Wada, Tatsunori; Koinuma, Masami; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2012-01-01

    A variety of animals use Earth's magnetic field as a reference for their orientation behaviour. Although distinctive magnetoreception mechanisms have been postulated for many migrating or homing animals, the molecular mechanisms are still undefined. In this study, we found that zebrafish, a model organism suitable for genetic manipulation, responded to a magnetic field as weak as the geomagnetic field. Without any training, zebrafish were individually released into a circular arena that was placed in an artificial geomagnetic field, and their preferred magnetic directions were recorded. Individuals from five out of the seven zebrafish groups studied, groups mostly comprised of the offspring of predetermined pairs, showed bidirectional orientation with group-specific preferences regardless of close kinships. The preferred directions did not seem to depend on gender, age or surrounding environmental factors, implying that directional preference was genetically defined. The present findings may facilitate future study on the molecular mechanisms underlying magnetoreception. PMID:23061010

  2. Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation.

    PubMed

    Takebe, Akira; Furutani, Toshiki; Wada, Tatsunori; Koinuma, Masami; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2012-01-01

    A variety of animals use Earth's magnetic field as a reference for their orientation behaviour. Although distinctive magnetoreception mechanisms have been postulated for many migrating or homing animals, the molecular mechanisms are still undefined. In this study, we found that zebrafish, a model organism suitable for genetic manipulation, responded to a magnetic field as weak as the geomagnetic field. Without any training, zebrafish were individually released into a circular arena that was placed in an artificial geomagnetic field, and their preferred magnetic directions were recorded. Individuals from five out of the seven zebrafish groups studied, groups mostly comprised of the offspring of predetermined pairs, showed bidirectional orientation with group-specific preferences regardless of close kinships. The preferred directions did not seem to depend on gender, age or surrounding environmental factors, implying that directional preference was genetically defined. The present findings may facilitate future study on the molecular mechanisms underlying magnetoreception.

  3. Tracking tagged molecules in single neurons in intact zebrafish.

    PubMed

    Armisen, Ricardo; Gleason, Michelle R; Fetcho, Joseph R; Mandel, Gail

    2007-08-01

    INTRODUCTIONThis protocol describes an approach for monitoring the movement of tagged molecules in single neurons in intact embryonic and larval zebrafish. The intact preparation provides a meaningful context for the physiological event being studied. Other advantages offered by the young zebrafish include direct in vivo imaging, the ability to produce large numbers of labeled embryos easily using microinjection, and the existence of identified sensory circuits that can be exploited to activate a particular cell type. One limitation of this system is the fragility of 2- to 3-d-old embryos, which demands delicate physical manipulation of the fish during all stages preceding and during the experiment. In contrast to brain slices or isolated cells, nearly all original neural connections and sensory components are maintained in the intact preparation, so the occurrence of a downstream event may be precluded (or its manifestation enhanced) by some complex interplay of biological processes that are not fully understood.

  4. Zebrafish: an in vivo model for nano EHS studies.

    PubMed

    Lin, Sijie; Zhao, Yan; Nel, André E; Lin, Shuo

    2013-05-27

    To assure a responsible and sustainable growth of nanotechnology, the environmental health and safety (EHS) aspect of engineered nanomaterials and nano-related products needs to be addressed at a rate commensurate with the expansion of nanotechnology. Zebrafish has been demonstrated as a correlative in vivo vertebrate model for such task, and the current advances of using zebrafish for nano EHS studies are summarized here. In addition to morphological and histopathological observations, the accessibility of gene manipulation would greatly empower such a model for detailed mechanistic studies of any nanoparticles of interest. The potential for establishing high-throughput screening platforms to facilitate the nano EHS studies is highlighted, and a discussion is presented on how toxicogenomics approaches represent a future direction to guide the identification of toxicity pathways. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Zebrafish: an in vivo model for nano EHS studies

    PubMed Central

    Zhao, Yan; Nel, André E.; Lin, Shuo

    2014-01-01

    To assure a responsible and sustainable growth of nanotechnology, the environmental health and safety (EHS) aspect of engineered nanomaterials and nano-related products needs to be addressed at a rate commensurate with the expansion of nanotechnology. Zebrafish has been demonstrated as a correlative in vivo vertebrate model for such task, and the current advances of using zebrafish for nano EHS studies are summarized here. In addition to morphological and histopathological observations, the accessibility of gene manipulation would greatly empower such a model for detailed mechanistic studies of any nanoparticles of interest. The potential for establishing high-throughput screening platforms to facilitate the nano EHS studies is highlighted, and a discussion is presented on how toxicogenomics approaches represent a future direction to guide the identification of toxicity pathways. PMID:23208995

  6. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting.

    PubMed

    Kaneko, Maki; Hernandez-Borsetti, Nancy; Cahill, Gregory M

    2006-09-26

    In various multicellular organisms, circadian clocks are present not only in the central nervous system, but also in peripheral organs and tissues. In mammals peripheral oscillators are not directly responsive to light, but are entrained by the central oscillator in the suprachiasmatic nucleus. These individual oscillators are diverse in their free-running periods and phases. In contrast, cultured peripheral tissues and cell lines from zebrafish are not only rhythmic, but can also be directly entrained by light. Because of the convenience of studying rhythms in cultured cells, however, little has been known about properties of individual oscillators in intact zebrafish. Here, we show the remarkable diversity and consistency of oscillator properties in various peripheral organs and tissues from the period3-luciferase (per3-luc) transgenic zebrafish. Tissue-dependent differences were found in free-running period, phase, response to light, and temperature compensation. Furthermore, cycling amplitudes were reduced at lower temperatures in some, but not all, of the organs tested. Finally, we found that per3-luc rhythms can free run in both constant dark and constant light with remarkably similar amplitudes, phases, and periods, despite the fact that the mRNA of per2 and per1 has been shown not to oscillate in constant light.

  7. Zebrafish Behavior: Opportunities and Challenges.

    PubMed

    Orger, Michael B; de Polavieja, Gonzalo G

    2017-04-03

    A great challenge in neuroscience is understanding how activity in the brain gives rise to behavior. The zebrafish is an ideal vertebrate model to address this challenge, thanks to the capacity, at the larval stage, for precise behavioral measurements, genetic manipulations, and recording and manipulation of neural activity noninvasively and at single-neuron resolution throughout the whole brain. These techniques are being further developed for application in freely moving animals and juvenile stages to study more complex behaviors including learning, decision making, and social interactions. We review some of the approaches that have been used to study the behavior of zebrafish and point to opportunities and challenges that lie ahead. Expected final online publication date for the Annual Review of Neuroscience Volume 40 is July 8, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  8. DNA repair capacity of zebrafish.

    PubMed

    Sussman, Raquel

    2007-08-14

    Damage to the genome is unavoidable in living creatures, because of sunlight exposure as well as environmental chemicals present in food and drinking water. There is a need to monitor and purify the drinking water; therefore, several methods of detection have been developed. A very promising model system for this purpose is the zebrafish (Danio rerio), which is endowed with special qualities for detecting external as well as internal abnormalities. Grossman and Wei's assay [Grossman L, Wei Q (1995) Clin Chem 12:1854-1863], which measures the expression level of a nonreplicating recombinant plasmid DNA containing a UV-damaged luciferase reporter gene, shows that zebrafish can repair chromosomal lesions to a much greater extent than the human population. This vertebrate model is still very promising after possible down-regulation of the DNA repair enzymes.

  9. Extracellular matrix assembly and organization during zebrafish gastrulation.

    PubMed

    Latimer, Andrew; Jessen, Jason R

    2010-03-01

    Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior-posterior and dorsal-ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation. 2009 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  10. Diet affects spawning in zebrafish.

    PubMed

    Markovich, Michelle L; Rizzuto, Noel V; Brown, Paul B

    2007-01-01

    Seven-month-old zebrafish (Danio rerio) were fed four different diets to test the hypothesis that diet affects spawning success and resulting characteristics of eggs and offspring. The diets were: the recommended feeding regime for zebrafish (a mixture of Artemia, flake feed, and liver paste); Artemia; a flake feed; and a commercially available trout diet. The number of eggs laid and average egg diameter were significantly different as functions of male, female, and individual matings. Fish fed the flake diet produced significantly fewer eggs (mean, 116) than fish fed all other diets (means, 166-187). However, the percent hatch of eggs from fish fed the flake diet (62.5%) was significantly higher than from fish fed the trout diet (19.5%). The percentages of hatched eggs from fish fed the control diet (36.2%) or Artemia (35.6%) were not significantly different from each other or from fish fed the other two diets. Wet weight and diameter of eggs were not significantly affected by diet. Larval length was significantly higher from parents fed the flake diet (14.5 mm) compared to larvae from parents fed Artemia (13.7 mm). Length of larvae from fish fed the control or trout diets was intermediate and not significantly different from fish fed the flake diet or Artemia. Larval weight was not significantly affected by dietary treatment, but offspring from fish fed the flake diet were heavier than larvae from adults fed any of the other diets. Feeding adult zebrafish the flake diet alone resulted in more viable offspring and larger larvae and is a simpler feeding regime than the current recommendation. The authors recommend feeding adult zebrafish flake diets to satiation three times daily for maximum production of viable offspring.

  11. Zebrafish genomics comes of age.

    PubMed

    Tan, Haihan; Zsigmond, Aron

    2013-09-01

    The ZF-HEALTH/EuFishBiomed workshop on "Genomics and High-throughput Sequencing Technologies with the Zebrafish Model" took place in December 2012 in Cambridge, United Kingdom. The organisers, Fiona Wardle and Ferenc Müller, brought together developmental biologists, geneticists, and bioinformaticians from Europe and the rest of the world to share findings and insights about the latest genomic capabilities and applications in this popular model organism.

  12. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching

    PubMed Central

    Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582

  13. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching.

    PubMed

    Howe, Douglas G; Bradford, Yvonne M; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-04

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, 'Fish' records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search.

  14. Stressing Zebrafish for Behavioral Genetics

    PubMed Central

    Clark, Karl J.; Boczek, Nicole J.; Ekker, Stephen C.

    2012-01-01

    Synopsis The stress response is a normal reaction to a real or perceived threat. However, stress response systems that are overwhelmed or out of balance can increase both the incidence and severity of diseases including addiction and mood and anxiety disorders. Using an animal model with both genetic diversity and large family size can help discover the specific genetic and environmental contributions to these behavioral diseases. The stress response has been studied extensively in teleosts because of their importance in food production. The zebrafish (Danio rerio) is a major model organism with a strong record for use in developmental biology, genetic screening, and genomic studies. More recently, the stress response of larval and adult zebrafish has been documented. High-throughput automated tracking systems make possible behavioral readouts of the stress response in zebrafish. This non-invasive measure of the stress response can be combined with mutagenesis methods to dissect the genes involved in complex stress response behaviors in vertebrates. Understanding the genetic and epigenetic basis for the stress response in vertebrates will help to develop advanced screening and therapies for stress-aggravated diseases like addiction and mood and anxiety disorders. PMID:21615261

  15. Inflammatory diseases modelling in zebrafish

    PubMed Central

    Morales Fénero, Camila Idelí; Colombo Flores, Alicia Angelina; Câmara, Niels Olsen Saraiva

    2016-01-01

    The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity. PMID:26929916

  16. Zebrafish Discoveries in Cancer Epigenetics

    PubMed Central

    Chernyavskaya, Yelena; Kent, Brandon

    2017-01-01

    The cancer epigenome is fundamentally different than that of normal cells. How these differences arise in and contribute to carcinogenesis is not known, and studies using model organisms such as zebrafish provide an opportunity to address these important questions. Modifications of histones and DNA comprise the complex epigenome, and these influence chromatin structure, genome stability and gene expression, all of which are fundamental to the cellular changes that cause cancer. The cancer genome atlas covers the wide spectrum of genetic changes associated with nearly every cancer type, however, this catalog is currently unidimensional. As the pattern of epigenetic marks and chromatin structure in cancer cells is described and overlaid on the mutational landscape, the map of the cancer genome becomes multi-dimensional and highly complex. Two major questions remain in the field: (1) how the epigenome becomes repatterned in cancer and (2) which of these changes are cancer-causing. Zebrafish provide a tractable in vivo system to monitor the epigenome during transformation and to identify epigenetic drivers of cancer. In this chapter, we review principles of cancer epigenetics and discuss recent work using zebrafish whereby epigenetic modifiers were established as cancer driver genes, thus providing novel insights into the mechanisms of epigenetic reprogramming in cancer. PMID:27165354

  17. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  18. Vitrification of zebrafish embryo blastomeres in microvolumes.

    PubMed

    Cardona-Costa, J; García-Ximénez, F

    2007-01-01

    Cryopreservation of fish embryos may play an important role in biodiversity preservation and in aquaculture, but it is very difficult. In addition, the cryopreservation of fish embryo blastomeres makes conservation strategies feasible when they are used in germ-line chimaerism, including interspecific chimaerism. Fish embryo blastomere cryopreservation has been achieved by equilibrium procedures, but to our knowledge, no data on vitrification procedures are available. In the present work, zebrafish embryo blastomeres were successfully vitrified in microvolumes: a number of 0.25 microl drops, sufficient to contain all the blastomeres of an embryo at blastula stage (from 1000-cell stage to oblong stage), were placed over a 2.5 cm loop of nylon filament. In this procedure, where intracellular cryoprotectant permeation is not required, blastomeres were exposed to cryoprotectants for a maximum of 25 sec prior vitrification. The assayed cryoprotectants (ethylene glycol, propylene glycol, dimethyl sulphoxide, glycerol and methanol) are all frequently used in fish embryo and blastomere cryopreservation. Methanol was finally rejected because of the excessive concentration required for the vitrification (15M). All other cryoprotectants were prepared (individually) at 5 M in Hanks' buffered salt solution (sigma) plus 20% FBS (vitrification solutions: vs). After direct thawing in Hanks' buffered salt solution plus 20% FBS, acceptable survival rates were obtained with ethylene glycol: 82.8%, propylene glycol: 87.7%, dimethyl sulphoxide: 93.4%, and glycerol: 73.9% (p < 0.05). Dimethyl sulphoxide showed the highest blastomere survival rate and allowed the rescue of as much as 20% of the total blastomeres from each zebrafish blastula embryo.

  19. Zebrafish as a model for human osteosarcoma.

    PubMed

    Mohseny, A B; Hogendoorn, P C W

    2014-01-01

    For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented.

  20. A Comparative Map of the Zebrafish Genome

    PubMed Central

    Woods, Ian G.; Kelly, Peter D.; Chu, Felicia; Ngo-Hazelett, Phuong; Yan, Yi-Lin; Huang, Hui; Postlethwait, John H.; Talbot, William S.

    2000-01-01

    Zebrafish mutations define the functions of hundreds of essential genes in the vertebrate genome. To accelerate the molecular analysis of zebrafish mutations and to facilitate comparisons among the genomes of zebrafish and other vertebrates, we used a homozygous diploid meiotic mapping panel to localize polymorphisms in 691 previously unmapped genes and expressed sequence tags (ESTs). Together with earlier efforts, this work raises the total number of markers scored in the mapping panel to 2119, including 1503 genes and ESTs and 616 previously characterized simple-sequence length polymorphisms. Sequence analysis of zebrafish genes mapped in this study and in prior work identified putative human orthologs for 804 zebrafish genes and ESTs. Map comparisons revealed 139 new conserved syntenies, in which two or more genes are on the same chromosome in zebrafish and human. Although some conserved syntenies are quite large, there were changes in gene order within conserved groups, apparently reflecting the relatively frequent occurrence of inversions and other intrachromosomal rearrangements since the divergence of teleost and tetrapod ancestors. Comparative mapping also shows that there is not a one-to-one correspondence between zebrafish and human chromosomes. Mapping of duplicate gene pairs identified segments of 20 linkage groups that may have arisen during a genome duplication that occurred early in the evolution of teleosts after the divergence of teleost and mammalian ancestors. This comparative map will accelerate the molecular analysis of zebrafish mutations and enhance the understanding of the evolution of the vertebrate genome. PMID:11116086

  1. Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter.

    PubMed

    Arjona, Francisco J; de Vrieze, Erik; Visser, Theo J; Flik, Gert; Klaren, Peter H M

    2011-12-01

    Most components of the thyroid system in bony fish have been described and characterized, with the notable exception of thyroid hormone membrane transporters. We have cloned, sequenced, and expressed the zebrafish solute carrier Slc16a2 (also named monocarboxylate transporter Mct8) cDNA and established its role as a thyroid hormone transport protein. The cloned cDNA shares 56-57% homology with its mammalian orthologs. The 526-amino-acid sequence contains 12 predicted transmembrane domains. An intracellular N-terminal PEST domain, thought to be involved in proteolytic processing of the protein, is present in the zebrafish sequence. Measured at initial rate and at the body/rearing temperature of zebrafish (26 C), T(3) uptake by zebrafish Slc16a2 is a saturable process with a calculated Michaelis-Menten constant of 0.8 μM T(3). The rate of T(3) uptake is temperature dependent and Na(+) independent. Interestingly, at 26 C, zebrafish Slc16a2 does not transport T(4). This implies that at a normal body temperature in zebrafish, Slc16a2 protein is predominantly involved in T(3) uptake. When measured at 37 C, zebrafish Slc16a2 transports T(4) in a Na(+)-independent manner. In adult zebrafish, the Slc16a2 gene is highly expressed in brain, gills, pancreas, liver, pituitary, heart, kidney, and gut. Beginning from the midblastula stage, Slc16a2 is also expressed during zebrafish early development, the highest expression levels occurring 48 h after fertilization. This is the first direct evidence for thyroid hormone membrane transporters in fish. We suggest that Slc16a2 plays a key role in the local availability of T(3) in adult tissues as well as during the completion of morphogenesis of primary organ systems.

  2. Optimized cell transplantation using adult rag2 mutant zebrafish

    PubMed Central

    Tang, Qin; Abdelfattah, Nouran S.; Blackburn, Jessica S.; Moore, John C.; Martinez, Sarah A.; Moore, Finola E.; Lobbardi, Riadh; Tenente, Inês M.; Ignatius, Myron S.; Berman, Jason N.; Liwski, Robert S.; Houvras, Yariv; Langenau, David M.

    2014-01-01

    Cell transplantation into adult zebrafish has lagged behind mouse due to the lack of immune compromised models. Here, we have created homozygous rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft zebrafish muscle, blood stem cells, and cancers. rag2E450fs mutant zebrafish are the first immune compromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer. PMID:25042784

  3. Zebrafish: modeling for herpes simplex virus infections.

    PubMed

    Antoine, Thessicar Evadney; Jones, Kevin S; Dale, Rodney M; Shukla, Deepak; Tiwari, Vaibhav

    2014-02-01

    For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure-function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits.

  4. Zebrafish: Modeling for Herpes Simplex Virus Infections

    PubMed Central

    Antoine, Thessicar Evadney; Jones, Kevin S.; Dale, Rodney M.; Shukla, Deepak

    2014-01-01

    Abstract For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure–function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits. PMID:24266790

  5. The Red Light District and Its Effects on Zebrafish Reproduction.

    PubMed

    Adatto, Isaac; Krug, Lauren; Zon, Leonard Ira

    2016-06-01

    Light-dark cycles mimicking natural settings in a zebrafish facility are crucial for maintaining fish with an entrained circadian clock making them an ideal vertebrate model to study such rhythms. However, failure to provide optimal conditions to include complete darkness can lead to a disturbed circadian pacemaker affecting physiology and behavior in zebrafish. To meet building code requirements, the aquatics facility in use was outfitted with EXIT signs emitting a constant light. To determine if light radiating from the EXIT sign has an effect on zebrafish embryo production, 100 fish (1:1 m/f ratio) were split and housed at 10 fish/L. Half were housed directly in front of the EXIT sign, whereas the other half (control) were housed under a true 14-h light-10-h dark cycle. Reproductive success was evaluated by recording fecundity and viability from 10 weekly matings under two light colors: red (640 nm) and green (560 nm). On average the control group spawned twice as many embryos compared to those housed in front of a red EXIT sign, whereas green EXIT sign showed no difference. This suggests the importance of providing a complete dark environment within the night cycle and a recommendation toward dim green EXIT signs to avoid a decline in reproductive performance.

  6. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

    PubMed Central

    Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

    2016-01-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848

  7. Mycophenolic Acid-Induced Developmental Defects in Zebrafish Embryos.

    PubMed

    Jiang, Ling-Ling; Liu, Mei-Hui; Li, Jian-Ying; He, Zhi-Heng; Li, Huan; Shen, Ning; Wei, Ping; He, Ming-Fang

    2016-11-01

    With the increasing use of mycophenolic acid (MPA) in solid organ transplantation, some clinical studies indicate that it is also a human teratogen. However, it is unknown by which mechanism MPA acts as a teratogen. Mycophenolic acid was a selective blocker of de novo purine synthesis, and its immunosuppressive effect is mediated by the inhibition of inosine monophosphate dehydrogenase, which could be a target for MPA-induced toxicity as well. The aim of our study was to examine the direct influence of MPA exposure on zebrafish (Danio rerio) embryos. Morphological defects including tail curvature and severe pericardial edema in zebrafish embryos caused by MPA (3.7-11.1 µmol/L) were found in a dose-dependent manner. The teratogenic index (25% lethal concentration value (LC25)/no observed adverse effect level ratio) was 16, which indicated MPA as a teratogen. Quantitative polymerase chain reaction analysis revealed that the expression level of impdh1b and impdh2 was significantly reduced by MPA treatment at 8 µmol/L (equals to LC25 level). All the toxic effects could be partially reversed by the addition of 33.3 µmol/L guanosine. Our results indicated that MPA impairs the development of zebrafish embryos via inhibition of impdh activity, which subsequently caused a guanosine nucleotide depletion in vivo.

  8. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.

    PubMed

    Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav

    2016-11-01

    The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.

  9. Mapping the development of cerebellar Purkinje cells in zebrafish.

    PubMed

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease. © 2015 Wiley Periodicals, Inc.

  10. Transcriptomic characterization of cold acclimation in larval zebrafish

    PubMed Central

    2013-01-01

    Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969

  11. Developmental effects of simulated microgravity on zebrafish, (Danio rerio)

    NASA Astrophysics Data System (ADS)

    Stoyek, Matthew; Edsall, Sara; Franz-Odendaal, Tamara; Smith, Frank; Croll, Roger

    Zebrafish are widely used model vertebrates in research and recently this species has been used to study the effects of microgravity on fundamental biological processes. In this study we used a NASA-designed rotating wall vessel (RWV) to investigate the effects of simulated microgravity (SMG) on zebrafish development up to 14 days post fertilization (dpf). At developmental stages beyond the 3-4 somite stage we found SMG-exposed embryos reached key developmental stag-ing points more rapidly than fish raised within a non-rotating vessel. By the 21 somite stage, both groups were again synchronized in their developmental staging. However, SMG-exposed embryos eventually exhibited a delay in hatching time compared to controls. Otolith and to-tal body size were observed to be greater in larvae raised in SMG. In addition, pigmentation patterns in SMG exposed fish differed, with larger and differentially aggregated melanocytes . Heart development was slowed in SMG exposed fish, but no change in nervous system de-velopment was detected. Ongoing research will focus on differences in heart and respiration rates. Finally, by developing a method to extend the duration of SMG exposure, we found the swimming behaviour of SMG-exposed animals was altered with time in the RWV. Initially SMG-exposed animals swam in the direction of RWV rotation (5-9dpf) but older (9+dpf) fish swam against rotation and demonstrated righting behaviour with each rotation. These results suggest that vestibular reflexes may develop normally and be maintained in animals exposed to SMG. Together, our data provide insights into how zebrafish may develop when flown in space, permitting better formulation of experiments to test mechanisms by which microgravity may affect ontogeny of this model organism. Keywords: microgravity, zebrafish, growth, development

  12. Disruption of Epithalamic Left–Right Asymmetry Increases Anxiety in Zebrafish

    PubMed Central

    Facchin, Lucilla; Duboué, Erik R.

    2015-01-01

    Differences between the left and right sides of the brain are found throughout the animal kingdom, but the consequences of altered neural asymmetry are not well understood. In the zebrafish epithalamus, the parapineal is located on the left side of the brain where it influences development of the adjacent dorsal habenular (dHb) nucleus, causing the left and right dHb to differ in their organization, gene expression, and connectivity. Left–right (L-R) reversal of parapineal position and dHb asymmetry occurs spontaneously in a small percentage of the population, whereas the dHb develop symmetrically following experimental ablation of the parapineal. The habenular region was previously implicated in modulating fear in both mice and zebrafish, but the relevance of its L-R asymmetry is unclear. We now demonstrate that disrupting directionality of the zebrafish epithalamus causes reduced exploratory behavior and increased cortisol levels, indicative of enhanced anxiety. Accordingly, exposure to buspirone, an anxiolytic agent, significantly suppresses atypical behavior. Axonal projections from the parapineal to the dHb are more variable when it is located on the right side of the brain, revealing that L-R reversals do not necessarily represent a neuroanatomical mirror image. The results highlight the importance of directional asymmetry of the epithalamus in the regulation of stress responses in zebrafish. SIGNIFICANCE STATEMENT The asymmetric epithalamus of zebrafish has emerged as a valuable model to explore the formation and function of left–right differences in the brain. To probe the relationship between brain laterality and behavior, we examined the effects of left–right reversal of epithalamic asymmetry or symmetric development on behavior. In both cases, zebrafish showed increased measures of fear/anxiety, including reduced exploratory behavior and delayed exit from a confined space. Adults with reversed L-R asymmetry also have elevated cortisol levels

  13. The importance of Zebrafish in biomedical research.

    PubMed

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  14. Streptococcus-Zebrafish Model of Bacterial Pathogenesis

    PubMed Central

    Neely, Melody N.; Pfeifer, John D.; Caparon, Michael

    2002-01-01

    Due to its small size, rapid generation time, powerful genetic systems, and genomic resources, the zebrafish has emerged as an important model of vertebrate development and human disease. Its well-developed adaptive and innate cellular immune systems make the zebrafish an ideal model for the study of infectious diseases. With a natural and important pathogen of fish, Streptococcus iniae, we have established a streptococcus- zebrafish model of bacterial pathogenesis. Following injection into the dorsal muscle, zebrafish developed a lethal infection, with a 50% lethal dose of 103 CFU, and died within 2 to 3 days. The pathogenesis of infection resembled that of S. iniae in farmed fish populations and that of several important human streptococcal diseases and was characterized by an initial focal necrotic lesion that rapidly progressed to invasion of the pathogen into all major organ systems, including the brain. Zebrafish were also susceptible to infection by the human pathogen Streptococcus pyogenes. However, disease was characterized by a marked absence of inflammation, large numbers of extracellular streptococci in the dorsal muscle, and extensive myonecrosis that occurred far in advance of any systemic invasion. The genetic systems available for streptococci, including a novel method of mutagenesis which targets genes whose products are exported, were used to identify several mutants attenuated for virulence in zebrafish. This combination of a genetically amenable pathogen with a well-defined vertebrate host makes the streptococcus-zebrafish model of bacterial pathogenesis a powerful model for analysis of infectious disease. PMID:12065534

  15. 77 FR 2022 - Fisheries of the Northeastern United States; Spiny Dogfish Fishery; Commercial Period 2 Quota...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... Northeastern United States; Spiny Dogfish Fishery; Commercial Period 2 Quota Harvested AGENCY: National Marine... quota available to the coastal states from Maine through Florida for the second semi-annual quota period... necessary to prevent the fishery from exceeding its Period 2 quota and to allow for effective management of...

  16. Animal Models of Tuberculosis: Zebrafish

    PubMed Central

    van Leeuwen, Lisanne M.; van der Sar, Astrid M.; Bitter, Wilbert

    2015-01-01

    Over the past decade the zebrafish (Danio rerio) has become an attractive new vertebrate model organism for studying mycobacterial pathogenesis. The combination of medium-throughput screening and real-time in vivo visualization has allowed new ways to dissect host pathogenic interaction in a vertebrate host. Furthermore, genetic screens on the host and bacterial sides have elucidated new mechanisms involved in the initiation of granuloma formation and the importance of a balanced immune response for control of mycobacterial pathogens. This article will highlight the unique features of the zebrafish–Mycobacterium marinum infection model and its added value for tuberculosis research. PMID:25414379

  17. 2017 Midwest Zebrafish Meeting Report.

    PubMed

    Sandquist, Elizabeth; Petersen, Sarah C; Smith, Cody J

    2017-09-07

    The 2017 Midwest Zebrafish meeting was held from June 16 to 18 at the University of Cincinnati, sponsored by the Cincinnati Children's Hospital Divisions of Developmental Biology, Molecular Cardiovascular Biology, and Gastroenterology, Hepatology, and Nutrition. The meeting, organized by Saulius Sumanas, Joshua Waxman, and Chunyue Yin, hosted >130 attendees from 16 different states. Scientific sessions were focused on morphogenesis, neural development, novel technologies, and disease models, with Steve Ekker, Stephen Potter, and Lila Solnica-Krezel presenting keynote talks. In this article, we highlight the results and emerging themes from the meeting.

  18. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  19. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo

    PubMed Central

    2014-01-01

    Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. Results Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops in the abnormal neural primordium but the resulting tissue architecture is very disorganized. Conclusions We show that the movements of cells in the zebrafish neural plate are highly coordinated during the convergence and internalization movements of neurulation. Our results demonstrate that the underlying mesoderm is required for these coordinated cell movements in the zebrafish neural plate in vivo. PMID:24755297

  20. Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture.

    PubMed

    Tye, Marc; Rider, Dana; Duffy, Elizabeth A; Seubert, Adam; Lothert, Brogen; Schimmenti, Lisa A

    2015-12-01

    Feeding Artemia nauplii as the main nutrition source for zebrafish is a common practice for many research facilities. Culturing live feed can be time-consuming and requires additional equipment to be purchased, maintained, and cleaned. Nonhatching decapsulated Artemia cysts (decaps) are a commercially available product that can be fed directly to fish. Several other ornamental fish species have been successfully cultured using decaps. Replacing Artemia nauplii with decaps could reduce the overall time and costs associated with the operation of a zebrafish facility. The objective of this study was to determine if decaps could be a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture. Wild-type zebrafish were fed one of three dietary treatments: decaps only, nauplii only, or a standard consisting of nauplii plus a commercially prepared pellet food. Survival, growth (length and weight), and embryo production were analyzed between the treatments. Fish receiving the decap diet demonstrated a significantly higher growth and embryo production when compared to the fish receiving the nauplii-only diet. When comparing the decap fish to the standard fish, no significant difference was found in mean survival, mean weight at 90 days postfertilization, or mean embryo production. It was determined that nonhatching decapsulated Artemia cysts can be used as a suitable replacement to Artemia nauplii in juvenile and adult zebrafish culture.

  1. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome

    PubMed Central

    Miller, Galen W.; Truong, Lisa; Barton, Carrie L.; Labut, Edwin M.; Lebold, Katie M.; Traber, Maret G.; Tanguay, Robert L.

    2014-01-01

    The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin Edeficient parental diet (E−) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E− diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E− embryos at 48 h post-fertilization (hpf), embryos were collected from each group at 36 hpf. Lab embryos differentially expressed (p < 0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E− embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E + diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E−embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome. PMID:24657723

  2. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome.

    PubMed

    Miller, Galen W; Truong, Lisa; Barton, Carrie L; Labut, Edwin M; Lebold, Katie M; Traber, Maret G; Tanguay, Robert L

    2014-06-01

    The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin E-deficient parental diet (E-) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E- diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E- embryos at 48h post-fertilization (hpf), embryos were collected from each group at 36hpf. Lab embryos differentially expressed (p<0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E- embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E+ diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E- embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae

    PubMed Central

    Hagedorn, Elliott J.; Cillis, Jennifer L.; Curley, Caitlyn R.; Patch, Taylor C.; Li, Brian; Blaser, Bradley W.; Riquelme, Raquel; Zon, Leonard I.; Shah, Dhvanit I.

    2016-01-01

    Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development. PMID:27341538

  4. Proteomic analysis of the Rett syndrome experimental model mecp2(Q63X) mutant zebrafish.

    PubMed

    Cortelazzo, Alessio; Pietri, Thomas; De Felice, Claudio; Leoncini, Silvia; Guerranti, Roberto; Signorini, Cinzia; Timperio, Anna Maria; Zolla, Lello; Ciccoli, Lucia; Hayek, Joussef

    2017-02-10

    Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Recently, a zebrafish carrying a mecp2-null mutation has been developed with the resulting phenotypes exhibiting defective sensory and thigmotactic responses, and abnormal motor behavior reminiscent of the human disease. Here, we performed a proteomic analysis to examine protein expression changes in mecp2-null vs. wild-type larvae and adult zebrafish. We found a total of 20 proteins differentially expressed between wild-type and mutant zebrafish, suggesting skeletal and cardiac muscle functional defects, a stunted glycolysis and depleted energy availability. This molecular evidence is directly linked to the mecp2-null zebrafish observed phenotype. In addition, we identified changes in expression of proteins critical for a proper redox balance, suggesting an enhanced oxidative stress, a phenomenon also documented in human patients and RTT murine models. The molecular alterations observed in the mecp2-null zebrafish expand our knowledge on the molecular cascade of events that lead to the RTT phenotype.

  5. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae.

    PubMed

    Hagedorn, Elliott J; Cillis, Jennifer L; Curley, Caitlyn R; Patch, Taylor C; Li, Brian; Blaser, Bradley W; Riquelme, Raquel; Zon, Leonard I; Shah, Dhvanit I

    2016-06-11

    Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been  used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development.

  6. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish

    PubMed Central

    Lee, Sang Joon; Choi, Woorak; Seo, Eunseok; Yeom, Eunseop

    2015-01-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis. PMID:26561854

  7. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    PubMed

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  8. Waterborne Risperidone Decreases Stress Response in Zebrafish.

    PubMed

    Idalencio, Renan; Kalichak, Fabiana; Rosa, João Gabriel Santos; de Oliveira, Tiago Acosta; Koakoski, Gessi; Gusso, Darlan; Abreu, Murilo Sander de; Giacomini, Ana Cristina Varrone; Barcellos, Heloísa Helena de Alcântara; Piato, Angelo L; Barcellos, Leonardo José Gil

    2015-01-01

    The presence of drugs and their metabolites in surface waters and municipal effluents has been reported in several studies, but its impacts on aquatic organisms are not yet well understood. This study investigated the effects of acute exposure to the antipsychotic risperidone on the stress and behavioral responses in zebrafish. It became clear that intermediate concentration of risperidone inhibited the hypothalamic-pituitary-interrenal axis and displayed anxiolytic-like effects in zebrafish. The data presented here suggest that the presence of this antipsychotic in aquatic environments can alter neuroendocrine and behavior profiles in zebrafish.

  9. Waterborne Risperidone Decreases Stress Response in Zebrafish

    PubMed Central

    Kalichak, Fabiana; Rosa, João Gabriel Santos; de Oliveira, Tiago Acosta; Koakoski, Gessi; Gusso, Darlan; de Abreu, Murilo Sander; Giacomini, Ana Cristina Varrone; Barcellos, Heloísa Helena de Alcântara

    2015-01-01

    The presence of drugs and their metabolites in surface waters and municipal effluents has been reported in several studies, but its impacts on aquatic organisms are not yet well understood. This study investigated the effects of acute exposure to the antipsychotic risperidone on the stress and behavioral responses in zebrafish. It became clear that intermediate concentration of risperidone inhibited the hypothalamic-pituitary-interrenal axis and displayed anxiolytic-like effects in zebrafish. The data presented here suggest that the presence of this antipsychotic in aquatic environments can alter neuroendocrine and behavior profiles in zebrafish. PMID:26473477

  10. Zebrafish tracking using convolutional neural networks

    PubMed Central

    XU, Zhiping; Cheng, Xi En

    2017-01-01

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable. PMID:28211462

  11. Zebrafish tracking using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Cheng, Xi En

    2017-02-01

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  12. Learning and memory in zebrafish larvae.

    PubMed

    Roberts, Adam C; Bill, Brent R; Glanzman, David L

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory.

  13. Automated measurement of zebrafish larval movement

    PubMed Central

    Cario, Clinton L; Farrell, Thomas C; Milanese, Chiara; Burton, Edward A

    2011-01-01

    Abstract The zebrafish is a powerful vertebrate model that is readily amenable to genetic, pharmacological and environmental manipulations to elucidate the molecular and cellular basis of movement and behaviour. We report software enabling automated analysis of zebrafish movement from video recordings captured with cameras ranging from a basic camcorder to more specialized equipment. The software, which is provided as open-source MATLAB functions, can be freely modified and distributed, and is compatible with multiwell plates under a wide range of experimental conditions. Automated measurement of zebrafish movement using this technique will be useful for multiple applications in neuroscience, pharmacology and neuropsychiatry. PMID:21646414

  14. Learning and memory in zebrafish larvae

    PubMed Central

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  15. Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues.

    PubMed

    van der Plas-Duivesteijn, Suzanne J; Mohammed, Yassene; Dalebout, Hans; Meijer, Annemarie; Botermans, Anouk; Hoogendijk, Jordy L; Henneman, Alex A; Deelder, André M; Spaink, Herman P; Palmblad, Magnus

    2014-03-07

    Spectral libraries provide a sensitive and accurate method for identifying peptides from tandem mass spectra, complementary to searching genome-derived databases or sequencing de novo. Their application requires comprehensive libraries including peptides from low-abundant proteins. Here we describe a method for constructing such libraries using biological differentiation to "fractionate" the proteome by harvesting adult organs and tissues and build comprehensive libraries for identifying proteins in zebrafish (Danio rerio) embryos and larvae (an important and widely used model system). Hierarchical clustering using direct comparison of spectra was used to prioritize organ selection. The resulting and publicly available library covers 14,164 proteins, significantly improved the number of peptide-spectrum matches in zebrafish developmental stages, and can be used on data from different instruments and laboratories. The library contains information on tissue and organ expression of these proteins and is also applicable for adult experiments. The approach itself is not limited to zebrafish but would work for any model system.

  16. Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts

    PubMed Central

    Liew, Nicole; Mazon Moya, Maria J.; Wierzbicki, Claudia J.; Hollinshead, Michael; Dillon, Michael J.; Thornton, Christopher R.; Ellison, Amy; Cable, Jo; Fisher, Matthew C.; Mostowy, Serge

    2017-01-01

    Aquatic chytrid fungi threaten amphibian biodiversity worldwide owing to their ability to rapidly expand their geographical distributions and to infect a wide range of hosts. Combating this risk requires an understanding of chytrid host range to identify potential reservoirs of infection and to safeguard uninfected regions through enhanced biosecurity. Here we extend our knowledge on the host range of the chytrid Batrachochytrium dendrobatidis by demonstrating infection of a non-amphibian vertebrate host, the zebrafish. We observe dose-dependent mortality and show that chytrid can infect and proliferate on zebrafish tissue. We also show that infection phenotypes (fin erosion, cell apoptosis and muscle degeneration) are direct symptoms of infection. Successful infection is dependent on disrupting the zebrafish microbiome, highlighting that, as is widely found in amphibians, commensal bacteria confer protection against this pathogen. Collectively, our findings greatly expand the limited tool kit available to study pathogenesis and host response to chytrid infection. PMID:28425465

  17. bmp2b and bmp4 are dispensable for zebrafish tooth development.

    PubMed

    Wise, Sarah B; Stock, David W

    2010-10-01

    Bone morphogenetic protein (Bmp) signaling has been shown to play important roles in tooth development at virtually all stages from initiation to hard tissue formation. The specific ligands involved in these processes have not been directly tested by loss-of-function experiments, however. We used morpholino antisense oligonucleotides and mutant analysis in the zebrafish to reduce or eliminate the function of bmp2b and bmp4, two ligands known to be expressed in zebrafish teeth and whose mammalian orthologs are thought to play important roles in tooth development. Surprisingly, we found that elimination of function of these two genes singly and in combination did not prevent the formation of mature, attached teeth. The mostly likely explanation for this result is functional redundancy with other Bmp ligands, which may differ between the zebrafish and the mouse.

  18. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24 'g/L from 2.5 to 96 hours post fertilization (hpf) to zebrafish embryos significantly decreased global cytosine...

  19. Heme Binding to the Mammalian Circadian Clock Protein Period 2 is Non-Specific†

    PubMed Central

    Airola, Michael V.; Du, Jing; Dawson, John H.; Crane, Brian R.

    2010-01-01

    The mammalian circadian clock synchronizes physical and metabolic activity with the diurnal cycle through a transcriptional-posttranslational feedback loop. An additional feedback mechanism regulating clock timing has been proposed to involve oscillation in heme availability. Period 2 (PER2), an integral component in the negative feedback loop that establishes circadian rhythms in mammals, has been identified as a heme binding protein. However, the majority of evidence for heme binding is based upon in vitro heme binding assays. We sought to ascertain if these largely spectral assays could distinguish between specific and non-specific heme interactions. Heme binding properties by a number of other well-characterized proteins, all with no known biological role involving heme interaction, corresponded to those displayed by PER2. Site-directed mutants of putative heme-binding residues identified by MCD were unable to locate a specific heme-binding site on PER2. Protein film electrochemistry also indicates that heme binds PER2 non-specifically on the protein surface. Our results establish the inability of typical in vitro assays to easily distinguish between specific and non-specific heme binding. We conclude that heme binding to PER2 is likely to be non-specific and does not involve the hydrophobic pocket within the PER2 PAS domains that in other PAS proteins commonly recognizes cofactors. These findings also question the significance of in vivo studies that implicate heme interactions with the clock proteins PER2 and nPAS2 in biological function. PMID:20411915

  20. Extraction Protocols for Individual Zebrafish's Ventricle Myosin and Skeletal Muscle Actin for In vitro Motility Assays

    PubMed Central

    Scheid, Lisa-Mareike; Weber, Cornelia; Bopp, Nasrin; Mosqueira, Matias; Fink, Rainer H. A.

    2017-01-01

    The in vitro motility assay (IVMA) is a technique that enables the measurement of the interaction between actin and myosin providing a relatively simple model to understand the mechanical muscle function. For actin-myosin IVMA, myosin is immobilized in a measurement chamber, where it converts chemical energy provided by ATP hydrolysis into mechanical energy. The result is the movement of fluorescently labeled actin filaments that can be recorded microscopically and analyzed quantitatively. Resulting sliding speeds and patterns help to characterize the underlying actin-myosin interaction that can be affected by different factors such as mutations or active compounds. Additionally, modulatory actions of the regulatory proteins tropomyosin and troponin in the presence of calcium on actin-myosin interaction can be studied with the IVMA. Zebrafish is considered a suitable model organism for cardiovascular and skeletal muscle research. In this context, straightforward protocols for the isolation and use of zebrafish muscle proteins in the IVMA would provide a useful tool in molecular studies. Currently, there are no protocols available for the mentioned purpose. Therefore, we developed fast and easy protocols for characterization of zebrafish proteins in the IVMA. Our protocols enable the interested researcher to (i) isolate actin from zebrafish skeletal muscle and (ii) extract functionally intact myosin from cardiac and skeletal muscle of individual adult zebrafish. Zebrafish tail muscle actin is isolated after acetone powder preparation, polymerized, and labeled with Rhodamine-Phalloidin. Myosin from ventricles of adult zebrafish is extracted directly into IVMA flow-cells. The same extraction protocol is applicable for comparably small tissue pieces as from zebrafish tail, mouse and frog muscle. After addition of the fluorescently labeled F-actin from zebrafish—or other origin—and ATP, sliding movement can be visualized using a fluorescence microscope and an

  1. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish.

    PubMed

    Pérez-Schuster, Verónica; Kulkarni, Anirudh; Nouvian, Morgane; Romano, Sebastián A; Lygdas, Konstantinos; Jouary, Adrien; Dipoppa, Mario; Pietri, Thomas; Haudrechy, Mathieu; Candat, Virginie; Boulanger-Weill, Jonathan; Hakim, Vincent; Sumbre, Germán

    2016-10-18

    Following moving visual stimuli (conditioning stimuli, CS), many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE). Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae. Using zebrafish eye movements as an indicator of visual motion perception, we find that larvae perceive MAE. Blocking eye movements using optogenetics during CS presentation did not affect MAE, but tectal ablation significantly weakened it. Using two-photon calcium imaging of behaving GCaMP3 larvae, we find post-stimulation sustained rhythmic activity among direction-selective tectal neurons associated with the perception of MAE. In addition, tectal neurons tuned to the CS direction habituated, but neurons in the retina did not. Finally, a model based on competition between direction-selective neurons reproduced MAE, suggesting a neuronal circuit capable of generating perception of visual motion. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Heart dissection in larval, juvenile and adult zebrafish, Danio rerio.

    PubMed

    Singleman, Corinna; Holtzman, Nathalia G

    2011-09-30

    Zebrafish have become a beneficial and practical model organism for the study of embryonic heart development, however, work examining post-embryonic through adult cardiac development has been limited. Examining the changing morphology of the maturing and aging heart are restricted by the lack of techniques available for staging and isolating juvenile and adult hearts. In order to analyze heart development over the fish's lifespan, we dissect zebrafish hearts at numerous stages and photograph them for further analysis. The morphological features of the heart can easily be quantified and individual hearts can be further analyzed by a host of standard methods. Zebrafish grow at variable rates and maturation correlates better with fish size than age, thus, post-fixation, we photograph and measure fish length as a gauge of fish maturation. This protocol explains two distinct, size dependent dissection techniques for zebrafish, ranging from larvae 3.5 mm standard length (SL) with hearts of 100 μm ventricle length (VL), to adults, with SL of 30 mm and VL 1mm or larger. Larval and adult fish have quite distinct body and organ morphology. Larvae are not only significantly smaller, they have less pigment and each organ is visually very difficult to identify. For this reason, we use distinct dissection techniques. We used pre-dissection fixation procedures, as we discovered that hearts dissected directly after euthanization have a more variable morphology, with very loose and balloon like atria compared with hearts removed following fixation. The fish fixed prior to dissection, retain in vivo morphology and chamber position (data not shown). In addition, for demonstration purposes, we take advantage of the heart (myocardial) specific GFP transgenic Tg(myl7:GFP)(twu34), which allows us to visualize the entire heart and is particularly useful at early stages in development when the cardiac morphology is less distinct from surrounding tissues. Dissection of the heart makes

  3. Mice lacking Period 1 and Period 2 circadian clock genes exhibit blue cone photoreceptor defects.

    PubMed

    Ait-Hmyed, Ouafa; Felder-Schmittbuhl, Marie-Paule; Garcia-Garrido, Marina; Beck, Susanne; Seide, Christina; Sothilingam, Vithiyanjali; Tanimoto, Naoyuki; Seeliger, Mathias; Bennis, Mohammed; Hicks, David

    2013-04-01

    Many aspects of retinal physiology are modulated by circadian clocks, but it is unclear whether clock malfunction impinges directly on photoreceptor survival, differentiation or function. Eyes from wild-type (WT) and Period1 (Per1) and Period2 (Per2) mutant mice (Per1(Brdm1) Per2(Brdm1) ) were examined for structural (histology, in vivo imaging), phenotypical (RNA expression, immunohistochemistry) and functional characteristics. Transcriptional levels of selected cone genes [red/green opsin (Opn1mw), blue cone opsin (Opn1sw) and cone arrestin (Arr3)] and one circadian clock gene (RORb) were quantified by real-time polymerase chain reaction. Although there were no changes in general retinal histology or visual responses (electroretinograms) between WT and Per1(Brdm1) Per2(Brdm1) mice, compared with age-matched controls, Per1(Brdm1) Per2(Brdm1) mice showed scattered retinal deformations by fundus inspection. Also, mRNA expression levels and immunostaining of blue cone opsin were significantly reduced in mutant mice. Especially, there was an alteration in the dorsal-ventral patterning of blue cones. Decreased blue cone opsin immunoreactivity was present by early postnatal stages, and remained throughout maturation. General photoreceptor differentiation was retarded in young mutant mice. In conclusion, deletion of both Per1 and Per2 clock genes leads to multiple discrete changes in retina, notably patchy tissue disorganization, reductions in cone opsin mRNA and protein levels, and altered distribution. These data represent the first direct link between Per1 and Per2 clock genes, and cone photoreceptor differentiation and function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Modeling Syndromic Congenital Heart Defects in Zebrafish.

    PubMed

    Grant, Meagan G; Patterson, Victoria L; Grimes, Daniel T; Burdine, Rebecca D

    2017-01-01

    Cardiac development is a dynamic process regulated by spatial and temporal cues that are integrated to effect molecular, cellular, and tissue-level events that form the adult heart. Disruption of these highly orchestrated events can be devastating for cardiac form and function. Aberrations in heart development result in congenital heart defects (CHDs), which affect 1 in 100 infants in the United States each year. Zebrafish have proven informative as a model organism to understand both heart development and the mechanisms associated with CHDs due to the similarities in heart morphogenesis among vertebrates, as well as their genetic tractability and amenability to live imaging. In this review, we discuss the mechanisms of zebrafish heart development and the utility of zebrafish for understanding syndromic CHDs, those cardiac abnormalities that occur in the context of multisystem disorders. We conclude with avenues of zebrafish research that will potentially inform future therapeutic approaches for the treatment of CHDs.

  5. Behavioral screening for neuroactive drugs in zebrafish.

    PubMed

    Rihel, Jason; Schier, Alexander F

    2012-03-01

    The larval zebrafish has emerged asa vertebrate model system amenable to small molecule screens for probing diverse biological pathways. Two large-scale small molecule screens examined the effects of thousands of drugs on larval zebrafish sleep/wake and photomotor response behaviors. Both screens identified hundreds of molecules that altered zebrafish behavior in distinct ways. The behavioral profiles induced by these small molecules enabled the clustering of compounds according to shared phenotypes. This approach identified regulators of sleep/wake behavior and revealed the biological targets for poorly characterized compounds. Behavioral screening for neuroactive small molecules in zebrafish is an attractive complement to in vitro screening efforts, because the complex interactions in the vertebrate brain can only be revealed in vivo.

  6. Zebrafish Models for Human Acute Organophosphorus Poisoning

    PubMed Central

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J.; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick II, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B. Lynn; Zorzano, Antonio; Soares, Amadeu M.V.M; Raldúa, Demetrio

    2015-01-01

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning. PMID:26489395

  7. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  8. Episodic-like memory in zebrafish.

    PubMed

    Hamilton, Trevor J; Myggland, Allison; Duperreault, Erika; May, Zacnicte; Gallup, Joshua; Powell, Russell A; Schalomon, Melike; Digweed, Shannon M

    2016-11-01

    Episodic-like memory tests often aid in determining an animal's ability to recall the what, where, and which (context) of an event. To date, this type of memory has been demonstrated in humans, wild chacma baboons, corvids (Scrub jays), humming birds, mice, rats, Yucatan minipigs, and cuttlefish. The potential for this type of memory in zebrafish remains unexplored even though they are quickly becoming an essential model organism for the study of a variety of human cognitive and mental disorders. Here we explore the episodic-like capabilities of zebrafish (Danio rerio) in a previously established mammalian memory paradigm. We demonstrate that when zebrafish were presented with a familiar object in a familiar context but a novel location within that context, they spend more time in the novel quadrant. Thus, zebrafish display episodic-like memory as they remember what object they saw, where they saw it (quadrant location), and on which occasion (yellow or blue walls) it was presented.

  9. Zebrafish as a model for systems biology.

    PubMed

    Mushtaq, Mian Yahya; Verpoorte, Robert; Kim, Hye Kyong

    2013-01-01

    Zebrafish offer a unique vertebrate model for research areas such as drug development, disease modeling and other biological exploration. There is significant conservation of genetics and other cellular networks among zebrafish and other vertebrate models, including humans. Here we discuss the recent work and efforts made in different fields of biology to explore the potential of zebrafish. Along with this, we also reviewed the concept of systems biology. A biological system is made up of a large number of components that interact in a huge variety of combinations. To understand completely the behavior of a system, it is important to know its components and interactions, and this can be achieved through a systems biology approach. At the end of the paper we present a concept of integrating zebrafish into the systems biology approach.

  10. Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone

    PubMed Central

    Ahuja, Gaurav; Korsching, Sigrun

    2014-01-01

    Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction. PMID:26842458

  11. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further

  12. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs.

    PubMed

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-07-01

    Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further, it evidences zebrafish's potential for in vivo efficacy or toxicity screening of

  13. Polygenic Sex Determination System in Zebrafish

    PubMed Central

    Liew, Woei Chang; Bartfai, Richard; Lim, Zijie; Sreenivasan, Rajini; Siegfried, Kellee R.; Orban, Laszlo

    2012-01-01

    Background Despite the popularity of zebrafish as a research model, its sex determination (SD) mechanism is still unknown. Most cytogenetic studies failed to find dimorphic sex chromosomes and no primary sex determining switch has been identified even though the assembly of zebrafish genome sequence is near to completion and a high resolution genetic map is available. Recent publications suggest that environmental factors within the natural range have minimal impact on sex ratios of zebrafish populations. The primary aim of this study is to find out more about how sex is determined in zebrafish. Methodology/Principal Findings Using classical breeding experiments, we found that sex ratios across families were wide ranging (4.8% to 97.3% males). On the other hand, repeated single pair crossings produced broods of very similar sex ratios, indicating that parental genotypes have a role in the sex ratio of the offspring. Variation among family sex ratios was reduced after selection for breeding pairs with predominantly male or female offspring, another indication that zebrafish sex is regulated genetically. Further examinations by a PCR-based “blind assay" and array comparative genomic hybridization both failed to find universal sex-linked differences between the male and female genomes. Together with the ability to increase the sex bias of lines by selective breeding, these data suggest that zebrafish is unlikely to utilize a chromosomal sex determination (CSD) system. Conclusions/Significance Taken together, our study suggests that zebrafish sex is genetically determined with limited, secondary influences from the environment. As we have not found any sign for CSD in the species, we propose that the zebrafish has a polygenic sex determination system. PMID:22506019

  14. Spinal cord transection in the larval zebrafish.

    PubMed

    Briona, Lisa K; Dorsky, Richard I

    2014-05-21

    Mammals fail in sensory and motor recovery following spinal cord injury due to lack of axonal regrowth below the level of injury as well as an inability to reinitiate spinal neurogenesis. However, some anamniotes including the zebrafish Danio rerio exhibit both sensory and functional recovery even after complete transection of the spinal cord. The adult zebrafish is an established model organism for studying regeneration following spinal cord injury, with sensory and motor recovery by 6 weeks post-injury. To take advantage of in vivo analysis of the regenerative process available in the transparent larval zebrafish as well as genetic tools not accessible in the adult, we use the larval zebrafish to study regeneration after spinal cord transection. Here we demonstrate a method for reproducibly and verifiably transecting the larval spinal cord. After transection, our data shows sensory recovery beginning at 2 days post-injury (dpi), with the C-bend movement detectable by 3 dpi and resumption of free swimming by 5 dpi. Thus we propose the larval zebrafish as a companion tool to the adult zebrafish for the study of recovery after spinal cord injury.

  15. Patterning of angiogenesis in the zebrafish embryo.

    PubMed

    Childs, Sarah; Chen, Jau-Nian; Garrity, Deborah M; Fishman, Mark C

    2002-02-01

    -type endothelial cells to assume the anomalous ISV pattern of obd embryos. Thus, the launching position of the new sprout and its initial trajectory are directed by inhibitory signals from ventral somites. Zebrafish ISVs are a tractable system for defining the origins and fates of vessels, and for dissecting elements that govern patterns of vessel growth.

  16. Neutron induced bystander effect among zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  17. Active microrheology of fluids inside developing zebrafish

    NASA Astrophysics Data System (ADS)

    Taormina, Mike; Parthasarathy, Raghuveer

    2014-03-01

    Biological fluids are a source of diverse and interesting behavior for the soft matter physicist. Since their mechanical properties must be tuned to fulfill functional roles important to the development and health of living things, they often display complex behavior on length and time scales spanning many orders of magnitude. For microbes colonizing an animal host, for example, the mechanical properties of the host environment are of great importance, affecting mobility and hence the ability to establish a stable population. Indeed, some species possess the ability to affect the fluidity of their environment, both directly by chemically modifying it, and indirectly by influencing the host cells' secretion of mucus. Driving magnetically doped micron-scale probes which have been orally micro-gavaged into the intestinal bulb of a larval zebrafish allows the rheology of the mucosal layer within the fish to be measured over three decades of frequency, complementing ecological data on microbial colonization with physical information about the gut environment. Here, we describe the technique, provide the first measurement of mucosal viscosity in a developing animal, and explore the technique's applicability to other small-volume or spatially inhomogeneous fluid samples.

  18. Zebrafish heart as a model for human cardiac electrophysiology.

    PubMed

    Vornanen, Matti; Hassinen, Minna

    2016-01-01

    The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.

  19. Can Zebrafish be used to Identify Developmentally Neurotoxic Chemicals

    EPA Science Inventory

    Can Zebrafish be Used to Identify Developmentally Neurotoxic Chemicals? The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental neurotoxicity. We are exploring behavioral methods using zebrafish by desig...

  20. Can Zebrafish be used to Identify Developmentally Neurotoxic Chemicals

    EPA Science Inventory

    Can Zebrafish be Used to Identify Developmentally Neurotoxic Chemicals? The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental neurotoxicity. We are exploring behavioral methods using zebrafish by desig...

  1. Neuroblastoma and Its Zebrafish Model.

    PubMed

    Zhu, Shizhen; Thomas Look, A

    2016-01-01

    Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention.

  2. Chemical screening in zebrafish for novel biological and therapeutic discovery

    PubMed Central

    Wiley, D.S.; Redfield, S.E.; Zon, L.I.

    2017-01-01

    Zebrafish chemical screening allows for an in vivo assessment of small molecule modulation of biological processes. Compound toxicities, chemical alterations by metabolism, pharmacokinetic and pharmacodynamic properties, and modulation of cell niches can be studied with this method. Furthermore, zebrafish screening is straightforward and cost effective. Zebrafish provide an invaluable platform for novel therapeutic discovery through chemical screening. PMID:28129862

  3. Viral diseases in zebrafish: what is known and unknown.

    PubMed

    Crim, Marcus J; Riley, Lela K

    2012-01-01

    Naturally occurring viral infections have the potential to introduce confounding variability that leads to invalid and misinterpreted data. Whereas the viral diseases of research rodents are well characterized and closely monitored, no naturally occurring viral infections have been characterized for the laboratory zebrafish (Danio rerio), an increasingly important biomedical research model. Despite the ignorance about naturally occurring zebrafish viruses, zebrafish models are rapidly expanding in areas of biomedical research where the confounding effects of unknown infectious agents present a serious concern. In addition, many zebrafish research colonies remain linked to the ornamental (pet) zebrafish trade, which can contribute to the introduction of new pathogens into research colonies, whereas mice used for research are purpose bred, with no introduction of new mice from the pet industry. Identification, characterization, and monitoring of naturally occurring viruses in zebrafish are crucial to the improvement of zebrafish health, the reduction of unwanted variability, and the continued development of the zebrafish as a model organism. This article addresses the importance of identifying and characterizing the viral diseases of zebrafish as the scope of zebrafish models expands into new research areas and also briefly addresses zebrafish susceptibility to experimental viral infection and the utility of the zebrafish as an infection and immunology model.

  4. Viral Diseases in Zebrafish: What Is Known and Unknown

    PubMed Central

    Crim, Marcus J.; Riley, Lela K.

    2013-01-01

    Naturally occurring viral infections have the potential to introduce confounding variability that leads to invalid and misinterpreted data. Whereas the viral diseases of research rodents are well characterized and closely monitored, no naturally occurring viral infections have been characterized for the laboratory zebrafish (Danio rerio), an increasingly important biomedical research model. Despite the ignorance about naturally occurring zebrafish viruses, zebrafish models are rapidly expanding in areas of biomedical research where the confounding effects of unknown infectious agents present a serious concern. In addition, many zebrafish research colonies remain linked to the ornamental (pet) zebrafish trade, which can contribute to the introduction of new pathogens into research colonies, whereas mice used for research are purpose bred, with no introduction of new mice from the pet industry. Identification, characterization, and monitoring of naturally occurring viruses in zebrafish are crucial to the improvement of zebrafish health, the reduction of unwanted variability, and the continued development of the zebrafish as a model organism. This article addresses the importance of identifying and characterizing the viral diseases of zebrafish as the scope of zebrafish models expands into new research areas and also briefly addresses zebrafish susceptibility to experimental viral infection and the utility of the zebrafish as an infection and immunology model. PMID:23382345

  5. Report of Workshop on Euthanasia for Zebrafish-A Matter of Welfare and Science.

    PubMed

    Köhler, Almut; Collymore, Chereen; Finger-Baier, Karin; Geisler, Robert; Kaufmann, Larissa; Pounder, Kieran C; Schulte-Merker, Stefan; Valentim, Ana; Varga, Zoltan M; Weiss, Jürgen; Strähle, Uwe

    2017-10-02

    The increasing importance of zebrafish as a biomedical model organism is reflected by the steadily growing number of publications and laboratories working with this species. Regulatory recommendations for euthanasia as issued in Directive 2010/63/EU are, however, based on experience with fish species used for food production and do not take the small size and specific physiology of zebrafish into account. Consequently, the currently recommended methods of euthanasia in the Directive 2010/63/EU are either not applicable or may interfere with research goals. An international workshop was held in Karlsruhe, Germany, March 9, 2017, to discuss and propose alternative methods for euthanasia of zebrafish. The aim was to identify methods that adequately address the physiology of zebrafish and its use as a biomedical research model, follow the principles of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation and consider animal welfare during anesthesia and euthanasia. The results of the workshop are summarized here in the form of a white paper.

  6. Light signaling to the zebrafish circadian clock by Cryptochrome 1a.

    PubMed

    Tamai, T Katherine; Young, Lucy C; Whitmore, David

    2007-09-11

    Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light entrainment of the zebrafish clock. Intensity and phase response curves reveal a strong correlation between light induction of Cry1a and clock resetting. Overexpression studies show that Cry1a acts as a potent repressor of clock function and mimics the effect of constant light to "stop" the circadian oscillator. Yeast two-hybrid analysis demonstrates that the Cry1a protein interacts directly with specific regions of core clock components, CLOCK and BMAL, blocking their ability to fully dimerize and transactivate downstream targets, providing a likely mechanism for clock resetting. A comparison of entrainment of zebrafish cells to complete versus skeleton photoperiods reveals that clock phase is identical under these two conditions. However, the amplitude of the core clock oscillation is much higher on a complete photoperiod, as are the levels of light-induced Cry1a. We believe that Cry1a acts on the core clock machinery in both a continuous and discrete fashion, leading not only to entrainment, but also to the establishment of a high-amplitude rhythm and even stopping of the clock under long photoperiods.

  7. Disruption of Epithalamic Left-Right Asymmetry Increases Anxiety in Zebrafish.

    PubMed

    Facchin, Lucilla; Duboué, Erik R; Halpern, Marnie E

    2015-12-02

    Differences between the left and right sides of the brain are found throughout the animal kingdom, but the consequences of altered neural asymmetry are not well understood. In the zebrafish epithalamus, the parapineal is located on the left side of the brain where it influences development of the adjacent dorsal habenular (dHb) nucleus, causing the left and right dHb to differ in their organization, gene expression, and connectivity. Left-right (L-R) reversal of parapineal position and dHb asymmetry occurs spontaneously in a small percentage of the population, whereas the dHb develop symmetrically following experimental ablation of the parapineal. The habenular region was previously implicated in modulating fear in both mice and zebrafish, but the relevance of its L-R asymmetry is unclear. We now demonstrate that disrupting directionality of the zebrafish epithalamus causes reduced exploratory behavior and increased cortisol levels, indicative of enhanced anxiety. Accordingly, exposure to buspirone, an anxiolytic agent, significantly suppresses atypical behavior. Axonal projections from the parapineal to the dHb are more variable when it is located on the right side of the brain, revealing that L-R reversals do not necessarily represent a neuroanatomical mirror image. The results highlight the importance of directional asymmetry of the epithalamus in the regulation of stress responses in zebrafish.

  8. Microanatomy of adult zebrafish extraocular muscles.

    PubMed

    Kasprick, Daniel S; Kish, Phillip E; Junttila, Tyler L; Ward, Lindsay A; Bohnsack, Brenda L; Kahana, Alon

    2011-01-01

    Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.

  9. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.

  10. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed Central

    Lovering, Ruth C

    2014-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794

  11. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development

    PubMed Central

    Sidhaye, Jaydeep; Tomancak, Pavel; Preibisch, Stephan; Norden, Caren

    2016-01-01

    Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments. PMID:27167079

  12. Zebrafish Guanylate Cyclase Type 3 Signaling in Cone Photoreceptors

    PubMed Central

    Fries, Ramona; Scholten, Alexander; Säftel, Werner; Koch, Karl-Wilhelm

    2013-01-01

    The zebrafish guanylate cyclase type 3 (zGC3) is specifically expressed in cone cells. A specifc antibody directed against zGC3 revealed expression at the protein level at 3.5 dpf in outer and inner retinal layers, which increased in intensity between 3.5 and 7 dpf. This expression pattern differed from sections of the adult retina showing strong immunostaining in outer segments of double cones and short single cones, less intense immunoreactivity in long single cones, but no staining in the inner retina. Although transcription and protein expression levels of zGC3 are similar to that of the cyclase regulator guanylate cyclase-activating protein 3 (zGCAP3), we surprisingly found that zGCAP3 is present in a 28-fold molar excess over zGC3 in zebrafish retinae. Further, zGCAP3 was an efficient regulator of guanylate cyclases activity in native zebrafish retinal membrane preparations. Therefore, we investigated the physiological function of zGCAP3 by two different behavioral assays. Using the morpholino antisense technique, we knocked down expression of zGCAP3 and recorded the optokinetic and optomotor responses of morphants, control morphants, and wild type fish at 5–6 dpf. No significant differences in behavioral responses among wild type, morphants and control morphants were found, indicating that a loss of zGCAP3 has no consequences in primary visual processing in the larval retina despite its prominent expression pattern. Its physiological function is therefore compensated by other zGCAP isoforms. PMID:23940527

  13. Dissection of the adult zebrafish kidney.

    PubMed

    Gerlach, Gary F; Schrader, Lauran N; Wingert, Rebecca A

    2011-08-29

    Researchers working in the burgeoning field of adult stem cell biology seek to understand the signals that regulate the behavior and function of stem cells during normal homeostasis and disease states. The understanding of adult stem cells has broad reaching implications for the future of regenerative medicine. For example, better knowledge about adult stem cell biology can facilitate the design of therapeutic strategies in which organs are triggered to heal themselves or even the creation of methods for growing organs in vitro that can be transplanted into humans. The zebrafish has become a powerful animal model for the study of vertebrate cell biology. There has been extensive documentation and analysis of embryonic development in the zebrafish. Only recently have scientists sought to document adult anatomy and surgical dissection techniques, as there has been a progressive movement within the zebrafish community to broaden the applications of this research organism to adult studies. For example, there are expanding interests in using zebrafish to investigate the biology of adult stem cell populations and make sophisticated adult models of diseases such as cancer. Historically, isolation of the zebrafish adult kidney has been instrumental for studying hematopoiesis, as the kidney is the anatomical location of blood cell production in fish. The kidney is composed of nephron functional units found in arborized arrangements, surrounded by hematopoietic tissue that is dispersed throughout the intervening spaces. The hematopoietic component consists of hematopoietic stem cells (HSCs) and their progeny that inhabit the kidney until they terminally differentiate. In addition, it is now appreciated that a group of renal stem/progenitor cells (RPCs) also inhabit the zebrafish kidney organ and enable both kidney regeneration and growth, as observed in other fish species. In light of this new discovery, the zebrafish kidney is one organ that houses the location of two

  14. Dissection of the Adult Zebrafish Kidney

    PubMed Central

    Wingert, Rebecca A.

    2011-01-01

    Researchers working in the burgeoning field of adult stem cell biology seek to understand the signals that regulate the behavior and function of stem cells during normal homeostasis and disease states. The understanding of adult stem cells has broad reaching implications for the future of regenerative medicine1. For example, better knowledge about adult stem cell biology can facilitate the design of therapeutic strategies in which organs are triggered to heal themselves or even the creation of methods for growing organs in vitro that can be transplanted into humans1. The zebrafish has become a powerful animal model for the study of vertebrate cell biology2. There has been extensive documentation and analysis of embryonic development in the zebrafish3. Only recently have scientists sought to document adult anatomy and surgical dissection techniques4, as there has been a progressive movement within the zebrafish community to broaden the applications of this research organism to adult studies. For example, there are expanding interests in using zebrafish to investigate the biology of adult stem cell populations and make sophisticated adult models of diseases such as cancer5. Historically, isolation of the zebrafish adult kidney has been instrumental for studying hematopoiesis, as the kidney is the anatomical location of blood cell production in fish6,7. The kidney is composed of nephron functional units found in arborized arrangements, surrounded by hematopoietic tissue that is dispersed throughout the intervening spaces. The hematopoietic component consists of hematopoietic stem cells (HSCs) and their progeny that inhabit the kidney until they terminally differentiate8. In addition, it is now appreciated that a group of renal stem/progenitor cells (RPCs) also inhabit the zebrafish kidney organ and enable both kidney regeneration and growth, as observed in other fish species9-11. In light of this new discovery, the zebrafish kidney is one organ that houses the

  15. Methods for generating and colonizing gnotobiotic zebrafish

    PubMed Central

    Pham, Linh N.; Kanther, Michelle; Semova, Ivana; Rawls, John F.

    2008-01-01

    Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free zebrafish makes it an attractive model organism for gnotobiotic research. Here we provide a protocol for: generating zebrafish embryos; deriving and rearing germ-free zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our germ-free derivations with 90% survival in germ-free animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 hours with a 3–8 hour incubation period prior to derivation. Derivation of germ-free animals takes 1–1.5 hours, and daily maintenance requires 1–2 hours. PMID:19008873

  16. Regeneration of the Pancreas in Adult Zebrafish

    PubMed Central

    Moss, Jennifer B.; Koustubhan, Punita; Greenman, Melanie; Parsons, Michael J.; Walter, Ingrid; Moss, Larry G.

    2009-01-01

    OBJECTIVE Regenerating organs in diverse biological systems have provided clues to processes that can be harnessed to repair damaged tissue. Adult mammalian β-cells have a limited capacity to regenerate, resulting in diabetes and lifelong reliance on insulin. Zebrafish have been used as a model for the regeneration of many organs. We demonstrate the regeneration of adult zebrafish pancreatic β-cells. This nonmammalian model can be used to define pathways for islet-cell regeneration in humans. RESEARCH DESIGN AND METHODS Adult transgenic zebrafish were injected with a single high dose of streptozotocin or metronidazole and anesthetized at 3, 7, or 14 days or pancreatectomized. Blood glucose measurements were determined and gut sections were analyzed using specific endocrine, exocrine, and duct cell markers as well as markers for dividing cells. RESULTS Zebrafish recovered rapidly without the need for insulin injections, and normoglycemia was attained within 2 weeks. Although few proliferating cells were present in vehicles, ablation caused islet destruction and a striking increase of proliferating cells, some of which were Pdx1 positive. Dividing cells were primarily associated with affected islets and ducts but, with the exception of surgical partial pancreatectomy, were not extensively β-cells. CONCLUSIONS The ability of the zebrafish to regenerate a functional pancreas using chemical, genetic, and surgical approaches enabled us to identify patterns of cell proliferation in islets and ducts. Further study of the origin and contribution of proliferating cells in reestablishing islet function could provide strategies for treating human diseases. PMID:19491207

  17. Latent learning in zebrafish (Danio rerio).

    PubMed

    Gómez-Laplaza, Luis M; Gerlai, Robert

    2010-04-02

    The zebrafish may represent an excellent compromise between system complexity and practical simplicity for behavioral brain research. It may be particularly appropriate for large scale screening studies whose aim is to identify mutants with altered phenotypes or novel compounds with particular efficacy. For example, the zebrafish may have utility in the analysis of the biological mechanisms of learning and memory. Although learning and memory have been extensively studied and hundreds of underlying molecular mechanisms have been identified, this number may represent only the fraction of genes involved in these complex brain functions. Thus large scale mutagenesis screens may have utility. In order for such screens to succeed, appropriate screening paradigms must be developed. The first step in this research is the characterization of learning and memory capabilities of zebrafish and the development of automatable tasks. Here we show that zebrafish is capable of latent learning, i.e. can acquire memory of their environment after being allowed to explore it. For example, we found experimental zebrafish that experienced an open left tunnel or an open right tunnel of a maze during the unrewarded exploration phase of the test to show the appropriate side bias during a probe trial when they had to swim to a group of conspecifics (the reward). Given that exploration of the maze does not require the presence of the experimenter and the probe trial, during which the subjects are video-recorded and their memory is tested, is short, we argue that the paradigm has utility in high-throughput screening.

  18. Production of Androgenetic Zebrafish (Danio Rerio)

    PubMed Central

    Corley-Smith, G. E.; Lim, C. J.; Brandhorst, B. P.

    1996-01-01

    To help investigate the evolutionary origin of the imprinting (parent-of-origin mono-allelic expression) of paternal genes observed in mammals, we constructed haploid and diploid androgenetic zebrafish (Danio rerio). Haploid androgenotes were produced by fertilizing eggs that had been X-ray irradiated to eliminate the maternal genome. Subsequent inhibition of the first mitotic division of haploid androgenotes by heat shock produced diploid androgenotes. The lack of inheritance of maternal-specific DNA markers (RAPD and SSR) by putative diploid and haploid androgenotes confirmed the androgenetic origin of their genomes. Marker analysis was performed on 18 putative androgenotes (five diploids and 13 haploids) from six families. None of 157 maternal-specific RAPD markers analyzed, some of which were apparently homozygous, were passed on to any of these putative androgenotes. A mean of 7.7 maternal-specific markers were assessed per family. The survival of androgenetic zebrafish suggests that if paternal imprinting occurs in zebrafish, it does not result in essential genes being inactivated when their expression is required for development. Production of haploid androgenotes can be used to determine the meiotic recombination rate in male zebrafish. Androgenesis may also provide useful information about the mechanism of sex determination in zebrafish. PMID:8846903

  19. Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays

    PubMed Central

    Mathavan, Sinnakaruppan; Lee, Serene G. P; Mak, Alicia; Miller, Lance D; Murthy, Karuturi Radha Krishna; Govindarajan, Kunde R; Tong, Yan; Wu, Yi Lian; Lam, Siew Hong; Yang, Henry; Ruan, Yijun; Korzh, Vladimir; Gong, Zhiyuan; Liu, Edison T; Lufkin, Thomas

    2005-01-01

    Zebrafish (Danio rerio) is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula) revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html). PMID:16132083

  20. Defects of the Glycinergic Synapse in Zebrafish.

    PubMed

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish.

  1. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish.

    PubMed

    Moore, John C; Tang, Qin; Yordán, Nora Torres; Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Ramakrishnan, Ashwin; Marvin, Dieuwke L; Anselmo, Anthony; Sadreyev, Ruslan I; Langenau, David M

    2016-11-14

    Cell transplantation into immunodeficient mice has revolutionized our understanding of regeneration, stem cell self-renewal, and cancer; yet models for direct imaging of engrafted cells has been limited. Here, we characterize zebrafish with mutations in recombination activating gene 2 (rag2), DNA-dependent protein kinase (prkdc), and janus kinase 3 (jak3). Histology, RNA sequencing, and single-cell transcriptional profiling of blood showed that rag2 hypomorphic mutant zebrafish lack T cells, whereas prkdc deficiency results in loss of mature T and B cells and jak3 in T and putative Natural Killer cells. Although all mutant lines engraft fluorescently labeled normal and malignant cells, only the prkdc mutant fish reproduced as homozygotes and also survived injury after cell transplantation. Engraftment into optically clear casper, prkdc-mutant zebrafish facilitated dynamic live cell imaging of muscle regeneration, repopulation of muscle stem cells within their endogenous niche, and muscle fiber fusion at single-cell resolution. Serial imaging approaches also uncovered stochasticity in fluorescently labeled leukemia regrowth after competitive cell transplantation into prkdc mutant fish, providing refined models to assess clonal dominance and progression in the zebrafish. Our experiments provide an optimized and facile transplantation model, the casper, prkdc mutant zebrafish, for efficient engraftment and direct visualization of fluorescently labeled normal and malignant cells at single-cell resolution. © 2016 Moore et al.

  2. Zebrafish as an emerging model for studying complex brain disorders

    PubMed Central

    Kalueff, Allan V.; Stewart, Adam Michael; Gerlai, Robert

    2014-01-01

    The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics and neuropharmacology. Both larval and adult zebrafish are currently used to increase our understanding of brain function, dysfunction, and their genetic and pharmacological modulation. Here we review the developing utility of zebrafish in the analysis of complex brain disorders (including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also covering zebrafish applications towards the goal of modeling major human neuropsychiatric and drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-induced conditions have become a rapidly emerging critical field in translational neuropharmacology research. PMID:24412421

  3. Zebrafish models of dyslipidemia: Relevance to atherosclerosis and angiogenesis

    PubMed Central

    Fang, Longhou; Liu, Chao; Miller, Yury I.

    2013-01-01

    Lipid and lipoprotein metabolism in zebrafish and in humans are remarkably similar. Zebrafish express all major nuclear receptors, lipid transporters, apolipoproteins and enzymes involved in lipoprotein metabolism. Unlike mice, zebrafish express cetp and the Cetp activity is detected in zebrafish plasma. Feeding zebrafish a high cholesterol diet, without any genetic intervention, results in significant hypercholesterolemia and robust lipoprotein oxidation, making zebrafish an attractive animal model to study mechanisms relevant to early development of human atherosclerosis. These studies are facilitated by the optical transparency of zebrafish larvae and the availability of transgenic zebrafish expressing fluorescent proteins in endothelial cells and macrophages. Thus, vascular processes can be monitored in live animals. In this review article we discuss recent advances in using dyslipidemic zebrafish in atherosclerosis-related studies. We also summarize recent work connecting lipid metabolism with regulation of angiogenesis, the work that considerably benefited from using the zebrafish model. These studies uncovered the role of aibp, abca1, abcg1, mtp, apoB and apoC2 in regulation of angiogenesis in zebrafish and paved the way for future studies in mammals, which may suggest new therapeutic approaches to modulation of excessive or diminished angiogenesis contributing to the pathogenesis of human disease. PMID:24095954

  4. New tides: using zebrafish to study renal regeneration.

    PubMed

    McCampbell, Kristen K; Wingert, Rebecca A

    2014-02-01

    Over the past several decades, the zebrafish has become one of the major vertebrate model organisms used in biomedical research. In this arena, the zebrafish has emerged as an applicable system for the study of kidney diseases and renal regeneration. The relevance of the zebrafish model for nephrology research has been increasingly appreciated as the understanding of zebrafish kidney structure, ontogeny, and the response to damage has steadily expanded. Recent studies have documented the amazing regenerative characteristics of the zebrafish kidney, which include the ability to replace epithelial populations after acute injury and to grow new renal functional units, termed nephrons. Here we discuss how nephron composition is conserved between zebrafish and mammals, and highlight how recent findings from zebrafish studies utilizing transgenic technologies and chemical genetics can complement traditional murine approaches in the effort to dissect how the kidney responds to acute damage and identify therapeutics that enhance human renal regeneration. Copyright © 2014 Mosby, Inc. All rights reserved.

  5. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres

    PubMed Central

    Lopez-Ramirez, Miguel A.; Calvo, Charles-Félix; Ristori, Emma; Thomas, Jean-Léon; Nicoli, Stefania

    2016-01-01

    The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish. PMID:26967835

  6. Developing 'integrative' zebrafish models of behavioral and metabolic disorders.

    PubMed

    Nguyen, Michael; Yang, Ester; Neelkantan, Nikhil; Mikhaylova, Alina; Arnold, Raymond; Poudel, Manoj K; Stewart, Adam Michael; Kalueff, Allan V

    2013-11-01

    Recently, the pathophysiological overlap between metabolic and mental disorders has received increased recognition. Zebrafish (Danio rerio) are rapidly becoming a popular model organism for translational biomedical research due to their genetic tractability, low cost, quick reproductive cycle, and ease of behavioral, pharmacological or genetic manipulation. High homology to mammalian physiology and the availability of well-developed assays also make the zebrafish an attractive organism for studying human disorders. Zebrafish neurobehavioral and endocrine phenotypes show promise for the use of zebrafish in studies of stress, obesity and related behavioral and metabolic disorders. Here, we discuss the parallels between zebrafish and other model species in stress and obesity physiology, as well as outline the available zebrafish models of weight gain, metabolic deficits, feeding, stress, anxiety and related behavioral disorders. Overall, zebrafish demonstrate a strong potential for modeling human behavioral and metabolic disorders, and their comorbidity.

  7. European Zebrafish Meeting 2015 Husbandry Session Report.

    PubMed

    Varga, Zoltán M; Wilson, Carole; Alestrøm, Peter

    2016-06-01

    A workshop to address husbandry and animal welfare was held during the 9th European Zebrafish Meeting in Oslo, Norway, from June 28 to July 2, 2015. The husbandry workshop took place on Monday, June 29, and was well attended by ∼100 audience members. It highlighted problems arising from the diversity of current husbandry practices and included presentations on recent efforts to find common husbandry and animal welfare standards from a variety of international contributors, from Norway, Portugal, the United Kingdom, as well as the United States and Japan. Presentations included zebrafish and medaka as representatives of aquatic species used in biomedical research and addressed a diverse range of topics such as proposed European guidelines for zebrafish husbandry, general fish facility health and husbandry standards, cryopreservation, publication standards, and feeding strategies. The workshop highlighted the desire to develop common husbandry standards for the aquatic research community across the world.

  8. Conditional gene-trap mutagenesis in zebrafish.

    PubMed

    Maddison, Lisette A; Li, Mingyu; Chen, Wenbiao

    2014-01-01

    Zebrafish has become a widely used model for analysis of gene function. Several methods have been used to create mutations in this organism and thousands of mutant lines are available. However, all the conventional zebrafish mutations affect the gene in all cells at all time, making it difficult to determine tissue-specific functions. We have adopted a FlEx Trap approach to generate conditional mutations in zebrafish by gene-trap mutagenesis. Combined with appropriate Cre or Flp lines, the insertional mutants not only allow spatial- and temporal-specific gene inactivation but also permit spatial- and temporal-specific rescue of the disrupted gene. We provide experimental details on how to generate and use such mutations.

  9. 15 years of zebrafish chemical screening

    PubMed Central

    Rennekamp, Andrew J.; Peterson, Randall T.

    2015-01-01

    In 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature. We found that zebrafish screens have expanded beyond the use of developmental phenotypes to include behavioral, cardiac, metabolic, proliferative and regenerative endpoints. Additionally, many creative strategies have been used to uncover the mechanisms of action of new small molecules including chemical phenocopy, genetic phenocopy, mutant rescue, and spatial localization strategies. PMID:25461724

  10. In vitro development of zebrafish vascular networks.

    PubMed

    Ibrahim, Muhammad; Richardson, Michael K

    2017-02-09

    A major limitation to culturing tissues and organs is the lack of a functional vascular network in vitro. The zebrafish possess many useful properties which makes it a promising model for such studies. Unfortunately, methods of culturing endothelial cells from this species are not well characterised. Here, we tried two methods (embryoid body culture and organ explants from transgenic zebrafish kdrl:GFP embryos) to develop in vitro vascular networks. In the kdrl:GFP line, endothelial cells expresses green fluorescent protein, which allows to track the vascular development in live cultures. We found that embryoid bodies showed significantly longer and wider branches of connected endothelial cells when grown in a microfluidic system than in static culture. Similarly, sprouting of kdrl:GFP(+) cells from the tissue explants was observed in a 3D hydrogel matrix. This study is a step towards the development of zebrafish vascular networks in vitro.

  11. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses.

    PubMed

    Sullivan, Con; Jurcyzszak, Denise; Goody, Michelle F; Gabor, Kristin A; Longfellow, Jacob R; Millard, Paul J; Kim, Carol H

    2017-01-20

    Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here

  12. Immunohistochemical Characterization of Intestinal Neoplasia in Zebrafish (Danio rerio) Indicates Epithelial Origin

    PubMed Central

    Paquette, Colleen E.; Kent, Michael L.; Peterson, Tracy S.; Wang, Rong; Dashwood, Roderick H.; Löhr, Christiane V.

    2015-01-01

    Spontaneous neoplasia of the intestinal tract in sentinel and moribund zebrafish (Danio rerio) is common in some zebrafish facilities. We previously classified these tumors as adenocarcinoma, small-cell carcinoma, or carcinoma otherwise unspecified based on histomorphologic characteristics. Based on histological presentation, the primary differential diagnosis for the intestinal carcinomas was tumor of neuroendocrine cells (e.g., carcinoids). To further characterize the phenotype of the neoplastic cells, select tissue sections were stained with a panel of antibodies directed toward human epithelial (Cytokeratin Wide Spectrum Screening [WSS], AE1/AE3) or neuroendocrine (S100, chromogranin A) markers. We also investigated antibody specificity by Western blot analysis, using a human cell line and zebrafish tissues. Nine of the intestinal neoplasms (64%) stained for AE1/AE3, seven (50%) also stained for WSS. None of the intestinal neoplastic cells were stained for chromogranin A or S100. Endocrine cells of the pituitary gland and neurons and axons of peripheral nerves and ganglia stained for Chromogranin A, whereas perineural and periaxonal cells of peripheral intestinal ganglia, and glial and ependymal cells of the brain stained for S100. Immunohistochemistry for cytokeratins confirmed the majority of intestinal neoplasms in this cohort of zebrafish as carcinomas. PMID:26503773

  13. Inheritance patterns of morphological laterality in mouth opening of zebrafish, Danio rerio.

    PubMed

    Hata, Hiroki; Hori, Michio

    2012-01-01

    The inheritance patterns of asymmetry in mouth opening in zebrafish were investigated using crossing experiments. Zebrafish exhibit asymmetric laterality in mouth opening, with each individual having either a leftward (righty) or rightward (lefty) bias. All righty incrosses produced only righty F(1), whereas all lefty incrosses resulted in an F(1) L:R ratio of 2:1. All test crosses between lefty and righty individuals resulted in an F(1) L:R=1:1. These results were consistent with the hereditary pattern for Japanese medaka, three Tanganyikan cichlids, and a Japanese riverine goby. The pattern suggests a one-locus two-allele Mendelian model of inheritance, with the lefty allele being dominant over righty and the dominant homozygote being lethal. To determine the reason for the absence of lefty homozygotes, the survival rates of the offspring were examined according to developmental stage. Survival did not differ among combinations of parent laterality. Thus the mechanism underlying the lethality of the dominant homozygote remains unclear. This study showed that the mouth-opening laterality of zebrafish is genetically determined and that the direction follows a Mendelian inheritance pattern that is shared among cypriniform zebrafish, beloniform medaka, perciform cichlids, and a goby, suggesting a common genetic background in mouth-opening laterality among these species.

  14. Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.

    PubMed

    Tran, Long Duc; Hino, Hiromu; Quach, Helen; Lim, Shimin; Shindo, Asako; Mimori-Kiyosue, Yuko; Mione, Marina; Ueno, Naoto; Winkler, Christoph; Hibi, Masahiko; Sampath, Karuna

    2012-10-01

    In zebrafish, as in many animals, maternal dorsal determinants are vegetally localized in the egg and are transported after fertilization in a microtubule-dependent manner. However, the organization of early microtubules, their dynamics and their contribution to axis formation are not fully understood. Using live imaging, we identified two populations of microtubules, perpendicular bundles and parallel arrays, which are directionally oriented and detected exclusively at the vegetal cortex before the first cell division. Perpendicular bundles emanate from the vegetal cortex, extend towards the blastoderm, and orient along the animal-vegetal axis. Parallel arrays become asymmetric on the vegetal cortex, and orient towards dorsal. We show that the orientation of microtubules at 20 minutes post-fertilization can predict where the embryonic dorsal structures in zebrafish will form. Furthermore, we find that parallel microtubule arrays colocalize with wnt8a RNA, the candidate maternal dorsal factor. Vegetal cytoplasmic granules are displaced with parallel arrays by ~20°, providing in vivo evidence of a cortical rotation-like process in zebrafish. Cortical displacement requires parallel microtubule arrays, and probably contributes to asymmetric transport of maternal determinants. Formation of parallel arrays depends on Ca(2+) signaling. Thus, microtubule polarity and organization predicts the zebrafish embryonic axis. In addition, our results suggest that cortical rotation-like processes might be more common in early development than previously thought.

  15. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis.

    PubMed

    Lovely, Charles Ben; Fernandes, Yohaan; Eberhart, Johann K

    2016-10-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.

  16. Development of high-content assays for kidney progenitor cell expansion in transgenic zebrafish.

    PubMed

    Sanker, Subramaniam; Cirio, Maria Cecilia; Vollmer, Laura L; Goldberg, Natasha D; McDermott, Lee A; Hukriede, Neil A; Vogt, Andreas

    2013-12-01

    Reactivation of genes normally expressed during organogenesis is a characteristic of kidney regeneration. Enhancing this reactivation could potentially be a therapeutic target to augment kidney regeneration. The inductive events that drive kidney organogenesis in zebrafish are similar to the initial steps in mammalian kidney organogenesis. Therefore, quantifying embryonic signals that drive zebrafish kidney development is an attractive strategy for the discovery of potential novel therapeutic modalities that accelerate kidney regeneration. The Lim1 homeobox protein, Lhx1, is a marker of kidney development that is also expressed in the regenerating kidneys after injury. Using a fluorescent Lhx1a-EGFP transgene whose phenotype faithfully recapitulates that of the endogenous protein, we developed a high-content assay for Lhx1a-EGFP expression in transgenic zebrafish embryos employing an artificial intelligence-based image analysis method termed cognition network technology (CNT). Implementation of the CNT assay on high-content readers enabled automated real-time in vivo time-course, dose-response, and variability studies in the developing embryo. The Lhx1a assay was complemented with a kidney-specific secondary CNT assay that enables direct measurements of the embryonic renal tubule cell population. The integration of fluorescent transgenic zebrafish embryos with automated imaging and artificial intelligence-based image analysis provides an in vivo analysis system for structure-activity relationship studies and de novo discovery of novel agents that augment innate regenerative processes.

  17. The innate immune cell response to bacterial infection in larval zebrafish is light-regulated.

    PubMed

    Du, Lucia Y; Darroch, Hannah; Keerthisinghe, Pramuk; Ashimbayeva, Elina; Astin, Jonathan W; Crosier, Kathryn E; Crosier, Philip S; Warman, Guy; Cheeseman, James; Hall, Christopher J

    2017-10-04

    The circadian clock, which evolved to help organisms harmonize physiological responses to external conditions (such as the light/dark cycle, LD), is emerging as an important regulator of the immune response to infection. Gaining a complete understanding of how the circadian clock influences the immune cell response requires animal models that permit direct observation of these processes within an intact host. Here, we investigated the use of larval zebrafish, a powerful live imaging system, as a new model to study the impact of a fundamental zeitgeber, light, on the innate immune cell response to infection. Larvae infected during the light phase of the LD cycle and in constant light condition (LL) demonstrated enhanced survival and bacterial clearance when compared with larvae infected during the dark phase of the LD cycle and in constant dark condition (DD). This increased survival was associated with elevated expression of the zebrafish orthologues of the mammalian pro-inflammatory cytokine genes, Tumour necrosis factor-α, Interleukin-8 and Interferon-γ, and increased neutrophil and macrophage recruitment. This study demonstrates for the first time that the larval zebrafish innate immune response to infection is enhanced during light exposure, suggesting that, similar to mammalian systems, the larval zebrafish response to infection is light-regulated.

  18. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis

    PubMed Central

    Bajanca, Fernanda; Gonzalez-Perez, Vinicio; Gillespie, Sean J; Beley, Cyriaque; Garcia, Luis; Theveneau, Eric; Sear, Richard P; Hughes, Simon M

    2015-01-01

    Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmdta222a/ta222a zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)ct90a that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics. DOI: http://dx.doi.org/10.7554/eLife.06541.001 PMID:26459831

  19. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.

    PubMed

    Jao, Li-En; Wente, Susan R; Chen, Wenbiao

    2013-08-20

    A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.

  20. Mmp23b promotes liver development and hepatocyte proliferation through the TNF pathway in zebrafish

    PubMed Central

    Qi, Fei; Song, Jianbo; Yang, Hanshuo; Gao, Wei; Liu, Ning-ai; Zhang, Bo; Lin, Shuo

    2012-01-01

    The matrix metalloproteinase (MMP) family of proteins degrades extracellular matrix (ECM) components as well as processes cytokines and growth factors. MMPs are involved in regulating ECM homeostasis in both normal physiology and disease pathophysiology. Here, we report the critical roles of mmp23b in normal zebrafish liver development. Mmp23b was initially identified as a gene linked to the genomic locus of an enhancer trap transgenic zebrafish line in which GFP expression was restricted to the developing liver. Follow-up analysis of mmp23b mRNA expression confirmed its liver-specific expression pattern. Morpholino (MO) knockdown of mmp23b resulted in defective hepatocyte proliferation, causing a reduction in liver size while maintaining relatively normal pancreas and gut development. Genetically, we showed that mmp23b functions through the tumor necrosis factor (TNF) signaling pathway. Antisense knockdown of tnfa or tnfb in zebrafish caused similar reductions of liver size whereas overexpression of tnfa or tnfb rescued liver defects in mmp23b morphants but not vice versa. Biochemically, MMP23B, the human ortholog of Mmp23b, directly interacts with TNF and mediates its release from the cell membrane in a cell culture system. Since mmp23b/MMP23B is highly conserved, our findings in zebrafish warrant further investigation of its role in regulating liver development in mammals. PMID:21064033

  1. Nicotine alters the expression of molecular markers of endocrine disruption in zebrafish.

    PubMed

    Kanungo, Jyotshna; Cuevas, Elvis; Guo, Xiaoqing; Lopez, Aida G; Ramirez-Lee, Manuel A; Trickler, William; Paule, Merle G; Ali, Syed F

    2012-09-27

    Nicotine, a drug of abuse, has been reported to have many adverse effects on the developing nervous system. In rodents, chronic nicotine exposure inhibits estrogen-mediated neuroprotection against cerebral ischemia in females suggesting that nicotine could disrupt endocrine targets. Zebrafish have been used as a model system for examining mechanisms underlying nicotinic effects on neuronal development. Here, using zebrafish embryos, we demonstrate that nicotine alters the expression of the validated endocrine disruption (ED) biomarkers, vitellogenin (vtg 1 and vtg 2) and cytochrome p450 aromatase (cyp19a1a and cyp19a1b) at the transcriptional level. Increased expression of three of these molecular markers (vtg 1, vtg 2 and cyp19a1b) in response to 17β-estradiol (E2) was more pronounced in 48hpf (hours post-fertilization) embryos than in the 24hpf embryos. While 24hpf embryos were non-responsive in this regard to 25μM nicotine, a similar exposure of the 48hpf embryos for 24h significantly down-regulated the expression of all four ED biomarker genes indicating that nicotine's anti-estrogenic effects are detectable in the 48hpf zebrafish embryos. These results provide direct molecular evidence that nicotine is an endocrine disruptor in zebrafish.

  2. Culturable Gut Microbiota Diversity in Zebrafish

    PubMed Central

    Sørby, Jan Roger Torp; Aleström, Peter; Sørum, Henning

    2012-01-01

    Abstract The zebrafish (Danio rerio) is an increasingly used laboratory animal model in basic biology and biomedicine, novel drug development, and toxicology. The wide use has increased the demand for optimized husbandry protocols to ensure animal health care and welfare. The knowledge about the correlation between culturable zebrafish intestinal microbiota and health in relation to environmental factors and management procedures is very limited. A semi-quantitative level of growth of individual types of bacteria was determined and associated with sampling points. A total of 72 TAB line zebrafish from four laboratories (Labs A–D) in the Zebrafish Network Norway were used. Diagnostic was based on traditional bacterial culture methods and biochemical characterization using commercial kits, followed by 16S rDNA gene sequencing from pure subcultures. Also selected Gram-negative isolates were analyzed for antibiotic susceptibility to 8 different antibiotics. A total of 13 morphologically different bacterial species were the most prevalent: Aeromonas hydrophila, Aeromonas sobria, Vibrio parahaemolyticus, Photobacterium damselae, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas luteola, Comamonas testosteroni, Ochrobactrum anthropi, Staphylococcus cohnii, Staphylococcus epidermidis, Staphylococcus capitis, and Staphylococcus warneri. Only Lab B had significantly higher levels of total bacterial growth (OR=2.03), whereas numbers from Lab C (OR=1.01) and Lab D (OR=1.12) were found to be similar to the baseline Lab A. Sexually immature individuals had a significantly higher level of harvested total bacterial growth than mature fish (OR=0.82), no statistically significant differences were found between male and female fish (OR=1.01), and the posterior intestinal segment demonstrated a higher degree of culturable bacteria than the anterior segment (OR=4.1). Multiple antibiotic (>3) resistance was observed in 17% of the strains. We propose that a rapid

  3. Characterization of zebrafish dysferlin by morpholino knockdown

    SciTech Connect

    Kawahara, Genri; Serafini, Peter R.; Myers, Jennifer A.; Alexander, Matthew S.; Kunkel, Louis M.

    2011-09-23

    Highlights: {yields} cDNAs of zebrafish dysferlin were cloned (6.3 kb). {yields} The dysferlin expression was detected in skeletal muscle, heart and eye. {yields} Injection of antisense morpholinos to dysferlin caused marked muscle disorganization. {yields} Zebrafish dysferlin expression may be involved in stabilizing muscle structures. -- Abstract: Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafish dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11 h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, {beta}-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.

  4. Oxidative stress in zebrafish (Danio rerio) sperm.

    PubMed

    Hagedorn, Mary; McCarthy, Megan; Carter, Virginia L; Meyers, Stuart A

    2012-01-01

    Laboratories around the world have produced tens of thousands of mutant and transgenic zebrafish lines. As with mice, maintaining all of these valuable zebrafish genotypes is expensive, risky, and beyond the capacity of even the largest stock centers. Because reducing oxidative stress has become an important aspect of reducing the variability in mouse sperm cryopreservation, we examined whether antioxidants might improve cryopreservation of zebrafish sperm. Four experiments were conducted in this study. First, we used the xanthine-xanthine oxidase (X-XO) system to generate reactive oxygen species (ROS). The X-XO system was capable of producing a stress reaction in zebrafish sperm reducing its sperm motility in a concentration dependent manner (P<0.05). Second, we examined X-XO and the impact of antioxidants on sperm viability, ROS and motility. Catalase (CAT) mitigated stress and maintained viability and sperm motility (P>0.05), whereas superoxide dismutase (SOD) and vitamin E did not (P<0.05). Third, we evaluated ROS in zebrafish spermatozoa during cryopreservation and its effect on viability and motility. Methanol (8%) reduced viability and sperm motility (P<0.05), but the addition of CAT mitigated these effects (P>0.05), producing a mean 2.0 to 2.9-fold increase in post-thaw motility. Fourth, we examined the effect of additional cryoprotectants and CAT on fresh sperm motility. Cryoprotectants, 8% methanol and 10% dimethylacetamide (DMA), reduced the motility over the control value (P<0.5), whereas 10% dimethylformamide (DMF) with or without CAT did not (P>0.05). Zebrafish sperm protocols should be modified to improve the reliability of the cryopreservation process, perhaps using a different cryoprotectant. Regardless, the simple addition of CAT to present-day procedures will significantly improve this process, assuring increased and less variable fertilization success and allowing resource managers to dependably plan how many straws are needed to safely

  5. Irisin regulates cardiac physiology in zebrafish

    PubMed Central

    Sundarrajan, Lakshminarasimhan; Yeung, Chanel; Hahn, Logan; Weber, Lynn P.

    2017-01-01

    Irisin is a myokine encoded in its precursor fibronectin type III domain containing 5 (FNDC5). It is abundantly expressed in cardiac and skeletal muscle, and is secreted upon the activation of peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1 alpha). We aimed to study the role of irisin on cardiac function and muscle protein regulation in zebrafish. Western blot analyses detected the presence of irisin protein (23 kDa) in zebrafish heart and skeletal muscle, and irisin immunoreactivity was detected in both tissues. Irisin siRNA treated samples did not show bands corresponding to irisin in zebrafish. In vitro studies found that treatment with irisin (0.1 nM) downregulated the expression of PGC-1 alpha, myostatin a, and b, while upregulating troponin C mRNA expression in zebrafish heart and skeletal muscle. Exogenous irisin (0.1 and 1 ng/g B.W) increased diastolic volume, heart rate and cardiac output, while knockdown of irisin (10 ng/g B.W) showed opposing effects on cardiovascular function. Irisin (1 and 10 ng/g B.W) downregulated PGC-1 alpha, myostatin a and b, and upregulated troponin C and troponin T2D mRNA expression. Meanwhile, knockdown of irisin showed opposing effects on troponin C, troponin T2D and myostatin a and b mRNAs in zebrafish heart and skeletal muscle. Collectively, these results identified muscle proteins as novel targets of irisin, and added irisin to the list of peptide modulators of cardiovascular physiology in zebrafish. PMID:28771499

  6. 75 FR 4004 - Fisheries of the Northeastern United States; Spiny Dogfish Fishery; Commercial Period 2 Quota...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... United States; Spiny Dogfish Fishery; Commercial Period 2 Quota Harvested AGENCY: National Marine...: Temporary rule; Closure of spiny dogfish fishery. SUMMARY: NMFS announces that the spiny dogfish commercial..., federally permitted spiny dogfish vessels may not fish for, possess, transfer, or land spiny dogfish until...

  7. The zebrafish early arrest mutants.

    PubMed

    Kane, D A; Maischein, H M; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kelsh, R N; Mullins, M C; Odenthal, J; Warga, R M; Nüsslein-Volhard, C

    1996-12-01

    This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes.

  8. Histone modifications in zebrafish development.

    PubMed

    Cunliffe, V T

    2016-01-01

    Reversible covalent histone modifications are known to influence spatiotemporal patterns of gene transcription during development. Here I review recent advances in the development and use of methods to analyze the distribution and functions of histone modifications in zebrafish chromatin. I discuss the roles of dynamic histone modification patterns at the promoters and enhancers of genes during the process of zygotic gene activation at blastula stages and the interplay between the molecular machinery responsible for histone modifications, chromatin remodeling and DNA methylation. Interactions are also described between developmentally regulated enhancer sequences and modified histones. A detailed method for chromatin immunoprecipitation using antibodies is provided, and I describe the use of high-throughput whole genome sequencing technology to generate DNA sequence data from chromatin immunoprecipitates. I also discuss computational approaches to integrating DNA sequence data obtained from chromatin immunoprecipitates with annotated reference genome sequences, transcriptome and methylome sequence data, transcription factor binding motif databases, and gene ontologies and describe the types of software tools currently available for visualizing the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Glyphosate induces neurotoxicity in zebrafish.

    PubMed

    Roy, Nicole M; Carneiro, Bruno; Ochs, Jeremy

    2016-03-01

    Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24 h exposure.

  10. Dynamic focusing in the zebrafish beating heart

    NASA Astrophysics Data System (ADS)

    Andrés-Delgado, L.; Peralta, M.; Mercader, N.; Ripoll, J.

    2016-03-01

    Of the large amount of the animal models available for cardiac research, the zebrafish is extremely valuable due to its transparency during early stages of development. In this work a dual illumination laser sheet microscope with simultaneous dual camera imaging is used to image the beating heart at 200 fps, dynamically and selectively focusing inside the beating heart through the use of a tunable lens. This dual color dynamic focusing enables imaging with cellular resolution at unprecedented high frame rates, allowing 3D imaging of the whole beating heart of embryonic zebrafish.

  11. Sparc Protein Is Required for Normal Growth of Zebrafish Otoliths

    PubMed Central

    Kang, Young-Jin; Stevenson, Amy K.; Yau, Peter M.

    2008-01-01

    Otoliths and the homologous otoconia in the inner ear are essential for balance. Their morphogenesis is less understood than that of other biominerals, such as bone, and only a small number of their constituent proteins have been characterized. As a novel approach to identify unknown otolith proteins, we employed shotgun proteomics to analyze crude extracts from trout and catfish otoliths. We found three proteins that had not been associated previously with otolith or otoconia formation: ‘Secreted acidic cysteine rich glycoprotein’ (Sparc), an important bone protein that binds collagen and Ca2+; precerebellin-like protein, which contains a C1q domain and may associate with the collagenous otolin-1 during its assembly into a framework; and neuroserpin, a serine protease inhibitor that may regulate local protease activity during framework assembly. We then used the zebrafish to investigate whether Sparc plays a role in otolith morphogenesis. Immunodetection demonstrated that Sparc is a true constituent of otoliths. Knockdown of Sparc expression in morphant zebrafish resulted in four principal types of defective otoliths: smaller, extra and ectopic, missing and fused, or completely absent. Smaller size was the predominant phenotype and independent of the severity of otic-vesicle defects. These results suggested that Sparc is directly required for normal otolith growth. PMID:18784957

  12. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish.

    PubMed

    Devi, G Prathinkra; Ahmed, Khan Behlol Ayaz; Varsha, M K N Sai; Shrijha, B S; Lal, K K Subin; Anbazhagan, Veerappan; Thiagarajan, R

    2015-01-01

    Chemical transformations of metal nanoparticles can be an important way to mitigate nanoparticle toxicity. Sulfidation of silver nanoparticle (AgNPs) is a natural process shown to occur in environment. Very few studies, employing microbes and embryonic stages of zebrafish, have shown reduction in AgNPs toxicity as a direct result of sulfidation. However the feasibility of reducing nanoparticle toxicity by sulfidation of AgNPs has never been studied in adult vertebrates. In this study, we have used adult zebrafish as a model to study the efficacy of sulfidation of AgNPs in reducing nanoparticle toxicity by employing a battery of biomarkers in liver and brain. While AgNPs enhanced liver oxidative stress, altered detoxification enzymes and affected brain acetylcholinesterase activity, sulfidation of AgNPs resulted in significant alleviation of changes in these parameters. Histopathological analyses of liver and sulphydryl levels also support the significance of sulfidated AgNPs in controlling the toxicity of AgNPs. Our study provides the first biochemical data on the importance of sulfidation of AgNPs in reducing biological toxicity in adult vertebrates. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Identification and Expression Analysis of Zebrafish Glypicans during Embryonic Development

    PubMed Central

    Gupta, Mansi; Brand, Michael

    2013-01-01

    Heparan sulfate Proteoglycans (HSPG) are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG’s, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development. PMID:24244720

  14. Crypt cells are involved in kin recognition in larval zebrafish.

    PubMed

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F

    2016-04-18

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal.

  15. Identification and expression analysis of zebrafish glypicans during embryonic development.

    PubMed

    Gupta, Mansi; Brand, Michael

    2013-01-01

    Heparan sulfate Proteoglycans (HSPG) are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG's, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.

  16. Crypt cells are involved in kin recognition in larval zebrafish

    PubMed Central

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F.

    2016-01-01

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal. PMID:27087508

  17. Zebrafish invade Valparaiso: third meeting and symposium of the Latin American zebrafish network.

    PubMed

    Whitlock, Kathleen E

    2014-12-01

    Zebrafish are an excellent model system for research and teaching. Because of their relatively low maintenance costs, beautiful and bountiful embryos, and tool box of molecular genetic technique, zebrafish are ideal for countries with smaller research budgets and less well-developed science infrastructure. For these reasons, zebrafish are growing in popularity as a model system for research in Latin America. In response to this growing need, we held the Third Latin American Zebrafish Network (LAZEN) Course and Symposium in Valparaiso, Chile, in April 4-13, 2014. The course covered a wide variety of topics from fish husbandry to outreach and ended with a symposium hosting excellent scientists from Latin America and beyond.

  18. Zebrafish mast cells possess an FcɛRI-like receptor and participate in innate and adaptive immune responses.

    PubMed

    Da'as, Sahar; Teh, Evelyn M; Dobson, J Tristan; Nasrallah, Gheyath K; McBride, Eileen R; Wang, Hao; Neuberg, Donna S; Marshall, Jean S; Lin, Tong-Jun; Berman, Jason N

    2011-01-01

    We previously identified a zebrafish mast cell (MC) lineage and now aim to determine if these cells function analogously in innate and adaptive immunity like their mammalian counterparts. Intraperitoneal (IP) injection of compound 48/80 or live Aeromonas salmonicida resulted in significant MC degranulation evident histologically and by increased plasma tryptase compared with saline-injected controls (p=0.0006, 0.005, respectively). Pre-treatment with ketotifen abrogated these responses (p=0.0004, 0.005, respectively). Cross-reactivity was observed in zebrafish to anti-human high-affinity IgE receptor gamma (FcɛRIγ) and IgE heavy chain-directed antibodies. Whole mount in situ hybridization on 7-day embryos demonstrated co-localization of cpa5, a MC-specific marker, with myd88, a toll-like receptor adaptor, and zebrafish FcɛRI subunit homologs. Zebrafish injected IP with matched dinitrophenyl-sensitized mouse (anti-DNP) IgE and DNP-BSA or trinitrophenyl-sensitized mouse (anti-TNP) IgE and TNP-BSA demonstrated increased plasma tryptase compared with mismatched controls (p=0.03, 0.010, respectively). These results confirm functional conservation and validate the zebrafish model as an in vivo screening tool for novel MC modulating agents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors.

    PubMed

    Pittman, Julian T; Lott, Chad S

    2014-01-17

    Zebrafish (Danio rerio) are rapidly becoming a popular animal model for neurobehavioral and psychopharmacological research. While startle testing is a well-established assay to investigate anxiety-like behaviors in different species, screening of the startle response and its habituation in zebrafish is a new direction of translational biomedical research. This study focuses on a novel behavioral protocol to assess a tapping-induced startle response and its habituation in adult zebrafish that have been pharmacologically-induced to exhibit anxiety/depression-like behaviors. We demonstrated that zebrafish exhibit robust learning performance in a task adapted from the mammalian literature, a modified plus maze, and showed that ethanol and fluoxetine impair memory performance in this maze when administered after training at a dose that does not impair motor function, however, leads to significant upregulation of hippocampal serotoninergic neurons. These results suggest that the maze associative learning paradigm has face and construct validity and that zebrafish may become a translationally relevant study species for the analysis of the mechanisms of learning and memory changes associated with psychopharmacological treatment of anxiety/depression.

  20. High-Content and Semi-Automated Quantification of Responses to Estrogenic Chemicals Using a Novel Translucent Transgenic Zebrafish.

    PubMed

    Green, Jon M; Metz, Jeremy; Lee, Okhyun; Trznadel, Maciej; Takesono, Aya; Brown, A Ross; Owen, Stewart F; Kudoh, Tetsuhiro; Tyler, Charles R

    2016-06-21

    Rapid embryogenesis, together with genetic similarities with mammals, and the desire to reduce mammalian testing, are major incentives for using the zebrafish model in chemical screening and testing. Transgenic zebrafish, engineered for identifying target gene expression through expression of fluorophores, have considerable potential for both high-content and high-throughput testing of chemicals for endocrine activity. Here we generated an estrogen responsive transgenic zebrafish model in a pigment-free "Casper" phenotype, facilitating identification of target tissues and quantification of these responses in whole intact fish. Using the ERE-GFP-Casper model we show chemical type and concentration dependence for green fluorescent protein (GFP) induction and both spatial and temporal responses for different environmental estrogens tested. We also developed a semiautomated (ArrayScan) imaging and image analysis system that we applied to quantify whole body fluorescence responses for a range of different estrogenic chemicals in the new transgenic zebrafish model. The zebrafish model developed provides a sensitive and highly integrative system for identifying estrogenic chemicals, their target tissues and effect concentrations for exposures in real time and across different life stages. It thus has application for chemical screening to better direct health effects analysis of environmental estrogens and for investigating the functional roles of estrogens in vertebrates.

  1. Transplantation of GFP-expressing blastomeres for live imaging of retinal and brain development in chimeric zebrafish embryos.

    PubMed

    Zou, Jian; Wei, Xiangyun

    2010-07-19

    Cells change extensively in their locations and property during embryogenesis. These changes are regulated by the interactions between the cells and their environment. Chimeric embryos, which are composed of cells of different genetic background, are great tools to study the cell-cell interactions mediated by genes of interest. The embryonic transparency of zebrafish at early developmental stages permits direct visualization of the morphogenesis of tissues and organs at the cellular level. Here, we demonstrate a protocol to generate chimeric retinas and brains in zebrafish embryos and to perform live imaging of the donor cells. The protocol covers the preparation of transplantation needles, the transplantation of GFP-expressing donor blastomeres to GFP-negative hosts, and the examination of donor cell behavior under live confocal microscopy. With slight modifications, this protocol can also be used to study the embryonic development of other tissues and organs in zebrafish. The advantages of using GFP to label donor cells are also discussed.

  2. Expression Pattern and Biochemical Properties of Zebrafish N-Acetylglutamate Synthase

    PubMed Central

    Caldovic, Ljubica; Haskins, Nantaporn; Mumo, Amy; Majumdar, Himani; Pinter, Mary; Tuchman, Mendel; Krufka, Alison

    2014-01-01

    The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1) catalyzes the formation of N-acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS) at the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS (zfNAGS-M) while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C). Both zfNAGS-M and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Kmapp for acetyl coenzyme A increased while the Kmapp for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under physiological

  3. Gene-specific differential response to anti-apoptotic therapies in zebrafish models of ocular coloboma

    PubMed Central

    Moosajee, Mariya; Shan, Xianghong; Gregory-Evans, Kevin

    2011-01-01

    Purpose We recently demonstrated that molecular therapy using aminoglycosides can overcome the underlying genetic defect in two zebrafish models of ocular coloboma and showed abnormal cell death to be a key feature associated with the optic fissure closure defects. In further studies to identify molecular therapies for this common congenital malformation, we now examine the effects of anti-apoptotic compounds in zebrafish models of ocular coloboma in vivo. Methods Two ocular coloboma zebrafish lines (pax2.1/noitu29a and lamb1/gupm189) were exposed to diferuloylmethane (curcumin) or benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD-fmk; a pan-caspase inhibitor) for up to 8 days post-fertilization. The effects of these compounds were assessed by morphology, histology, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and western blot analysis. Results The size of the coloboma in gup zebrafish mutants treated with diferuloylmethane was greatly reduced. In treated mutants a reduction in TUNEL staining and a 67% decrease in activated caspase-3 protein were observed. The release of cytochrome c from the mitochondria into the cytosol was reduced fourfold by in vivo diferuloylmethane treatment, suggesting that the drug was acting to inhibit the intrinsic apoptotic pathway. Inhibition of caspases directly with zVAD-fmk also resulted in a similar reduction in coloboma phenotype. Treatment with either diferuloylmethane or zVAD-fmk resulted in a statistically significant 1.4 fold increase in length of survival of these mutant zebrafish (p<0.001), which normally succumb to the lethal genetic mutation. In contrast, the coloboma phenotype in noi zebrafish mutants did not respond to either diferuloylmethane or zVAD-fmk exposure, even though inhibition of apoptotic cell death was observed by a reduction in TUNEL staining. Conclusions The differential sensitivity to anti-apoptotic agents in lamb1-deficient and pax2.1-deficient zebrafish models

  4. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio).

    PubMed

    Chen, Zheyan; Lee, Han; Henle, Steven J; Cheever, Thomas R; Ekker, Stephen C; Henley, John R

    2013-01-01

    Zebrafish (Danio rerio) is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1) s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1) growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF)-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+)-imaging revealed local elevation of cytoplasmic Ca(2+) concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+) signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development, chemotropic axon

  5. The Zebrafish Ortholog of TRPV1 Is Required for Heat-Induced Locomotion

    PubMed Central

    Gau, Philia; Poon, Jason; Ufret-Vincenty, Carmen; Snelson, Corey D.; Gordon, Sharona E.; Raible, David W.

    2013-01-01

    The ability to detect hot temperatures is critical to maintaining body temperature and avoiding injury in diverse animals from insects to mammals. Zebrafish embryos, when given a choice, actively avoid hot temperatures and display an increase in locomotion similar to that seen when they are exposed to noxious compounds such as mustard oil. Phylogenetic analysis suggests that the single zebrafish ortholog of TRPV1/2 may have arisen from an evolutionary precursor of the mammalian TRPV1 and TRPV2. As opposed to TRPV2, mammalian TRPV1 is essential for environmentally relevant heat sensation. In the present study, we provide evidence that the zebrafish TRPV1 ion channel is also required for the sensation of heat. Contrary to development in mammals, zebrafish TRPV1+ neurons arise during the first wave of somatosensory neuron development, suggesting a vital importance of thermal sensation in early larval survival. In vitro analysis showed that zebrafish TRPV1 acts as a molecular sensor of environmental heat (≥25°C) that is distinctly lower than the sensitivity of the mammalian form (≥42°C) but consistent with thresholds measured in behavioral assays. Using in vivo calcium imaging with the genetically encoded calcium sensor GCaMP3, we show that TRPV1-expressing trigeminal neurons are activated by heat at behaviorally relevant temperatures. Using knock-down studies, we also show that TRPV1 is required for normal heat-induced locomotion. Our results demonstrate for the first time an ancient role for TRPV1 in the direct sensation of environmental heat and show that heat sensation is adapted to reflect species-dependent requirements in response to environmental stimuli. PMID:23516290

  6. Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebrafish (Danio rerio).

    PubMed

    Ran, Gai; Ying, Li; Li, Lin; Yan, Qiaoqiao; Yi, Weijie; Ying, Chenjiang; Wu, Hongmei; Ye, Xiaolei

    2017-01-01

    Defective lipid metabolism is associated with increased risk of various chronic diseases, such as obesity, cardiovascular diseases, and diabetes. Resveratrol (RSV), a natural polyphenol, has been shown the potential of ameliorating disregulations of lipid metabolism. The objective of this study was to investigate the effects of feed intake and RSV on lipid metabolism in zebrafish (Danio rerio). The adult males were randomly allocated to 6 groups: control (Con, 8 mg cysts/fish/day), control with 20 μmol/L RSV (Con+RSV), calorie restriction (CR, 5 mg cysts/fish/day), calorie restriction with RSV (CR+RSV), overfeed (OF, 60 mg cysts/fish/day), and overfeed with RSV (OF+RSV) groups. The treatment period was 8 weeks. Results showed that CR reduced body length, body weight, and condition factor of zebrafish. CR reduced levels of plasma triglyceride (TG) and induced protein expression of phosphorylated AMP-activated protein kinase-α (pAMPKα), silent information regulator 2 homolog 1 (Sirt1), and peroxisome proliferator activated receptor gamma coactivator-1α (PGC1α). RSV attenuated CR-induced pAMPKα/AMPKαincreases. RSV increased levels of Sirt1 protein in the OF zebrafish, and decreased OF-induced increase in peroxisome proliferator-activated receptor-γ (PPARγ) protein level. Additionally, RSV down-regulated caveolin-1 and up-regulated microtubule-associated protein 1 light chain 3 -II (LC3-II) protein levels in OF zebrafish. In conclusion, these results suggest that 1) CR reduces plasma TG level through activation of the AMPKα-Sirt1- PGC1α pathway; 2) under different dietary stress conditions RSV might regulate AMPK phosphorylation bi-directionally; 3) RSV might regulate lipid metabolism through the AMPKα-Sirt1-PPARγ pathway in OF zebrafish.

  7. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).

    PubMed

    Seo, Seung Beom; Dananjaya, S H S; Nikapitiya, Chamilani; Park, Bae Keun; Gooneratne, Ravi; Kim, Tae-Yoon; Lee, Jehee; Kim, Cheol-Hee; De Zoysa, Mahanama

    2017-09-01

    Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  9. Teaching Stress Physiology Using Zebrafish ("Danio Rerio")

    ERIC Educational Resources Information Center

    Cooper, Michael; Dhawale, Shree; Mustafa, Ahmed

    2009-01-01

    A straightforward and inexpensive laboratory experiment is presented that investigates the physiological stress response of zebrafish after a 5 degree C increase in water temperature. This experiment is designed for an undergraduate physiology lab and allows students to learn the scientific method and relevant laboratory techniques without causing…

  10. Zebrafish in Toxicology and Environmental Health.

    PubMed

    Bambino, Kathryn; Chu, Jaime

    2017-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. © 2017 Elsevier Inc. All rights reserved.

  11. Zebrafish Embryo Model of Bartonella henselae Infection

    PubMed Central

    Lima, Amorce; Cha, Byeong J.; Amin, Jahanshah; Smith, Lisa K.

    2014-01-01

    Abstract Bartonella henselae (Bh) is an emerging zoonotic pathogen that has been associated with a variety of human diseases, including bacillary angiomatosis that is characterized by vasoproliferative tumor-like lesions on the skin of some immunosuppressed individuals. The study of Bh pathogenesis has been limited to in vitro cell culture systems due to the lack of an animal model. Therefore, we wanted to investigate whether the zebrafish embryo could be used to model human infection with Bh. Our data showed that Tg(fli1:egfp)y1 zebrafish embryos supported a sustained Bh infection for 7 days with >10-fold bacterial replication when inoculated in the yolk sac. We showed that Bh recruited phagocytes to the site of infection in the Tg(mpx:GFP)uwm1 embryos. Infected embryos showed evidence of a Bh-induced angiogenic phenotype and an increase in the expression of genes encoding pro-inflammatory factors and pro-angiogenic markers. However, infection of zebrafish embryos with a deletion mutant in the major adhesin (BadA) resulted in little or no bacterial replication and a diminished host response, providing the first evidence that BadA is critical for in vivo infection. Thus, the zebrafish embryo provides the first practical model of Bh infection that will facilitate efforts to identify virulence factors and define molecular mechanisms of Bh pathogenesis. PMID:25026365

  12. Zebrafish embryo model of Bartonella henselae infection.

    PubMed

    Lima, Amorce; Cha, Byeong J; Amin, Jahanshah; Smith, Lisa K; Anderson, Burt

    2014-10-01

    Bartonella henselae (Bh) is an emerging zoonotic pathogen that has been associated with a variety of human diseases, including bacillary angiomatosis that is characterized by vasoproliferative tumor-like lesions on the skin of some immunosuppressed individuals. The study of Bh pathogenesis has been limited to in vitro cell culture systems due to the lack of an animal model. Therefore, we wanted to investigate whether the zebrafish embryo could be used to model human infection with Bh. Our data showed that Tg(fli1:egfp)(y1) zebrafish embryos supported a sustained Bh infection for 7 days with >10-fold bacterial replication when inoculated in the yolk sac. We showed that Bh recruited phagocytes to the site of infection in the Tg(mpx:GFP)uwm1 embryos. Infected embryos showed evidence of a Bh-induced angiogenic phenotype and an increase in the expression of genes encoding pro-inflammatory factors and pro-angiogenic markers. However, infection of zebrafish embryos with a deletion mutant in the major adhesin (BadA) resulted in little or no bacterial replication and a diminished host response, providing the first evidence that BadA is critical for in vivo infection. Thus, the zebrafish embryo provides the first practical model of Bh infection that will facilitate efforts to identify virulence factors and define molecular mechanisms of Bh pathogenesis.

  13. An outbreak of Plesimonus Shigelloides in Zebrafish

    USDA-ARS?s Scientific Manuscript database

    Plesiomonas shigelloides is a flagellated, gram-negative rod that is an emergent pathogen associated with human gastroenteritis. Recently, we experienced a disease outbreak in zebrafish that were obtained from a commercial source. Fourteen days after being held at 27°C in our flow-through quarantine...

  14. Protocadherin-17 Function in Zebrafish Retinal Development

    PubMed Central

    Chen, Yun; Londraville, Richard; Brickner, Sarah; El-Shaar, Lana; Fankhauser, Kelsee; Dearth, Cassandra; Fulton, Leah; Sochacka, Alicja; Bhattarai, Sunil; Marrs, James A.; Liu, Qin

    2012-01-01

    Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N-cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin-17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin-17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin-17 specific antisense morpholino oligonucleotides (MOs). Protocadherin-17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin-17 mRNA. Injection of a vivo-protocadherin-17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin-17 plays an important role in the normal formation of the zebrafish retina. PMID:22927092

  15. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  16. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  17. Zebrafish Locomotor Responses Predict Irritant Potential of ...

    EPA Pesticide Factsheets

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely to increase in frequency and duration, contributing to a growing public health burden. Given the influence of fuel type and combustion conditions on WFPM2.5 composition, there is pressing need to identify the biomass fuel sources and emission constituents that drive toxicity. Previously, we reported the utility of 6-day post-fertilization (dpf) zebrafish larvae in evaluating diesel exhaust PM-induced irritation, demonstrating responses analogous to those in mammals. In the present study, combustions, separated by smoldering or flaming conditions, of pine needles, red oak, pine, eucalyptus, and peat were achieved using an automated tube furnace paired with a cryo-trapping apparatus to collect condensates of emissions. The condensates were extracted and prepared for use in zebrafish assays. We hypothesized that 1) the extractable organic fractions of biomass smoke PM will elicit dose-dependent irritant responses in 6-dpf zebrafish larvae, and 2) the relative potencies will vary across biomass emissions, potentially driven by varying chemical composition of fuel sources. Six-dpf zebrafish (n= 28-32/group) were exposed acutely to PM extracts (5 concentrations; 0.3-30 µg/ml; half-log intervals) and

  18. Detecting Developmental Neurotoxicants Using Zebrafish Embryos

    EPA Science Inventory

    As part of EPA’s program on the screening and prioritization of chemicals for developmental neurotoxicity, a rapid, cost-effective in vivo vertebrate screen is being developed using an alternative species approach. Zebrafish (Danio rerio), a small freshwater fish with external f...

  19. Somatic cell nuclear transfer in zebrafish.

    PubMed

    Siripattarapravat, Kannika; Pinmee, Boonya; Venta, Patrick J; Chang, Chia-Cheng; Cibelli, Jose B

    2009-10-01

    We developed a method for somatic cell nuclear transfer in zebrafish using laser-ablated metaphase II eggs as recipients, the micropyle for transfer of the nucleus and an egg activation protocol after nuclear reconstruction. We produced clones from cells of both embryonic and adult origins, although the latter did not give rise to live adult clones.

  20. Cadmium potentiates toxicity of cypermethrin in zebrafish.

    PubMed

    Yang, Ye; Ye, Xiaoqing; He, Buyuan; Liu, Jing

    2016-02-01

    Co-occurrence of pesticides such as synthetic pyrethroids and metals in aquatic ecosystems raises concerns over their combined ecological effects. Cypermethrin, 1 of the top 5 synthetic pyrethroids in use, has been extensively detected in surface water. Cadmium (Cd) has been recognized as 1 of the most toxic metals and is a common contaminant in the aquatic system. However, little information is available regarding their joint toxicity. In the present study, combined toxicity of cypermethrin and Cd and the underlying mechanisms were investigated. Zebrafish embryos and adults were exposed to the individual contaminant or binary mixtures. Co-exposure to cypermethrin and Cd produced synergistic effects on the occurrence of crooked body, pericardial edema, and noninflation of swim bladder. The addition of Cd significantly potentiated cypermethrin-induced spasms and caused more oxidative stress in zebrafish larvae. Cypermethrin-mediated induction of transcription levels and catalytic activities of cytochrome P450 (CYP) enzyme were significantly down-regulated by Cd in both zebrafish larvae and adults. Chemical analytical data showed that in vitro elimination of cypermethrin by CYP1A1 was inhibited by Cd. The addition of Cd caused an elevation of in vivo cypermethrin residue levels in the mixture-exposed adult zebrafish. These results suggest that the enhanced toxicity of cypermethrin in the presence of Cd results from the inhibitory effects of Cd on CYP-mediated biotransformation of this pesticide. The authors' findings provide a deeper understanding of the mechanistic basis accounting for the joint toxicity of cypermethrin and Cd.

  1. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  2. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  3. Bioenergetic Profiling of Zebrafish Embryonic Development

    PubMed Central

    Stackley, Krista D.; Beeson, Craig C.; Rahn, Jennifer J.; Chan, Sherine S. L.

    2011-01-01

    Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility. PMID:21980518

  4. Zebrafish phenotypic screen identifies novel Notch antagonists.

    PubMed

    Velaithan, Vithya; Okuda, Kazuhide Shaun; Ng, Mei Fong; Samat, Norazwana; Leong, Sze Wei; Faudzi, Siti Munirah Mohd; Abas, Faridah; Shaari, Khozirah; Cheong, Sok Ching; Tan, Pei Jean; Patel, Vyomesh

    2017-04-01

    Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27(KIP1). Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent.

  5. Nicotine response genetics in the zebrafish

    PubMed Central

    Petzold, Andrew M.; Balciunas, Darius; Sivasubbu, Sridhar; Clark, Karl J.; Bedell, Victoria M.; Westcot, Stephanie E.; Myers, Shelly R.; Moulder, Gary L.; Thomas, Mark J.; Ekker, Stephen C.

    2009-01-01

    Tobacco use is predicted to result in over 1 billion deaths worldwide by the end of the 21st century. How genetic variation contributes to the observed differential predisposition in the human population to drug dependence is unknown. The zebrafish (Danio rerio) is an emerging vertebrate model system for understanding the genetics of behavior. We developed a nicotine behavioral assay in zebrafish and applied it in a forward genetic screen using gene-breaking transposon mutagenesis. We used this method to molecularly characterize bdav/cct8 and hbog/gabbr1.2 as mutations with altered nicotine response. Each have a single human ortholog, identifying two points for potential scientific, diagnostic, and drug development for nicotine biology and cessation therapeutics. We show this insertional method generates mutant alleles that are reversible through Cre-mediated recombination, representing a conditional mutation system for the zebrafish. The combination of this reporter-tagged insertional mutagen approach and zebrafish provides a powerful platform for a rich array of questions amenable to genetic-based scientific inquiry, including the basis of behavior, epigenetics, plasticity, stress, memory, and learning. PMID:19858493

  6. Thyroid development in zebrafish lacking Taz.

    PubMed

    Pappalardo, Andrea; Porreca, Immacolata; Caputi, Luigi; De Felice, Elena; Schulte-Merker, Stephan; Zannini, Mariastella; Sordino, Paolo

    2015-11-01

    Taz is a signal-responsive transcriptional coregulator implicated in several biological functions, from chondrogenesis to regulation of organ size. Less well studied, however, is its role in thyroid formation. Here, we explored the in vivo effects on thyroid development of morpholino (MO)-mediated knockdown of wwtr1, the gene encoding zebrafish Taz. The wwtr1 gene is expressed in the thyroid primordium and pharyngeal tissue of developing zebrafish. Compared to mammalian cells, in which Taz promotes expression of thyroid transcription factors and thyroid differentiation genes, wwtr1 MO injection in zebrafish had little or no effect on the expression of thyroid transcription factors, and differentially altered the expression of thyroid differentiation genes. Analysis of wwtr1 morphants at later stages of development revealed that the number and the lumen of thyroid follicles, and the number of thyroid follicle cells, were significantly smaller. In addition, Taz-depleted larvae displayed patterning defects in ventral cranial vessels that correlate with lateral displacement of thyroid follicles. These findings indicate that the zebrafish Taz protein is needed for the normal differentiation of the thyroid and are the first to suggest that Taz confers growth advantage to the endocrine gland.

  7. Detecting Developmental Neurotoxicants Using Zebrafish Embryos

    EPA Science Inventory

    As part of EPA’s program on the screening and prioritization of chemicals for developmental neurotoxicity, a rapid, cost-effective in vivo vertebrate screen is being developed using an alternative species approach. Zebrafish (Danio rerio), a small freshwater fish with external f...

  8. Monitoring Toxic Ionic Liquids in Zebrafish (Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI).

    PubMed

    Perez, Consuelo J; Tata, Alessandra; de Campos, Michel L; Peng, Chun; Ifa, Demian R

    2016-10-24

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish (Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N](+). With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. Graphical Abstract ᅟ.

  9. Monitoring Toxic Ionic Liquids in Zebrafish (Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    NASA Astrophysics Data System (ADS)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2016-10-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish (Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment.

  10. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    NASA Astrophysics Data System (ADS)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  11. Intravital imaging of metastasis in adult Zebrafish.

    PubMed

    Benjamin, David C; Hynes, Richard O

    2017-09-25

    Metastasis is a major clinical problem whose biology is not yet fully understood. This lack of understanding is especially true for the events at the metastatic site, which include arrest, extravasation, and growth into macrometastases. Intravital imaging is a powerful technique that has shown great promise in increasing our understanding of these events. To date, most intravital imaging studies have been performed in mice, which has limited its adoption. Zebrafish are also a common system for the intravital imaging of metastasis. However, as imaging in embryos is technically simpler, relatively few studies have used adult zebrafish to study metastasis and none have followed individual cells at the metastatic site over time. The aim of this study was to demonstrate that adult casper zebrafish offer a convenient model system for performing intravital imaging of the metastatic site over time with single-cell resolution. ZMEL1 zebrafish melanoma cells were injected into 6 to 10-week-old casper fish using an intravenous injection protocol. Because casper fish are transparent even as adults, they could be imaged without surgical intervention. Individual cells were followed over the course of 2 weeks as they arrested, extravasated, and formed macroscopic metastases. Our injection method reliably delivered cells into circulation and led to the formation of tumors in multiple organs. Cells in the skin and sub-dermal muscle could be imaged at high resolution over 2 weeks using confocal microscopy. Arrest was visualized and determined to be primarily due to size restriction. Following arrest, extravasation was seen to occur between 1 and 6 days post-injection. Once outside of the vasculature, cells were observed migrating as well as forming protrusions. Casper fish are a useful model for studying the events at the metastatic site using intravital imaging. The protocols described in this study are relatively simple. Combined with the reasonably low cost of zebrafish, they

  12. Defects of the Glycinergic Synapse in Zebrafish

    PubMed Central

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  13. Behavioral analysis of zebrafish larvae swimming in three dimensions

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    2015-03-01

    Behavioral biologists have a strong interest in studying the behavior of larval zebrafish because the limited number of locomotor neurons in larval zebrafish couples with the rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their movements. Most research also only considers the 2D movements of zebrafish, leaving out the vertical component of their locomotion. Our lab has developed a method to reduce the dimensionality of the locomotion of zebrafish and determine the behavioral space of 2D swimming. We are extending this work to capture 3D locomotion of zebrafish larvae. Here we present our preliminary analysis of the 3D locomotion of zebrafish.

  14. Conserved gene regulation during acute inflammation between zebrafish and mammals.

    PubMed

    Forn-Cuní, G; Varela, M; Pereiro, P; Novoa, B; Figueras, A

    2017-02-03

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential.

  15. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity

    SciTech Connect

    Boxtel, Antonius L. van; Kamstra, Jorke H.; Fluitsma, Donna M.; Legler, Juliette

    2010-04-15

    Dithiocarbamates (DTCs) are a class of compounds that are extensively used in agriculture as pesticides. As such, humans and wildlife are undoubtedly exposed to these chemicals. Although DTCs are thought to be relatively safe due to their short half lives, it is well established that they are teratogenic to vertebrates, especially to fish. In zebrafish, these teratogenic effects are characterized by distorted notochord development and shortened anterior to posterior axis. DTCs are known copper (Cu) chelators but this does not fully explain the observed teratogenic effects. We show here that DTCs cause malformations in zebrafish that highly resemble teratogenic effects observed by direct inhibition of a group of cuproenzymes termed lysyl oxidases (LOX). Additionally, we demonstrate that partial knockdown of three LOX genes, lox, loxl1 and loxl5b, sensitizes the developing embryo to DTC exposure. Finally, we show that DTCs directly inhibit zebrafish LOX activity in an ex vivo amine oxidase assay. Taken together, these results provide the first evidence that DTC induced teratogenic effects are, at least in part, caused by direct inhibition of LOX activity.

  16. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment.

    PubMed

    Baars, Destiny L; Takle, Kendra A; Heier, Jonathon; Pelegri, Francisco

    2016-12-16

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species.

  17. Optical micromanipulation of nanoparticles and cells inside living zebrafish

    NASA Astrophysics Data System (ADS)

    Johansen, Patrick Lie; Fenaroli, Federico; Evensen, Lasse; Griffiths, Gareth; Koster, Gerbrand

    2016-03-01

    Regulation of biological processes is often based on physical interactions between cells and their microenvironment. To unravel how and where interactions occur, micromanipulation methods can be used that offer high-precision control over the duration, position and magnitude of interactions. However, lacking an in vivo system, micromanipulation has generally been done with cells in vitro, which may not reflect the complex in vivo situation inside multicellular organisms. Here using optical tweezers we demonstrate micromanipulation throughout the transparent zebrafish embryo. We show that different cells, as well as injected nanoparticles and bacteria can be trapped and that adhesion properties and membrane deformation of endothelium and macrophages can be analysed. This non-invasive micromanipulation inside a whole-organism gives direct insights into cell interactions that are not accessible using existing approaches. Potential applications include screening of nanoparticle-cell interactions for cancer therapy or tissue invasion studies in cancer and infection biology.

  18. Optical micromanipulation of nanoparticles and cells inside living zebrafish.

    PubMed

    Johansen, Patrick Lie; Fenaroli, Federico; Evensen, Lasse; Griffiths, Gareth; Koster, Gerbrand

    2016-03-21

    Regulation of biological processes is often based on physical interactions between cells and their microenvironment. To unravel how and where interactions occur, micromanipulation methods can be used that offer high-precision control over the duration, position and magnitude of interactions. However, lacking an in vivo system, micromanipulation has generally been done with cells in vitro, which may not reflect the complex in vivo situation inside multicellular organisms. Here using optical tweezers we demonstrate micromanipulation throughout the transparent zebrafish embryo. We show that different cells, as well as injected nanoparticles and bacteria can be trapped and that adhesion properties and membrane deformation of endothelium and macrophages can be analysed. This non-invasive micromanipulation inside a whole-organism gives direct insights into cell interactions that are not accessible using existing approaches. Potential applications include screening of nanoparticle-cell interactions for cancer therapy or tissue invasion studies in cancer and infection biology.

  19. Optical micromanipulation of nanoparticles and cells inside living zebrafish

    PubMed Central

    Johansen, Patrick Lie; Fenaroli, Federico; Evensen, Lasse; Griffiths, Gareth; Koster, Gerbrand

    2016-01-01

    Regulation of biological processes is often based on physical interactions between cells and their microenvironment. To unravel how and where interactions occur, micromanipulation methods can be used that offer high-precision control over the duration, position and magnitude of interactions. However, lacking an in vivo system, micromanipulation has generally been done with cells in vitro, which may not reflect the complex in vivo situation inside multicellular organisms. Here using optical tweezers we demonstrate micromanipulation throughout the transparent zebrafish embryo. We show that different cells, as well as injected nanoparticles and bacteria can be trapped and that adhesion properties and membrane deformation of endothelium and macrophages can be analysed. This non-invasive micromanipulation inside a whole-organism gives direct insights into cell interactions that are not accessible using existing approaches. Potential applications include screening of nanoparticle-cell interactions for cancer therapy or tissue invasion studies in cancer and infection biology. PMID:26996121

  20. Dimentionality and behavior of swimming Zebrafish: ``The EigenFish''

    NASA Astrophysics Data System (ADS)

    Girdhar, Kiran; Gruebele, Martin; Chemla, Yann

    2013-03-01

    How simple is the underlying control mechanism for the complex locomotion of vertebrates? To answer this question, we study the swimming behavior of zebrafish larvae. A dimensionality reduction method (singular value decomposition), in analogy to previous studies of worms, is used to analyze swimming movies of fish. That way, the animals can directly provide us with a minimal set of shapes to describe their motion, rather than us imposing arbitrary coordinates. We show that two low imensional attractors (an ellipse and a distorted ellipse) embedded in a threedimensional space of motion coordinates are sufficient to describe > 95% of the locomotion. We also show that scoots and R-turns, previously thought to be independent behaviors based on qualitative studies, are in fact just extremes of a continuous family of motions bounded by the two attractors.

  1. Zebrafish Xenograft: An Evolutionary Experiment in Tumour Biology.

    PubMed

    Wyatt, Rachael A; Trieu, Nhu P V; Crawford, Bryan D

    2017-09-05

    Though the cancer research community has used mouse xenografts for decades more than zebrafish xenografts, zebrafish have much to offer: they are cheap, easy to work with, and the embryonic model is relatively easy to use in high-throughput assays. Zebrafish can be imaged live, allowing us to observe cellular and molecular processes in vivo in real time. Opponents dismiss the zebrafish model due to the evolutionary distance between zebrafish and humans, as compared to mice, but proponents argue for the zebrafish xenograft's superiority to cell culture systems and its advantages in imaging. This review places the zebrafish xenograft in the context of current views on cancer and gives an overview of how several aspects of this evolutionary disease can be addressed in the zebrafish model. Zebrafish are missing homologs of some human proteins and (of particular interest) several members of the matrix metalloproteinase (MMP) family of proteases, which are known for their importance in tumour biology. This review draws attention to the implicit evolutionary experiment taking place when the molecular ecology of the xenograft host is significantly different than that of the donor.

  2. Hearing Assessment in Zebrafish During the First Week Postfertilization

    PubMed Central

    Yao, Qi; DeSmidt, Alexandra A.; Tekin, Mustafa; Liu, Xuezhong

    2016-01-01

    Abstract The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP)sqet4 zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording. PMID:26982161

  3. Hearing Assessment in Zebrafish During the First Week Postfertilization.

    PubMed

    Yao, Qi; DeSmidt, Alexandra A; Tekin, Mustafa; Liu, Xuezhong; Lu, Zhongmin

    2016-04-01

    The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP)(sqet4) zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording.

  4. Deriving cell lines from zebrafish embryos and tumors.

    PubMed

    Choorapoikayil, Suma; Overvoorde, John; den Hertog, Jeroen

    2013-09-01

    Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb(-/-) embryos and an endothelial-like cell line from a tumor of an adult ptena(+/-)ptenb(-/-) zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3-5 months.

  5. Biologically inspired robots elicit a robust fear response in zebrafish

    NASA Astrophysics Data System (ADS)

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G.; Butail, Sachit; Macrı, Simone; Porfiri, Maurizio

    2015-03-01

    We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.

  6. The Cardiac Transcriptome and Dilated Cardiomyopathy Genes in Zebrafish

    PubMed Central

    Shih, Yu-Huan; Zhang, Yuji; Ding, Yonghe; Ross, Christian A.; Li, Hu; Olson, Timothy M.; Xu, Xiaolei

    2015-01-01

    Background Genetic studies of cardiomyopathy and heart failure have limited throughput in mammalian models. Adult zebrafish have been recently pursued as a vertebrate model with higher throughput, but genetic conservation must be tested. Methods and Results We conducted transcriptome analysis of zebrafish heart and searched for fish homologues of 51 known human dilated cardiomyopathy (DCM)-associated genes. We also identified genes with high cardiac expression and genes with differential expression between embryonic and adult stages. Among tested genes, 30 had a single zebrafish orthologue, 14 had 2 homologues, and 5 had 3 or more homologues. By analyzing the expression data on the basis of cardiac abundance and enrichment hypotheses, we identified a single zebrafish gene for 14 of 19 multiple-homologue genes and 2 zebrafish homologues of high priority for ACTC1. Of note, our data suggested vmhc and vmhcl as functional zebrafish orthologues for human MYH6 and MYH7, respectively, which are established molecular markers for cardiac remodeling. Conclusions Most known genes for human DCM have a corresponding zebrafish orthologue, which supports the use of zebrafish as a conserved vertebrate model. Definition of the cardiac transcriptome and fetal gene program will facilitate systems biology studies of DCM in zebrafish. PMID:25583992

  7. Formation of the digestive system in zebrafish. I. Liver morphogenesis.

    PubMed

    Field, Holly A; Ober, Elke A; Roeser, Tobias; Stainier, Didier Y R

    2003-01-15

    Despite the essential functions of the digestive system, much remains to be learned about the cellular and molecular mechanisms responsible for digestive organ morphogenesis and patterning. We introduce a novel zebrafish transgenic line, the gutGFP line, that expresses GFP throughout the digestive system, and use this tool to analyze the development of the liver. Our studies reveal two phases of liver morphogenesis: budding and growth. The budding period, which can be further subdivided into three stages, starts when hepatocytes first aggregate, shortly after 24 h postfertilization (hpf), and ends with the formation of a hepatic duct at 50 hpf. The growth phase immediately follows and is responsible for a dramatic alteration of liver size and shape. We also analyze gene expression in the developing liver and find a correlation between the expression of certain transcription factor genes and the morphologically defined stages of liver budding. To further expand our understanding of budding morphogenesis, we use loss-of-function analyses to investigate factors potentially involved in this process. It had been reported that no tail mutant embryos appear to lack a liver primordium, as assessed by gata6 expression. However, analysis of gutGFP embryos lacking Ntl show that the liver is in fact present. We also find that, in these embryos, the direction of liver budding does not correlate with the direction of intestinal looping, indicating that the left/right behavior of these tissues can be uncoupled. In addition, we use the cloche mutation to analyze the role of endothelial cells in liver morphogenesis, and find that in zebrafish, unlike what has been reported in mouse, endothelial cells do not appear to be necessary for the budding of this organ.

  8. The Zebrafish Anatomy Portal: a novel integrated resource to facilitate zebrafish research.

    PubMed

    Salgado, David; Marcelle, Christophe; Currie, Peter D; Bryson-Richardson, Robert J

    2012-12-01

    Zebrafish is a common model organism in research and yet, despite its widespread use, anatomical resources for this species are incomplete or lacking in functionality. There remains a need for a single reference resource that integrates user-friendly tools to facilitate the identification of structures, display of reference images, provides data on gene expression, links to relevant literature, and covers the complete range of zebrafish developmental stages. To fulfill this need, we have designed the Zebrafish Anatomy Portal (www.zfap.org), containing annotated three-dimensional images of zebrafish at stages throughout development and adulthood, acquired by optical projection tomography. ZFAP combines functionalities to allow scanning through 3D data sets, searching of images by anatomical terms, predictions of gene expression from literature analysis, and facilitation of the identification of relevant literature through assisted searching of the NCBI PubMed resource. ZFAP provides a highly functional anatomical resource that will aid future education and research in the zebrafish model system. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Formation of a spiraling line defect and its meandering transition in a period-2 medium.

    PubMed

    Park, Jin-Sung; Lee, Kyoung J

    2002-06-03

    The instability of a period-1 spiral wave resulting in a period-2 spiral wave with a line defect is investigated for the first time in a laboratory system. At the very onset the transition proceeds by an emergence of a spiraling line defect, "breathing" intermittently while retaining its symmetry of a period-1 spiral wave. With a further change in a control parameter, the line defect undergoes a meandering transition producing a compound tip trajectory, following a dynamic shape transition. The observed transitions have a strong analogy to the phase synchronization transition of two coupled nonlinear oscillators and the meandering transition of a period-1 spiral wave.

  10. Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model.

    PubMed

    Staal, Frank J T; Spaink, Herman P; Fibbe, Willem E

    2016-02-15

    Zebrafish is gaining increased popularity as a model organism to study stem cell biology. It also is widely used as model system to visualize human leukemic stem cells. However, xenotransplantation of primary human stem/progenitor cells has not been described. Here, we use casper pigmentation mutant fish that are transparent crossed to fli-GFP transgenic fish as recipients of red labeled human CD34(+) cells. We have investigated various conditions and protocols with the aim to monitor and visualize the fate of transplanted human CD34(+) cells. We here report successful use of casper mutant zebrafish embryos for the direct monitoring of human hematopoietic stem cell transplantation, differentiation, and trafficking in vivo.

  11. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models.

    PubMed

    Keightley, Maria-Cristina; Wang, Chieh-Huei; Pazhakh, Vahid; Lieschke, Graham J

    2014-11-01

    The outcome following injury can be healing, scarring or regeneration, all of which initiate within a resolving inflammatory response. Regeneration, comprising the complete anatomical and functional restoration of lost tissue with minimal residual consequence of injury, is the outcome that most holistically restores prior function. Leukocytes are recognized as playing an important role in determining the balance between fully regenerative or only partially reparative outcomes. Although macrophages have attracted considerable attention for their capacity to direct pro-regenerative outcomes, neutrophils are also key players in initiating inflammation and in influencing its ensuing outcome. In the context of prior studies investigating the role of neutrophils and macrophages in wound healing and in tissue/organ regeneration (mostly wound repair/healing models in mice), we comprehensively review the experimental possibilities that zebrafish models offer for delineating the individual and interactive contributions of neutrophils and macrophages to the regenerative process in embryos and adults. Zebrafish are a highly regenerative vertebrate and have a myeloid system very analogous to that of less-regenerative mammalian models. There are well-characterized reporter lines for imaging and distinguishing neutrophil and macrophage behaviors in vivo, and tools enabling selective, independent manipulation of these two leukocyte lineages for functional studies. Zebrafish are an attractive model for delineating neutrophil and macrophage contributions not only to regeneration, but also to many other pathological processes. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The role of Rho kinase (Rock) in re-epithelialization of adult zebrafish skin wounds.

    PubMed

    Richardson, Rebecca; Hammerschmidt, Matthias

    2016-08-03

    Complete re-epithelialization of full-thickness skin wounds in adult mammals takes days to complete and relies on numerous signaling cues and multiple overlapping cellular processes that take place both within the epidermis itself and in other participating tissues. We have previously shown that re-epithelialization of full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing allowing for the dissection of specific processes that occur in, or have a direct effect on, re-epithelializing keratinocytes. Recently, we have shown that, in addition to lamellipodial crawling at the leading edge, re-epithelialization of zebrafish partial- and full-thickness wounds requires long-range epithelial rearrangements including radial intercalations, flattening and directed elongation and that each of these processes involves Rho kinase (Rock) signaling. Our studies demonstrate how these coordinated signaling events allow for the rapid collective cell migration observed in adult zebrafish wound healing. Here we discuss the particular contribution of Rock to each of these processes.

  13. Characterization of rag1 mutant zebrafish leukocytes

    PubMed Central

    Petrie-Hanson, Lora; Hohn, Claudia; Hanson, Larry

    2009-01-01

    Background Zebrafish may prove to be one of the best vertebrate models for innate immunology. These fish have sophisticated immune components, yet rely heavily on innate immune mechanisms. Thus, the development and characterization of mutant and/or knock out zebrafish are critical to help define immune cell and immune gene functions in the zebrafish model. The use of Severe Combined Immunodeficient (SCID) and recombination activation gene 1 and 2 mutant mice has allowed the investigation of the specific contribution of innate defenses in many infectious diseases. Similar zebrafish mutants are now being used in biomedical and fish immunology related research. This report describes the leukocyte populations in a unique model, recombination activation gene 1-/- mutant zebrafish (rag1 mutants). Results Differential counts of peripheral blood leukocytes (PBL) showed that rag1 mutants had significantly decreased lymphocyte-like cell populations (34.7%) compared to wild-types (70.5%), and significantly increased granulocyte populations (52.7%) compared to wild-types (17.6%). Monocyte/macrophage populations were similar between mutants and wild-types, 12.6% and 11.3%, respectively. Differential leukocyte counts of rag1 mutant kidney hematopoietic tissue showed a significantly reduced lymphocyte-like cell population (8%), a significantly increased myelomonocyte population (57%), 34.8% precursor cells, and 0.2% thrombocytes, while wild-type hematopoietic kidney tissue showed 29.4% lymphocytes/lymphocyte-like cells, 36.4% myelomonocytes, 33.8% precursors and 0.5% thrombocytes. Flow cytometric analyses of kidney hematopoietic tissue revealed three leukocyte populations. Population A was monocytes and granulocytes and comprised 34.7% of the gated cells in rag1 mutants and 17.6% in wild-types. Population B consisted of hematopoietic precursors, and comprised 50% of the gated cells for rag1 mutants and 53% for wild-types. Population C consisted of lymphocytes and lymphocyte

  14. What optimization principle explains the zebrafish vasculature?

    NASA Astrophysics Data System (ADS)

    Chang, Shyr-Shea; Baek, Kyung In; Hsiai, Tzung; Roper, Marcus

    2016-11-01

    Many multicellular organisms depend on biological transport networks; from the veins of leaves to the animal circulatory system, to redistribute nutrients internally. Since natural selection rewards efficiency, those networks are thought to minimize the cost of maintaining the flow inside. But optimizing these costs creates tradeoffs with other functions, e.g. mixing or uniform distribution of nutrients. We develop an extended Lagrange multiplier approach that allows the optimization of general network functionals. We also follow the real zebrafish vasculature and blood flows during organism development. Taken together, our work shows that the challenge of uniform oxygen perfusion, and not transport efficiency, explain zebrafish vascular organization. Ruth L. Kirschstein National Research Service Award (T32-GM008185).

  15. Parallel mechanisms for visual search in zebrafish.

    PubMed

    Proulx, Michael J; Parker, Matthew O; Tahir, Yasser; Brennan, Caroline H

    2014-01-01

    Parallel visual search mechanisms have been reported previously only in mammals and birds, and not animals lacking an expanded telencephalon such as bees. Here we report the first evidence for parallel visual search in fish using a choice task where the fish had to find a target amongst an increasing number of distractors. Following two-choice discrimination training, zebrafish were presented with the original stimulus within an increasing array of distractor stimuli. We found that zebrafish exhibit no significant change in accuracy and approach latency as the number of distractors increased, providing evidence of parallel processing. This evidence challenges theories of vertebrate neural architecture and the importance of an expanded telencephalon for the evolution of executive function.

  16. Understanding cardiac sarcomere assembly with zebrafish genetics.

    PubMed

    Yang, Jingchun; Shih, Yu-Huan; Xu, Xiaolei

    2014-09-01

    Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.

  17. Osteogenic programs during zebrafish fin regeneration

    PubMed Central

    Watson, Claire J; Kwon, Ronald Y

    2015-01-01

    Recent advances in genomic, screening and imaging technologies have provided new opportunities to examine the molecular and cellular landscape underlying human physiology and disease. In the context of skeletal research, technologies for systems genetics, high-throughput screening and high-content imaging can aid an unbiased approach when searching for new biological, pathological or therapeutic pathways. However, these approaches necessitate the use of specialized model systems that rapidly produce a phenotype, are easy to manipulate, and amenable to optical study, all while representing mammalian bone physiologies at the molecular and cellular levels. The emerging use of zebrafish (Danio rerio) for modeling human disease highlights its potential to accelerate therapeutic and pathway discovery in the mammalian skeleton. In this review, we consider the potential value of zebrafish fin ray regeneration (a rapid, genetically tractable and optically transparent model of intramembranous ossification) as a translational model for such studies. PMID:26421148

  18. The Morphogenesis of Cranial Sutures in Zebrafish

    PubMed Central

    Topczewska, Jolanta M.; Shoela, Ramy A.; Tomaszewski, Joanna P.; Mirmira, Rupa B.; Gosain, Arun K.

    2016-01-01

    Using morphological, histological, and TEM analyses of the cranium, we provide a detailed description of bone and suture growth in zebrafish. Based on expression patterns and localization, we identified osteoblasts at different degrees of maturation. Our data confirm that, unlike in humans, zebrafish cranial sutures maintain lifelong patency to sustain skull growth. The cranial vault develops in a coordinated manner resulting in a structure that protects the brain. The zebrafish cranial roof parallels that of higher vertebrates and contains five major bones: one pair of frontal bones, one pair of parietal bones, and the supraoccipital bone. Parietal and frontal bones are formed by intramembranous ossification within a layer of mesenchyme positioned between the dermal mesenchyme and meninges surrounding the brain. The supraoccipital bone has an endochondral origin. Cranial bones are separated by connective tissue with a distinctive architecture of osteogenic cells and collagen fibrils. Here we show RNA in situ hybridization for col1a1a, col2a1a, col10a1, bglap/osteocalcin, fgfr1a, fgfr1b, fgfr2, fgfr3, foxq1, twist2, twist3, runx2a, runx2b, sp7/osterix, and spp1/ osteopontin, indicating that the expression of genes involved in suture development in mammals is preserved in zebrafish. We also present methods for examining the cranium and its sutures, which permit the study of the mechanisms involved in suture patency as well as their pathological obliteration. The model we develop has implications for the study of human disorders, including craniosynostosis, which affects 1 in 2,500 live births. PMID:27829009

  19. Dynamics of DNA hydroxymethylation in zebrafish.

    PubMed

    Kamstra, Jorke H; Løken, Marianne; Aleström, Peter; Legler, Juliette

    2015-06-01

    During embryonic development in mammals, most of the methylated cytosines in the paternal genome are converted to 5-hydroxymethyldeoxycytidine (hmC), as part of DNA methylation reprogramming. Recent data also suggest tissue-specific functional roles of hmC, perhaps as an epigenetic mark. However, limited data are available on the levels and tissue distribution in zebrafish. In this study, we used high-performance liquid chromatography mass spectrometry to quantify hmC and 5-methyldeoxycytidine (mC) in zebrafish during development and in different tissues of the adult fish. Low levels of mC were found at 0.5 hours postfertilization (hpf) (1-2 cell stage) (1.9%), and increased to 8.4% by 96 hpf, with similar levels observed in different adult tissues. No hmC was detected up to 12 hpf, but levels increased during development from 24 up to 96 hpf (0.23%). In tissues, the highest levels of hmC were found in the brain (0.49%), intermediate levels in muscle (0.13%), liver (0.08%), and intestine (0.06%) and low levels in testis (0.01%), with an inverse correlation between hmC and mC. Our results indicate similar tissue distribution and levels of hmC between zebrafish and mammals, but distinct differences during embryonic development. Although more research is needed, these results support the use of zebrafish as an alternative model in the elucidation of tissue-specific functions of hmC.

  20. BDE 49 and developmental toxicity in zebrafish

    PubMed Central

    McClain, Valerie; Stapleton, Heather M.; Gallagher, Evan

    2011-01-01

    The polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants. Human health concerns of these agents have largely centered upon their potential to elicit reproductive and developmental effects. Of the various congeners, BDE 49 (2,2’,4,5’-tetrabromodiphenyl ether) has been poorly studied, despite the fact that it is often detected in the tissues of fish and wildlife species. Furthermore, we have previously shown that BDE 49 is a metabolic debromination product of BDE 99 hepatic metabolism in salmon, carp and trout, underscoring the need for a better understanding of biological effects. In the current study, we investigated the developmental toxicity of BDE 49 using the zebrafish (Danio rerio) embryo larval model. Embryo and larval zebrafish were exposed to BDE 49 at either 5 hours post fertilization (hpf) or 24 hpf and monitored for developmental and neurotoxicity. Exposure to BDE 49 at concentrations of 4 µM- 32 µM caused a dose-dependent loss in survivorship at 6 days post fertilization (dpf). Morphological impairments were observed prior to the onset of mortality, the most striking of which included severe dorsal curvatures of the tail. The incidence of dorsal tail curvatures was dose and time dependent. Exposure to BDE 49 caused cardiac toxicity as evidenced by a significant reduction in zebrafish heart rates at 6 dpf but not earlier, suggesting that cardiac toxicity was non-specific and associated with physiological stress. Neurobehavioral injury from BDE 49 was evidenced by an impairment of touch-escape responses observed at 5 dpf. Our results indicate that BDE 49 is a developmental toxicant in larval zebrafish that can cause morphological abnormalities and adversely affect neurobehavior. The observed toxicities from BDE 49 were similar in scope to those previously reported for the more common tetrabrominated congener, BDE 47, and also for other lower brominated PBDEs, suggest that these compounds may share similarities in risk to

  1. Standardized Welfare Terms for the Zebrafish Community

    PubMed Central

    Karp, Natasha A.; Blackledge, Samuel; Clark, Bradley; Keeble, Rosemary; Kovacs, Ceri; Murray, Katrina N.; Price, Michael; Thompson, Peter; Bussell, James

    2016-01-01

    Abstract Managing the welfare of laboratory animals is critical to animal health, vital in the understanding of phenotypes created by treatment or genetic alteration and ensures compliance of regulations. Part of an animal welfare assessment is the requirement to record observations, ensuring all those responsible for the animals are aware of their health status and can act accordingly. Although the use of zebrafish in research continues to increase, guidelines for conducting welfare assessments and the reporting of observations are considered unclear compared to mammalian species. To support the movement of zebrafish between facilities, significant improvement would be achieved through the use of standardized terms to ensure clarity and consistency between facilities. Improving the clarity of terminology around welfare not only addresses our ethical obligation but also supports the research goals and provides a searchable description of the phenotypes. A Collaboration between the Wellcome Trust Sanger Institute and Cambridge University (Department of Medicine-Laboratory of Molecular Biology) has led to the creation of the zebrafish welfare terms from which standardization of terminology can be achieved. PMID:27096380

  2. Single stimulus learning in zebrafish larvae

    PubMed Central

    O’Neale, Ashley; Ellis, Joseph; Creton, Robbert; Colwill, Ruth M.

    2014-01-01

    Learning about a moving visual stimulus was examined in zebrafish larvae using an automated imaging system and a t1-t2 design. In three experiments, zebrafish larvae were exposed to one of two inputs at t1 (either a gray bouncing disk or an identical but stationary disk) followed by a common test at t2 (the gray bouncing disk). Using 7 days post-fertilization (dpf) larvae and 12 stimulus exposures, Experiment 1 established that these different treatments produced differential responding to the moving disk during testing. Larvae familiar with the moving test stimulus were significantly less likely to be still in its presence than larvae that had been exposed to the identical but stationary stimulus. Experiment 2 confirmed this result in 7 dpf larvae and extended the finding to 5 and 6 dpf larvae. Experiment 3 found differential responding to the moving test stimulus with 4 or 8 stimulus exposures but not with just one exposure in 7 dpf larvae. These results provide evidence for learning in very young zebrafish larvae. The merits and challenges of the t1-t2 framework to study learning are discussed. PMID:24012906

  3. Short stories on zebrafish long noncoding RNAs.

    PubMed

    Haque, Shadabul; Kaushik, Kriti; Leonard, Vincent Elvin; Kapoor, Shruti; Sivadas, Ambily; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2014-12-01

    The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes.

  4. Standardized Welfare Terms for the Zebrafish Community.

    PubMed

    Goodwin, Nicola; Karp, Natasha A; Blackledge, Samuel; Clark, Bradley; Keeble, Rosemary; Kovacs, Ceri; Murray, Katrina N; Price, Michael; Thompson, Peter; Bussell, James

    2016-07-01

    Managing the welfare of laboratory animals is critical to animal health, vital in the understanding of phenotypes created by treatment or genetic alteration and ensures compliance of regulations. Part of an animal welfare assessment is the requirement to record observations, ensuring all those responsible for the animals are aware of their health status and can act accordingly. Although the use of zebrafish in research continues to increase, guidelines for conducting welfare assessments and the reporting of observations are considered unclear compared to mammalian species. To support the movement of zebrafish between facilities, significant improvement would be achieved through the use of standardized terms to ensure clarity and consistency between facilities. Improving the clarity of terminology around welfare not only addresses our ethical obligation but also supports the research goals and provides a searchable description of the phenotypes. A Collaboration between the Wellcome Trust Sanger Institute and Cambridge University (Department of Medicine-Laboratory of Molecular Biology) has led to the creation of the zebrafish welfare terms from which standardization of terminology can be achieved.

  5. The zebrafish infraorbital bones: a descriptive study.

    PubMed

    Chang, Carolyn; Franz-Odendaal, Tamara Anne

    2014-02-01

    The infraorbital (IO) bone series, a component of the circumorbital series, makes up five of the eight dermal bones found in the orbital region of the zebrafish skull. Ossifying in a set sequence, the IOs are closely associated with the cranial lateral line system as they house neuromast sensory receptors in bony canals. We conducted a detailed analysis of the condensation to mineralization phases of development of these bones. Our analyses involved both bone and osteoblast staining of zebrafish at 20 different time points. IO bone condensations are shaped as templates for the final bone shape, and they mineralize at one or more centers of ossification. Initially, mineralization is closely associated with the lateral line canals and/or foramen, and the onset of mineralization is temporally variable. Canal wall mineralization is a process that continues into adulthood and completely mineralized canal roofs were not found. Our comprehensive growth series detailing the ossification of each IO bone provides important insight into the growth and development of this series of neural crest-derived flat bones in the zebrafish craniofacial skeleton.

  6. Phenylthiourea disrupts thyroid function in developing zebrafish.

    PubMed

    Elsalini, Osama A; Rohr, Klaus B

    2003-01-01

    Thyroid hormone (T4) can be detected in thyroid follicles in wild-type zebrafish larvae from 3 days of development, when the thyroid has differentiated. In contrast, embryos or larvae treated with goitrogens (substances such as methimazole, potassium percholorate, and 6-n-propyl-2-thiouracil) are devoid of thyroid hormone immunoreactivity. Phenythiourea (PTurea; also commonly known as PTU) is widely used in zebrafish research to suppress pigmentation in developing embryos/fry. PTurea contains a thiocarbamide group that is responsible for goitrogenic activity in methimazole and 6-n-propyl-2-thiouracil. In the present study, we show that commonly used doses of 0.003% PTurea abolish T4 immunoreactivity of the thyroid follicles of zebrafish larvae. As development of the thyroid gland is not affected, these data suggest that PTurea blocks thyroid hormone production. Like other goitrogens, PTurea causes delayed hatching, retardation and malformation of embryos or larvae with increasing doses. At doses of 0.003% PTurea, however, toxic side effects seem to be at a minimum, and the maternal contribution of the hormone might compensate for compromised thyroid function during the first days of development.

  7. Transgenerational analysis of transcriptional silencing in zebrafish

    PubMed Central

    Akitake, Courtney M.; Macurak, Michelle; Halpern, Marnie E.; Goll, Mary G.

    2011-01-01

    The yeast Gal4/UAS transcriptional activation system is a powerful tool for regulating gene expression in Drosophila and has been increasing in popularity for developmental studies in zebrafish. It is also useful for studying the basis of de novo transcriptional silencing. Fluorescent reporter genes under the control of multiple tandem copies of the upstream activator sequence (UAS) often show evidence of variegated expression and DNA methylation in transgenic zebrafish embryos. To characterize this systematically, we monitored the progression of transcriptional silencing of UAS-regulated transgenes that differ in their integration sites and in the repetitive nature of the UAS. Transgenic larvae were examined in three generations for tissue-specific expression of a green fluorescent protein (GFP) reporter and DNA methylation at the UAS. Single insertions containing four distinct upstream activator sequences were far less susceptible to methylation than insertions containing fourteen copies of the same UAS. In addition, transgenes that integrated in or adjacent to transposon sequence exhibited silencing regardless of the number of UAS sites included in the transgene. Placement of promoter-driven Gal4 upstream of UAS-regulated responder genes in a single bicistronic construct also appeared to accelerate silencing and methylation. The results demonstrate the utility of the zebrafish for efficient tracking of gene silencing mechanisms across several generations, as well as provide useful guidelines for optimal Gal4-regulated gene expression in organisms subject to DNA methylation. PMID:21223961

  8. Short Stories on Zebrafish Long Noncoding RNAs

    PubMed Central

    Haque, Shadabul; Kaushik, Kriti; Leonard, Vincent Elvin; Kapoor, Shruti; Sivadas, Ambily; Joshi, Adita

    2014-01-01

    Abstract The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes. PMID:25110965

  9. Characterization of the Enigma family in zebrafish.

    PubMed

    Ott, Elisabeth B; Sakalis, Philippe A; Marques, Ines J; Bagowski, Christoph P

    2007-11-01

    The three Enigma subfamily proteins, Enigma, Enigma homologue, and Cypher/ZASP belong to the PDZ and LIM encoding protein family, which is characterized by the presence of a PDZ- and one or more LIM domains. PDZ/LIM proteins play important biological roles, and all members have been shown to associate with the actin cytoskeleton. We describe here the splice form specific expression patterns for the three Enigma subfamily members during zebrafish embryogenesis. Whole-mount in situ hybridization revealed common and distinct expression patterns for the different PDZ or LIM domain encoding splice variants. We further studied the role of enigma in zebrafish development. Enigma knockdown appeared to be embryonic lethal shortly after the end of gastrulation and in few surviving embryos led to elongation defects and disorganized somites. In summary, we show here the temporal and spatial expression patterns of the three Enigma family members and their PDZ and LIM domain encoding splice forms during zebrafish embryogenesis. Our results suggest that enigma is important for the formation and organization of somites and might play an important role for actin cytoskeleton organization during development.

  10. Repressor Dimerization in the Zebrafish Somitogenesis Clock

    PubMed Central

    Cinquin, Olivier

    2007-01-01

    The oscillations of the somitogenesis clock are linked to the fundamental process of vertebrate embryo segmentation, yet little is known about their generation. In zebrafish, it has been proposed that Her proteins repress the transcription of their own mRNA. However, in its simplest form, this model is incompatible with the fact that morpholino knockdown of Her proteins can impair expression of their mRNA. Simple self-repression models also do not account for the spatiotemporal pattern of gene expression, with waves of gene expression shrinking as they propagate. Here we study computationally the networks generated by the wealth of dimerization possibilities amongst transcriptional repressors in the zebrafish somitogenesis clock. These networks can reproduce knockdown phenotypes, and strongly suggest the existence of a Her1–Her7 heterodimer, so far untested experimentally. The networks are the first reported to reproduce the spatiotemporal pattern of the zebrafish somitogenesis clock; they shed new light on the role of Her13.2, the only known link between the somitogenesis clock and positional information in the paraxial mesoderm. The networks can also account for perturbations of the clock by manipulation of FGF signaling. Achieving an understanding of the interplay between clock oscillations and positional information is a crucial first step in the investigation of the segmentation mechanism. PMID:17305423

  11. Facilitating drug discovery: an automated high-content inflammation assay in zebrafish.

    PubMed

    Wittmann, Christine; Reischl, Markus; Shah, Asmi H; Mikut, Ralf; Liebel, Urban; Grabher, Clemens

    2012-07-16

    Zebrafish larvae are particularly amenable to whole animal small molecule screens due to their small size and relative ease of manipulation and observation, as well as the fact that compounds can simply be added to the bathing water and are readily absorbed when administered in a <1% DMSO solution. Due to the optical clarity of zebrafish larvae and the availability of transgenic lines expressing fluorescent proteins in leukocytes, zebrafish offer the unique advantage of monitoring an acute inflammatory response in vivo. Consequently, utilizing the zebrafish for high-content small molecule screens aiming at the identification of immune-modulatory compounds with high throughput has been proposed, suggesting inflammation induction scenarios e.g. localized nicks in fin tissue, laser damage directed to the yolk surface of embryos or tailfin amputation. The major drawback of these methods however was the requirement of manual larva manipulation to induce wounding, thus preventing high-throughput screening. Introduction of the chemically induced inflammation (ChIn) assay eliminated these obstacles. Since wounding is inflicted chemically the number of embryos that can be treated simultaneously is virtually unlimited. Temporary treatment of zebrafish larvae with copper sulfate selectively induces cell death in hair cells of the lateral line system and results in rapid granulocyte recruitment to injured neuromasts. The inflammatory response can be followed in real-time by using compound transgenic cldnB::GFP/lysC::DsRED2 zebrafish larvae that express a green fluorescent protein in neuromast cells, as well as a red fluorescent protein labeling granulocytes. In order to devise a screening strategy that would allow both high-content and high-throughput analyses we introduced robotic liquid handling and combined automated microscopy with a custom developed software script. This script enables automated quantification of the inflammatory response by scoring the percent area

  12. Developmental lead exposure causes startle response deficits in zebrafish.

    PubMed

    Rice, Clinton; Ghorai, Jugal K; Zalewski, Kathryn; Weber, Daniel N

    2011-10-01

    Lead (Pb(2+)) exposure continues to be an important concern for fish populations. Research is required to assess the long-term behavioral effects of low-level concentrations of Pb(2+) and the physiological mechanisms that control those behaviors. Newly fertilized zebrafish embryos (<2h post fertilization; hpf) were exposed to one of three concentrations of lead (as PbCl(2)): 0, 10, or 30 nM until 24 hpf. (1) Response to a mechanosensory stimulus: Individual larvae (168 hpf) were tested for response to a directional, mechanical stimulus. The tap frequency was adjusted to either 1 or 4 taps/s. Startle response was recorded at 1000 fps. Larvae responded in a concentration-dependent pattern for latency to reaction, maximum turn velocity, time to reach V(max) and escape time. With increasing exposure concentrations, a larger number of larvae failed to respond to even the initial tap and, for those that did respond, ceased responding earlier than control larvae. These differences were more pronounced at a frequency of 4 taps/s. (2) Response to a visual stimulus: Fish, exposed as embryos (2-24 hpf) to Pb(2+) (0-10 μM) were tested as adults under low light conditions (≈ 60 μW/m(2)) for visual responses to a rotating black bar. Visual responses were significantly degraded at Pb(2+) concentrations of 30 nM. These data suggest that zebrafish are viable models for short- and long-term sensorimotor deficits induced by acute, low-level developmental Pb(2+) exposures.

  13. Emergence of patterned activity in the developing zebrafish spinal cord.

    PubMed

    Warp, Erica; Agarwal, Gautam; Wyart, Claire; Friedmann, Drew; Oldfield, Claire S; Conner, Alden; Del Bene, Filippo; Arrenberg, Aristides B; Baier, Herwig; Isacoff, Ehud Y

    2012-01-24

    Developing neural networks display spontaneous and correlated rhythmic bursts of action potentials that are essential for circuit refinement. In the spinal cord, it is poorly understood how correlated activity is acquired and how its emergence relates to the formation of the spinal central pattern generator (CPG), the circuit that mediates rhythmic behaviors like walking and swimming. It is also unknown whether early, uncorrelated activity is necessary for the formation of the coordinated CPG. Time-lapse imaging in the intact zebrafish embryo with the genetically encoded calcium indicator GCaMP3 revealed a rapid transition from slow, sporadic activity to fast, ipsilaterally correlated, and contralaterally anticorrelated activity, characteristic of the spinal CPG. Ipsilateral correlations were acquired through the coalescence of local microcircuits. Brief optical manipulation of activity with the light-driven pump halorhodopsin revealed that the transition to correlated activity was associated with a strengthening of ipsilateral connections, likely mediated by gap junctions. Contralateral antagonism increased in strength at the same time. The transition to coordinated activity was disrupted by long-term optical inhibition of sporadic activity in motoneurons and ventral longitudinal descending interneurons and resulted in more neurons exhibiting uncoordinated activity patterns at later time points. These findings show that the CPG in the zebrafish spinal cord emerges directly from a sporadically active network as functional connectivity strengthens between local and then more distal neurons. These results also reveal that early, sporadic activity in a subset of ventral spinal neurons is required for the integration of maturing neurons into the coordinated CPG network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Emergence of patterned activity in the developing zebrafish spinal cord

    PubMed Central

    Warp, Erica; Agarwal, Gautam; Wyart, Claire; Friedmann, Drew; Oldfield, Claire S.; Conner, Alden; Bene, Filippo Del; Arrenberg, Aristides B.; Baier, Herwig; Isacoff, Ehud Y.

    2012-01-01

    SUMMARY Background Developing neural networks display spontaneous and correlated rhythmic bursts of action potentials that are essential for circuit refinement. In the spinal cord, it is poorly understood how correlated activity is acquired and how its emergence relates to the formation of the spinal central pattern generator (CPG), the circuit that mediates rhythmic behaviors like walking and swimming. It is also unknown whether early, uncorrelated activity is necessary for the formation of the coordinated CPG. Results Time-lapse imaging in the intact zebrafish embryo with the genetically-encoded calcium indicator GCaMP3 revealed a rapid transition from slow, sporadic activity to fast, ipsilaterally correlated, and contralaterally anti-correlated activity, characteristic of the spinal CPG. Ipsilateral correlations were acquired through the coalescence of local microcircuits. Brief optical manipulation of activity with the light-driven pump Halorhodopsin revealed that the transition to correlated activity was associated with a strengthening of ipsilateral connections, likely mediated by gap junctions. Contralateral antagonism increased in strength at the same time. The transition to coordinated activity was disrupted by long-term optical inhibition of sporadic activity in motoneurons and VeLD interneurons, and resulted in more neurons exhibiting uncoordinated activity patterns at later time points. Conclusions These findings show that the CPG in the zebrafish spinal cord emerges directly from a sporadically active network as functional connectivity strengthens between local and then more distal neurons. These results also reveal that early, sporadic activity in a subset of ventral spinal neurons is required for the integration of maturing neurons into the coordinated CPG network. PMID:22197243

  15. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing

    PubMed Central

    Chatterjee, Aniruddha; Ozaki, Yuichi; Stockwell, Peter A; Horsfield, Julia A; Morison, Ian M; Nakagawa, Shinichi

    2013-01-01

    Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish. PMID:23975027

  16. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    PubMed

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. A bioenergetic model for zebrafish Danio rerio (Hamilton)

    USGS Publications Warehouse

    Chizinski, C.J.; Sharma, Bibek; Pope, K.L.; Patino, R.

    2008-01-01

    A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

  18. Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)

    EPA Science Inventory

    Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...

  19. Using Zebrafish to Study Kidney Development and Disease.

    PubMed

    Jerman, Stephanie; Sun, Zhaoxia

    2017-01-01

    The kidneys are a crucial pair of organs that are responsible for filtering the blood to remove waste, maintain electrolyte and water homeostasis, and regulate blood pressure. There are a number of factors, both genetic and environmental, that can impair the function of the kidneys resulting in significant morbidity and mortality for millions of people affected by kidney disease worldwide. The zebrafish, Danio rerio, has emerged as an attractive vertebrate model in the study of kidney development and disease and has proven to be a powerful tool in the advancement of how kidney development occurs in vertebrates and how the kidney repairs itself after injury. Zebrafish share significant similarities in kidney development and composition of nephrons, the functional unit of the kidney. This makes the zebrafish a very promising model to study the mechanisms by which renal developmental defects occur. Furthermore, zebrafish are ideally suited for the study of how vertebrate kidneys respond to injury and have provided researchers with invaluable information on repair processes after kidney injury. Importantly, zebrafish have profound potential for discovering treatment modalities and, in fact, studies in zebrafish models have provided leads for therapeutics for human patients suffering from kidney disease and kidney injury. Here, we discuss the similarities and differences in zebrafish and mammalian kidney models, and highlight some of the major contributions the zebrafish has made in the understanding of kidney development and disease. © 2017 Elsevier Inc. All rights reserved.

  20. Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish (Danio rerio) in research facilities

    PubMed Central

    Sanders, Justin L; Lawrence, Christian; Nichols, Donald K; Brubaker, Jeffrey F.; Peterson, Tracy S; Murray, Katrina N.; Kent, Michael L

    2014-01-01

    Zebrafish (Danio rerio) are important models for biomedical research, and thus there is an increased concern about diseases afflicting them. Here we describe infections by Pleistophora hyphessobryconis (Microsporidia) in zebrafish from three laboratories. As reported in other aquarium fishes, affected zebrafish exhibited massive infections in the skeletal muscle, with no involvement of smooth or cardiac muscle. In addition, numerous spores within macrophages were observed in the visceral organs, including the ovaries. Transmission studies and ribosomal RNA (rRNA) gene sequence comparisons confirmed that the parasite from zebrafish was P. hyphessobryconis as described from neon tetra Paracheirodon innesi. Ten 15-day-old zebrafish were exposed to P. hyphessobryconis collected from one infected neon tetra, and 7 of 10 fish became infected. Comparison of P. hyphessobryconis small subunit rRNA gene sequence from neon tetra with that obtained from zebrafish was nearly identical, with < 1% difference. Given the severity of infections, P. hyphessobryconis should be added to the list of pathogens that should be avoided in zebrafish research facilities, and it would be prudent to not mix zebrafish used in research with other aquarium fishes. PMID:20853741

  1. Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish Danio rerio in research facilities.

    PubMed

    Sanders, Justin L; Lawrence, Christian; Nichols, Donald K; Brubaker, Jeffrey F; Peterson, Tracy S; Murray, Katrina N; Kent, Michael L

    2010-07-26

    Zebrafish Danio rerio are important models for biomedical research, and thus, there is an increased concern about diseases afflicting them. Here we describe infections by Pleistophora hyphessobryconis (Microsporidia) in zebrafish from 3 laboratories. As reported in other aquarium fishes, affected zebrafish exhibited massive infections in the skeletal muscle, with no involvement of smooth or cardiac muscle. In addition, numerous spores within macrophages were observed in the visceral organs, including the ovaries. Transmission studies and ribosomal RNA (rRNA) gene sequence comparisons confirmed that the parasite from zebrafish was P. hyphessobryconis as described from neon tetra Paracheirodon innesi. Ten 15 d old zebrafish were exposed to P. hyphessobryconis collected from 1 infected neon tetra, and 7 of 10 fish became infected. Comparison of P. hyphessobryconis small subunit rRNA gene sequence from neon tetra with that obtained from zebrafish was nearly identical, with < 1% difference. Given the severity of infections, P. hyphessobryconis should be added to the list of pathogens that should be avoided in zebrafish research facilities, and it would be prudent to avoid mixing zebrafish used in research with other aquarium fishes.

  2. Zebrafish heart as a model for human cardiac electrophysiology

    PubMed Central

    Vornanen, Matti; Hassinen, Minna

    2016-01-01

    ABSTRACT The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart. PMID:26671745

  3. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  4. Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)

    EPA Science Inventory

    Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...

  5. Host-Pathogen Interactions Made Transparent with the Zebrafish Model

    PubMed Central

    Meijer, Annemarie H; Spaink, Herman P

    2011-01-01

    The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening. PMID:21366518

  6. FishNet: an online database of zebrafish anatomy.

    PubMed

    Bryson-Richardson, Robert J; Berger, Silke; Schilling, Thomas F; Hall, Thomas E; Cole, Nicholas J; Gibson, Abigail J; Sharpe, James; Currie, Peter D

    2007-08-17

    Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D) models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. FishNet contains more than 36,000 images of larval zebrafish, with more than 1,500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D.

  7. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  8. Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine.

    PubMed

    Moore, Sean R; Pruszka, Jill; Vallance, Jefferson; Aihara, Eitaro; Matsuura, Toru; Montrose, Marshall H; Shroyer, Noah F; Hong, Christian I

    2014-09-01

    Disruption of circadian rhythms is a risk factor for several human gastrointestinal (GI) diseases, ranging from diarrhea to ulcers to cancer. Four-dimensional tissue culture models that faithfully mimic the circadian clock of the GI epithelium would provide an invaluable tool to understand circadian regulation of GI health and disease. We hypothesized that rhythmicity of a key circadian component, PERIOD2 (PER2), would diminish along a continuum from ex vivo intestinal organoids (epithelial 'miniguts'), nontransformed mouse small intestinal epithelial (MSIE) cells and transformed human colorectal adenocarcinoma (Caco-2) cells. Here, we show that bioluminescent jejunal explants from PERIOD2::LUCIFERASE (PER2::LUC) mice displayed robust circadian rhythms for >72 hours post-excision. Circadian rhythms in primary or passaged PER2::LUC jejunal organoids were similarly robust; they also synchronized upon serum shock and persisted beyond 2 weeks in culture. Remarkably, unshocked organoids autonomously synchronized rhythms within 12 hours of recording. The onset of this autonomous synchronization was slowed by >2 hours in the presence of the glucocorticoid receptor antagonist RU486 (20 μM). Doubling standard concentrations of the organoid growth factors EGF, Noggin and R-spondin enhanced PER2 oscillations, whereas subtraction of these factors individually at 24 hours following serum shock produced no detectable effects on PER2 oscillations. Growth factor pulses induced modest phase delays in unshocked, but not serum-shocked, organoids. Circadian oscillations of PER2::LUC bioluminescence aligned with Per2 mRNA expression upon analysis using quantitative PCR. Concordant findings of robust circadian rhythms in bioluminescent jejunal explants and organoids provide further evidence for a peripheral clock that is intrinsic to the intestinal epithelium. The rhythmic and organotypic features of organoids should offer unprecedented advantages as a resource for elucidating the role

  9. Transgenic zebrafish as sentinels for aquatic pollution.

    PubMed

    Carvan, M J; Dalton, T P; Stuart, G W; Nebert, D W

    2000-01-01

    Using the golden mutant zebrafish having a decrease in interfering pigmentation, we are developing transgenic lines in which DNA motifs that respond to selected environmental pollutants are capable of activating a reporter gene that can be easily assayed. We have begun with three response elements that recognize three important classes of foreign chemicals. Aromatic hydrocarbon response elements (AHREs) respond to numerous polycyclic hydrocarbons and halogenated coplanar molecules such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) and polychlorinated biphenyls. Electrophile response elements (EPREs) respond to quinones and numerous other potent electrophilic oxidants. Metal response elements (MREs) respond to heavy metal cations such as mercury, copper, nickel, cadmium, and zinc. Soon, we will include estrogen response elements (EREs) to detect the effects of environmental endocrine disruptors, and retinoic acid response elements (RARE, RXRE) to detect the effects of retinoids in the environment. Each of these substances is known to be bioconcentrated in fish to varying degrees; for example, 10(-17) M TCDD in a body of water becomes concentrated to approximately 10(-12) M TCDD in a fish, where it would act upon the AHRE motif and turn on the luciferase (LUC) reporter gene. The living fish as a sentinel will not only be assayed intact in the luminometer, but--upon several days or weeks of depuration--would be usable again. To date, we have established that zebrafish transcription factors are able to recognize both mammalian and trout AHRE, EPRE, and MRE sequences in a dose-dependent and chemical-class-specific manner, and that expression of both the LUC and jellyfish green fluorescent protein (GFP) reporter genes is easily detected in zebrafish cell cultures and in the intact live zebrafish. Variations in sensitivity of this model system can be achieved by increasing the copy number of response elements and perhaps by altering the sequence of each core

  10. Scale development in zebrafish (Danio rerio)

    PubMed Central

    SIRE, JEAN-YVES; ALLIZARD, FRANCOISE; BABIAR, OLIVIER; BOURGUIGNON, JACQUELINE; QUILHAC, ALEXANDRA

    1997-01-01

    In the course of an extensive comparative, structural and developmental study of the cranial and postcranial dermal skeleton (teeth and scales) in osteichthyan fishes, we have undertaken investigations on scale development in zebrafish (Danio (Brachydanio) rerio) using alizarin red staining, and light and transmission electron microscopy. The main goal was to know whether zebrafish scales can be used as a model for further research on the processes controlling the development of the dermal skeleton in general, especially epithelial–mesenchymal interactions. Growth series of laboratory bred specimens were used to study in detail: (1) the relationship of scale appearance with size and age; (2) the squamation pattern; and (3) the events taking place in the epidermis and in the dermis, before and during scale initiation and formation, with the aim of searching for morphological indications of epithelial-mesenchymal interactions. Scales form late in ontogeny, generally when zebrafish are more than 8.0 mm in standard length. Within a population of zebrafish of the same age scale appearance is related to standard length, but when comparing populations of different age the size of the fish at scale appearance is also related to age. Scales always appear first in the posterior region of the body and the squamation then extends anteriorly. Scales develop in the dermis but closely apposed to the epidermal–dermal boundary. Cellular modifications occurring in the basal layer of the epidermis and in the dermis before scale formation clearly indicate that the basal epidermal cells differentiate first, before any evidence of differentiation of the progenitors of the scale-forming cells in the dermis. This strongly suggests that scale differentiation could be initiated by the epidermal basal layer cells which probably produce a molecular signal towards the dermis below. Subsequently dermal cells accumulate close to the epidermis, and differentiate to form scale papillae. The

  11. Studying the immune response to human viral infections using zebrafish.

    PubMed

    Goody, Michelle F; Sullivan, Con; Kim, Carol H

    2014-09-01

    Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish.

  12. Development of sensory systems in zebrafish (Danio rerio)

    NASA Technical Reports Server (NTRS)

    Moorman, S. J.

    2001-01-01

    Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.

  13. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  14. Neutrophils in host defense: new insights from zebrafish

    PubMed Central

    Harvie, Elizabeth A.; Huttenlocher, Anna

    2015-01-01

    Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection. PMID:25717145

  15. Zebrafish models for translational neuroscience research: from tank to bedside

    PubMed Central

    Stewart, Adam Michael; Braubach, Oliver; Spitsbergen, Jan; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes. PMID:24726051

  16. Acute caffeine administration affects zebrafish response to a robotic stimulus.

    PubMed

    Ladu, Fabrizio; Mwaffo, Violet; Li, Jasmine; Macrì, Simone; Porfiri, Maurizio

    2015-08-01

    Zebrafish has been recently proposed as a valid animal model to investigate the fundamental mechanisms regulating emotional behavior and evaluate the modulatory effects exerted by psychoactive compounds. In this study, we propose a novel methodological framework based on robotics and information theory to investigate the behavioral response of zebrafish exposed to acute caffeine treatment. In a binary preference test, we studied the response of caffeine-treated zebrafish to a replica of a shoal of conspecifics moving in the tank. A purely data-driven information theoretic approach was used to infer the influence of the replica on zebrafish behavior as a function of caffeine concentration. Our results demonstrate that acute caffeine administration modulates both the average speed and the interaction with the replica. Specifically, zebrafish exposed to elevated doses of caffeine show reduced locomotion and increased sensitivity to the motion of the replica. The methodology developed in this study may complement traditional experimental paradigms developed in the field of behavioral pharmacology.

  17. The zebrafish as a novel tool for cardiovascular drug discovery.

    PubMed

    Rocke, John; Lees, Julie; Packham, Ian; Chico, Timothy

    2009-01-01

    The zebrafish is a well established model of vertebrate development, but has recently emerged as a powerful tool for cardiovascular research and in vivo cardiovascular drug discovery. The zebrafish embryo's low cost, small size and permeability to small molecules coupled with the ability to generate thousands of embryos per week, and improved automation of assays of cardiovascular development and performance allow drug screening for a number of cardiovascular effects. Such studies have already led to discovery of novel cardiovascular drugs with potentially clinically beneficial effects. In this review we summarise the advantages and disadvantages of the zebrafish for drug discovery using some patents, previous literature on zebrafish-based drug screening and assess where the zebrafish will fit into existing drug discovery programmes.

  18. Modeling anxiety using adult zebrafish: A conceptual review

    PubMed Central

    Stewart, Adam; Gaikwad, Siddharth; Kyzar, Evan; Green, Jeremy; Roth, Andrew; Kalueff, Allan V.

    2011-01-01

    Zebrafish (Danio rerio) are rapidly emerging as a useful animal model in neurobehavioral research. Mounting evidence shows the suitability of zebrafish to model various aspects of anxiety-related states. Here, we evaluate established and novel approaches to uncover the molecular substrates, genetic pathways and neural circuits of anxiety using adult zebrafish. Experimental approaches to modeling anxiety in zebrafish include novelty-based paradigms, pharmacological and genetic manipulations, as well as innovative video-tracking, 3D-reconstructions and bioinformatics-based searchable databases and omics-based tools. Complementing traditional rodent models of anxiety, we provide a conceptual framework for the wider application of zebrafish and other aquatic models in anxiety research. PMID:21843537

  19. Host-microbe interactions in the developing zebrafish

    PubMed Central

    Kanther, Michelle; Rawls, John F.

    2010-01-01

    Summary of recent advances The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into which a microbe is introduced, as well as the effects of that microbial challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts. PMID:20153622

  20. [Potential of the zebrafish model to study congenital muscular dystrophies].

    PubMed

    Ryckebüsch, Lucile

    2015-10-01

    In order to better understand the complexity of congenital muscular dystrophies (CMD) and develop new strategies to cure them, it is important to establish new disease models. Due to its numerous helpful attributes, the zebrafish has recently become a very powerful animal model for the study of CMD. For some CMD, this vertebrate model is phenotypically closer to human pathology than the murine model. Over the last few years, researchers have developed innovative techniques to screen rapidly and on a large scale for muscle defects in zebrafish. Furthermore, new genome editing techniques in zebrafish make possible the identification of new disease models. In this review, the major attributes of zebrafish for CMD studies are discussed and the principal models of CMD in zebrafish are highlighted.

  1. UNUSUAL FINDINGS IN ZEBRAFISH, DANIO RERIO, FROM TOXICOLOGICAL STUDIES AND THE ZEBRAFISH INTERNATIONAL RESOURCE CENTER DIAGNOSTIC SERVICE

    EPA Science Inventory

    A number of interesting and unusual lesions have been diagnosed in zebrafish that have been evaluated from toxicological studies or submitted as cases to the Diagnostic Service at Oregon State University. Lesions were observed in various wild-type and mutant lines of zebrafish an...

  2. Lactobacillus rhamnosus GG Effect on Behavior of Zebrafish During Chronic Ethanol Exposure.

    PubMed

    Schneider, Ana Claudia Reis; Rico, Eduardo Pacheco; de Oliveira, Diogo Losch; Rosemberg, Denis Broock; Guizzo, Ranieli; Meurer, Fábio; da Silveira, Themis Reverbel

    2016-01-01

    Ethanol is a widely consumed drug, which acts on the central nervous system to induce behavioral alterations ranging from disinhibition to sedation. Recent studies have produced accumulating evidence for the therapeutic role of probiotic bacteria in behavior. We aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) on the behavior of adult zebrafish chronically exposed to ethanol. Adult wild-type zebrafish were randomly divided into four groups, each containing 15 fish. The following groups were formed: Control (C), received unsupplemented feed during the trial period; Probiotic (P), fed with feed supplemented with LGG; Ethanol (E), received unsupplemented feed and 0.5% of ethanol directly added to the tank water; and Probiotic+Ethanol (P+E), group under ethanol exposure (0.5%) and fed with LGG supplemented feed. After 2 weeks of exposure, the novel tank test was used to evaluate fish behavior, which was analyzed using computer-aided video tracking. LGG alone did not alter swimming behavior of the fish. Ethanol exposure led to robust behavioral effects in the form of reduced anxiety levels, as indicated by increased vertical exploration and more time spent in the upper region of the novel tank. The group exposed to ethanol and treated with LGG behaved similarly to animals exposed to ethanol alone. Taken together, these results show that zebrafish behavior was not altered by LGG per se, as seen in murine models. This was the first study to investigate the effects of a probiotic diet on behavior after a chronic ethanol exposure.

  3. Relation between biophysical properties of nanostructures and their toxicity on zebrafish.

    PubMed

    Martinez, C S; Igartúa, D E; Calienni, M N; Feas, D A; Siri, M; Montanari, J; Chiaramoni, N S; Alonso, S Del V; Prieto, M J

    2017-09-07

    In recent years, the use of commercial nanoparticles in different industry and health fields has increased exponentially. However, the uncontrolled application of nanoparticles might present a potential risk to the environment and health. Toxicity of these nanoparticles is usually evaluated by a fast screening assay in zebrafish (Danio rerio). The use of this vertebrate animal model has grown due to its small size, great adaptability, high fertilization rate and fast external development of transparent embryos. In this review, we describe the toxicity of different micro- and nanoparticles (carbon nanotubes, dendrimers, emulsions, liposomes, metal nanoparticles, and solid lipid nanoparticles) associated to their biophysical properties using this model. The main biophysical properties studied are size, charge and surface potential due to their impact on the environment and health effects. The review also discusses the correlation of the effects of the different nanoparticles on zebrafish. Special focus is made on morphological abnormalities, altered development and abnormal behavior. The last part of the review debates changes that should be made in future directions in order to improve the use of the zebrafish model to assess nanotoxicity.

  4. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    SciTech Connect

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    2009-05-15

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.

  5. Protein‐Functionalized DNA Nanostructures as Tools to Control Transcription in Zebrafish Embryos

    PubMed Central

    Angelin, Alessandro; Kassel, Olivier; Rastegar, Sepand; Strähle, Uwe

    2016-01-01

    Abstract The unique structure‐directing properties of DNA origami nanostructures (DONs) show great potential to specifically manipulate intracellular processes. We report an innovative concept to selectively activate the transcription of a single gene in the developing zebrafish embryo. We reason that engineering a designer transcription factor in which a rigid DON imposes a fixed distance between the DNA‐binding domain (DBD) and the transactivation domain (TAD) would allow the selective activation of a gene harboring the same distance between the corresponding transcription factor binding site and the core promoter. As a test case, a rigid tubular DON was designed to separate the DBD of the GAL4 transcription factor and the VP16 viral protein as a TAD. This construct was microinjected in the yolk of one‐cell‐stage zebrafish embryos, together with a reporter plasmid to assess its functionality. The large DON was efficiently distributed to cells of the developing embryo and showed no signs of toxicity. However, because the DON showed only a cytosolic localization, it did not activate transcription of the reporter gene. Although this work clearly demonstrates that DON microinjection enables the intracellular distribution of multi‐protein architectures in most of the cells of the developing zebrafish embryo, further refinements are necessary to enable selective gene activation in vivo. PMID:28168148

  6. Model-free information-theoretic approach to infer leadership in pairs of zebrafish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Mwaffo, Violet; Porfiri, Maurizio

    2016-04-01

    Collective behavior affords several advantages to fish in avoiding predators, foraging, mating, and swimming. Although fish schools have been traditionally considered egalitarian superorganisms, a number of empirical observations suggest the emergence of leadership in gregarious groups. Detecting and classifying leader-follower relationships is central to elucidate the behavioral and physiological causes of leadership and understand its consequences. Here, we demonstrate an information-theoretic approach to infer leadership from positional data of fish swimming. In this framework, we measure social interactions between fish pairs through the mathematical construct of transfer entropy, which quantifies the predictive power of a time series to anticipate another, possibly coupled, time series. We focus on the zebrafish model organism, which is rapidly emerging as a species of choice in preclinical research for its genetic similarity to humans and reduced neurobiological complexity with respect to mammals. To overcome experimental confounds and generate test data sets on which we can thoroughly assess our approach, we adapt and calibrate a data-driven stochastic model of zebrafish motion for the simulation of a coupled dynamical system of zebrafish pairs. In this synthetic data set, the extent and direction of the coupling between the fish are systematically varied across a wide parameter range to demonstrate the accuracy and reliability of transfer entropy in inferring leadership. Our approach is expected to aid in the analysis of collective behavior, providing a data-driven perspective to understand social interactions.

  7. Repeated ethanol exposure alters social behavior and oxidative stress parameters of zebrafish.

    PubMed

    Müller, Talise Ellwanger; Nunes, Stenio Zimermann; Silveira, Ariane; Loro, Vania Lucia; Rosemberg, Denis Broock

    2017-06-07

    Repeated ethanol (EtOH) consumption induces neurological disorders in humans and is considered an important public health problem. The physiological effects of EtOH are dose- and time-dependent, causing relevant changes in the social behavior. In addition, alcohol-induced oxidative stress has been proposed as a key mechanism involved in EtOH neurotoxicity. Here we investigate for the first time whether repeated EtOH exposure (REE) alters the social behavior of zebrafish and influences brain oxidation processes. Animals were exposed to water (control group) or 1% (v/v) EtOH (EtOH group) for 8 consecutive days (20min per day). EtOH was added directly to the tank water. At day 9, the social behavior and biochemical parameters were assessed. REE increased shoal cohesion by reducing inter-fish and farthest neighbor distances. SOD and CAT activities, as well as NPSH levels decreased in brain tissue. Moreover, REE increased lipid peroxidation suggesting oxidative damage. In summary, changes in oxidation processes may play a role in the CNS effects of EtOH, influencing the social behavior of zebrafish. Furthermore, in a translational neuroscience perspective, our data reinforces the utility of zebrafish to clarify the biochemical and behavioral effects of intermittent EtOH administration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Occurrence of a myxozoan parasite Myxidium streisingeri n. sp. in laboratory zebrafish Danio rerio.

    PubMed

    Whipps, Christopher M; Murray, Katrina N; Kent, Michael L

    2015-02-01

    Over several years of screening diagnostic cases, the Zebrafish International Resource Center Health Services has encountered a myxozoan parasite of the ducts associated with the kidney in zebrafish, Danio rerio , from an average of 21% of facilities submitting specimens over 5 yr. The parasite is coelozoic and is associated with no appreciable histological changes. Plasmodia bear ovoid spores with 3 sutural ridges. Spores are consistent with the genus Myxidium, but they are distinct from any known species and are thus described as Myxidium streisingeri n. sp. Phylogenetically, this parasite is a member of the polyphyletic urinary bladder clade, which is consistent with the site of infection. The common occurrence of a myxozoan in this closed husbandry system is unexpected because these parasites are known to have complex life cycles, alternating between a vertebrate and invertebrate host. It may be that biofilters provide habitat for suitable invertebrate hosts or perhaps M. streisingeri n. sp. can be transmitted directly. Future control of this parasite in zebrafish research laboratories depends on a better understanding of this life cycle.

  9. In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters.

    PubMed

    Hama, Kotaro; Provost, Elayne; Baranowski, Timothy C; Rubinstein, Amy L; Anderson, Jennifer L; Leach, Steven D; Farber, Steven A

    2009-02-01

    Optical clarity of larvae makes the zebrafish ideal for real-time analyses of vertebrate organ function through the use of fluorescent reporters of enzymatic activities. A key function of digestive organs is to couple the generation of enzymes with mechanical processes that enable nutrient availability and absorption. However, it has been extremely difficult, and in many cases not possible, to directly observe digestive processes in a live vertebrate. Here we describe a new method to visualize intestinal protein and lipid processing simultaneously in live zebrafish larvae using a quenched fluorescent protein (EnzChek) and phospholipid (PED6). By employing these reagents, we found that wild-type larvae exhibit significant variation in intestinal phospholipase and protease activities within a group but display a strong correlation between the activities within individuals. Furthermore, we found that pancreas function is essential for larval digestive protease activity but not for larval intestinal phospholipase activity. Although fat-free (ffr) mutant larvae were previously described to exhibit impaired lipid processes, we found they also had significantly reduced protease activity. Finally, we selected and evaluated compounds that were previously suggested to have altered phospholipase activity and are known or suspected to have inflammatory effects in the intestinal tract including nonsteroidal anti-inflammatory drugs, and identified a compound that significantly increases intestinal phospholipid processing. Thus the multiple fluorescent reporter-based methodology facilitates the rapid analysis of digestive organ function in live zebrafish larvae.

  10. GH overexpression causes muscle hypertrophy independent from local IGF-I in a zebrafish transgenic model.

    PubMed

    Kuradomi, Rafael Y; Figueiredo, Márcio A; Lanes, Carlos F C; da Rosa, Carlos E; Almeida, Daniela V; Maggioni, Rodrigo; Silva, Maeli D P; Marins, Luis F

    2011-06-01

    The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic females being more hypertrophic than transgenic males. The expression of genes related to muscle growth revealed that transgenic hypertrophy is independent from local induction of insulin-like growth factor 1 gene (igf1). In addition, transgenic males exhibited significant induction of myogenin gene (myog) expression, indicating that myog may mediate hypertrophic growth in zebrafish males overexpressing GH. Induction of the α-actin gene (acta1) in males, independently from transgenesis, also was observed. There were no significant differences in total protein content from the muscle. Our results show that muscle hypertrophy is independent from muscle igf1, and is likely to be a direct effect of excess circulating GH and/or IGF1 in this transgenic zebrafish lineage.

  11. Reversible loss of reproductive fitness in zebrafish on chronic alcohol exposure.

    PubMed

    Dewari, Pooran Singh; Ajani, Funmilola; Kushawah, Gopal; Kumar, Damera Santhosh; Mishra, Rakesh K

    2016-02-01

    Alcoholism is one of the most prevalent diseases in society and causes significant health and social problems. Alcohol consumption by pregnant women is reported to cause adverse effects on the physical and psychological growth of the fetus. However, the direct effect of chronic alcohol consumption on reproductive fitness has not been tested. In recent years, the zebrafish (Danio rerio) has emerged as a versatile model system to study the effects of alcohol on behavior and embryonic development. We utilized the zebrafish model system to address the effect of chronic alcohol exposure (0.5% alcohol in the holding tank for 9 weeks) on reproductive capacity. We found a dramatic decrease in fecundity, measured by counting the number of eggs laid, when at least one of the parents is subject to chronic alcohol exposure. Interestingly, a 9-week alcohol withdrawal program completely restored the reproductive capacity of the treated subjects. In agreement with observations on fecundity, the chronic alcohol exposure leads to increased anxiety, as measured by the novel-tank diving assay. Conversely, the withdrawal program diminished heightened anxiety in alcohol-exposed subjects. Our results highlight the adverse effects of chronic alcohol exposure on the reproductive capacity of both males and females, and underscore the utility of the zebrafish model system to understand the biology of chronic alcoholism.

  12. miR-19b Regulates Ventricular Action Potential Duration in Zebrafish

    PubMed Central

    Benz, Alexander; Kossack, Mandy; Auth, Dominik; Seyler, Claudia; Zitron, Edgar; Juergensen, Lonny; Katus, Hugo A.; Hassel, David

    2016-01-01

    Sudden cardiac death due to ventricular arrhythmias often caused by action potential duration (APD) prolongation is a common mode of death in heart failure (HF). microRNAs, noncoding RNAs that fine tune gene expression, are frequently dysregulated during HF, suggesting a potential involvement in the electrical remodeling process accompanying HF progression. Here, we identified miR-19b as an important regulator of heart function. Zebrafish lacking miR-19b developed severe bradycardia and reduced cardiac contractility. miR-19b deficient fish displayed increased sensitivity to AV-block, a characteristic feature of long QT syndrome in zebrafish. Patch clamp experiments from whole hearts showed that miR-19b deficient zebrafish exhibit significantly prolonged ventricular APD caused by impaired repolarization. We found that miR-19b directly and indirectly regulates the expression of crucial modulatory subunits of cardiac ion channels, and thereby modulates AP duration and shape. Interestingly, miR-19b knockdown mediated APD prolongation can rescue a genetically induced short QT phenotype. Thus, miR-19b might represent a crucial modifier of the cardiac electrical activity, and our work establishes miR-19b as a potential candidate for human long QT syndrome. PMID:27805004

  13. Model-free information-theoretic approach to infer leadership in pairs of zebrafish.

    PubMed

    Butail, Sachit; Mwaffo, Violet; Porfiri, Maurizio

    2016-04-01

    Collective behavior affords several advantages to fish in avoiding predators, foraging, mating, and swimming. Although fish schools have been traditionally considered egalitarian superorganisms, a number of empirical observations suggest the emergence of leadership in gregarious groups. Detecting and classifying leader-follower relationships is central to elucidate the behavioral and physiological causes of leadership and understand its consequences. Here, we demonstrate an information-theoretic approach to infer leadership from positional data of fish swimming. In this framework, we measure social interactions between fish pairs through the mathematical construct of transfer entropy, which quantifies the predictive power of a time series to anticipate another, possibly coupled, time series. We focus on the zebrafish model organism, which is rapidly emerging as a species of choice in preclinical research for its genetic similarity to humans and reduced neurobiological complexity with respect to mammals. To overcome experimental confounds and generate test data sets on which we can thoroughly assess our approach, we adapt and calibrate a data-driven stochastic model of zebrafish motion for the simulation of a coupled dynamical system of zebrafish pairs. In this synthetic data set, the extent and direction of the coupling between the fish are systematically varied across a wide parameter range to demonstrate the accuracy and reliability of transfer entropy in inferring leadership. Our approach is expected to aid in the analysis of collective behavior, providing a data-driven perspective to understand social interactions.

  14. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system.

    PubMed

    Irion, Uwe; Krauss, Jana; Nüsslein-Volhard, Christiane

    2014-12-01

    The introduction of engineered site-specific DNA endonucleases has brought precise genome editing in many model organisms and human cells into the realm of possibility. In zebrafish, loss-of-function alleles have been successfully produced; however, germ line transmission of functional targeted knock-ins of protein tags or of SNP exchanges have not been reported. Here we show by phenotypic rescue that the CRISPR/Cas system can be used to target and repair a premature stop codon at the albino (alb) locus in zebrafish with high efficiency and precision. Using circular donor DNA containing CRISPR target sites we obtain close to 50% of larvae with precise homology-directed repair of the alb(b4) mutation, a small fraction of which transmitted the repaired allele in the germ line to the next generation (3/28 adult fish). The in vivo demonstration of germ line transmission of a precise SNP exchange in zebrafish underscores its suitability as a model for genetic research. © 2014. Published by The Company of Biologists Ltd.

  15. Target of rapamycin (TOR)-based therapy for cardiomyopathy: evidence from zebrafish and human studies.

    PubMed

    Kushwaha, Sudhir; Xu, Xiaolei

    2012-02-01

    Rapamycin is a U.S. Food and Drug Administration-approved drug for the prevention of immunorejection following organ transplantation. Pharmacological studies suggest a potential new application of rapamycin in attenuating cardiomyopathy, but the potential for this application is not yet supported by genetic studies of genes in target of rapamycin (TOR) signaling in rodents. Recently, supporting genetic evidence was presented in zebrafish using two adult cardiomyopathy models. By characterizing a heterozygous zebrafish target of rapamycin (ztor) mutant, the therapeutic effect of long-term TOR signaling inhibition was demonstrated. Dose- and stage-dependent functions of TOR signaling provide an explanation for the seemingly contradictory results obtained in genetic studies of TOR components in rodents. The results from the zebrafish studies, together with the supporting preliminary clinical studies, suggested that TOR signaling inhibition should be further pursued as a novel therapeutic strategy for cardiomyopathy. Future directions for developing TOR-based therapy include assessing the long-term benefits of rapamycin as a candidate drug for heart failure patients, defining the dynamic activity of TOR, exploring the impacts of TOR signaling manipulation in different models of cardiomyopathies, and elucidating the downstream signaling branches that confer the therapeutic effects of TOR signaling inhibition.

  16. Identification of distal cis-regulatory elements at mouse mitoferrin loci using zebrafish transgenesis.

    PubMed

    Amigo, Julio D; Yu, Ming; Troadec, Marie-Berengere; Gwynn, Babette; Cooney, Jeffrey D; Lambert, Amy J; Chi, Neil C; Weiss, Mitchell J; Peters, Luanne L; Kaplan, Jerry; Cantor, Alan B; Paw, Barry H

    2011-04-01

    Mitoferrin 1 (Mfrn1; Slc25a37) and mitoferrin 2 (Mfrn2; Slc25a28) function as essential mitochondrial iron importers for heme and Fe/S cluster biogenesis. A genetic deficiency of Mfrn1 results in a profound hypochromic anemia in vertebrate species. To map the cis-regulatory modules (CRMs) that control expression of the Mfrn genes, we utilized genome-wide chromatin immunoprecipitation (ChIP) datasets for the major erythroid transcription factor GATA-1. We identified the CRMs that faithfully drive the expression of Mfrn1 during blood and heart development and Mfrn2 ubiquitously. Through in vivo analyses of the Mfrn-CRMs in zebrafish and mouse, we demonstrate their functional and evolutionary conservation. Using knockdowns with morpholinos and cell sorting analysis in transgenic zebrafish embryos, we show that GATA-1 directly regulates the expression of Mfrn1. Mutagenesis of individual GATA-1 binding cis elements (GBE) demonstrated that at least two of the three GBE within this CRM are functionally required for GATA-mediated transcription of Mfrn1. Furthermore, ChIP assays demonstrate switching from GATA-2 to GATA-1 at these elements during erythroid maturation. Our results provide new insights into the genetic regulation of mitochondrial function and iron homeostasis and, more generally, illustrate the utility of genome-wide ChIP analysis combined with zebrafish transgenesis for identifying long-range transcriptional enhancers that regulate tissue development.

  17. OCCURRENCE OF A MYXOZOAN PARASITE MYXIDIUM STREISINGERI N. SP. IN LABORATORY ZEBRAFISH DANIO RERIO

    PubMed Central

    Whipps, Christopher M.; Murray, Katrina N.; Kent, Michael L.

    2015-01-01

    Over several years of screening diagnostic cases, the Zebrafish International Resource Center Health Services have encountered a myxozoan parasite of the ducts associated with the kidney in zebrafish Danio rerio from and average of 21% of facilities submitting specimens over 5 yr. The parasite is coelozoic and is associated with no appreciable histological changes. Plasmodia bear ovoid spores with 3 sutural ridges. Spores are consistent with the genus Myxidium, but are distinct from any known species, and are thus described as Myxidium streisingeri n. sp. Phylogenetically, this parasite is a member of the polyphyletic urinary bladder clade, which is consistent with the site of infection. The common occurrence of a myxozoan in this closed husbandry system is unexpected because these parasites are known to have complex life cycles, alternating between a vertebrate and invertebrate host. It may be that biofilters provide habitat for suitable invertebrate hosts or perhaps M. streisingeri n. sp. can be transmitted directly. Future control of this parasite in zebrafish research laboratories depends on a better understanding of this life cycle. PMID:25277837

  18. Differential Calcium Signaling by Cone Specific Guanylate Cyclase-Activating Proteins from the Zebrafish Retina

    PubMed Central

    Scholten, Alexander; Koch, Karl-Wilhelm

    2011-01-01

    Zebrafish express in their retina a higher number of guanylate cyclase-activating proteins (zGCAPs) than mammalians pointing to more complex guanylate cyclase signaling systems. All six zGCAP isoforms show distinct and partial overlapping expression profiles in rods and cones. We determined critical Ca2+-dependent parameters of their functional properties using purified zGCAPs after heterologous expression in E.coli. Isoforms 1–4 were strong, 5 and 7 were weak activators of membrane bound guanylate cyclase. They further displayed different Ca2+-sensitivities of guanylate cyclase activation, which is half maximal either at a free Ca2+ around 30 nM (zGCAP1, 2 and 3) or around 400 nM (zGCAP4, 5 and 7). Zebrafish GCAP isoforms showed also differences in their Ca2+/Mg2+-dependent conformational changes and in the Ca2+-dependent monomer-dimer equilibrium. Direct Ca2+-binding revealed that all zGCAPs bound at least three Ca2+. The corresponding apparent affinity constants reflect binding of Ca2+ with high (≤100 nM), medium (0.1–5 µM) and/or low (≥5 µM) affinity, but were unique for each zGCAP isoform. Our data indicate a Ca2+-sensor system in zebrafish rod and cone cells supporting a Ca2+-relay model of differential zGCAP operation in these cells. PMID:21829700

  19. A Dominant Negative Zebrafish Ahr2 Partially Protects Developing Zebrafish from Dioxin Toxicity

    PubMed Central

    Lanham, Kevin A.; Prasch, Amy L.; Weina, Kasia M.; Peterson, Richard E.; Heideman, Warren

    2011-01-01

    The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is thought to be caused by activation of the aryl hydrocarbon receptor (AHR). However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs). This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity. PMID:22194803

  20. Chronic exposure to ethanol causes steatosis and inflammation in zebrafish liver

    PubMed Central

    Schneider, Ana Claudia Reis; Gregório, Cleandra; Uribe-Cruz, Carolina; Guizzo, Ranieli; Malysz, Tais; Faccioni-Heuser, Maria Cristina; Longo, Larisse; da Silveira, Themis Reverbel

    2017-01-01

    AIM To evaluate the effects of chronic exposure to ethanol in the liver and the expression of inflammatory genes in zebrafish. METHODS Zebrafish (n = 104), wild type, adult, male and female, were divided into two groups: Control and ethanol (0.05 v/v). The ethanol was directly added into water; tanks water were changed every two days and the ethanol replaced. The animals were fed twice a day with fish food until satiety. After two and four weeks of trial, livers were dissected, histological analysis (hematoxilin-eosin and Oil Red staining) and gene expression assessment of adiponectin, adiponectin receptor 2 (adipor2), sirtuin-1 (sirt-1), tumor necrosis factor-alpha (tnf-a), interleukin-1b (il-1b) and interleukin-10 (il-10) were performed. Ultrastructural evaluations were conducted at fourth week. RESULTS Exposing zebrafish to 0.5% ethanol developed intense liver steatosis after four weeks, as demonstrated by oil red staining. In ethanol-treated animals, the main ultrastructural changes were related to cytoplasmic lipid particles and droplets, increased number of rough endoplasmic reticulum cisterns and glycogen particles. Between two and four weeks, hepatic mRNA expression of il-1b, sirt-1 and adipor2 were upregulated, indicating that ethanol triggered signaling molecules which are key elements in both hepatic inflammatory and protective responses. Adiponectin was not detected in the liver of animals exposed and not exposed to ethanol, and il-10 did not show significant difference. CONCLUSION Data suggest that inflammatory signaling and ultrastructural alterations play a significant role during hepatic steatosis in zebrafish chronically exposed to ethanol. PMID:28357029

  1. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus Ex Vivo

    PubMed Central

    Koo, Jinmi; Choe, Han Kyoung; Kim, Hee-Dae; Chun, Sung Kook; Son, Gi Hoon

    2015-01-01

    Background In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions. Methods We examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2) gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC) knock-in mice using a real-time bioluminescence measurement system. Results Administration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms. Conclusion These findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock. PMID:25491783

  2. Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking

    PubMed Central

    Militi, Stefania; Maywood, Elizabeth S.; Sandate, Colby R.; Chesham, Johanna E.; Parsons, Michael J.; Vibert, Jennifer L.; Joynson, Greg M.; Partch, Carrie L.; Hastings, Michael H.; Nolan, Patrick M.

    2016-01-01

    The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1–CLOCK complexes is suppressed by PER–CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2Edo/Edo mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2Edo complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2Edo/Edo; Csnk1eTau/Tau mice and the SCN. These periods are unprecedented in mice. Thus, Per2Edo reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping. PMID:26903623

  3. Loss of the small heat shock protein αA-crystallin does not lead to detectable defects in early zebrafish lens development.

    PubMed

    Posner, Mason; Skiba, Jackie; Brown, Mary; Liang, Jennifer O; Nussbaum, Justin; Prior, Heather

    2013-11-01

    Alpha crystallins are small heat shock proteins essential to normal ocular lens function. They also help maintain homeostasis in many non-ocular vertebrate tissues and their expression levels change in multiple diseases of the nervous and cardiovascular system and during cancer. The specific roles that α-crystallins may play in eye development are unclear. Studies with knockout mice suggested that only one of the two mammalian α-crystallins is required for normal early lens development. However, studies in two fish species suggested that reduction of αA-crystallin alone could inhibit normal fiber cell differentiation, cause cataract and contribute to lens degeneration. In this study we used synthetic antisense morpholino oligomers to suppress the expression of zebrafish αA-crystallin to directly test the hypothesis that, unlike mammals, the zebrafish requires αA-crystallin for normal early lens development. Despite the reduction of zebrafish αA-crystallin protein to undetectable levels by western analysis through 4 days of development we found no changes in fiber cell differentiation, lens morphology or transparency. In contrast, suppression of AQP0a expression, previously shown to cause lens cataract, produced irregularly shaped lenses, delay in fiber cell differentiation and lens opacities detectable by confocal microscopy. The normal development observed in αA-crystallin deficient zebrafish embryos may reflect similarly non-essential roles for this protein in the early stages of both zebrafish and mammalian lens development. This finding has ramifications for a growing number of researchers taking advantage of the zebrafish's transparent external embryos to study vertebrate eye development. Our demonstration that lens cataracts can be visualized in three-dimensions by confocal microscopy in a living zebrafish provides a new tool for studying the causes, development and prevention of lens opacities.

  4. Immobilization of zebrafish larvae on a chip-based device for environmental scanning electron microscopy (ESEM) imaging

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-12-01

    Small vertebrate model organisms have recently gained popularity as attractive experimental models that enhance our understanding of human tissue and organ development. Laser microsurgery on zebrafish larvae combined with Scanning Electron Microscopy (SEM) imaging can in particular provide accelerated insights into the tissue regeneration phenomena. Conventional SEM exposes, however, specimens to high vacuum environments, and often requires laborintensive and time-consuming pretreatments and manual positioning. Moreover, there are virtually no technologies available that can quickly immobilize the zebrafish larvae for high definition SEM imaging. This work describes the proof-of-concept design and validation of a microfluidic chip-based system for immobilizing zebrafish larvae and it's interfacing with Environmental Scanning Electron Microscope (ESEM) imaging. The Lab-on-a-Chip (LOC) device was fabricated using a high-speed infrared laser micromachining and consists of a reservoir with multiple semispherical microwells, which hold the yolk of zebrafish larvae, and drain channels that allow removing excess of medium during SEM imaging. Paper filter is used to actuate the chip and immobilization of the larvae by gentle suction that occurs during water drainage. The trapping region allows multiple specimens to be positioned on the chip. The device is then inserted directly inside the ESEM and imaged in a near 100% humidity atmosphere. This facilitates ESEM imaging of untreated biological samples.

  5. Promoter architecture and transcriptional regulation of musculoskeletal embryonic nuclear protein 1b (mustn1b) gene in zebrafish.

    PubMed

    Suarez-Bregua, P; Chien, C J; Megias, M; Du, S D; Rotllant, J

    2017-09-11

    Mustn1 is a specific musculoskeletal protein that plays a critical role in myogenesis and chondrogenesis in vertebrates. Whole-mount in situ hybridization revealed that mustn1b mRNAs are specifically expressed in skeletal and cardiac muscles in zebrafish embryos. However, the precise function and the regulatory elements required for its muscle-specific expression are largely unknown. The purpose of this study was to explore and uncover the target genomic regions that regulate mustn1b gene expression by in-vivo functional characterization of the mustn1b promoter. We report here stable expression analyses of eGFP from fluorescent transgenic reporter zebrafish line containing a 0.8kb_mustn1b-Tol2-eGFP construct. eGFP expression was specifically found in the skeletal and cardiac muscle tissues. We show that reporter zebrafish lines generated replicate the endogenous mustn1b expression pattern in early zebrafish embryos. Specific site direct-mutagenesis analysis revealed that promoter activity resides in two annotated genomic regulatory regions each one corresponding to a specific functional transcription factor binding site. Our data indicates that mustn1b is specifically expressed in skeletal and cardiac muscle tissues and its muscle specificity is controlled by the 0.2 kb promoter and flanking sequences and in vivo regulated by the action of two sequence-specific families of transcription factors (TFs). This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  6. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  7. Generation of Alzheimer's Disease Transgenic Zebrafish Expressing Human APP Mutation Under Control of Zebrafish appb Promotor.

    PubMed

    Pu, Yun-Zhu; Liang, Liang; Fu, Ai-Ling; Liu, Yan; Sun, Lan; Li, Qian; Wu, Dan; Sun, Man-Ji; Zhang, Ying-Ge; Zhao, Bao-Quan

    2017-01-01

    Amyloid peptide precursor (APP) as the precursor protein of peptide betaamyloid (β-amyloid, Aβ), which is thought to play a central role in the pathogenesis of Alzheimer's disease (AD), also has an important effect on the development and progression of AD. Through knocking-in APP gene in animals, numerous transgenic AD models have been set up for the investigation of the mechanisms behind AD pathogenesis and the screening of anti-AD drugs. However, there are some limitations to these models and here is a need for such an AD model that is economic as well as has satisfactory genetic homology with human. We generated a new AD transgenic model by knocking a mutant human APP gene (APPsw) in zebrafish with appb promoter of zebrafish to drive the expression of APPsw. Fluorescent image and immunochemistry stain showed and RT-PCR and western blot assay confirmed that APPsw was successfully expressed in the brain, heart, eyes and vasculature of the transgenic zebrafish. Behavioral observation demonstrated that the transgenic zebrafish had AD-like symptoms. Histopathological observation found that there were cerebral β-amyloidosis and angiopathy (CAA), which induced neuron loss and enlarged pervascular space. These results suggest that APPsw transgenic zebrafish well simulate the pathological characters of AD and can be used as an economic AD transgenic model. Furthermore, the new model suggested that APP can express in microvasculatures and cause the Aβ generation and deposition in cerebral vessel which further destroys cerebral vascular structure resulting in the development and/or the progress of AD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm

    PubMed Central

    Cheon, Solmi; Park, Noheon; Cho, Sehyung; Kim, Kyungjin

    2013-01-01

    Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm. PMID:23620290

  9. Heme reversibly damps PERIOD2 rhythms in mouse suprachiasmatic nucleus explants.

    PubMed

    Guenthner, C J; Bickar, D; Harrington, M E

    2009-12-01

    The hypothalamic suprachiasmatic nucleus (SCN), which in mammals serves as the master circadian pacemaker by synchronizing autonomous clocks in peripheral tissues, is composed of coupled single-cell oscillators that are driven by interlocking positive/negative transcriptional/translational feedback loops. Several studies have suggested that heme, a common prosthetic group that is synthesized and degraded in a circadian manner in the SCN, may modulate the function of several feedback loop components, including the REV-ERB nuclear receptors and PERIOD2 (PER2). We found that ferric heme (hemin, 3-100 microM) dose-dependently and reversibly damped luminescence rhythms in SCN explants from mice expressing a PER2::LUCIFERASE (PER2::LUC) fusion protein. Inhibitors of heme oxygenases (HOs, which degrade heme to biliverdin, carbon monoxide, and iron) mimicked heme's effects on PER2 rhythms. In contrast, heme and HO inhibition did not damp luminescence rhythms in thymus and esophagus explants and had only a small effect on PER2::LUC damping in spleen explants, suggesting that heme's effects are tissue-specific. Analysis of the effects of heme's degradation products on SCN PER2::LUC rhythms indicated that they probably were not responsible for heme's effects on rhythms. The heme synthesis inhibitor N-methylprotoporphyrinIX (NMP) lengthened the circadian period of SCN PER2::LUC rhythms by about an hour. These data are consistent with an important role for heme in the circadian system.

  10. Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm.

    PubMed

    Cheon, Solmi; Park, Noheon; Cho, Sehyung; Kim, Kyungjin

    2013-07-01

    Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm.

  11. The circadian clock component PERIOD2: from molecular to cerebral functions.

    PubMed

    Ripperger, Jürgen A; Albrecht, Urs

    2012-01-01

    The circadian clock is based on a molecular oscillator, which simulates the external day within nearly all of a body's cells. This "internalized" day then defines activity and rest phases for the cells and the organism by generating precise rhythms in the metabolism, physiology, and behavior. In its perfect state, this timing system allows for the synchronization of an organism to its environment and this may optimize energy handling and responses to daily recurring challenges. However, nowadays, we believe that desynchronization of an organism due to its lifestyle or problems with its circadian clock not only causes discomfort but also may aggravate conditions such as depression, metabolic syndrome, addiction, or cancer. In this review, we focus on one simple cogwheel of the mammalian circadian clock, the PERIOD2 (PER2) protein. Originally identified as an integral part of the molecular mechanism that yields overt rhythms of about 24h, more recently multiple other functions have been identified. In essence, the PER proteins, in addition to their important function within the molecular oscillator, can be seen not only as integrators on the input side of the circadian clock but also as mediators of clock output. This diversity in their function is possible, because the PER proteins can interact with a multitude of other proteins transferring oscillator timing information to the latter. In this fashion, the circadian clock synchronizes many rhythmic processes.

  12. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    EPA Pesticide Factsheets

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  13. Novel biomarkers of perchlorate exposure in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  14. Learning and memory in zebrafish (Danio rerio).

    PubMed

    Gerlai, R

    2016-01-01

    Learning and memory are defining features of our own species inherently important to our daily lives and to who we are. Without our memories we cease to exist as a person. Without our ability to learn individuals and collectively our society would cease to function. Diseases of the mind still remain incurable. The interest in understanding of the mechanisms of learning and memory is thus well founded. Given the complexity of such mechanisms, concerted efforts have been made to study them under controlled laboratory conditions, ie, with laboratory model organisms. The zebrafish, although new in this field, is one such model organism. The rapidly developing forward- and reverse genetic methods designed for the zebrafish and the increasing use of pharmacological tools along with numerous neurobiology techniques make this species perhaps the best model for the analysis of the mechanisms of complex central nervous system characteristics. The fact that it is an evolutionarily ancient and simpler vertebrate, but at the same time it possesses numerous conserved features across multiple levels of biological organization makes this species an excellent tool for the analysis of the mechanisms of learning and memory. The bottleneck lies in our understanding of its cognitive and mnemonic features, the topic of this chapter. The current paper builds on a chapter published in the previous edition and continues to focus on associative learning, but now it extends the discussion to other forms of learning and to recent discoveries on memory-related features and findings obtained both in adults and larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Toxicity of chlorine to zebrafish embryos

    PubMed Central

    Kent, Michael L.; Buchner, Cari; Barton, Carrie; Tanguay, Robert L.

    2014-01-01

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish (Danio rerio) research laboratories. Most laboratories use approximately 25 – 50 ppm unbuffered chlorine solution for 5 – 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, it has reduced efficacy against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbufferred and buffered chlorine solution to embryos exposed at 6 or 24 hours post-fertilization (hpf) to determine if higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pHs, and chlorine causes elevated pH. Consistent with this, we found that unbufferred chlorine solutions (pH ca 8–9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf for 5 min with unbuffered chlorine solution at 100 ppm. One trial indicated that AB fish, a popular outbred line, are more susceptible to toxicity than 5Ds. This suggests that variability between zebrafish lines occurs, and researchers should evaluate each line or strain under their particular laboratory conditions for selection of the optimum chlorine treatment procedure. PMID:24429474

  16. Adaptive locomotor behavior in larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  17. Acclimation of zebrafish to transport stress.

    PubMed

    Dhanasiri, Anusha K S; Fernandes, Jorge M O; Kiron, Viswanath

    2013-03-01

    Welfare of fish is commonly neglected when they are transported. This study examines the effect of a 72-h mock transport on certain aspects of the stress physiology of two groups of zebrafish-the first transported in water enriched with a nitrifying bacterial consortium and the second in water without the enrichment. Zebrafish were examined at different time points-before packing (BP), immediately after packing them in transport bags (AP), at the end of transport (AT), and 72 h thereafter (PT)-to assess the primary (cortisol) and secondary (glucose) stress responses. In addition, the relevant genes in hypothalamic-pituitary-interrenal (HPI) axis (crf in brain, mc2r, star, cyp11c1, and hsd11b2 in kidney), including that of mineralocorticoid receptor (mr in kidney), were studied. Procedures during packing caused an increase in whole body cortisol levels of both fish groups. Only in the fish transported without the bacterial consortium, an increase in the levels of whole body cortisol as well as blood glucose was observed at the end of the transport. At the same time point and in the same fish group, the transcripts of mr and hsd11b2 were enhanced, probably to cope with the stress and to maintain homeostasis. The mRNA levels of the other genes in the HPI stress axis (crf, mc2r, star, and cyp11c1) were not significantly altered. Zebrafish transported in water enriched with the bacterial consortium exhibited a speedier stress acclimation. Nevertheless, only through in-depth studies the beneficial effect of the consortium can be confirmed.

  18. montalcino, a Zebrafish Model for Variegate Porphyria

    PubMed Central

    Dooley, Kimberly A.; Fraenkel, Paula G.; Langer, Nathaniel B.; Schmid, Bettina; Davidson, Alan J.; Weber, Gerhard; Chiang, Ken; Foott, Helen; Dwyer, Caitlin; Wingert, Rebecca A.; Zhou, Yi; Paw, Barry H.; Zon, Leonard I.

    2008-01-01

    Objective Inherited or acquired mutations in the heme biosynthetic pathway lead to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. Methods Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with RT-PCR was utilized to identify the genetic mutation, which was confirmed via allele specific oligo hybridizations. Whole mount in situ hybridizations and 0-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. Results Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hpf are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. Conclusion In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria. PMID:18550261

  19. Premature aging in telomerase-deficient zebrafish

    PubMed Central

    Anchelin, Monique; Alcaraz-Pérez, Francisca; Martínez, Carlos M.; Bernabé-García, Manuel; Mulero, Victoriano; Cayuela, María L.

    2013-01-01

    SUMMARY The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio) as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC). Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC. PMID:23744274

  20. Adaptive Locomotor Behavior in Larval Zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish. PMID:21909325

  1. Zebrafish: A Versatile Animal Model for Fertility Research.

    PubMed

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun; Goh, Bey Hing

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  2. The zebrafish world of colors and shapes: preference and discrimination.

    PubMed

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.

  3. A sequence-based variation map of zebrafish.

    PubMed

    Patowary, Ashok; Purkanti, Ramya; Singh, Meghna; Chauhan, Rajendra; Singh, Angom Ramcharan; Swarnkar, Mohit; Singh, Naresh; Pandey, Vikas; Torroja, Carlos; Clark, Matthew D; Kocher, Jean-Pierre; Clark, Karl J; Stemple, Derek L; Klee, Eric W; Ekker, Stephen C; Scaria, Vinod; Sivasubbu, Sridhar

    2013-03-01

    Zebrafish (Danio rerio) is a popular vertebrate model organism largely deployed using outbred laboratory animals. The nonisogenic nature of the zebrafish as a model system offers the opportunity to understand natural variations and their effect in modulating phenotype. In an effort to better characterize the range of natural variation in this model system and to complement the zebrafish reference genome project, the whole genome sequence of a wild zebrafish at 39-fold genome coverage was determined. Comparative analysis with the zebrafish reference genome revealed approximately 5.2 million single nucleotide variations and over 1.6 million insertion-deletion variations. This dataset thus represents a new catalog of genetic variations in the zebrafish genome. Further analysis revealed selective enrichment for variations in genes involved in immune function and response to the environment, suggesting genome-level adaptations to environmental niches. We also show that human disease gene orthologs in the sequenced wild zebrafish genome show a lower ratio of nonsynonymous to synonymous single nucleotide variations.

  4. Three-Dimensional Neurophenotyping of Adult Zebrafish Behavior

    PubMed Central

    Cachat, Jonathan; Stewart, Adam; Utterback, Eli; Hart, Peter; Gaikwad, Siddharth; Wong, Keith; Kyzar, Evan; Wu, Nadine; Kalueff, Allan V.

    2011-01-01

    The use of adult zebrafish (Danio rerio) in neurobehavioral research is rapidly expanding. The present large-scale study applied the newest video-tracking and data-mining technologies to further examine zebrafish anxiety-like phenotypes. Here, we generated temporal and spatial three-dimensional (3D) reconstructions of zebrafish locomotion, globally assessed behavioral profiles evoked by several anxiogenic and anxiolytic manipulations, mapped individual endpoints to 3D reconstructions, and performed cluster analysis to reconfirm behavioral correlates of high- and low-anxiety states. The application of 3D swim path reconstructions consolidates behavioral data (while increasing data density) and provides a novel way to examine and represent zebrafish behavior. It also enables rapid optimization of video tracking settings to improve quantification of automated parameters, and suggests that spatiotemporal organization of zebrafish swimming activity can be affected by various experimental manipulations in a manner predicted by their anxiolytic or anxiogenic nature. Our approach markedly enhances the power of zebrafish behavioral analyses, providing innovative framework for high-throughput 3D phenotyping of adult zebrafish behavior. PMID:21408171

  5. Functionally conserved effects of rapamycin exposure on zebrafish.

    PubMed

    Sucularli, Ceren; Shehwana, Huma; Kuscu, Cem; Dungul, Dilay Ciglidag; Ozdag, Hilal; Konu, Ozlen

    2016-05-01

    Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.

  6. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  7. Sight of conspecific images induces changes in neurochemistry in zebrafish

    PubMed Central

    Saif, Muhhamed; Chatterjee, Diptendu; Buske, Christine; Gerlai, Robert

    2013-01-01

    Zebrafish is gaining popularity in behavioural brain research as this species combines practical simplicity with system complexity. The dopaminergic system has been thoroughly investigated using mammals. Dopamine plays important roles in motor function and reward. Zebrafish have dopamine receptors homologous to mammalian counterparts, and dopamine receptor antagonists as well as alcohol have been shown to exert significant effects on this species as measured using HPLC or behavioural methods. The sight of conspecifics was previously shown to be rewarding in zebrafish but whether this stimulus affects the dopaminergic system has not been studied. Here, we present animated images of zebrafish to the experimental zebrafish subject for varying lengths of time and quantify the amount of dopamine, DOPAC, serotonin and 5HIAA extracted from the subject's brain immediately after the stimulus presentation using HPLC with electrochemical detection. We find conspecific images to induce a robust behavioural response (attraction) in experimental zebrafish. Importantly, dopamine and DOPAC levels significantly increased in response to the presentation of conspecific images but not to scrambled images. Last, serotonin and 5HIAA levels did not significantly change in response to the conspecific images. We conclude that our findings, together with pervious studies, now conclusively demonstrate that the behavioural response induced by the appearance of conspecifics is mediated, at least partly, by the dopaminergic system in zebrafish. PMID:23357085

  8. Sight of conspecific images induces changes in neurochemistry in zebrafish.

    PubMed

    Saif, Muhammed; Chatterjee, Diptendu; Buske, Christine; Gerlai, Robert

    2013-04-15

    Zebrafish are gaining popularity in behavioural brain research as this species combines practical simplicity with system complexity. The dopaminergic system has been thoroughly investigated using mammals. Dopamine plays important roles in motor function and reward. Zebrafish have dopamine receptors homologous to mammalian counterparts, and dopamine receptor antagonists as well as alcohol have been shown to exert significant effects on this species as measured using HPLC or behavioural methods. The sight of conspecifics was previously shown to be rewarding in zebrafish but whether this stimulus affects the dopaminergic system has not been studied. Here, we present animated images of zebrafish to the experimental zebrafish subject for varying lengths of time and quantify the amount of dopamine, DOPAC, serotonin and 5HIAA extracted from the subject's brain immediately after the stimulus presentation using HPLC with electrochemical detection. We find conspecific images to induce a robust behavioural response (attraction) in experimental zebrafish. Importantly, dopamine and DOPAC levels significantly increased in response to the presentation of conspecific images but not to scrambled images. Last, serotonin and 5HIAA levels did not significantly change in response to the conspecific images. We conclude that our findings, together with pervious studies, now conclusively demonstrate that the behavioural response induced by the appearance of conspecifics is mediated, at least partly, by the dopaminergic system in zebrafish. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Zebrafish: A Versatile Animal Model for Fertility Research

    PubMed Central

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research. PMID:27556045

  10. The Control of Calcium Metabolism in Zebrafish (Danio rerio)

    PubMed Central

    Lin, Chia-Hao; Hwang, Pung-Pung

    2016-01-01

    Zebrafish is an emerging model for the research of body fluid ionic homeostasis. In this review, we focus on current progress on the regulation of Ca2+ uptake in the context of Ca2+ sensing and hormonal regulation in zebrafish. Na+-K+-ATPase-rich cells (NaRCs), the specialized ionocytes in the embryonic skin and adult gills, play a dominant role in Ca2+ uptake in zebrafish. Transepithelial Ca2+ transport in NaRC, through apical epithelial Ca2+ channels (ECaC), basolateral plasma membrane Ca2+-ATPase (PMCA), and Na+/Ca2+ exchanger (NCX), is analogous to mammalian renal and intestinal Ca2+-absorption cells. Several hormones were demonstrated to differentially regulate Ca2+ uptake through modulating the expression of Ca2+ transporters and/or the proliferation/differentiation of NaRC in zebrafish. In addition, the counterbalance among these hormones is associated with the maintenance of body fluid Ca2+ homeostasis. Calcium-sensing receptor (CaSR) is expressed in several hormone-secreting tissues in zebrafish, and activated CaSR differentially controls calciotropic hormones. The major principles of Ca2+ transport and the hormonal control appear to be conserved from zebrafish to other vertebrates including mammals. The new knowledge gained from zebrafish studies provides new insights into the related issues in vertebrates. PMID:27792163

  11. Designing and Testing of Self-Cleaning Recirculating Zebrafish Tanks.

    PubMed

    Nema, Shubham; Bhargava, Yogesh

    2016-08-01

    Maintenance of large number of zebrafish in captive conditions is a daunting task. This can be eased by the use of recirculating racks with self-cleaning zebrafish tanks. Commercially available systems are costly, and compatibility of intercompany products has never been investigated. Although various cost-effective designs and methods of construction of custom-made recirculating zebrafish racks are available in literature, the design of self-cleaning zebrafish tanks is still not available. In this study, we report the design and method of construction of the self-cleaning unit, which can be fitted in any zebrafish tank. We validated the design by investigating sediment cleaning process in rectangular and cylindrical tank geometries using time lapse imaging. Our results suggest that for both tank geometries, the tanks fitted with self-cleaning unit provided superior sediment cleaning than the tanks fitted with overflow-drain unit. Although the self-cleaning unit could clean the sediment completely from both geometries over prolonged period, the cleaning of sediments was faster in the cylindrical tank than the rectangular tank. In conclusion, cost and efforts of zebrafish maintenance could be significantly reduced through the installation of our self-cleaning unit in any custom-made zebrafish tank.

  12. Characterization of mesonephric development and regeneration using transgenic zebrafish

    PubMed Central

    Zhou, Weibin; Boucher, Rudrick C.; Bollig, Frank; Englert, Christoph

    2010-01-01

    The zebrafish is a valuable vertebrate model for kidney research. The majority of previous studies focused on the zebrafish pronephros, which comprises only two nephrons and is structurally simpler than the mesonephros of adult fish and the metanephros of mammals. To evaluate the zebrafish system for more complex studies of kidney development and regeneration, we investigated the development and postinjury regeneration of the mesonephros in adult zebrafish. Utilizing two transgenic zebrafish lines (wt1b::GFP and pod::NTR-mCherry), we characterized the developmental stages of individual mesonephric nephrons and the temporal-spatial pattern of mesonephrogenesis. We found that mesonephrogenesis continues throughout the life of zebrafish, with a rapid growth phase during the juvenile period and a slower phase in adulthood such that the total nephron number of juvenile and adult fish linearly correlates with body mass. Following gentamicin-induced renal injury, the zebrafish mesonephros can undergo de novo regeneration of mesonephric nephrons, a process known as neonephrogenesis. We found that wt1b expression was induced in individually dispersed cells in the mesonephric interstitium as early as 48 h following injury. These wt1b-expressing cells formed aggregates by 72–96 h following injury which proceeded to form nephrons. This suggests that wt1b may serve as an early marker of fated renal progenitor cells. The synchronous nature of regenerative neonephrogenesis suggests that this process may be useful for studies of nephron development. PMID:20810610

  13. Developmental biology. Rocks that roll zebrafish.

    PubMed

    Fekete, Donna M

    2003-10-10

    The vestibular organs of the inner ear of higher vertebrates control balance, and their counterparts in fish control both balance and hearing. Essential to the operation of these sensory organs are the biomineralized structures--otoconia in higher vertebrates or otoliths in fish--that deflect the sensory hair bundles situated beneath them. In her Perspective, Fekete explores the fascinating world of otolith biomineralization in zebrafish; revealing the importance of a protein called Starmaker for coordinating the shape and type of crystal in fish otoliths ( Söllner et al.).

  14. Parallel visual cycles in the zebrafish retina.

    PubMed

    Fleisch, Valerie C; Neuhauss, Stephan C F

    2010-11-01

    Vertebrate vision necessitates continuous recycling of the chromophore 11-cis retinal (RAL). The classical (or canonical) visual cycle employs a number of enzymes located in the photoreceptor outer segment and RPE (retinal pigment epithelium) of the retina to regenerate 11-cis RAL from all-trans RAL. Cone-dominant species are believed to utilize a second, intra-retinal, pathway for 11-cis RAL generation, involving retinal Müller glia cells. This review summarizes the efforts made in zebrafish to gain a better understanding of the role of these two visual cycles for rod and cone photoreceptor chromophore recycling. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Transgene manipulation in zebrafish by using recombinases.

    PubMed

    Dong, Jie; Stuart, Gary W

    2004-01-01

    Although much remains to be done, our results to date suggest that efficient and precise genome engineering in zebrafish will be possible in the future by using Cre recombinase and SB transposase in combination with their respective target sites. In this study, we provide the first evidence that Cre recombinase can mediate effective site-specific deletion of transgenes in zebrafish. We found that the efficiency of target site utilization could approach 100%, independent of whether the target site was provided transiently by injection or stably within an integrated transgene. Microinjection of Cre mRNA appeared to be slightly more effective for this purpose than microinjection of Cre-expressing plasmid DNA. Our work has not yet progressed to the point where SB-mediated mobilization of our transgene constructs would be observed. However, a recent report has demonstrated that SB can enhance transgenesis rates sixfold over conventional methods by efficiently mediating multiple single-copy insertion of transgenes into the zebrafish genome (Davidson et al., 2003). Therefore, it seems likely that a combined system should eventually allow both SB-mediated transgene mobilization and Cre-mediated transgene modification. Our goal is to validate methods for the precise reengineering of the zebrafish genome by using a combination of Cre-loxP and SB transposon systems. These methods can be used to delete, replace, or mobilize large pieces of DNA or to modify the genome only when and where required by the investigator. For example, it should be possible to deliver particular RNAi genes to well-expressed chromosomal loci and then exchange them easily with alternative RNAi genes for the specific suppression of alternative targets. As a nonviral vector for gene therapy, the transposon component allows for the possibility of highly efficient integration, whereas the Cre-loxP component can target the integration and/or exchange of foreign DNA into specific sites within the genome. The

  16. Zebrafish Are Able to Detect Ethanol in Their Environment.

    PubMed

    Tran, Steven; Chow, Hayden; Tsang, Benjamin; Facciol, Amanda; Gandhi, Prabhlene; Desai, Priyanka; Gerlai, Robert

    2017-04-01

    Zebrafish have become a popular animal model for studying the development of alcohol addiction. Several behavioral paradigms for studying alcohol addiction have been developed for zebrafish, including conditioned place preference, alcohol-induced tolerance, and withdrawal. However, alcohol choice preference tasks have not been established in zebrafish as of yet. The ability of zebrafish to detect alcohol in their environment is required in alcohol choice or preference tasks. To our knowledge, it is currently unknown whether zebrafish are able to detect alcohol in their environment immediately following bath immersion. In the current study, we analyzed the time course of alcohol-induced behavioral changes of zebrafish while being immersed in alcohol solution in a 1.5 L tank. We recorded each trial in high-definition and quantified behavioral responses using automated video tracking-based and manual observation-based methods to quantify temporal changes in alcohol-induced behaviors. As alcohol is known to require several minutes of bath immersion to reach the brain in zebrafish, we argued that behavioral responses before this time point would prove zebrafish's ability to detect this substance in the water. Our results show that a 60-min exposure to 1% alcohol alters behavioral responses in a time-dependent manner. Notably, alcohol exposure significantly increased absolute turn angle, decreased distance to bottom, and variance of distance to bottom within the first 3 min immediately following exposure, a response that occurred before alcohol could reach the brain of the subjects in measurable amounts. These results imply that zebrafish are able to detect alcohol in their environment immediately following immersion into the drug solution.

  17. Heme Reversibly Damps PERIOD2 Rhythms in Mouse Suprachiasmatic Nucleus Explants

    PubMed Central

    Guenthner, Casey J.; Bickar, David; Harrington, Mary E.

    2009-01-01

    The hypothalamic suprachiasmatic nucleus (SCN), which in mammals serves as the master circadian pacemaker by synchronizing autonomous clocks in peripheral tissues, is composed of coupled single-cell oscillators that are driven by interlocking positive/negative transcriptional/translational feedback loops. Several studies have suggested that heme, a common prosthetic group that is synthesized and degraded in a circadian manner in the SCN, may modulate the function of several feedback loop components, including the REV-ERB nuclear receptors and PERIOD2 (PER2). We found that ferric heme (hemin, 3-100 μM) dose-dependently and reversibly damped luminescence rhythms in SCN explants from mice expressing a PER2∷LUCIFERASE (PER2∷LUC) fusion protein. Inhibitors of heme oxygenases (HOs, which degrade heme to biliverdin, carbon monoxide, and iron) mimicked heme’s effects on PER2 rhythms. In contrast, heme and HO inhibition did not damp luminescence rhythms in thymus and esophagus explants and had only a small effect on PER2∷LUC damping in spleen explants, suggesting that heme’s effects are tissue-specific. Analysis of the effects of heme’s degradation products on SCN PER2∷LUC rhythms indicated that they probably were not responsible for heme’s effects on rhythms. The heme synthesis inhibitor N-methylprotoporphyrin IX (NMP) lengthened the circadian period of SCN PER2∷LUC rhythms by about an hour. These data are consistent with an important role for heme in the circadian system. PMID:19698763

  18. Using engineered endonucleases to create knockout and knockin zebrafish models.

    PubMed

    Bedell, Victoria M; Ekker, Stephen C

    2015-01-01

    Over the last few years, the technology to create targeted knockout and knockin zebrafish animals has exploded. We have gained the ability to create targeted knockouts through the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR associated system (CRISPR/Cas). Furthermore, using the high-efficiency TALEN system, we were able to create knockin zebrafish using a single-stranded DNA (ssDNA) protocol described here. Through the use of these technologies, the zebrafish has become a valuable vertebrate model and an excellent bridge between the invertebrate and mammalian model systems for the study of human disease.

  19. The Zebrafish GenomeWiki: a crowdsourcing approach to connect the long tail for zebrafish gene annotation

    PubMed Central

    Singh, Meghna; Bhartiya, Deeksha; Maini, Jayant; Sharma, Meenakshi; Singh, Angom Ramcharan; Kadarkaraisamy, Subburaj; Rana, Rajiv; Sabharwal, Ankit; Nanda, Srishti; Ramachandran, Aravindhakshan; Mittal, Ashish; Kapoor, Shruti; Sehgal, Paras; Asad, Zainab; Kaushik, Kriti; Vellarikkal, Shamsudheen Karuthedath; Jagga, Divya; Muthuswami, Muthulakshmi; Chauhan, Rajendra K.; Leonard, Elvin; Priyadarshini, Ruby; Halimani, Mahantappa; Malhotra, Sunny; Patowary, Ashok; Vishwakarma, Harinder; Joshi, Prateek; Bhardwaj, Vivek; Bhaumik, Arijit; Bhatt, Bharat; Jha, Aamod; Kumar, Aalok; Budakoti, Prerna; Lalwani, Mukesh Kumar; Meli, Rajeshwari; Jalali, Saakshi; Joshi, Kandarp; Pal, Koustav; Dhiman, Heena; Laddha, Saurabh V.; Jadhav, Vaibhav; Singh, Naresh; Pandey, Vikas; Sachidanandan, Chetana; Ekker, Stephen C.; Klee, Eric W.; Scaria, Vinod; Sivasubbu, Sridhar

    2014-01-01

    A large repertoire of gene-centric data has been generated in the field of zebrafish biology. Although the bulk of these data are available in the public domain, most of them are not readily accessible or available in nonstandard formats. One major challenge is to unify and integrate these widely scattered data sources. We tested the hypothesis that active community participation could be a viable option to address this challenge. We present here our approach to create standards for assimilation and sharing of information and a system of open standards for database intercommunication. We have attempted to address this challenge by creating a community-centric solution for zebrafish gene annotation. The Zebrafish GenomeWiki is a ‘wiki’-based resource, which aims to provide an altruistic shared environment for collective annotation of the zebrafish genes. The Zebrafish GenomeWiki has features that enable users to comment, annotate, edit and rate this gene-centric information. The credits for contributions can be tracked through a transparent microattribution system. In contrast to other wikis, the Zebrafish GenomeWiki is a ‘structured wiki’ or rather a ‘semantic wiki’. The Zebrafish GenomeWiki implements a semantically linked data structure, which in the future would be amenable to semantic search. Database URL: http://genome.igib.res.in/twiki PMID:24578356

  20. The Tg(ccnb1:EGFP) transgenic zebrafish line labels proliferating cells during retinal development and regeneration

    PubMed Central

    Kassen, Sean C.; Thummel, Ryan; Burket, Christopher T.; Campochiaro, Laura A.; Harding, Molly J.

    2008-01-01

    (ccnb1:EGFP)nt18 zebrafish expressed EGFP in both the proliferating Müller glia and the migrating neuronal progenitor cells. Conclusions The spatial and temporal patterning of EGFP expression in the Tg(ccnb1:EGFP)nt18 line directly reflects the known locations of proliferating cells in the zebrafish retina, making it a useful marker to study the transient nature of neuronal progenitor cells during the development and regeneration of the zebrafish retina. PMID:18509551

  1. Intrinsic regulation of sinoatrial node function and the zebrafish as a model of stretch effects on pacemaking.

    PubMed

    MacDonald, Eilidh A; Stoyek, Matthew R; Rose, Robert A; Quinn, T Alexander

    2017-07-22

    Excitation of the heart occurs in a specialised region known as the sinoatrial node (SAN). Tight regulation of SAN function is essential for the maintenance of normal heart rhythm and the response to (patho-)physiological changes. The SAN is regulated by extrinsic (central nervous system) and intrinsic (neurons, peptides, mechanics) factors. The positive chronotropic response to stretch in particular is essential for beat-by-beat adaptation to changes in hemodynamic load. Yet, the mechanism of this stretch response is unknown, due in part to the lack of an appropriate experimental model for targeted investigations. We have been investigating the zebrafish as a model for the study of intrinsic regulation of SAN function. In this paper, we first briefly review current knowledge of the principal components of extrinsic and intrinsic SAN regulation, derived primarily from experiments in mammals, followed by a description of the zebrafish as a novel experimental model for studies of intrinsic SAN regulation. This mini-review is followed by an original investigation of the response of the zebrafish isolated SAN to controlled stretch. Stretch causes an immediate and continuous increase in beating rate in the zebrafish isolated SAN. This increase reaches a maximum part way through a period of sustained stretch, with the total change dependent on the magnitude and direction of stretch. This is comparable to what occurs in isolated SAN from most mammals (including human), suggesting that the zebrafish is a novel experimental model for the study of mechanisms involved in the intrinsic regulation of SAN function by mechanical effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Zebrafish biosensor for toxicant induced muscle hyperactivity.

    PubMed

    Shahid, Maryam; Takamiya, Masanari; Stegmaier, Johannes; Middel, Volker; Gradl, Marion; Klüver, Nils; Mikut, Ralf; Dickmeis, Thomas; Scholz, Stefan; Rastegar, Sepand; Yang, Lixin; Strähle, Uwe

    2016-03-31

    Robust and sensitive detection systems are a crucial asset for risk management of chemicals, which are produced in increasing number and diversity. To establish an in vivo biosensor system with quantitative readout for potential toxicant effects on motor function, we generated a transgenic zebrafish line TgBAC(hspb11:GFP) which expresses a GFP reporter under the control of regulatory elements of the small heat shock protein hspb11. Spatiotemporal hspb11 transgene expression in the musculature and the notochord matched closely that of endogenous hspb11 expression. Exposure to substances that interfere with motor function induced a dose-dependent increase of GFP intensity beginning at sub-micromolar concentrations, while washout of the chemicals reduced the level of hspb11 transgene expression. Simultaneously, these toxicants induced muscle hyperactivity with increased calcium spike height and frequency. The hspb11 transgene up-regulation induced by either chemicals or heat shock was eliminated after co-application of the anaesthetic MS-222. TgBAC(hspb11:GFP) zebrafish embryos provide a quantitative measure of muscle hyperactivity and represent a robust whole organism system for detecting chemicals that affect motor function.

  3. Toxicity of chlorine to zebrafish embryos.

    PubMed

    Kent, Michael L; Buchner, Cari; Barton, Carrie; Tanguay, Robert L

    2014-01-16

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish Danio rerio research laboratories. Most laboratories use approximately 25 to 50 ppm unbuffered chlorine solution for 5 to 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, but is less effective against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbuffered and buffered chlorine solutions to embryos exposed at 6 or 24 h post-fertilization (hpf) to determine whether higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pH, and chlorine causes elevated pH. Consistent with this, we found that unbuffered chlorine solutions (pH ca. 8-9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf embryos for 5 min with unbuffered chlorine solution at 100 ppm.

  4. Elucidating Cannabinoid Biology in Zebrafish (Danio rerio)

    PubMed Central

    Krug, Randall G.; Clark, Karl J.

    2015-01-01

    The number of annual cannabinoid users exceeds 100,000,000 globally and an estimated 9 % of these individuals will suffer from dependency. Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health. Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions. Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling. The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model—focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol. Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors. These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies. This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation. PMID:26192460

  5. Zebrafish epiboly: Spreading thin over the yolk.

    PubMed

    Bruce, Ashley E E

    2016-03-01

    Tissue thinning and spreading, a morphogenetic movement termed epiboly, is used widely during animal development. In zebrafish, epiboly is a prominent cell movement during gastrulation, whereby a squamous epithelium (the enveloping layer), a multi-layer of loosely packed cells (the deep cells), and a yolk nuclear syncytium (the yolk syncytial layer) undergo coordinated expansion to engulf the yolk and close the blastopore. Elucidating the mechanisms that underlie epiboly is important not only for understanding animal development in general, but also for providing insights into fundamental cell behaviors including cell intercalation, cell adhesion, cell signaling, and epithelial morphogenesis. Here, recent work is reviewed with a focus on findings that advance our understanding of (1) the role of actomyosin motors in the yolk cell to drive epiboly, (2) the mechanisms that underlie the spreading of the epithelial enveloping layer, and (3) the regulation of deep cell movements by E-cadherin based adhesion. A discussion of how these new insights add to the current view of epiboly and future prospects is also presented. Overall, the study of zebrafish epiboly can provide general and broadly applicable insights into the genetic, molecular, and cellular control of morphogenesis. © 2015 Wiley Periodicals, Inc.

  6. Multidimensional In Vivo Hazard Assessment Using Zebrafish

    PubMed Central

    Tanguay, Robert L.

    2014-01-01

    There are tens of thousands of man-made chemicals in the environment; the inherent safety of most of these chemicals is not known. Relevant biological platforms and new computational tools are needed to prioritize testing of chemicals with limited human health hazard information. We describe an experimental design for high-throughput characterization of multidimensional in vivo effects with the power to evaluate trends relating to commonly cited chemical predictors. We evaluated all 1060 unique U.S. EPA ToxCast phase 1 and 2 compounds using the embryonic zebrafish and found that 487 induced significant adverse biological responses. The utilization of 18 simultaneously measured endpoints means that the entire system serves as a robust biological sensor for chemical hazard. The experimental design enabled us to describe global patterns of variation across tested compounds, evaluate the concordance of the available in vitro and in vivo phase 1 data with this study, highlight specific mechanisms/value-added/novel biology related to notochord development, and demonstrate that the developmental zebrafish detects adverse responses that would be missed by less comprehensive testing strategies. PMID:24136191

  7. Zebrafish biosensor for toxicant induced muscle hyperactivity

    PubMed Central

    Shahid, Maryam; Takamiya, Masanari; Stegmaier, Johannes; Middel, Volker; Gradl, Marion; Klüver, Nils; Mikut, Ralf; Dickmeis, Thomas; Scholz, Stefan; Rastegar, Sepand; Yang, Lixin; Strähle, Uwe

    2016-01-01

    Robust and sensitive detection systems are a crucial asset for risk management of chemicals, which are produced in increasing number and diversity. To establish an in vivo biosensor system with quantitative readout for potential toxicant effects on motor function, we generated a transgenic zebrafish line TgBAC(hspb11:GFP) which expresses a GFP reporter under the control of regulatory elements of the small heat shock protein hspb11. Spatiotemporal hspb11 transgene expression in the musculature and the notochord matched closely that of endogenous hspb11 expression. Exposure to substances that interfere with motor function induced a dose-dependent increase of GFP intensity beginning at sub-micromolar concentrations, while washout of the chemicals reduced the level of hspb11 transgene expression. Simultaneously, these toxicants induced muscle hyperactivity with increased calcium spike height and frequency. The hspb11 transgene up-regulation induced by either chemicals or heat shock was eliminated after co-application of the anaesthetic MS-222. TgBAC(hspb11:GFP) zebrafish embryos provide a quantitative measure of muscle hyperactivity and represent a robust whole organism system for detecting chemicals that affect motor function. PMID:27029555

  8. Variability in mitochondria of zebrafish photoreceptor ellipsoids.

    PubMed

    Tarboush, R; Novales Flamarique, I; Chapman, G B; Connaughton, V P

    2014-01-01

    Ultrastructural examination of photoreceptor inner segment ellipsoids in larval (4, 8, and 15 days postfertilization; dpf) and adult zebrafish identified morphologically different types of mitochondria. All photoreceptors had mitochondria of different sizes (large and small). At 4 dpf, rods had small, moderately stained electron-dense mitochondria (E-DM), and two cone types could be distinguished: (1) those with electron-lucent mitochondria (E-LM) and (2) those with mitochondria of moderate electron density. These distinctions were also apparent at later ages (8 and 15 dpf). Rods from adult fish had fewer mitochondria than their corresponding cones. The ellipsoids of some fully differentiated single and double cones contained large E-DM with few cristae; these were surrounded by small E-LM with typical internal morphology. The mitochondria within the ellipsoids of other single cones showed similar electron density. Microspectrophotometry of cone ellipsoids from adult fish indicated that the large E-DM had a small absorbance peak (∼0.03 OD units) and did not contain cytochrome-c, but crocetin, a carotenoid found in old world monkeys. Crocetin functions to prevent oxidative damage to photoreceptors, suggesting that the ellipsoid mitochondria in adult zebrafish cones protect against apoptosis and function metabolically, rather than as a light filter.

  9. Parametric analyses of anxiety in zebrafish scototaxis.

    PubMed

    Maximino, Caio; de Brito, Thiago Marques; Colmanetti, Rafael; Pontes, Alvaro Antonio Assis; de Castro, Henrique Meira; de Lacerda, Renata Inah Tavares; Morato, Silvio; Gouveia, Amauri

    2010-06-26

    Scototaxis, the preference for dark environments in detriment of bright ones, is an index of anxiety in zebrafish. In this work, we analyzed avoidance of the white compartment by analysis of the spatiotemporal pattern of exploratory behavior (time spent in the white compartment of the apparatus and shuttle frequency between compartments) and swimming ethogram (thigmotaxis, freezing and burst swimming in the white compartment) in four experiments. In Experiment 1, we demonstrate that spatiotemporal measures of white avoidance and locomotion do not habituate during a single 15-min session. In Experiments 2 and 3, we demonstrate that locomotor activity habituates to repeated exposures to the apparatus, regardless of whether inter-trial interval is 15-min or 24-h; however, no habituation of white avoidance was observed in either experiment. In Experiment 4, we confined animals for three 15-min sessions in the white compartment prior to recording spatiotemporal and ethogram measures in a standard preference test. After these forced exposures, white avoidance and locomotor activity showed no differences in relation to non-confined animals, but burst swimming, thigmotaxis and freezing in the white compartment were all decreased. These results suggest that neither avoidance of the white compartment nor approach to the black compartment account for the behavior of zebrafish in the scototaxis test.

  10. Chevron formation of the zebrafish muscle segments.

    PubMed

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C; Brusch, Lutz

    2014-11-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation.

  11. Targeted chromosomal deletions and inversions in zebrafish.

    PubMed

    Gupta, Ankit; Hall, Victoria L; Kok, Fatma O; Shin, Masahiro; McNulty, Joseph C; Lawson, Nathan D; Wolfe, Scot A

    2013-06-01

    Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) provide powerful platforms for genome editing in plants and animals. Typically, a single nuclease is sufficient to disrupt the function of protein-coding genes through the introduction of microdeletions or insertions that cause frameshifts within an early coding exon. However, interrogating the function of cis-regulatory modules or noncoding RNAs in many instances requires the excision of this element from the genome. In human cell lines and invertebrates, two nucleases targeting the same chromosome can promote the deletion of intervening genomic segments with modest efficiencies. We have examined the feasibility of using this approach to delete chromosomal segments within the zebrafish genome, which would facilitate the functional study of large noncoding sequences in a vertebrate model of development. Herein, we demonstrate that segmental deletions within the zebrafish genome can be generated at multiple loci and are efficiently transmitted through the germline. Using two nucleases, we have successfully generated deletions of up to 69 kb at rates sufficient for germline transmission (1%-15%) and have excised an entire lincRNA gene and enhancer element. Larger deletions (5.5 Mb) can be generated in somatic cells, but at lower frequency (0.7%). Segmental inversions have also been generated, but the efficiency of these events is lower than the corresponding deletions. The ability to efficiently delete genomic segments in a vertebrate developmental system will facilitate the study of functional noncoding elements on an organismic level.

  12. Radiographic analysis of zebrafish skeletal defects.

    PubMed

    Fisher, Shannon; Jagadeeswaran, Pudur; Halpern, Marnie E

    2003-12-01

    Systematic identification of skeletal dysplasias in model vertebrates provides insight into the pathogenesis of human skeletal disorders and can aid in the identification of orthologous human genes. We are undertaking a mutagenesis screen for skeletal dysplasias in adult zebrafish, using radiography to detect abnormalities in skeletal anatomy and bone morphology. We have isolated chihuahua, a dominant mutation causing a general defect in bone growth. Heterozygous chihuahua fish have phenotypic similarities to human osteogenesis imperfecta, a skeletal dysplasia caused by mutations in the type I collagen genes. Mapping and molecular characterization of the chihuahua mutation indicates that the defect resides in the gene encoding the collagen I(alpha1) chain. Thus, chihuahua accurately models osteogenesis imperfecta at the biologic and molecular levels, and will prove an important resource for studies on the disease pathophysiology. Radiography is a practical screening tool to detect subtle skeletal abnormalities in the adult zebrafish. The identification of chihuahua demonstrates that mutant phenotypes analogous to human skeletal dysplasias will be discovered.

  13. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  14. Identification of polarized macrophage subsets in zebrafish

    PubMed Central

    Nguyen-Chi, Mai; Laplace-Builhe, Béryl; Travnickova, Jana; Luz-Crawford, Patricia; Tejedor, Gautier; Phan, Quang Tien; Duroux-Richard, Isabelle; Levraud, Jean-Pierre; Kissa, Karima; Lutfalla, Georges

    2015-01-01

    While the mammalian macrophage phenotypes have been intensively studied in vitro, the dynamic of their phenotypic polarization has never been investigated in live vertebrates. We used the zebrafish as a live model to identify and trail macrophage subtypes. We generated a transgenic line whose macrophages expressing tumour necrosis factor alpha (tnfa), a key feature of classically activated (M1) macrophages, express fluorescent proteins Tg(mpeg1:mCherryF/tnfa:eGFP-F). Using 4D-confocal microscopy, we showed that both aseptic wounding and Escherichia coli inoculation triggered macrophage recruitment, some of which started to express tnfa. RT-qPCR on Fluorescence Activated Cell Sorting (FACS)-sorted tnfa+ and tnfa− macrophages showed that they, respectively, expressed M1 and alternatively activated (M2) mammalian markers. Fate tracing of tnfa+ macrophages during the time-course of inflammation demonstrated that pro-inflammatory macrophages converted into M2-like phenotype during the resolution step. Our results reveal the diversity and plasticity of zebrafish macrophage subsets and underline the similarities with mammalian macrophages proposing a new system to study macrophage functional dynamic. DOI: http://dx.doi.org/10.7554/eLife.07288.001 PMID:26154973

  15. Identification of polarized macrophage subsets in zebrafish.

    PubMed

    Nguyen-Chi, Mai; Laplace-Builhe, Béryl; Travnickova, Jana; Luz-Crawford, Patricia; Tejedor, Gautier; Phan, Quang Tien; Duroux-Richard, Isabelle; Levraud, Jean-Pierre; Kissa, Karima; Lutfalla, Georges; Jorgensen, Christian; Djouad, Farida

    2015-07-08

    While the mammalian macrophage phenotypes have been intensively studied in vitro, the dynamic of their phenotypic polarization has never been investigated in live vertebrates. We used the zebrafish as a live model to identify and trail macrophage subtypes. We generated a transgenic line whose macrophages expressing tumour necrosis factor alpha (tnfa), a key feature of classically activated (M1) macrophages, express fluorescent proteins Tg(mpeg1:mCherryF/tnfa:eGFP-F). Using 4D-confocal microscopy, we showed that both aseptic wounding and Escherichia coli inoculation triggered macrophage recruitment, some of which started to express tnfa. RT-qPCR on Fluorescence Activated Cell Sorting (FACS)-sorted tnfa(+) and tnfa(-) macrophages showed that they, respectively, expressed M1 and alternatively activated (M2) mammalian markers. Fate tracing of tnfa(+) macrophages during the time-course of inflammation demonstrated that pro-inflammatory macrophages converted into M2-like phenotype during the resolution step. Our results reveal the diversity and plasticity of zebrafish macrophage subsets and underline the similarities with mammalian macrophages proposing a new system to study macrophage functional dynamic.

  16. Chevron formation of the zebrafish muscle segments

    PubMed Central

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C.; Brusch, Lutz

    2014-01-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation. PMID:25267843

  17. Cadherin-6 Function in Zebrafish Retinal Development

    PubMed Central

    Liu, Qin; Londraville, Richard; Marrs, James A.; Wilson, Amy L.; Mbimba, Thomas; Murakami, Tohru; Kubota, Fumitaka; Zheng, Weiping; Fatkins, David G.

    2008-01-01

    Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the visual system. Most studies have focused on examining functions of classical type I cadherins (e.g. cadherin-2) in visual system development. There is little information on the function of classical type II cadherins (e.g. cadherin-6) in the development of the vertebrate visual system. To gain insight into cadherin-6 role in the formation of the retina, we analyzed differentiation of retinal ganglion cells, amacrine cells and photoreceptors in zebrafish embryos injected with cadherin-6 specific antisense morpholino oligonucleotides. Differentiation of the retinal neurons in cadherin-6 knockdown embryos (cdh6 morphants) was analyzed using multiple markers. We found that expression of transcription factors important for retinal development was greatly reduced, and expression of Notch-Delta genes and proneural gene ath5 was altered in the cdh6 morphant retina. The retinal lamination was present in the morphants, although the morphant eyes were significantly smaller than control embryos due mainly to decreased cell proliferation. Differentiation of the retinal ganglion cells, amacrine cells and photoreceptors was severely disrupted in the cdh6 morphants due to a significant delay in neuronal differentiation. Our results suggest that cadherin-6 plays an important role in the normal formation of the zebrafish retina. PMID:18506771

  18. Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish.

    PubMed

    Jia, Sichao; Li, Xinyu; Zheng, Shixuan; Wu, Guoyao

    2017-08-29

    Fish generally have much higher requirements for dietary protein than mammals, and this long-standing puzzle remains unsolved. The present study was conducted with zebrafish (omnivores) and hybrid striped bass (HSB, carnivores) to test the hypothesis that AAs are oxidized at a higher rate than carbohydrates (e.g., glucose) and fatty acids (e.g., palmitate) to provide ATP for their tissues. Liver, proximal intestine, kidney, and skeletal muscle isolated from zebrafish and HSB were incubated at 28.5 °C (zebrafish) or 26 °C (HSB) for 2 h in oxygenated Krebs-Henseleit bicarbonate buffer (pH 7.4, with 5 mM D-glucose) containing 2 mM L-[U-(14)C]glutamine, L-[U-(14)C]glutamate, L-[U-(14)C]leucine, or L-[U-(14)C]palmitate, or a trace amount of D-[U-(14)C]glucose. In parallel experiments, tissues were incubated with a tracer and  a mixture of unlabeled substrates [glutamine, glutamate, leucine, and palmitate (2 mM each) plus 5 mM D-glucose]. (14)CO2 was collected to calculate the rates of substrate oxidation. In the presence of glucose or a mixture of substrates, the rates of oxidation of glutamate and ATP production from this AA by the proximal intestine, liver, and kidney of HSB   were much higher than those for glucose and palmitate. This was also true for glutamate in the skeletal muscle and glutamine in the liver of both species, glutamine in the HSB kidney, and leucine in the zebrafish muscle, in the presence of a mixture of substrates. We conclude that glutamate plus glutamine plus leucine contribute to ~80% of ATP production in the liver, proximal intestine, kidney, and skeletal muscle of zebrafish and HSB. Our findings provide the first direct evidence that the major tissues of fish use AAs (mainly glutamate and glutamine) as primary energy sources instead of carbohydrates or lipids.

  19. Period 2 is essential to maintain early endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice.

    PubMed

    Sun, Yuan-Yuan; Bai, Wen-Wu; Wang, Bo; Lu, Xiao-Ting; Xing, Yi-Fan; Cheng, Wen; Liu, Xiao-Qiong; Zhao, Yu-Xia

    2014-05-01

    Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2(-/-) than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2(-/-) mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2(-/-) mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2(-/-) EPC intramyocardially into mice with induced MI. Per2(-/-) reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2(-/-) EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Evolution of complexity in the zebrafish synapse proteome

    PubMed Central

    Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.

    2017-01-01

    The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024

  1. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data.

  2. Teratogenic Potential of Antiepileptic Drugs in the Zebrafish Model

    PubMed Central

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data. PMID:24324971

  3. The zebrafish as a model for complex tissue regeneration

    PubMed Central

    Gemberling, Matthew; Bailey, Travis J.; Hyde, David R.; Poss, Kenneth D.

    2013-01-01

    For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues, and in some cases have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs. PMID:23927865

  4. Social learning of an associative foraging task in zebrafish.

    PubMed

    Zala, Sarah M; Määttänen, Ilmari

    2013-05-01

    The zebrafish (Danio rerio) is increasingly becoming an important model species for studies on the genetic and neural mechanisms controlling behaviour and cognition. Here, we utilized a conditioned place preference (CPP) paradigm to study social learning in zebrafish. We tested whether social interactions with conditioned demonstrators enhance the ability of focal naïve individuals to learn an associative foraging task. We found that the presence of conditioned demonstrators improved focal fish foraging behaviour through the process of social transmission, whereas the presence of inexperienced demonstrators interfered with the learning of the control focal fish. Our results indicate that zebrafish use social learning for finding food and that this CPP paradigm is an efficient assay to study social learning and memory in zebrafish.

  5. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism.

  6. Evidence for a core gut microbiota in the zebrafish

    PubMed Central

    Roeselers, Guus; Mittge, Erika K; Stephens, W Zac; Parichy, David M; Cavanaugh, Colleen M; Guillemin, Karen; Rawls, John F

    2011-01-01

    Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status. PMID:21472014

  7. Think Small: Zebrafish as a Model System of Human Pathology

    PubMed Central

    Goldsmith, J. R.; Jobin, Christian

    2012-01-01

    Although human pathologies have mostly been modeled using higher mammal systems such as mice, the lower vertebrate zebrafish has gained tremendous attention as a model system. The advantages of zebrafish over classical vertebrate models are multifactorial and include high genetic and organ system homology to humans, high fecundity, external fertilization, ease of genetic manipulation, and transparency through early adulthood that enables powerful imaging modalities. This paper focuses on four areas of human pathology that were developed and/or advanced significantly in zebrafish in the last decade. These areas are (1) wound healing/restitution, (2) gastrointestinal diseases, (3) microbe-host interactions, and (4) genetic diseases and drug screens. Important biological processes and pathologies explored include wound-healing responses, pancreatic cancer, inflammatory bowel diseases, nonalcoholic fatty liver disease, and mycobacterium infection. The utility of zebrafish in screening for novel genes important in various pathologies such as polycystic kidney disease is also discussed. PMID:22701308

  8. The genetics of ocular disorders: insights from the zebrafish.

    PubMed

    Morris, Ann C

    2011-09-01

    Proper formation of the vertebrate eye requires a precisely coordinated sequence of morphogenetic events that integrate the developmental contributions of the skin ectoderm, neuroectoderm, and head mesenchyme. Disruptions in this process result in ocular malformations or retinal degeneration and can cause significant visual impairment. The zebrafish is an excellent vertebrate model for the study of eye development and disease due to the transparency of the embryo, its ex utero development, and its amenability to forward genetic screens. This review will present an overview of the genetic methodologies utilized in the zebrafish, a description of several zebrafish models of congenital ocular diseases, and a discussion of the utility of the zebrafish for assessing the pathogenicity of candidate disease alleles.

  9. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  10. Evolution of complexity in the zebrafish synapse proteome.

    PubMed

    Bayés, Àlex; Collins, Mark O; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S; Emes, Richard D; Grant, Seth G N

    2017-03-02

    The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases.

  11. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...

  12. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...

  13. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.

    PubMed

    Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina

    2015-10-01

    Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model.

  14. The Dorsal Pallium in Zebrafish, Danio rerio (Cyprinidae, Teleostei)

    PubMed Central

    Mueller, Thomas; Dong, Zhiqiang; Berberoglu, Michael A.; Guo, Su

    2011-01-01

    Zebrafish as a neurogenetic model system depends on the correct neuroanatomical understanding of its brain organization. Here, we address the unresolved question regarding a possible zebrafish homologue of the dorsal pallial division, the region that in mammals gives rise to the isocortex. Analyzing the distributions of nicotine adenine dinucleotide phosphate diphorase (NADPHd) activity and parvalbumin in the anterior zebrafish telencephalon, we show that against previous assumptions the central (Dc) zone possesses its own germinative region in the dorsal proliferative zone. We define the central (Dc) zone as topologically corresponding to the dorsal pallial division of other vertebrates (mammalian isocortex). In addition, we confirm through BrdU-labeling experiments that the posterior (Dp) zone is formed by radial migration and homologous to the mammalian piriform cortex. Based on our results, we propose a new developmental and organizational model of the zebrafish pallium—one which is the result of a complex outward-inward folding. PMID:21219890

  15. Imaging blood vessels and lymphatic vessels in the zebrafish.

    PubMed

    Jung, H M; Isogai, S; Kamei, M; Castranova, D; Gore, A V; Weinstein, B M

    2016-01-01

    Blood vessels supply tissues and organs with oxygen, nutrients, cellular, and humoral factors, while lymphatic vessels regulate tissue fluid homeostasis, immune trafficking, and dietary fat absorption. Understanding the mechanisms of vascular morphogenesis has become a subject of intense clinical interest because of the close association of both types of vessels with pathogenesis of a broad spectrum of human diseases. The zebrafish provides a powerful animal model to study vascular morphogenesis because of their small, accessible, and transparent embryos. These unique features of zebrafish embryos permit sophisticated high-resolution live imaging of even deeply localized vessels during embryonic development and even in adult tissues. In this chapter, we summarize various methods for blood and lymphatic vessel imaging in zebrafish, including nonvital resin injection-based or dye injection-based vessel visualization, and alkaline phosphatase staining. We also provide protocols for vital imaging of vessels using microangiography or transgenic fluorescent reporter zebrafish lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Social learning of an associative foraging task in zebrafish

    NASA Astrophysics Data System (ADS)

    Zala, Sarah M.; Määttänen, Ilmari

    2013-05-01

    The zebrafish ( Danio rerio) is increasingly becoming an important model species for studies on the genetic and neural mechanisms controlling behaviour and cognition. Here, we utilized a conditioned place preference (CPP) paradigm to study social learning in zebrafish. We tested whether social interactions with conditioned demonstrators enhance the ability of focal naïve individuals to learn an associative foraging task. We found that the presence of conditioned demonstrators improved focal fish foraging behaviour through the process of social transmission, whereas the presence of inexperienced demonstrators interfered with the learning of the control focal fish. Our results indicate that zebrafish use social learning for finding food and that this CPP paradigm is an efficient assay to study social learning and memory in zebrafish.

  17. The zebrafish as a model for complex tissue regeneration.

    PubMed

    Gemberling, Matthew; Bailey, Travis J; Hyde, David R; Poss, Kenneth D

    2013-11-01

    For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues and, in some cases, have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs.

  18. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    SciTech Connect

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok; Payumo, Alexander Y.; Chen, James K.; Kwon, Ho Jeong

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  19. Myomaker mediates fusion of fast myocytes in zebrafish embryos.

    PubMed

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  20. Methods for studying the zebrafish brain: past, present and future.

    PubMed

    Wyatt, Cameron; Bartoszek, Ewelina M; Yaksi, Emre

    2015-07-01

    The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Targeted mutation of zebrafish fga models human congenital afibrinogenemia

    PubMed Central

    Fish, Richard J.; Di Sanza, Corinne

    2014-01-01

    Mutations in the human fibrinogen genes can lead to the absence of circulating fibrinogen and cause congenital afibrinogenemia. This rare bleeding disorder is associated with a variable phenotype, which may be influenced by environment and genotype. Here, we present a zebrafish model of afibrinogenemia. We introduced targeted mutations into the zebrafish fga gene using zinc finger nuclease technology. Animals carrying 3 distinct frameshift mutations in fga were raised and bred to produce homozygous mutants. Using a panel of anti-zebrafish fibrinogen antibodies, fibrinogen was undetectable in plasma preparations from homozygous mutant fish. We observed hemorrhaging in fga mutants and reduced survival compared with control animals. This model will now serve in the search for afibrinogenemia modifying genes or agents and, to our knowledge, is the first transmissible zebrafish model of a defined human bleeding disorder. PMID:24553182

  2. Targeted mutation of zebrafish fga models human congenital afibrinogenemia.

    PubMed

    Fish, Richard J; Di Sanza, Corinne; Neerman-Arbez, Marguerite

    2014-04-03

    Mutations in the human fibrinogen genes can lead to the absence of circulating fibrinogen and cause congenital afibrinogenemia. This rare bleeding disorder is associated with a variable phenotype, which may be influenced by environment and genotype. Here, we present a zebrafish model of afibrinogenemia. We introduced targeted mutations into the zebrafish fga gene using zinc finger nuclease technology. Animals carrying 3 distinct frameshift mutations in fga were raised and bred to produce homozygous mutants. Using a panel of anti-zebrafish fibrinogen antibodies, fibrinogen was undetectable in plasma preparations from homozygous mutant fish. We observed hemorrhaging in fga mutants and reduced survival compared with control animals. This model will now serve in the search for afibrinogenemia modifying genes or agents and, to our knowledge, is the first transmissible zebrafish model of a defined human bleeding disorder.

  3. Study of Host–Microbe Interactions in Zebrafish

    PubMed Central

    Milligan-Myhre, Kathryn; Charette, Jeremy R.; Phennicie, Ryan T.; Stephens, W. Zac; Rawls, John F.; Guillemin, Karen; Kim, Carol H.

    2015-01-01

    All animals are ecosystems, home to diverse microbial populations. Animal-associated microbes play important roles in the normal development and physiology of their hosts, but can also be agents of infectious disease. Traditionally, mice have been used to study pathogenic and beneficial associations between microbes and vertebrate animals. The zebrafish is emerging as a valuable new model system for host-microbe interaction studies, affording researchers with the opportunity to survey large populations of hosts and to visualize microbe-host associations at a cellular level in living animals. This chapter provides detailed protocols for the analysis of zebrafish-associated microbial communities, the derivation and husbandry of germ-free zebrafish, and the modeling of infectious disease in different stages of zebrafish development via different routes of inoculation. These protocols offer a starting point for researchers to address a multitude of questions about animals’ coexistence with microorganisms. PMID:21951527

  4. Behavioral analysis of the escape response in larval zebrafish

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    The behavior of larval zebrafish is of great interest because the limited number of locomotor neurons in larval zebrafish couples with its rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their swimming behavior while our lab has built a parameter-free model based on singular value decomposition analysis to characterize it. Our previous work has analyzed the free swimming of larval zebrafish and presented a different picture from the current classification of larval zebrafish locomotion. Now we are extending this work to the studies of their escape response to acoustic stimulus. Analysis has shown intrinsic difference in the locomotion between escape response and free swimming.

  5. Phenotype classification of zebrafish embryos by supervised learning.

    PubMed

    Jeanray, Nathalie; Marée, Raphaël; Pruvot, Benoist; Stern, Olivier; Geurts, Pierre; Wehenkel, Louis; Muller, Marc

    2015-01-01

    Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  6. Fit for consumption: zebrafish as a model for tuberculosis.

    PubMed

    Cronan, Mark R; Tobin, David M

    2014-07-01

    Despite efforts to generate new vaccines and antibiotics for tuberculosis, the disease remains a public health problem worldwide. The zebrafish Danio rerio has emerged as a useful model to investigate mycobacterial pathogenesis and treatment. Infection of zebrafish with Mycobacterium marinum, the closest relative of the Mycobacterium tuberculosis complex, recapitulates many aspects of human tuberculosis. The zebrafish model affords optical transparency, abundant genetic tools and in vivo imaging of the progression of infection. Here, we review how the zebrafish-M. marinum system has been deployed to make novel observations about the role of innate immunity, the tuberculous granuloma, and crucial host and bacterial genes. Finally, we assess how these findings relate to human disease and provide a framework for novel strategies to treat tuberculosis. © 2014. Published by The Company of Biologists Ltd.

  7. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.

    PubMed

    Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile

    2017-02-22

    Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression.

  8. Pseudocapillaria tomentosa, a nematode pathogen, and associated neoplasms of zebrafish (Danio rerio) kept in research colonies.

    PubMed

    Kent, Michael L; Bishop-Stewart, Janell K; Matthews, Jennifer L; Spitsbergen, Jan M

    2002-08-01

    Infections with capillarid nematodes were observed in zebrafish (Danio rerio) kept at several research facilities and in a large carcinogen exposure study previously conducted at Oregon State University. We report a morphologic description that identifies the worm as Pseudocapillaria tomentosa, a common nematode of cyprinid and other fishes. Pathologic lesions associated with the infection ranged from inflammatory changes to aggressive neoplasms of the intestine (i.e., intestinal carcinomas and mixed malignant neoplasms). Capillarid nematodes may have intermediate or paratenic hosts. Using a laboratory transmission study, we confirmed that the parasite has a direct life cycle.

  9. Electroretinogram Analysis of the Visual Response in Zebrafish Larvae

    PubMed Central

    Chrispell, Jared D.; Rebrik, Tatiana I.; Weiss, Ellen R.

    2015-01-01

    The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals. PMID

  10. Zebrafish for the Study of the Biological Effects of Nicotine

    PubMed Central

    Klee, Eric W.; Schneider, Henning; Hurt, Richard D.; Ekker, Stephen C.

    2011-01-01

    Introduction: Zebrafish are emerging as a powerful animal model for studying the molecular and physiological effects of nicotine exposure. The zebrafish have many advantageous physical characteristics, including small size, high fecundity rates, and externally developing transparent embryos. When combined with a battery of molecular–genetic tools and behavioral assays, these attributes enable studies to be conducted that are not practical using traditional animal models. Methods: We reviewed the literature on the application of the zebrafish model as a preclinical model to study the biological effects of nicotine exposure. Results: The identified studies used zebrafish to examine the effects of nicotine exposure on early development, addiction, anxiety, and learning. The methods used included green fluorescent protein–labeled proteins to track in vivo nicotine-altered neuron development, nicotine-conditioned place preference, and locomotive sensitization linked with high-throughput molecular and genetic screens and behavioral models of learning and stress response to nicotine. Data are presented on the complete homology of all known human neural nicotinic acetylcholine receptors in zebrafish and on the biological similarity of human and zebrafish dopaminergic signaling. Conclusions: Tobacco dependence remains a major health problem worldwide. Further understanding of the molecular effects of nicotine exposure and genetic contributions to dependence may lead to improvement in patient treatment strategies. While there are limitations to the use of zebrafish as a preclinical model, it should provide a valuable tool to complement existing model systems. The reviewed studies demonstrate the enormous opportunity zebrafish have to advance the science of nicotine and tobacco research. PMID:21385906

  11. Electroretinogram analysis of the visual response in zebrafish larvae.

    PubMed

    Chrispell, Jared D; Rebrik, Tatiana I; Weiss, Ellen R

    2015-03-16

    The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals.

  12. Inducible podocyte injury and proteinuria in transgenic zebrafish.

    PubMed

    Zhou, Weibin; Hildebrandt, Friedhelm

    2012-06-01

    Damage or loss of podocytes causes glomerulosclerosis in murine models, and mutations in podocyte-specific genes cause nephrotic syndrome in humans. Zebrafish provide a valuable model for kidney research, but disruption of pronephroi leads to death within a few days, thereby preventing the study of CKD. In this study, we generated an inducible model of podocyte injury in zebrafish (pod::NTR-mCherry) by expressing a bacterial nitroreductase, which converts metronidazole to a cytotoxin, specifically in podocytes under the control of the zebrafish nphs2/podocin promoter. Application of the prodrug metronidazole to the transgenic fish induces acute damage to the podocytes in pronephroi of larval zebrafish and the mesonephroi of adult zebrafish, resulting in foot-process effacement and podocyte loss. We also developed a functional assay of the glomerular filtration barrier by creating transgenic zebrafish expressing green fluorescent protein (GFP)-tagged vitamin D-binding protein (VDBP) as a tracer for proteinuria. In the VDBP-GFP and pod::NTR-mCherry double-transgenic fish, induction of podocyte damage led to whole-body edema, and the proximal tubules reabsorbed and accumulated VDBP-GFP that leaked through the glomeruli, mimicking the phenotype of human nephrotic syndrome. Moreover, expression of wt1b::GFP, a marker for the developing nephron, extended into the Bowman capsule in response to podocyte injury, suggesting that zebrafish have a podocyte-specific repair process known to occur in mammalian metanephros. These data support the use of these transgenic zebrafish as a model system for studies of glomerular pathogenesis and podocyte regeneration.

  13. Targeted mutagenesis of zebrafish: use of zinc finger nucleases.

    PubMed

    Leong, Ivone Un San; Lai, Daniel; Lan, Chuan-Ching; Johnson, Ross; Love, Donald R; Johnson, Ross; Love, Donald R

    2011-09-01

    The modeling of human disease in the zebrafish (Danio rerio) is moving away from chemical mutagensis and transient downregulation using morpholino oligomers to more targeted and stable transgenic methods. In this respect, zinc finger nucleases offer a means of introducing mutations at targeted sites at high efficiency. We describe here the development of zinc finger nucleases and their general use in model systems with a focus on the zebrafish.