Monitoring Disaster-Related Power Outages Using NASA Black Marble Nighttime Light Product
NASA Astrophysics Data System (ADS)
Wang, Z.; Román, M. O.; Sun, Q.; Molthan, A. L.; Schultz, L. A.; Kalb, V. L.
2018-04-01
Timely and accurate monitoring of disruptions to the electricity grid, including the magnitude, spatial extent, timing, and duration of net power losses, is needed to improve situational awareness of disaster response and long-term recovery efforts. Satellite-derived Nighttime Lights (NTL) provide an indication of human activity patterns and have been successfully used to monitor disaster-related power outages. The global 500 m spatial resolution National Aeronautics and Space Administration (NASA) Black Marble NTL daily standard product suite (VNP46) is generated from Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the NASA/National Oceanic and Atmospheric Administration (NOAA) Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite, which began operations on 19 January 2012. With its improvements in product accuracy (including critical atmospheric and BRDF correction routines), the VIIRS daily Black Mable product enables systematic monitoring of outage conditions across all stages of the disaster management cycle.
Gossip, Kate; Gouda, Hebe; Lee, Yong Yi; Firth, Sonja; Bermejo, Raoul; Zeck, Willibald; Jimenez Soto, Eliana
2017-06-29
Local health departments are often at the forefront of a disaster response, attending to the immediate trauma inflicted by the disaster and also the long term health consequences. As the frequency and severity of disasters are projected to rise, monitoring and evaluation (M&E) efforts are critical to help local health departments consolidate past experiences and improve future response efforts. Local health departments often conduct M&E work post disaster, however, many of these efforts fail to improve response procedures. We undertook a rapid realist review (RRR) to examine why M&E efforts undertaken by local health departments do not always result in improved disaster response efforts. We aimed to complement existing frameworks by focusing on the most basic and pragmatic steps of a M&E cycle targeted towards continuous system improvements. For these purposes, we developed a theoretical framework that draws on the quality improvement literature to 'frame' the steps in the M&E cycle. This framework encompassed a M&E cycle involving three stages (i.e., document and assess, disseminate and implement) that must be sequentially completed to learn from past experiences and improve future disaster response efforts. We used this framework to guide our examination of the literature and to identify any context-mechanism-outcome (CMO) configurations which describe how M&E may be constrained or enabled at each stage of the M&E cycle. This RRR found a number of explanatory CMO configurations that provide valuable insights into some of the considerations that should be made when using M&E to improve future disaster response efforts. Firstly, to support the accurate documentation and assessment of a disaster response, local health departments should consider how they can: establish a culture of learning within health departments; use embedded training methods; or facilitate external partnerships. Secondly, to enhance the widespread dissemination of lessons learned and facilitate inter-agency learning, evaluation reports should use standardised formats and terminology. Lastly, to increase commitment to improvement processes, local health department leaders should possess positive leadership attributes and encourage shared decision making. This study is among the first to conduct a synthesis of the CMO configurations which facilitate or hinder M&E efforts aimed at improving future disaster responses. It makes a significant contribution to the disaster literature and provides an evidence base that can be used to provide pragmatic guidance for improving M&E efforts of local health departments. PROSPERO 2015: CRD42015023526 .
The Role of Applied Epidemiology Methods in the Disaster Management Cycle
Heumann, Michael; Perrotta, Dennis; Wolkin, Amy F.; Schnall, Amy H.; Podgornik, Michelle N.; Cruz, Miguel A.; Horney, Jennifer A.; Zane, David; Roisman, Rachel; Greenspan, Joel R.; Thoroughman, Doug; Anderson, Henry A.; Wells, Eden V.; Simms, Erin F.
2014-01-01
Disaster epidemiology (i.e., applied epidemiology in disaster settings) presents a source of reliable and actionable information for decision-makers and stakeholders in the disaster management cycle. However, epidemiological methods have yet to be routinely integrated into disaster response and fully communicated to response leaders. We present a framework consisting of rapid needs assessments, health surveillance, tracking and registries, and epidemiological investigations, including risk factor and health outcome studies and evaluation of interventions, which can be practiced throughout the cycle. Applying each method can result in actionable information for planners and decision-makers responsible for preparedness, response, and recovery. Disaster epidemiology, once integrated into the disaster management cycle, can provide the evidence base to inform and enhance response capability within the public health infrastructure. PMID:25211748
NASA Astrophysics Data System (ADS)
Zhao, Junsan; Chen, Guoping; Yuan, Lei
2017-04-01
The new technologies, such as 3D laser scanning, InSAR, GNSS, unmanned aerial vehicle and Internet of things, will provide much more data resources for the surveying and monitoring, as well as the development of Early Warning System (EWS). This paper provides the solutions of the design and implementation of a geological disaster monitoring and early warning system (GDMEWS), which includes landslides and debris flows hazard, based on the multi-sources of the date by use of technologies above mentioned. The complex and changeable characteristics of the GDMEWS are described. The architecture of the system, composition of the multi-source database, development mode and service logic, the methods and key technologies of system development are also analyzed. To elaborate the process of the implementation of the GDMEWS, Deqin Tibetan County is selected as a case study area, which has the unique terrain and diverse types of typical landslides and debris flows. Firstly, the system functional requirements, monitoring and forecasting models of the system are discussed. Secondly, the logic relationships of the whole process of disaster including pre-disaster, disaster rescue and post-disaster reconstruction are studied, and the support tool for disaster prevention, disaster reduction and geological disaster management are developed. Thirdly, the methods of the multi - source monitoring data integration and the generation of the mechanism model of Geological hazards and simulation are expressed. Finally, the construction of the GDMEWS is issued, which will be applied to management, monitoring and forecasting of whole disaster process in real-time and dynamically in Deqin Tibetan County. Keywords: multi-source spatial data; geological disaster; monitoring and warning system; Deqin Tibetan County
Ryan, Benjamin J.; Franklin, Richard C.; Burkle Jr., Frederick M.; Aitken, Peter; Smith, Erin; Watt, Kerrianne; Leggat, Peter
2016-01-01
Background: The exposure of people and infrastructure to flood and storm related disasters across the world is increasing faster than vulnerability is decreasing. For people with non-communicable diseases this presents a significant risk as traditionally the focus of disaster management systems has been on immediate trauma and communicable diseases. This focus must now be expanded to include the management of non-communicable diseases because these conditions are generating the bulk of ill health, disability and premature death around the globe. When public health service infrastructure is destroyed or damaged access to treatment and care is severely jeopardised, resulting in an increased risk of non-communicable disease exacerbation or even death. This research proposes disaster responders, coordinators and government officials are vital assets to mitigate and eventually prevent these problems from being exacerbated during a disaster. This is due to their role in supporting the public health service infrastructure required to maximise treatment and care for people with non-communicable diseases. By focusing on the disaster cycle as a template, and on mitigation and prevention phases in particular, these actions and activities performed by disaster service responders will lead to overall improved preparedness, response, recovery and rehabilitation phases. Methods: Data were collected via 32 interviews and one focus group (eight participants) between March 2014 and August 2015 (total of 40 participants). The research was conducted in the State of Queensland, Australia, with disaster service providers. The analysis included the phases of: organizing data; data description; data classification; and interpretation. Results: The research found a relationship between the impact of a disaster on public health service infrastructure, and increased health risks for people with non-communicable diseases. Mitigation strategies were described for all phases of the disaster cycle impacting public health service infrastructure. Specific measures include: increasing the use of telemedicine; preplanning with medical suppliers; effective town planning; health professionals visiting evacuation centers; evacuation centers having power for medical equipment; hubs for treatment and care after a disaster; evacuation of high risk people prior to disaster; mapping people at risk by non-communicable disease; and a mechanism for sharing information between agencies. A common theme from the participants was that having accurate and easily accessible data on people with non-communicable diseases would allow disaster service providers to adequately prepare for and respond to a disaster. Conclusions: Disaster service providers can play a vital role in reducing the risk of disaster exacerbated non-communicable diseases through public health service infrastructure resilience. They are often employed in communities where disasters occur and are therefore best-placed to lead implementation of the mitigation strategies identified in this research. To sustainably implement the mitigation strategies they will need to become integrated into effective performance and monitoring of the disaster response and health sector during non-disaster periods. For this to occur, the strategies should be integrated into business and strategic plans. Achieving this will help implement the Sendia Framework for Disaster Risk Reduction 2015-2030 and, most importantly, help protect the health of people with non-communicable diseases before, during and after a disaster. PMID:28239511
Ryan, Benjamin J; Franklin, Richard C; Burkle, Frederick M; Aitken, Peter; Smith, Erin; Watt, Kerrianne; Leggat, Peter
2016-12-21
The exposure of people and infrastructure to flood and storm related disasters across the world is increasing faster than vulnerability is decreasing. For people with non-communicable diseases this presents a significant risk as traditionally the focus of disaster management systems has been on immediate trauma and communicable diseases. This focus must now be expanded to include the management of non-communicable diseases because these conditions are generating the bulk of ill health, disability and premature death around the globe. When public health service infrastructure is destroyed or damaged access to treatment and care is severely jeopardised, resulting in an increased risk of non-communicable disease exacerbation or even death. This research proposes disaster responders, coordinators and government officials are vital assets to mitigate and eventually prevent these problems from being exacerbated during a disaster. This is due to their role in supporting the public health service infrastructure required to maximise treatment and care for people with non-communicable diseases. By focusing on the disaster cycle as a template, and on mitigation and prevention phases in particular, these actions and activities performed by disaster service responders will lead to overall improved preparedness, response, recovery and rehabilitation phases. Data were collected via 32 interviews and one focus group (eight participants) between March 2014 and August 2015 (total of 40 participants). The research was conducted in the State of Queensland, Australia, with disaster service providers. The analysis included the phases of: organizing data; data description; data classification; and interpretation. The research found a relationship between the impact of a disaster on public health service infrastructure, and increased health risks for people with non-communicable diseases. Mitigation strategies were described for all phases of the disaster cycle impacting public health service infrastructure. Specific measures include: increasing the use of telemedicine; preplanning with medical suppliers; effective town planning; health professionals visiting evacuation centers; evacuation centers having power for medical equipment; hubs for treatment and care after a disaster; evacuation of high risk people prior to disaster; mapping people at risk by non-communicable disease; and a mechanism for sharing information between agencies. A common theme from the participants was that having accurate and easily accessible data on people with non-communicable diseases would allow disaster service providers to adequately prepare for and respond to a disaster. Disaster service providers can play a vital role in reducing the risk of disaster exacerbated non-communicable diseases through public health service infrastructure resilience. They are often employed in communities where disasters occur and are therefore best-placed to lead implementation of the mitigation strategies identified in this research. To sustainably implement the mitigation strategies they will need to become integrated into effective performance and monitoring of the disaster response and health sector during non-disaster periods. For this to occur, the strategies should be integrated into business and strategic plans. Achieving this will help implement the Sendia Framework for Disaster Risk Reduction 2015-2030 and, most importantly, help protect the health of people with non-communicable diseases before, during and after a disaster.
NASA Astrophysics Data System (ADS)
Brosnan, D. M.
2014-12-01
Familiar to disaster risk reduction (DRR) scientists and professionals, the disaster cycle is an adaptive approach that involves planning, response and learning for the next event. It has proven effective in saving lives and helping communities around the world deal with natural and other hazards. But it has rarely been applied to natural resource and ecological science, despite the fact that many communities are dependent on these resources. This presentation will include lessons learned from applying science to tackle ecological consequences in several disasters in the US and globally, including the Colorado Floods, the SE Asia tsunami, the Montserrat volcanic eruption, and US SAFRR tsunami scenario. The presentation discusses the role that science and scientists can play at each phase of the disaster cycle. The consequences of not including disaster cycles in the management of natural systems leaves these resources and the huge investments made to protect highly vulnerable. The presentation discusses how The presentation discusses how science can help government and communities in planning and responding to these events. It concludes with a set of lessons learned and guidlines for moving forward.
SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa
NASA Technical Reports Server (NTRS)
Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang
2010-01-01
SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.
NASA Astrophysics Data System (ADS)
Lei, Tianjie; Zhang, Yazhen; Wang, Xingyong; Fu, Jun'e.; Li, Lin; Pang, Zhiguo; Zhang, Xiaolei; Kan, Guangyuan
2017-07-01
Remote sensing system fitted on Unmanned Aerial Vehicle (UAV) can obtain clear images and high-resolution aerial photographs. It has advantages of strong real-time, flexibility and convenience, free from influence of external environment, low cost, low-flying under clouds and ability to work full-time. When an earthquake happened, it could go deep into the places safely and reliably which human staff can hardly approach, such as secondary geological disasters hit areas. The system can be timely precise in response to secondary geological disasters monitoring by a way of obtaining first-hand information as quickly as possible, producing a unique emergency response capacity to provide a scientific basis for overall decision-making processes. It can greatly enhance the capability of on-site disaster emergency working team in data collection and transmission. The great advantages of UAV remote sensing system played an irreplaceable role in monitoring secondary geological disaster dynamics and influences. Taking the landslides and barrier lakes for example, the paper explored the basic application and process of UAV remote sensing in the disaster emergency relief. UAV high-resolution remote sensing images had been exploited to estimate the situation of disaster-hit areas and monitor secondary geological disasters rapidly, systematically and continuously. Furthermore, a rapid quantitative assessment on the distribution and size of landslides and barrier lakes was carried out. Monitoring results could support relevant government departments and rescue teams, providing detailed and reliable scientific evidence for disaster relief and decision-making.
Yin, Huahua; He, Haiyan; Arbon, Paul; Zhu, Jingci
2011-10-01
To determine nursing skills most relevant for nurses participating in disaster response medical teams; make recommendations to enhance training of nurses who will be first responders to a disaster site; to improve the capacity of nurses to prepare and respond to severe natural disasters. Worldwide, nurses play a key role in disaster response teams at disaster sites. They are often not prepared for the challenges of dealing with mass casualties; little research exists into what basic nursing skills are required by nurses who are first responders to a disaster situation. This study assessed the most relevant disaster nursing skills of first responder nurses at the 2008 Wenchuan earthquake disaster site. Data were collected in China in 2008 using a self-designed questionnaire, with 24 participants who had been part of the medical teams that were dispatched to the disaster sites. The top three skills essential for nurses were: intravenous insertion; observation and monitoring; mass casualty triage. The three most frequently used skills were: debridement and dressing; observation and monitoring; intravenous insertion. The three skills performed most proficiently were: intravenous insertion; observation and monitoring; urethral catheterization. The top three ranking skills most important for training were: mass casualty transportation; emergency management; haemostasis, bandaging, fixation, manual handling. The core nursing skills for disaster response training are: mass casualty transportation; emergency management; haemostasis, bandaging, fixation, manual handling; observation and monitoring; mass casualty triage; controlling specific infection; psychological crisis intervention; cardiopulmonary resuscitation; debridement and dressing; central venous catheter insertion; patient care recording. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.
Satellite Application for Disaster Management Information Systems
NASA Astrophysics Data System (ADS)
Okpanachi, George
Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’, ‘’where’’ and ‘’how’’ small satellite data should be used by DMIS.
NASA Astrophysics Data System (ADS)
Yu, F.; Chen, H.; Tu, K.; Wen, Q.; He, J.; Gu, X.; Wang, Z.
2018-04-01
Facing the monitoring needs of emergency responses to major disasters, combining the disaster information acquired at the first time after the disaster and the dynamic simulation result of the disaster chain evolution process, the overall plan for coordinated planning of spaceborne, airborne and ground observation resources have been designed. Based on the analysis of the characteristics of major disaster observation tasks, the key technologies of spaceborne, airborne and ground collaborative observation project are studied. For different disaster response levels, the corresponding workflow tasks are designed. On the basis of satisfying different types of disaster monitoring demands, the existing multi-satellite collaborative observation planning algorithms are compared, analyzed, and optimized.
NASA Astrophysics Data System (ADS)
Qi, Yuan; Zhao, Hongtao
2017-04-01
China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
Traditional and non-traditional approaches to the prediction of natural disasters
NASA Astrophysics Data System (ADS)
Sapunov, Valentin; Glazyrina, Tatiana
2016-04-01
Since the beginning of the 21st century the number of disasters in the world increased approximately two times. Damage from disasters cost an average of 230 billion dollars per year. Recently, the death toll in the disaster has reached 230,000 - 1 000,000 per year. Along with earthquakes, tsunamis, floods, increased the number of forest and steppe fires. These processes are not fully known global, geophysical and space reasons. Of great importance are perennial not until the end of the study of natural cycles. There is evidence that the state of the planet's surface affect processes in the Earth's core. Understanding the causes and prediction of the tragic events require an integrated effort based on the synthesis of various sciences as well as history which has knowledge about the disasters of the past. Factor that reduces the risk is constant monitoring, including both distant and contact methods. However, its possibility is limited. Firstly, due to the high cost of global, especially space monitoring. Secondly, due to the unpredictability of some processes. In December 2004, the countries of Southeast Asia hit by the tsunami. The death gotten 250 000 people. Animals in this cataclysm appeared to stay safety and advance left the danger zone. Animals are able to predict hazards having no materials predecessors. Participants nuclear tests show - a day before the explosion of the animals escape dangerous zone. This means that animals have the ability to predict the catastrophic events. The most important abiotic factor, the physical nature of which is still not clear is time. One of the scientists, who achieved some success in the study of time, was N.Kozyrev (1908-1983). He devoted his life to the study of the phenomenon of time and attempt to systematize the knowledge of him as a physical substance. Kozyrev in his theoretical calculations and experiments found the new field - the field of time (chrono-information). Through it can instantly and accurately transmit information in space and in time - from the past or the future, however, a diffuse form. The less significant by energy event is, the farther it is remote in time, the less accurate it becomes the transmitted information. Hence: 1. Create in addition to traditional monitoring system for monitoring the behavior of animals that can anticipate disasters natural and anthropogenic genesis based on the properties proscopy. 2. Carry out laboratory investigations of the physical properties of time based on the ideas Kozyrev and other Russian scientists. 3. Some known devices may be used to predict the existing, such as torsion balance. 4. To develop a theoretical framework of proscopy is actual field of both theoretical and applied science.
Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li; Li, Wen-jun; Liu, Xiong-fei
2016-01-01
The secondary geological disasters triggered by the Lushan earthquake on April 20, 2013, such as landslides, collapses, debris flows, etc., had caused great casualties and losses. We monitored the number and spatial distribution of the secondary geological disasters in the earthquake-hit area from airborne remote sensing images, which covered areas about 3 100 km2. The results showed that Lushan County, Baoxing County and Tianquan County were most severely affected; there were 164, 126 and 71 secondary geological disasters in these regions. Moreover, we analyzed the relationship between the distribution of the secondary geological disasters, geological structure and intensity. The results indicate that there were 4 high-hazard zones in the monitored area, one focused within six kilometers from the epicenter, and others are distributed along the two main fault zones of the Longmen Mountain. More than 97% secondary geological disasters occurred in zones with a seismic intensity of VII to IX degrees, a slope between 25 A degrees and 50 A degrees, and an altitude of between 800 and 2 000 m. At last, preliminary suggestions were proposed for the rehabilitation and reconstruction planning of Lushan earthquake. According to the analysis result, airborne and space borne remote sensing can be used accurately and effectively in almost real-time to monitor and assess secondary geological disasters, providing a scientific basis and decision making support for government emergency command and post-disaster reconstruction.
Code of Federal Regulations, 2012 CFR
2012-01-01
... borrower's actual production, income and expense records for the year the natural disaster occurred; (ii... expenses incurred because of the natural disaster. (5) For the next production cycle, the borrower must... special servicing action under this part to the loan since the natural disaster occurred. (5) For any loan...
Code of Federal Regulations, 2011 CFR
2011-01-01
... borrower's actual production, income and expense records for the year the natural disaster occurred; (ii... expenses incurred because of the natural disaster. (5) For the next production cycle, the borrower must... special servicing action under this part to the loan since the natural disaster occurred. (5) For any loan...
Code of Federal Regulations, 2014 CFR
2014-01-01
... borrower's actual production, income and expense records for the year the natural disaster occurred; (ii... expenses incurred because of the natural disaster. (5) For the next production cycle, the borrower must... special servicing action under this part to the loan since the natural disaster occurred. (5) For any loan...
Code of Federal Regulations, 2010 CFR
2010-01-01
... borrower's actual production, income and expense records for the year the natural disaster occurred; (ii... expenses incurred because of the natural disaster. (5) For the next production cycle, the borrower must... special servicing action under this part to the loan since the natural disaster occurred. (5) For any loan...
Code of Federal Regulations, 2013 CFR
2013-01-01
... borrower's actual production, income and expense records for the year the natural disaster occurred; (ii... expenses incurred because of the natural disaster. (5) For the next production cycle, the borrower must... special servicing action under this part to the loan since the natural disaster occurred. (5) For any loan...
Disaster Emergency Rapid Assessment Based on Remote Sensing and Background Data
NASA Astrophysics Data System (ADS)
Han, X.; Wu, J.
2018-04-01
The period from starting to the stable conditions is an important stage of disaster development. In addition to collecting and reporting information on disaster situations, remote sensing images by satellites and drones and monitoring results from disaster-stricken areas should be obtained. Fusion of multi-source background data such as population, geography and topography, and remote sensing monitoring information can be used in geographic information system analysis to quickly and objectively assess the disaster information. According to the characteristics of different hazards, the models and methods driven by the rapid assessment of mission requirements are tested and screened. Based on remote sensing images, the features of exposures quickly determine disaster-affected areas and intensity levels, and extract key disaster information about affected hospitals and schools as well as cultivated land and crops, and make decisions after emergency response with visual assessment results.
Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning
NASA Astrophysics Data System (ADS)
Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD
2017-11-01
This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.
7 CFR 766.54 - Borrower application requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... eight months from the date the natural disaster was designated. (2) All borrowers must sign the DSA..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Disaster Set-Aside § 766.54 Borrower... expense records for the production cycle in which the disaster occurred unless the Agency already has this...
7 CFR 766.54 - Borrower application requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... eight months from the date the natural disaster was designated. (2) All borrowers must sign the DSA..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Disaster Set-Aside § 766.54 Borrower... expense records for the production cycle in which the disaster occurred unless the Agency already has this...
7 CFR 766.54 - Borrower application requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... eight months from the date the natural disaster was designated. (2) All borrowers must sign the DSA..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Disaster Set-Aside § 766.54 Borrower... expense records for the production cycle in which the disaster occurred unless the Agency already has this...
7 CFR 766.54 - Borrower application requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... eight months from the date the natural disaster was designated. (2) All borrowers must sign the DSA..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Disaster Set-Aside § 766.54 Borrower... expense records for the production cycle in which the disaster occurred unless the Agency already has this...
7 CFR 766.54 - Borrower application requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... eight months from the date the natural disaster was designated. (2) All borrowers must sign the DSA..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN SERVICING-SPECIAL Disaster Set-Aside § 766.54 Borrower... expense records for the production cycle in which the disaster occurred unless the Agency already has this...
Research on public participant urban infrastructure safety monitoring system using smartphone
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu
2017-04-01
Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.
NASA Astrophysics Data System (ADS)
Parisi, Alessandro; Fidelibus, Maria Dolores
2017-04-01
Physical extremes can be distinguished in "sudden physical extremes" (e.g. earthquakes, tsunami) and "progressive physical extremes" (e.g. drought, desertification, landslides). They differ for frequency, intensity, spatial extent, duration and timing of occurrence. If a physical extreme, by interacting with human systems, induces negative consequences, its outcome can be a "disaster". The disasters are, in both above cases, characterized by a few phases: physical extreme occurrence, emergency, response, and recovery. However, in the case of a progressive physical extreme, the disaster develops with an overlap in the time of the above-mentioned phases. When the events are repetitive, the emergency planning (which follows a cycle) succeeds with preparedness and mitigation with the intent of reducing the risk. Both the sudden and progressive physical extremes produce cascading effects of consequences on social, environmental and economic systems. Disasters consequent to sudden and progressive extremes show, however, some differences, mainly attributable to the "visibility" of the effects and to their time scale of evolution. As matter of fact, a disaster consequent to a progressive physical extreme produces "emerging signals" that are often invisible. Moreover, the emergency phase can arise with a time delay compared to the occurrence of the physical extreme, depending on the spatial scale of impacted system. The above differences allow defining "creeping disasters" the potential disasters related to progressive physical extremes. This study deals with some peculiar "cascading disasters" consequent to drought, which is the main "creeping disaster", namely the groundwater drought and the consequent salinization of coastal aquifers. In regional flow systems, their effects are invisible in the immediate to common people (and often even to managers) because of the concealed nature of groundwater; moreover, they are difficult to assess because of the shift over time of their evolution compared to the promptness of surface effects. The study area is the Salento coastal karstic aquifer (Apulia region, Southern Italy), where the groundwater flows according to a regional flow system. It has been subject to successive meteorological droughts between 1960 and 2010. The groundwater monitoring performed during this period, even with some gaps, allows identifying time lags between superficial effects and underground system response, potential tipping points, and emerging signals of the cascading disasters.
Emergency response networks for disaster monitoring and detection from space
NASA Astrophysics Data System (ADS)
Vladimirova, Tanya; Sweeting, Martin N.; Vitanov, Ivan; Vitanov, Valentin I.
2009-05-01
Numerous man-made and natural disasters have stricken mankind since the beginning of the new millennium. The scale and impact of such disasters often prevent the collection of sufficient data for an objective assessment and coordination of timely rescue and relief missions on the ground. As a potential solution to this problem, in recent years constellations of Earth observation small satellites and in particular micro-satellites (<100 kg) in low Earth orbit have emerged as an efficient platform for reliable disaster monitoring. The main task of the Earth observation satellites is to capture images of the Earth surface using various techniques. For a large number of applications the resulting delay between image capture and delivery is not acceptable, in particular for rapid response remote sensing aiming at disaster monitoring and detection. In such cases almost instantaneous data availability is a strict requirement to enable an assessment of the situation and instigate an adequate response. Examples include earthquakes, volcanic eruptions, flooding, forest fires and oil spills. The proposed solution to this issue are low-cost networked distributed satellite systems in low Earth orbit capable of connecting to terrestrial networks and geostationary Earth orbit spacecraft in real time. This paper discusses enabling technologies for rapid response disaster monitoring and detection from space such as very small satellite design, intersatellite communication, intelligent on-board processing, distributed computing and bio-inspired routing techniques.
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
The clinical application of mobile technology to disaster medicine.
Case, Timothy; Morrison, Cecily; Vuylsteke, Alain
2012-10-01
Mobile health care technology (mHealth) has the potential to improve communication and clinical information management in disasters. This study reviews the literature on health care and computing published in the past five years to determine the types and efficacy of mobile applications available to disaster medicine, along with lessons learned. Five types of applications are identified: (1) disaster scene management; (2) remote monitoring of casualties; (3) medical image transmission (teleradiology); (4) decision support applications; and (5) field hospital information technology (IT) systems. Most projects have not yet reached the deployment stage, but evaluation exercises show that mHealth should allow faster processing and transport of patients, improved accuracy of triage and better monitoring of unattended patients at a disaster scene. Deployments of teleradiology and field hospital IT systems to disaster zones suggest that mHealth can improve resource allocation and patient care. The key problems include suitability of equipment for use in disaster zones and providing sufficient training to ensure staff familiarity with complex equipment. Future research should focus on providing unbiased observations of the use of mHealth in disaster medicine.
Towards a politics of disaster response: presidential disaster instructions in China, 1998-2012.
Tao, Peng; Chen, Chunliang
2018-04-01
China's disaster management system contains no law-based presidential disaster declarations; however, the national leader's instructions (pishi in Chinese) play a similar role to disaster declarations, which increase the intensity of disaster relief. This raises the question of what affects presidential disaster instructions within an authoritarian regime. This research shows that China's disaster politics depend on a crisis threshold system for operation and that the public and social features of disasters are at the core of this system. China's political cycle has no significant impact on disaster politics. A change in the emergency management system has a significant bearing on presidential disaster instructions, reflecting the strong influence of the concept of rule of law and benefiting the sustainable development of the emergency management system. In terms of disaster politics research, unlocking the black box of China's disaster politics and increasing the number of comparative political studies will benefit the development of empirical and theoretical study. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.
Emergency preparedness handbook for tribal governments.
DOT National Transportation Integrated Search
2014-12-01
Many Native American tribal governments are lacking in emergency preparedness, a part of the : emergency management cycle where planning for disasters happens. These governments need : assistance planning for future disasters. Federal, and state gove...
The Effectiveness of Disaster Risk Communication: A Systematic Review of Intervention Studies
Bradley, Declan T; McFarland, Marie; Clarke, Mike
2014-01-01
Introduction: A disaster is a serious disruption to the functioning of a community that exceeds its capacity to cope within its own resources. Risk communication in disasters aims to prevent and mitigate harm from disasters, prepare the population before a disaster, disseminate information during disasters and aid subsequent recovery. The aim of this systematic review is to identify, appraise and synthesise the findings of studies of the effects of risk communication interventions during four stages of the disaster cycle. Methods: We searched the Cochrane Central Register of Controlled Trials, Embase, MEDLINE, PsycInfo, Sociological Abstracts, Web of Science and grey literature sources for randomised trials, cluster randomised trials, controlled and uncontrolled before and after studies, interrupted time series studies and qualitative studies of any method of disaster risk communication to at-risk populations. Outcome criteria were disaster-related knowledge and behaviour, and health outcomes. Results: Searches yielded 5,224 unique articles, of which 100 were judged to be potentially relevant. Twenty-five studies met the inclusion criteria, and two additional studies were identified from other searching. The studies evaluated interventions in all four stages of the disaster cycle, included a variety of man-made, natural and infectious disease disasters, and were conducted in many disparate settings. Only one randomised trial and one cluster randomised trial were identified, with less robust designs used in the other studies. Several studies reported improvements in disaster-related knowledge and behaviour. Discussion: We identified and appraised intervention studies of disaster risk communication and present an overview of the contemporary literature. Most studies used non-randomised designs that make interpretation challenging. We do not make specific recommendations for practice but highlight the need for high-quality randomised trials and appropriately-analysed cluster randomised trials in the field of disaster risk communication where these can be conducted within an appropriate research ethics framework. PMID:25642365
Application research for 4D technology in flood forecasting and evaluation
NASA Astrophysics Data System (ADS)
Li, Ziwei; Liu, Yutong; Cao, Hongjie
1998-08-01
In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.
NASA Astrophysics Data System (ADS)
de Alwis Pitts, Dilkushi A.; So, Emily
2017-12-01
The availability of Very High Resolution (VHR) optical sensors and a growing image archive that is frequently updated, allows the use of change detection in post-disaster recovery and monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance change detection. It also allows targeting specific types of changes pertaining to similar man-made objects such as buildings and critical facilities. The change detection method is based on pre/post normalized index, gradient of intensity, texture and edge similarity filters within the object and a set of training data. More emphasis is put on the building edges to capture the structural damage in quantifying change after disaster. Once the change is quantified, based on training data, the method can be used automatically to detect change in order to observe recovery over time in potentially large areas. Analysis over time can also contribute to obtaining a full picture of the recovery and development after disaster, thereby giving managers a better understanding of productive management and recovery practices. The recovery and monitoring can be analyzed using the index in zones extending from to epicentre of disaster or administrative boundaries over time.
7 CFR 759.5 - Secretarial disaster area determination and notification process.
Code of Federal Regulations, 2013 CFR
2013-01-01
... § 759.5 Secretarial disaster area determination and notification process. (a) U.S. Drought Monitor. With respect to drought and without requiring an LAR: (1) If any portion of a county is physically located in an area with a Drought Monitor Intensity Classification value of D3 (drought-extreme) or higher...
7 CFR 759.5 - Secretarial disaster area determination and notification process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... § 759.5 Secretarial disaster area determination and notification process. (a) U.S. Drought Monitor. With respect to drought and without requiring an LAR: (1) If any portion of a county is physically located in an area with a Drought Monitor Intensity Classification value of D3 (drought-extreme) or higher...
Multi-satellite Mission in China for Monitoring Natural Hazards (Invited)
NASA Astrophysics Data System (ADS)
Guo, H.
2013-12-01
The impacts of natural hazards are continuing to increase around the world, and mitigation of the damages caused by natural hazards like floods, droughts, earthquakes, and cyclones has been a global challenge. Current evidence demonstrates there are many kinds of technologies for natural hazard management, but space technology is recognized as one of the most effective means. After 30 years of development, China has become an important member of the global remote sensing community. China has successfully developed an Earth observation system consisting of meteorological satellites, resources satellites, ocean satellites, environment and disaster monitoring satellites, micro-satellites, navigation satellites, and manned spacecraft. In this presentation, a short overview of China's Earth observation satellite missions will be presented. Specifically, the Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) will be introduced and discussed. SSCEDMF is a follow-up '4+4' satellite constellation including four optical satellites and four radar satellites, meant to improve disaster management capability in China. At the current stage, two optical satellites and an s-band synthetic aperture radar satellite have successfully launched. Disasters are a global issue that no country can address individually, requiring sharing and collaboration. China has benefited greatly from international collaboration in disaster mitigation, and has actively worked with international partners. To share our experience in dealing with the risk of disasters, some achievements and progress in space technology applications for disaster management will be introduced. In addition, collaborative activities with IRDR, the UN-SPIDER Beijing Office, and the CAS-TWAS Centre of Excellence on Space Technology for Disaster Mitigation (STDM) will be described.
NASA Astrophysics Data System (ADS)
Alipbeki, O.; Kabzhanova, G.; Kurmanova, G.; Alipbekova, Ch.
2016-06-01
The territory of the Degelen mountain massif is located within territory of the former Semipalatinsk nuclear test site and it is an area of ecological disaster. Currently there is a process of secondary radioactive contamination that is caused by geodynamic processes activated at the Degelen array, violation of underground hydrological cycles and as a consequence, water seepage into the tunnels. One of the methods of monitoring of geodynamic processes is the modern technology of geographic information systems (GIS), methods of satellite radar interferometry and high accuracy satellite navigation system in conjunction with radioecological methods. This paper discusses on the creation of a GIS-project for the Degelen array, facilitated by quality geospatial analysis of the situation and simulation of the phenomena, in order to maximize an objective assessment of the radiation situation in this protected area.
13 CFR 123.3 - How are disaster declarations made?
Code of Federal Regulations, 2010 CFR
2010-01-01
... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...
13 CFR 123.3 - How are disaster declarations made?
Code of Federal Regulations, 2014 CFR
2014-01-01
... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...
13 CFR 123.3 - How are disaster declarations made?
Code of Federal Regulations, 2011 CFR
2011-01-01
... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...
13 CFR 123.3 - How are disaster declarations made?
Code of Federal Regulations, 2013 CFR
2013-01-01
... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...
13 CFR 123.3 - How are disaster declarations made?
Code of Federal Regulations, 2012 CFR
2012-01-01
... the disaster occurrence. When a Governor certifies with respect to a drought or to below average water... period meet or exceed the U.S. Drought Monitor (USDM) standard of “severe” (Intensity level D-2 to D-4). The USDM may be found at http://drought.unl.edu/dm/monitor. With respect to below average water levels...
Utilizing multisource remotely sensed data to dynamically monitor drought in China
NASA Astrophysics Data System (ADS)
Liu, Sanchao; Li, Wenbo
2011-12-01
Drought is one of major nature disaster in the world and China. China has a vast territory and very different spatio-temporal distribution weather condition. Therefore, drought disasters occur frequently throughout China, which may affect large areas and cause great economic loss every year. In this paper, geostationary meteorological remote sensing data, FY-2C/D/E VISSR and three quantitative remotely sensed models including Cloud Parameters Method (CPM), Vegetation Supply Water Index (VSWI), and Temperature Vegetation Dryness Index (TVDI) have been used to dynamically monitor severe drought in southwest China from 2009 to 2010. The results have effectively revealed the occurrence, development and disappearance of this drought event. The monitoring results can be used for the relevant disaster management departments' decision-making works.
Vital signs monitoring and patient tracking over a wireless network.
Gao, Tia; Greenspan, Dan; Welsh, Matt; Juang, Radford; Alm, Alex
2005-01-01
Patients at a disaster scene can greatly benefit from technologies that continuously monitor their vital status and track their locations until they are admitted to the hospital. We have designed and developed a real-time patient monitoring system that integrates vital signs sensors, location sensors, ad-hoc networking, electronic patient records, and web portal technology to allow remote monitoring of patient status. This system shall facilitate communication between providers at the disaster scene, medical professionals at local hospitals, and specialists available for consultation from distant facilities.
Application of CBERS-1 to monitoring of geological hazards in china
NASA Astrophysics Data System (ADS)
Qiao, Y.
China is a country with a great variety of wide and frequent geological disasters which is the most serious natural disasters bring damage to national economical construction and people's life and property and causes an annual direct economic loss over 200 hundred million Chinese yuan to China. In recent 20 years great work has been done to apply remote sensing to investigation and monitoring earthquake, collapse, landslide, mud-rock flow, river-band cave-in, lava collapse, earth crevise, ground coal bunker spontaneous combustion, and great contribution has been done for the control. The successful launch and operation of the China-Brazil Resources Satellite& "CBERS -1" provides us an even more convenient tool. In present paper it introduces the applications of CBERS remote sensing in monitoring of large scale slide in Yigong Tibet and in Yangyuan Shanxi for earthquake calamities combined with meteorological remote sensing data. The results demonstrate that CBERS data could get in time and accurate geo-disasters monitoring information and show us the actual happenings which supply reliable basis for control and release measures to the disaster. CBERS has played an unique important role in fighting against the slide disaster and sending relief to the area and the resulted floods. It is bond to play an active role to promote growth of Chinese national economy. Keywords: CBERS; Geological Hazards; Monimonitoring
Application of satellite radar altimetry for near-real time monitoring of floods
NASA Astrophysics Data System (ADS)
Lee, H.; Calmant, S.; Shum, C.; Kim, J.; Huang, Z.; Bettadpur, S. V.; Alsdorf, D. E.
2011-12-01
According to the 2004 UNESCO World Disasters Report, it is estimated that flooding affected 116 million people globally, causing about 7000 deaths and leading to $7.5 billion in losses. The report also indicates that flood is the most frequently occurring disaster type among all other natural disasters. Hence, timely monitoring of changing of river, wetland and lake/reservoir levels is important to support disaster monitoring and proper response. Yet, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water discharge and storage changes globally. Although satellite radar altimetry has been successfully used to observe water height changes over rivers, lakes, reservoirs, and wetlands, there have been few studies for near-real time monitoring of floods mainly due to its limited spatial and temporal sampling of surface water elevations. In this study, we monitor flood by examining its spatial and temporal origin of the flooding and its timely propagation using multiple altimeter-river intersections over the entire hydrologic basin. We apply our method to the Amazon 2009 flood event that caused the most severe flooding in more than two decades. We also compare our results with inundated areas estimated from ALOS PALSAR ScanSAR measurements and GRACE 15-day Quick-Look (QL) gravity field data product. Our developed method would potentially enhance the capability of satellite altimeter toward near-real time monitoring of floods and mitigating their hazards.
NASA Astrophysics Data System (ADS)
Li, Yaohui
2017-04-01
Drought is one of the most common and frequent nature disasters in the world, particularly in China under the continental monsoonal climate with great variation. About thirty percent of economic loss caused by natural disasters is contributed by droughts in China, which is by far the most damaging weather disasters because of its long duration and extensive hazard areas. Droughts not only have a serious impact on the agriculture, water resources, ecology, natural environment, but also seriously affect the socio-economic such as human health, energy and transportation. Worsely, under the background of climate change, droughts in show increases in frequency, duration and scope in many places around the world, particularly northern China. Nowadays, droughts have aroused extensive concern of the scientists, governments and international community, and became one of the important scientific issues in geoscience research. However, most of researches on droughts in China so far were focused on the causes or regulars of one type of droughts (the atmosphere, agriculture or hydrological) from the perspective of the atmospheric circulation anomalies. Few of them considered a whole cycle of the drought-forming process from atmosphere-land interaction to agricultural/ecological one in terms of the land-atmosphere interaction; meanwhile, the feedback mechanism with the drought and land-atmosphere interaction is still unclear as well. All of them is because of lack of the relevant comprehensive observation experiment. "Land-atmosphere interaction and disaster-causing process of drought in northern China: observation and experiment" (DroughtPEX_China)is just launched in this requirement and background. DroughtPEX_China is supported by Special Scientific Research Fund of Public Welfare Industry (Meteorological) of China (Grant No.GYHY201506001)—"Drought Meteorology Scientific Research Project—the disaster-causing process and mechanism of drought in northern China". This project aims to establish a complete observation &experiment system for droughts particularly over the arid and semi-arid regions in northern China. Relying on the existing meteorological observation network and experimental bases, the DroughtPEX_China implemented interdisciplinary, comprehensive and systemic drought-scientific experiment including the routine observation, intensive and special observation, and the artificially field control test for the drought forming and reducing. Such large observation &experiment will promote a large step or theoretical breakthrough on the knowledge of the complex dynamic process for the formation and development of drought disasters, the mechanism of the water-energy cycle in the atmosphere-soil-vegetation on multi-scales, and the interrelationship in the atmosphere, agriculture and hydrological droughts. The ultimate purpose of DroughtPEX_China is to make great progress on the technology of accurate drought monitoring, risk assessment and early warning. This paper will introduce the Drought PEX_China with the scientific goal, experiment design and layout, preliminary results, information sharing, and its promoting role on international cooperation of drought scientific research. Key words: Disaster-causing process of drought; Observation & experiment; Northern China
NASA Astrophysics Data System (ADS)
Lerner-Lam, A.
2007-05-01
Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus there is an attitudinal shift emerging whereby disaster risk management can be "mainstreamed" into the sustainable development programs in many countries. Consequently, it is incumbent to demonstrate that multi-scale geophysical monitoring, comprising integration of global networks with national and sub-national operations, is a foundational component of sustainable development infrastructure. This suggests even greater emphasis on developing dynamic and adaptive multi- hazard risk assessments, encompassing valid estimates of social and physical vulnerabilities; designing multi- scale network integration strategies that consider risk as well as hazard; providing operational and flexible templates for developing national networks in a global context; emphasizing the backbone characteristics of global geophysical monitoring to nations seeking to develop their own monitoring capacity; promoting sustained international research, education and training collaborations coinciding with the development of monitoring capacity; and continuing to promote the free and open exchange of data as a necessary component of sustained intellectual interest in monitoring. A combination of these strategies may counteract the decay of interest in regional geophysical monitoring after a disaster.
Mitigating Decision-Making Paralysis During Catastrophic Disasters
2011-03-01
COVERED Master’s Thesis 4. TITLE AND SUBTITLE Mitigating Decision-Making Paralysis During Catastrophic Disasters 6. AUTHOR( S ) Terrence J. Winters 5...FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION...REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11
Monitoring of Engineering Buildings Behaviour Within the Disaster Management System
NASA Astrophysics Data System (ADS)
Oku Topal, G.; Gülal, E.
2017-11-01
The Disaster management aims to prevent events that result in disaster or to reduce their losses. Monitoring of engineering buildings, identification of unusual movements and taking the necessary precautions are very crucial for determination of the disaster risk so possible prevention could be taken to reduce big loss. Improving technology, increasing population due to increased construction and these areas largest economy lead to offer damage detection strategies. Structural Health Monitoring (SHM) is the most effective of these strategies. SHM research is very important to maintain all this structuring safely. The purpose of structural monitoring is determining in advance of possible accidents and taking necessary precaution. In this paper, determining the behaviour of construction using Global Positioning System (GPS) is investigated. For this purpose shaking table tests were performed. Shaking table was moved at different amplitude and frequency aiming to determine these movement with a GPS measuring system. The obtained data were evaluated by analysis of time series and Fast Fourier Transformation techniques and the frequency and amplitude values are calculated. By examining the results of the tests made, it will be determined whether the GPS measurement method can accurately detect the movements of the engineering structures.
NASA Astrophysics Data System (ADS)
Gopalakrishnan, G.
2013-12-01
In the aftermath of man-made disasters such as oil spills or natural disasters such as hurricanes and floods, city planners and residents of affected areas are often concerned about future vulnerabilities and rebuilding the area to increase resilience. However, identifying locations in the affected area that are most impacted by the disaster, the associated human health risks and potential vulnerabilities often require a monitoring effort that is expensive, time-consuming and difficult to implement in disaster-hit areas using traditional monitoring techniques. This project presents a framework for identifying areas that are most likely to be impacted by disasters by integrating remote sensing data and information from social media networks, including Twitter streams. The framework was tested for New York, coastal New Jersey and Staten Island in the aftermath of Hurricane Sandy. Vulnerable areas were identified using anomaly detection and the results were mapped against measurements collected on the ground. A correlation coefficient of 0.78 was obtained. Uncertainty in model predictions was evaluated using Monte Carlo simulations.
Using Geo-Data Corporately on the Response Phase of Emergency Management
NASA Astrophysics Data System (ADS)
Demir Ozbek, E.; Ates, S.; Aydinoglu, A. C.
2015-08-01
Response phase of emergency management is the most complex phase in the entire cycle because it requires cooperation between various actors relating to emergency sectors. A variety of geo-data is needed at the emergency response such as; existing data provided by different institutions and dynamic data collected by different sectors at the time of the disaster. Disaster event is managed according to elaborately defined activity-actor-task-geodata cycle. In this concept, every activity of emergency response is determined with Standard Operation Procedure that enables users to understand their tasks and required data in any activity. In this study, a general conceptual approach for disaster and emergency management system is developed based on the regulations to serve applications in Istanbul Governorship Provincial Disaster and Emergency Directorate. The approach is implemented to industrial facility explosion example. In preparation phase, optimum ambulance locations are determined according to general response time of the ambulance to all injury cases in addition to areas that have industrial fire risk. Management of the industrial fire case is organized according to defined actors, activities, and working cycle that describe required geo-data. A response scenario was prepared and performed for an industrial facility explosion event to exercise effective working cycle of actors. This scenario provides using geo-data corporately between different actors while required data for each task is defined to manage the industrial facility explosion event. Following developing web technologies, this scenario based approach can be effective to use geo-data on the web corporately.
Snow cover monitoring model and change over both time and space in pastoral area of northern China
NASA Astrophysics Data System (ADS)
Cui, Yan; Li, Suju; Wang, Ping; Zhang, Wei; Nie, Juan; Wen, Qi
2014-11-01
Snow disaster is a natural phenomenon owning to widespread snowfall for a long time and usually affect people's life, property and economic. During the whole disaster management circle, snow disaster in pastoral area of northern china which including Xinjiang, Inner Mongolia, Qinghai, Tibet has been paid more attention. Thus do a good job in snow cover monitoring then found snow disaster in time can help the people in disaster area to take effective rescue measures, which always been the central and local government great important work. Remote sensing has been used widely in snow cover monitoring for its wide range, high efficiency, less conditions, more methods and large information. NOAA/AVHRR data has been used for wide range, plenty bands information and timely acquired and act as an import data of Snow Cover Monitoring Model (SCMM). SCMM including functions list below: First after NOAA/AVHRR data has been acquired, geometric calibration, radiometric calibration and other pre-processing work has been operated. Second after band operation, four threshold conditions are used to extract snow spectrum information among water, cloud and other features in NOAA/AVHRR image. Third snow cover information has been analyzed one by one and the maximum snow cover from about twenty images in a week has been selected. Then selected image has been mosaic which covered the pastoral area of China. At last both time and space analysis has been carried out through this operational model ,such as analysis on the difference between this week and the same period of last year , this week and last week in three level regional. SCMM have been run successfully for three years, and the results have been take into account as one of the three factors which led to risk warning of snow disaster and analysis results from it always play an important role in disaster reduction and relief.
Zea Escamilla, E.; Habert, G.
2015-01-01
This data article presents the life cycle inventories of 20 transitional shelter solutions. The data was gathered from the reports 8 shelter designs [1]; 10 post-disaster shelter designs [2]; the environmental impact of brick production outside of Europe [3]; and the optimization of bamboo-based post-disaster housing units for tropical and subtropical regions using LCA methodologies [4]. These reports include bill of quantities, plans, performance analysis, and lifespan of the studied shelters. The data from these reports was used to develop the Life Cycle Inventories (LCI). All the amounts were converted from their original units (length, volume and amount) into mass (kg) units and the transport distance into ton×km. These LCIs represent the production phases of each shelter and the transportation distances for the construction materials. Two types of distances were included, local (road) and international (freight ship), which were estimated based on the area of the country of study. Furthermore, the digital visualization of the shelters is presented for each of the 20 designs. Moreover, this data article presents a summary of the results for the categories Environment, Cost and Risk and the contribution to the environmental impact from the different building components of each shelter. These results are related to the article “Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs”[5] PMID:26217807
Zea Escamilla, E; Habert, G
2015-09-01
This data article presents the life cycle inventories of 20 transitional shelter solutions. The data was gathered from the reports 8 shelter designs [1]; 10 post-disaster shelter designs [2]; the environmental impact of brick production outside of Europe [3]; and the optimization of bamboo-based post-disaster housing units for tropical and subtropical regions using LCA methodologies [4]. These reports include bill of quantities, plans, performance analysis, and lifespan of the studied shelters. The data from these reports was used to develop the Life Cycle Inventories (LCI). All the amounts were converted from their original units (length, volume and amount) into mass (kg) units and the transport distance into ton×km. These LCIs represent the production phases of each shelter and the transportation distances for the construction materials. Two types of distances were included, local (road) and international (freight ship), which were estimated based on the area of the country of study. Furthermore, the digital visualization of the shelters is presented for each of the 20 designs. Moreover, this data article presents a summary of the results for the categories Environment, Cost and Risk and the contribution to the environmental impact from the different building components of each shelter. These results are related to the article "Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs"[5].
Towards to Resilience Science -Research on the Nankai trough seismogenic zone-
NASA Astrophysics Data System (ADS)
Kaneda, Yoshiyuki; Shiraki, Wataru; Fujisawa, Kazuhito; Tokozakura, Eiji
2017-04-01
For the last few decades, many destructive earthquakes and tsunamis occurred in the world. Based on lessons learnt from 2004 Sumatra Earthquake/Tsunamis, 2010 Chilean Earthquake/Tsunami and 2011 East Japan Earthquake/Tsunami, we recognized the importance of real time monitoring on Earthquakes and Tsunamis for disaster mitigation. Recently, Kumamoto Earthquake occurred in 2006. This destructive Earthquake indicated that multi strong motions including pre shock and main shock generated severe earthquake damages buildings. Furthermore, we recognize recovers/ revivals are very important and difficult. In Tohoku area damaged by large tsunamis, recovers/revivals have been under progressing after over 5 years passed after the 2011 Tohoku Earthquake. Therefore, we have to prepare the pre plan before next destructive disasters such as the Nankai trough mega thrust earthquake. As one of disaster countermeasures, we would like to propose that Disaster Mitigation Science. This disaster mitigation science is including engineering, science, medicine and social science such as sociology, informatics, law, literature, art, psychology etc. For Urgent evacuations, there are some kinds of real time monitoring system such as Dart buoy and ocean floor network. Especially, the real time monitoring system using multi kinds of sensors such as the accelerometer, broadband seismometer, pressure gauge, difference pressure gauge, hydrophone and thermometer is indispensable for Earthquakes/ Tsunamis monitoring. Furthermore, using multi kind of sensors, we can analyze and estimate broadband crustal activities around mega thrust earthquake seismogenic zones. Therefore, we deployed DONET1 and DONET2 which are dense ocean floor networks around the Nankai trough Southwestern Japan. We will explain about Resilience Science and real time monitoring systems around the Nankai trough seismogenic zone.
Supporting Disaster Assessment and Response with the VIIRS Day-Night Band
NASA Technical Reports Server (NTRS)
Schultz, Lori A.; Cole, Tony; Molthan, Andrew L.
2015-01-01
When meteorological or man-made disasters occur, first responders often focus on impacts to the affected population and other human activities. Often, these disasters result in significant impacts to local infrastructure and power, resulting in widespread power outages. For minor events, these power outages are often short-lived, but major disasters often include long-term outages that have a significant impact on wellness, safety, and recovery efforts within the affected areas. Staff at NASA's Short-term Prediction Research and Transition (SPoRT) Center have been investigating the use of the VIIRS day-night band for monitoring power outages that result from significant disasters, and developing techniques to identify damaged areas in near real-time following events. In addition to immediate assessment, the VIIRS DNB can be used to monitor and assess ongoing recovery efforts. In this presentation, we will highlight previous applications of the VIIRS DNB following Superstorm Sandy in 2012, and other applications of the VIIRS DNB to more recent disaster events, including detection of outages following the Moore, Oklahoma tornado of May 2013 and the Chilean earthquake of April 2014. Examples of current products will be shown, along with future work and other goals for supporting disaster assessment and response with VIIRS capabilities.
Monitoring Disasters by Use of Instrumented Robotic Aircraft
NASA Technical Reports Server (NTRS)
Wegener, Steven S.; Sullivan, Donald V.; Dunagan, Steven E.; Brass, James A.; Ambrosia, Vincent G.; Buechel, Sally W.; Stoneburner, Jay; Schoenung, Susan M.
2009-01-01
Efforts are under way to develop data-acquisition, data-processing, and data-communication systems for monitoring disasters over large geographic areas by use of uninhabited aerial systems (UAS) robotic aircraft that are typically piloted by remote control. As integral parts of advanced, comprehensive disaster- management programs, these systems would provide (1) real-time data that would be used to coordinate responses to current disasters and (2) recorded data that would be used to model disasters for the purpose of mitigating the effects of future disasters and planning responses to them. The basic idea is to equip UAS with sensors (e.g., conventional video cameras and/or multispectral imaging instruments) and to fly them over disaster areas, where they could transmit data by radio to command centers. Transmission could occur along direct line-of-sight paths and/or along over-the-horizon paths by relay via spacecraft in orbit around the Earth. The initial focus is on demonstrating systems for monitoring wildfires; other disasters to which these developments are expected to be applicable include floods, hurricanes, tornadoes, earthquakes, volcanic eruptions, leaks of toxic chemicals, and military attacks. The figure depicts a typical system for monitoring a wildfire. In this case, instruments aboard a UAS would generate calibrated thermal-infrared digital image data of terrain affected by a wildfire. The data would be sent by radio via satellite to a data-archive server and image-processing computers. In the image-processing computers, the data would be rapidly geo-rectified for processing by one or more of a large variety of geographic-information- system (GIS) and/or image-analysis software packages. After processing by this software, the data would be both stored in the archive and distributed through standard Internet connections to a disaster-mitigation center, an investigator, and/or command center at the scene of the fire. Ground assets (in this case, firefighters and/or firefighting equipment) would also be monitored in real time by use of Global Positioning System (GPS) units and radio communication links between the assets and the UAS. In this scenario, the UAS would serve as a data-relay station in the sky, sending packets of information concerning the locations of assets to the image-processing computer, wherein this information would be incorporated into the geo-rectified images and maps. Hence, the images and maps would enable command-center personnel to monitor locations of assets in real time and in relation to locations affected by the disaster. Optionally, in case of a disaster that disrupted communications, the UAS could be used as an airborne communication relay station to partly restore communications to the affected area. A prototype of a system of this type was demonstrated in a project denoted the First Response Experiment (Project FiRE). In this project, a controlled outdoor fire was observed by use of a thermal multispectral scanning imager on a UAS that delivered image data to a ground station via a satellite uplink/ downlink telemetry system. At the ground station, the image data were geo-rectified in nearly real time for distribution via the Internet to firefighting managers. Project FiRE was deemed a success in demonstrating several advances essential to the eventual success of the continuing development effort.
Reaves, Erik J; Termini, Michael; Burkle, Frederick M
2014-02-01
The US Department of Defense continues to deploy military assets for disaster relief and humanitarian actions around the world. These missions, carried out through geographically located Combatant Commands, represent an evolving role the US military is taking in health diplomacy, designed to enhance disaster preparedness and response capability. Oceania is a unique case, with most island nations experiencing "acute-on-chronic" environmental stresses defined by acute disaster events on top of the consequences of climate change. In all Pacific Island nation-states and territories, the symptoms of this process are seen in both short- and long-term health concerns and a deteriorating public health infrastructure. These factors tend to build on each other. To date, the US military's response to Oceania primarily has been to provide short-term humanitarian projects as part of Pacific Command humanitarian civic assistance missions, such as the annual Pacific Partnership, without necessarily improving local capacity or leaving behind relevant risk-reduction strategies. This report describes the assessment and implications on public health of large-scale humanitarian missions conducted by the US Navy in Oceania. Future opportunities will require the Department of Defense and its Combatant Commands to show meaningful strategies to implement ongoing, long-term, humanitarian activities that will build sustainable, host nation health system capacity and partnerships. This report recommends a community-centric approach that would better assist island nations in reducing disaster risk throughout the traditional disaster management cycle and defines a potential and crucial role of Department of Defense's assets and resources to be a more meaningful partner in disaster risk reduction and community capacity building.
Gao, Tia; Kim, Matthew I.; White, David; Alm, Alexander M.
2006-01-01
We have developed a system for real-time patient monitoring during large-scale disasters. Our system is designed with scalable algorithms to monitor large numbers of patients, an intuitive interface to support the overwhelmed responders, and ad-hoc mesh networking capabilities to maintain connectivity to patients in the chaotic settings. This paper describes an iterative approach to user-centered design adopted to guide development of our system. This system is a part of the Advanced Health and Disaster Aid Network (AID-N) architecture. PMID:17238348
NASA Technical Reports Server (NTRS)
Bell, Jordan R.; Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.
2014-01-01
NASA's Short-term Prediction, Research, and Transition (SPoRT) Center uses a wide array of satellites to monitor and assess the impacts of natural disasters, with support from NASA's Applied Sciences Program. One of the newest sensors SPoRT is utilizing in these activities is the International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. ISERV provides a unique view of the areas impacted and will play a big role in monitoring the recovery these areas. High-resolution commercial satellite data is also used to monitor urban areas that have been impacted by natural disasters. SPoRT is developing techniques to measure the extent of these disasters and to monitor recovery. Several of these techniques include semi-automatic feature detection and change as well as developing an experimental damage assessment based upon the visible damage observed by the satellites. Furthermore, throughout these activities SPoRT hopes to provide additional data to the NOAA National Weather Service Damage Assessment Toolkit, which will help to supplement those activities being performed in the field.
Preparing routine health information systems for immediate health responses to disasters
Aung, Eindra; Whittaker, Maxine
2013-01-01
During disaster times, we need specific information to rapidly plan a disaster response, especially in sudden-onset disasters. Due to the inadequate capacity of Routine Health Information Systems (RHIS), many developing countries face a lack of quality pre-disaster health-related data and efficient post-disaster data processes in the immediate aftermath of a disaster. Considering the significance of local capacity during the early stages of disaster response, RHIS at local, provincial/state and national levels need to be strengthened so that they provide relief personnel up-to-date information to plan, organize and monitor immediate relief activities. RHIS professionals should be aware of specific information needs in disaster response (according to the Sphere Project’s Humanitarian Minimum Standards) and requirements in data processes to fulfil those information needs. Preparing RHIS for disasters can be guided by key RHIS-strengthening frameworks; and disaster preparedness must be incorporated into countries’ RHIS. Mechanisms must be established in non-disaster times and maintained between RHIS and information systems of non-health sectors for exchanging disaster-related information and sharing technologies and cost. PMID:23002249
[Disasters and public health: an approach from the theoretical framework of epidemiology].
Arcos González, Pedro Ignacio; Castro Delgado, Rafael; del Busto Prado, Francisco
2002-01-01
Throughout the 1990-2000 period, disasters (catastrophes) caused an average of 75,000 deaths yearly, injuring an average of 256 million people a year and causing economic losses totaling more than 650 billion euros. The magnitude of this problem, its impact on public health and on the degree of development of the populations involved are of such major importance as to warrant special interest from the public health standpoint, especially as a result of what are known as complex emergencies. The objective of this study is that of reviewing the definitions, the main concepts and the basic characteristics of disaster epidemiology. An analysis is also made of the risk factors involved in disasters, the impacts on public health of the main types of disasters and the main preventive strategies in terms of the different stages of the disaster cycle.
Tabata, Tomohiro; Wakabayashi, Yohei; Tsai, Peii; Saeki, Takashi
2017-03-01
Although it is important that disaster waste be demolished and removed as soon as possible after a natural disaster, it is also important that its treatment is environmentally friendly and economic. Local municipalities do not conduct environmental and economic feasibility studies of pre-disaster waste management; nevertheless, pre-disaster waste management is extremely important to promote treatment of waste after natural disasters. One of the reasons that they cannot conduct such evaluations is that the methods and inventory data required for the environmental and economic evaluation does not exist. In this study, we created the inventory data needed for evaluation and constructed evaluation methods using life cycle assessment (LCA) and life cycle cost (LCC) methodologies for future natural disasters. We selected the Japanese town of Minami-Ise for the related case study. Firstly, we estimated that the potential disaster waste generation derived from dwellings would be approximately 554,000t. Based on this result, the land area required for all the temporary storage sites for storing the disaster waste was approximately 55ha. Although the public domain and private land area in this case study is sufficient, several sites would be necessary to transport waste to other sites with enough space because local space is scarce. Next, we created inventory data of each process such as waste transportation, operation of the temporary storage sites, and waste treatment. We evaluated the environmental burden and cost for scenarios in which the disaster waste derived from specified kinds of home appliances (refrigerators, washing machines, air-conditioners and TV sets) was transported, stored and recycled. In the scenario, CO 2 , SO x , NO X and PM emissions and total cost were 142t, 7kg, 257kg, 38kg and 1772 thousand USD, respectively. We also focused on SO x emission as a regional pollution source because transportation and operation of the temporary storage sites generates air pollution. If the treatment of all waste were finished in 3years, the environmental standard would be satisfied by setting work duration to 4.8h/d. Copyright © 2016 Elsevier Ltd. All rights reserved.
Web Application to Monitor Logistics Distribution of Disaster Relief Using the CodeIgniter Framework
NASA Astrophysics Data System (ADS)
Jamil, Mohamad; Ridwan Lessy, Mohamad
2018-03-01
Disaster management is the responsibility of the central government and local governments. The principles of disaster management, among others, are quick and precise, priorities, coordination and cohesion, efficient and effective manner. Help that is needed by most societies are logistical assistance, such as the assistance covers people’s everyday needs, such as food, instant noodles, fast food, blankets, mattresses etc. Logistical assistance is needed for disaster management, especially in times of disasters. The support of logistical assistance must be timely, to the right location, target, quality, quantity, and needs. The purpose of this study is to make a web application to monitorlogistics distribution of disaster relefusing CodeIgniter framework. Through this application, the mechanisms of aid delivery will be easily controlled from and heading to the disaster site.
Enacting Market Crisis: The Social Construction of a Speculative Bubble.
ERIC Educational Resources Information Center
Abolafia, Mitchel Y.; Kilduff, Martin
1988-01-01
Using the 1980 silver crisis as an example, this study reframes the traditional mania/distress/panic model of speculative bubbles as an organizing cycle focused on participants' strategic actions. The moral: if a market is threatened with disaster, then collaborative actions by participants can avert the disaster. Includes 44 references. (MLH)
Effective Emergency Management: Making Improvements for Communities and People with Disabilities
ERIC Educational Resources Information Center
Davis, Elizabeth; Phillips, Brenda
2009-01-01
This report offers information and advice to assist all levels of government in its work to establish evidence-based policies, programs, and practices across the life cycle of disasters. This report provides examples of effective community efforts with respect to people with disabilities, and evaluates many emergency preparedness, disaster relief,…
Smart garments for safety improvement of emergency/disaster operators.
Curone, Davide; Dudnik, Gabriela; Loriga, Giannicola; Luprano, Jean; Magenes, Giovanni; Paradiso, Rita; Tognetti, Alessandro; Bonfiglio, Annalisa
2007-01-01
The main purpose of the European project ProeTEX is to develop equipment to improve safety, coordination and efficiency of emergency disaster intervention personnel like fire-fighters or civil protection rescuers. The equipment consists of a new generation of "smart" garments, integrating wearable sensors which will allow monitoring physiological parameters, position and activity of the user, as like as environmental variables of the operating field in which rescuers are working: both commercial and newly developed textile and fibre based sensors will be included. The garments will also contain an electronic box to process data collected by the sensors and a communication system enabling the transmission of data to the other rescuers and to a monitoring station. Also a "smart" victim patch will be developed: a wearable garment which will allow monitoring physiological parameters of injured civilians involved in disasters, with the aim of optimizing their survival management.
Disaster management: using Internet-based technology.
Dimitruk, Paul
2007-01-01
Disasters impose operational challenges and substantial financial burdens on hospitals. Internet-based disaster management technology can help. This technology should: Capture, analyze, and track relevant data. Be available 24/7. Guide decision makers in setting up an incident command center and monitor the completion of jobs by ICC role. Provide assistance in areas that hospitals are not used to dealing with, e.g., chemical or bio-terror agents.
ERIC Educational Resources Information Center
Omarova, Mariya N.; Orakbay, Lyazzat Zh.; Shuratov, Idelbay H.; Kenjebayeva, Asiya T.; Zhumagalieva, Aizhan B.; Sarsenova, Ainur B.
2016-01-01
The paper is devoted to monitoring the environmental coliform bacteria (CB) contamination (soil and water) in the environmental disaster areas in the Kazakhstan part of the Aral Sea Region and ranking districts by their level of contamination and the rate of gastrointestinal infections (GI). The research was done in environmental disaster areas…
Disaster Monitoring and Emergency Response Services in China
NASA Astrophysics Data System (ADS)
Wu, J.; Han, X.; Zhou, Y.; Yue, P.; Wang, X.; Lu, J.; Jiang, W.; Li, J.; Tang, H.; Wang, F.; Li, X.; Fan, J.
2018-04-01
The Disaster Monitoring and Emergency Response Service(DIMERS) project was kicked off in 2017 in China, with the purpose to improve timely responsive service of the institutions involved in the management of natural disasters and man-made emergency situations with the timely and high-quality products derived from Space-based, Air-based and the in-situ Earth observation. The project team brought together a group of top universities and research institutions in the field of Earth observations as well as the operational institute in typical disaster services at national level. The project will bridge the scientific research and the response services of massive catastrophe in order to improve the emergency response capability of China and provide scientific and technological support for the implementation of the national emergency response strategy. In response to the call for proposal of "Earth Observation and Navigation" of 2017 National Key R&D Program of China, Professor Wu Jianjun, the deputy chairman of Faculty of Geographical Science of Beijing Normal University, submitted the Disaster Monitoring and Emergency Response Service (DIMERS) project, jointly with the experts and scholars from Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Wuhan University, China Institute of Earthquake Forecasting of China Earthquake Administration and China Institute of Water Resources and Hydropower Science. After two round evaluations, the proposal was funded by Ministry of Science and Technology of China.
The response to September 11: a disaster case study.
Crane, Michael A; Levy-Carrick, Nomi C; Crowley, Laura; Barnhart, Stephanie; Dudas, Melissa; Onuoha, Uchechukwu; Globina, Yelena; Haile, Winta; Shukla, Gauri; Ozbay, Fatih
2014-01-01
The response to 9/11 continues into its 14th year. The World Trade Center Health Program (WTCHP), a long-term monitoring and treatment program now funded by the Zadroga Act of 2010, includes >60,000 World Trade Center (WTC) disaster responders and community members ("survivors"). The aim of this review is to identify several elements that have had a critical impact on the evolution of the WTC response and, directly or indirectly, the health of the WTC-exposed population. It further explores post-disaster monitoring efforts, recent scientific findings from the WTCHP, and some implications of this experience for ongoing and future environmental disaster response. Transparency and responsiveness, site safety and worker training, assessment of acute and chronic exposure, and development of clinical expertise are interconnected elements determining efficacy of disaster response. Even in a relatively well-resourced environment, challenges regarding allocation of appropriate attention to vulnerable populations and integration of treatment response to significant medical and mental health comorbidities remain areas of ongoing programmatic development. Copyright © 2014 Icahn School of Medicine at Mount Sinai. All rights reserved.
MISSIONS: The Mobile-Based Disaster Mitigation System in Indonesia
NASA Astrophysics Data System (ADS)
Passarella, Rossi; Putri Raflesia, Sarifah; Lestarini, Dinda; Rifai, Ahmad; Veny, Harumi
2018-04-01
Disaster mitigation is essential to minimize the effects of disasters. Indonesia is one of the disaster prone areas in Asia and the government explores the usage of Information technology (IT) to aid its mitigation efforts. Currently, there are Indonesian websites which hold information regarding the weather monitoring, climate conditions, and geophysics. But, there is no clear indicator of mitigation efforts or things to do during an emergency. Therefore, this research proposed MISSIONS, a disaster mitigation model using geo-fencing technique to detect the location of the users through their mobile devices. MISSIONS uses mobile-based disaster mitigation system as a way to disseminate critical information to victims during emergency when they are in disaster zones using virtual fences. It aims to help the government to reduce the effects of disaster and aid in the mitigation efforts. The implementation result shows that MISSIONS have a high accuracy in detecting user whereabouts.
Gersons, B P R; Huijsman-Rubingh, R R R; Olff, M
2004-07-17
When the psychosocial-care scheme for victims of the firework explosion in Enschede, the Netherlands (2000) was set up, lessons learned from the Bijlmer airline disaster (Amsterdam 1992) were put into practice. The aftermath of this incident showed that psychological and physical health problems can still occur many years later. The main failure of the aftercare of the Bijlmer disaster lay in the coordination of aid and the monitoring of health problems. In Enschede steps were taken to redress these problems. An information and advice centre (IAC) was set up to monitor the well-being of the victims, and to provide them with information and, where necessary, assistance. It is responsible for limiting the effects of the disaster. A total of 13,000 people have consulted the IAC. A residents' association was formed. This gave the victims a common voice during the process of attempting to restore normality in their lives. A specialized mental health-care unit was founded to treat disaster-related disorders using evidence-based treatments. So far approximately 1,300 people have consulted this body. A longitudinal study has been set up to map the consequences of the disaster and to advise aid organizations. This will also give information on the extent to which these methods have been able to limit the long-term consequences.
Node Survival in Networks under Correlated Attacks
Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten
2015-01-01
We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635
What ails the Bhopal disaster investigations? (And is there a cure?).
Dhara, V Ramana
2002-01-01
A review of the health effects of the 1984 disaster in Bhopal, India, shows continuing morbidity of a multi-systemic nature in the exposed population. Scientific questions about epidemiologic issues are discussed with a view to understanding appropriate methods of investigation into the disaster. Other major chemical incidents were reviewed to note some of the common problems associated with public health investigations of disasters, which have included the lack of accident-related and toxicologic information, expertise, and funds. The complexity of the Bhopal crisis was underscored by the severe mortality and morbidity it entailed as well as its occurrence in a developing nation that had little experience in dealing with chemical disasters. Lessons learned from the disaster are discussed, with recommendations for disaster preparedness, long-term monitoring, rehabilitation, and treatment of the gas victims.
The application of dam break monitoring based on BJ-2 images
NASA Astrophysics Data System (ADS)
Cui, Yan; Li, Suju; Wu, Wei; Liu, Ming
2018-03-01
Flood is one of the major disasters in China. There are heavy intensity and wide range rainstorm during flood season in eastern part of China, and the flood control capacity of rivers is lower somewhere, so the flood disaster is abrupt and caused lots of direct economic losses. In this paper, based on BJ-2 Spatio-temporal resolution remote sensing data, reference image, 30-meter Global Land Cover Dataset(GlobeLand 30) and basic geographic data, forming Dam break monitoring model which including BJ-2 date processing sub-model, flood inundation range monitoring sub-model, dam break change monitoring sub-model and crop inundation monitoring sub-model. Case analysis in Poyang County Jiangxi province in 20th, Jun, 2016 show that the model has a high precision and could monitoring flood inundation range, crops inundation range and breach.
Effectiveness of landslide risk mitigation strategies in Shihmen Watershed, Taiwan
NASA Astrophysics Data System (ADS)
Wu, Chun-Yi; Chen, Su-Chin
2015-04-01
The purpose of this study was to establish landslide risk analysis procedures that can be used to analyze landslide risk in a watershed scale and to assess the effectiveness of risk mitigation strategies. Landslide risk analysis encompassed the landslide hazard, the vulnerability of elements at risk, and community resilience capacity. First, landslide spatial probability, landslide temporal probability, and landslide area probability were joined to estimate the probability of landslides with an area exceeding a certain threshold in each slope unit. Second, the expected property and life losses were both analyzed in vulnerability analysis. Different elements at risk were assigned corresponding values, and then used in conjunction with the vulnerabilities to carry out quantitative analysis. Third, the resilience capacity of different communities was calculated based on the scores obtained through community checklists and the weights of individual items, including "the participation experience of disaster prevention drill," "real-time monitoring mechanism of community," "autonomous monitoring of residents," and "disaster prevention volunteer." Finally, the landslide probabilities, vulnerability analysis results, and resilience capacities were combined to assess landslide risk in Shihmen Watershed. In addition, the risks before and after the implementation of non-structural disaster prevention strategies were compared to determine the benefits of various strategies, and subsequently benefit-cost analysis was performed. Communities with high benefit-cost ratios included Hualing, Yisheng, Siouluan, and Gaoyi. The watershed as a whole had a benefit-cost ratio far greater than 1, indicating that the effectiveness of strategies was greater than the investment cost, and these measures were thus cost-effective. The results of factor sensitivity analysis revealed that changes in vulnerability and mortality rates would increase the uncertainty of risk, and that raise in annual interest rates or reduction in life cycle of measures would decrease the benefit-cost ratio. However, with regard to effectiveness analysis, these changes did not reverse the cost-effective inference.
Survey of computer vision-based natural disaster warning systems
NASA Astrophysics Data System (ADS)
Ko, ByoungChul; Kwak, Sooyeong
2012-07-01
With the rapid development of information technology, natural disaster prevention is growing as a new research field dealing with surveillance systems. To forecast and prevent the damage caused by natural disasters, the development of systems to analyze natural disasters using remote sensing geographic information systems (GIS), and vision sensors has been receiving widespread interest over the last decade. This paper provides an up-to-date review of five different types of natural disasters and their corresponding warning systems using computer vision and pattern recognition techniques such as wildfire smoke and flame detection, water level detection for flood prevention, coastal zone monitoring, and landslide detection. Finally, we conclude with some thoughts about future research directions.
Applying telehealth in natural and anthropogenic disasters.
Simmons, Scott; Alverson, Dale; Poropatich, Ronald; D'Iorio, Joe; DeVany, Mary; Doarn, Charles R
2008-11-01
There are myriad telehealth applications for natural or anthropogenic disaster response. Telehealth technologies and methods have been demonstrated in a variety of real and simulated disasters. Telehealth is a force multiplier, providing medical and public health expertise at a distance, minimizing the logistic and safety issues associated with on-site care provision. Telehealth provides a virtual surge capacity, enabling physicians and other health professionals from around the world to assist overwhelmed local health and medical personnel with the increased demand for services postdisaster. There are several categories of telehealth applications in disaster response, including ambulatory/primary care, specialty consultation, remote monitoring, and triage, medical logistics, and transportation coordination. External expertise would be connected via existing telehealth networks in the disaster area or specially deployed telehealth systems in shelters or on-scene. This paper addresses the role of telehealth in disaster response and recommends a roadmap for its widespread use in preparing for and responding to natural and anthropogenic disasters.
Impact of public health emergencies on modern disaster taxonomy, planning, and response.
Burkle, Frederick M; Greenough, P Gregg
2008-10-01
Current disaster taxonomy describes diversity, distinguishing characteristics, and common relations in disaster event classifications. The impact of compromised public health infrastructure and systems on health consequences defines and greatly influences the manner in which disasters are observed, planned for, and managed, especially those that are geographically widespread, population dense, and prolonged. What may first result in direct injuries and death may rapidly change to excess indirect illness and subsequent death as essential public health resources are destroyed, deteriorate, or are systematically denied to vulnerable populations. Public health and public health infrastructure and systems in developed and developing countries must be seen as strategic and security issues that deserve international public health resource monitoring attention from disaster managers, urban planners, the global humanitarian community, World Health Organization authorities, and participating parties to war and conflict. We posit here that disaster frameworks be reformed to emphasize and clarify the relation of public health emergencies and modern disasters.
Cost Analysis of U.S. Navy Humanitarian Assistance and Disaster Relief Missions
2014-12-01
93943–5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING/MONITORING AGENCY...as a core competency to its maritime strategy. From 1970 to 2000, the Navy diverted vessels 366 times for HA/DR operations, as opposed to 22 times...Humanitarian Assistance and Disaster Relief as a core competency to its maritime strategy. From 1970 to 2000, the Navy diverted vessels 366 times for HA/DR
Imaging Systems Provide Maps for U.S. Soldiers
NASA Technical Reports Server (NTRS)
2012-01-01
Spanning nearly four decades, the remarkable Landsat program has continuously provided data about the Earth s surface, including detailed maps of vegetation, land use, forest extent and health, surface water, population distribution, as well as how these features have changed over time. Managed by NASA and the U.S. Geological Survey, Landsat s series of satellites obtain data through passive remote sensing, or the use of sensors to read the energy reflected or emitted from the Earth s surface. After the data from the sensors is processed and analyzed, it can be applied to create information-rich images of the planet. While the Landsat program has launched seven satellites since 1972, only Landsat 5 and 7 are currently operating. The next spacecraft in line to ensure continuity of data for years to come is the Landsat Data Continuity Mission (LDCM). Planned for launch in 2012, LDCM will take measurements of the Earth in visible, nearinfrared, shortwave infrared, and thermal infrared bands. In addition to widespread use for land use planning and monitoring on local to regional scales, support for disaster response and evaluations, as well as water use monitoring, LDCM measurements will directly serve NASA s research in the areas of climate, the carbon cycle, ecosystems, the water cycle, biogeochemistry, and Earth s surface and interior.
NASA Astrophysics Data System (ADS)
Mirus, B. B.; Kean, J. W.; Smith, J. B.; Staley, D. M.; Wooten, R.; Cattanach, B.; Rengers, F. K.; McGuire, L.; Godt, J.; Lu, N.
2017-12-01
On steep hillslopes, vegetation often provides an important ecosystem function by preventing landsliding, debris flows, and floods, thereby protecting human lives and infrastructure. Disturbances that disrupt vegetation - from wildfire and forest clearing to landslides themselves - can abruptly alter hillslope hydrologic and geomorphic processes thereby increasing the threat of these natural hazards. Two major challenges from a hazard assessment perspective are: (1) quantifying disturbance impacts on near-surface hydrologic responses, and (2) understanding the relevant processes and timescales associated with disturbance-recovery cycles. These challenges are complicated by the limited availability of long-term monitoring in pre- and post-disturbance environments. Therefore, many tools designed to provide rapid situational awareness and improve disaster preparedness and response rely on temporally invariant parameterization or locally derived empirical relations that are not necessarily transferrable across different geologic or climatic settings. Here we examine hillslope hydrologic response in landslide-prone terrain across the continental US, from the West Coast to Appalachia, to explore these issues related to disturbance-recovery cycles. Wildfire is a recurring disturbance along the actively uplifting mountains in semi-arid southern California, and heavy winter storms arriving from the Pacific are frequently able to produce debris flows in recently burned areas. Although wildfire is less common in the much wetter Cascades and Coast Ranges of Oregon and Washington, frequent landslides and forest clearing disturbances also influence hillslope hydrology and slope stability. In contrast, the recent wildfires in Tennessee, Georgia, and North Carolina have highlighted critical knowledge gaps related to post-fire hydrology and natural hazards in the geologically stable and humid sub-tropical southeastern US, where severe wildfires are less common than other disturbances. Our continuous monitoring from several burned and unburned hillslopes across these diverse geologic and climatic settings reveals variations in the disturbance impacts and recovery timescales, as well as the need for further monitoring, modeling, and synthesis across regions and scales.
Application of GIS Rapid Mapping Technology in Disaster Monitoring
NASA Astrophysics Data System (ADS)
Wang, Z.; Tu, J.; Liu, G.; Zhao, Q.
2018-04-01
With the rapid development of GIS and RS technology, especially in recent years, GIS technology and its software functions have been increasingly mature and enhanced. And with the rapid development of mathematical statistical tools for spatial modeling and simulation, has promoted the widespread application and popularization of quantization in the field of geology. Based on the investigation of field disaster and the construction of spatial database, this paper uses remote sensing image, DEM and GIS technology to obtain the data information of disaster vulnerability analysis, and makes use of the information model to carry out disaster risk assessment mapping.Using ArcGIS software and its spatial data modeling method, the basic data information of the disaster risk mapping process was acquired and processed, and the spatial data simulation tool was used to map the disaster rapidly.
Nishizawa, Masafumi; Hoshide, Satoshi; Okawara, Yukie; Matsuo, Takefumi; Kario, Kazuomi
2017-01-01
At the time of the Great East Japan earthquake and tsunami (March 2011), the authors developed a web-based information and communications technology (ICT)-based blood pressure (BP) monitoring system (the Disaster CArdiovascular Prevention [DCAP] Network) and introduced it in an area that was catastrophically damaged (Minamisanriku town) to help control the survivors' BP. Using this system, home BP (HBP) was monitored and the data were automatically transmitted to a central computer database and to the survivors' attending physicians. The study participants, 341 hypertensive patients, continued to use this system for 4 years after the disaster and all of the obtained HBP readings were analyzed. This DCAP HBP-guided approach helped achieve a decrease in the participants' HBPs (initial average: 151.3±20.0/86.9±10.2 mm Hg to 120.2±12.1/70.8±10.2 mm Hg) over the 4 years. In addition, the amplitude of seasonal BP variation was suppressed and the duration from the summer lowest HBP values to the winter peak HBP values was gradually prolonged. This ICT-based approach was useful to achieve strict HBP control and minimize the seasonal BP variation even in a catastrophically damaged area during a 4-year period after the disaster, suggesting that this approach could be a routine way to monitor BP in the community. ©2016 Wiley Periodicals, Inc.
A introduction of a Scientific Research Program on Chinese Drought
NASA Astrophysics Data System (ADS)
Li, Y.
2014-12-01
Drought is one of the major meteorological disasters, with high frequencies, wide distributions and serious conditions. It is one of the biggest impacts on global agricultural productions, ecological environment and socioeconomic sustainable developments. China is particularly one of the countries in the world with serious drought disasters. The goal of this project is improving the capabilities in drought monitoring and forecasting based on an in-depth theories of drought. The project will be implemented in the typical extreme drought area based on comprehensive and systemic observation network and numerical experiments It will show a complete feedback mechanism among the atmospheric, water, biological and other spheres for forming drought. First, the atmospheric droughts that leads to agriculture and hydrologic drought and the possible causes for these disasters will be explored using our observation data sets. Second, the capability of monitoring, forecasting and early warning for drought will be developed with numerical model (regional climate model and land surface model, etc.). Last but not the least, evaluation approaches for the risk of drought and the strategy of predicting/prohibiting the drought at regional scale will be proposed. Meanwhile, service system and information sharing platform of drought monitoring and early warning will be established to improve the technical level of drought disaster preparedness and response in China.
Global trends in satellite-based emergency mapping
Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati
2016-01-01
Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.
NASA Astrophysics Data System (ADS)
McClain, Shanna N.; Secchi, Silvia; Bruch, Carl; Remo, Jonathan W. F.
2017-12-01
This article examines the international policy and institutional frameworks for response to natural and man-made disasters occurring in the Danube basin and the Tisza sub-basin, two transnational basins. Monitoring and response to these types of incidents have historically been managed separately. We discuss whether the policy distinctions in response to natural and man-made disasters remain functional given recent international trends toward holistic response to both kinds of disasters. We suggest that these distinctions are counterproductive, outdated, and ultimately flawed, illustrate some of the specific gaps in the Danube and the Tisza, and conclude by proposing an integrated framework for disaster response in the Danube basin and Tisza sub-basin.
ERIC Educational Resources Information Center
Varma, Roli; Varma, Daya R.
2005-01-01
The 20th anniversary of the Bhopal calamity fell on December 3, 2004. The world's worst industrial disaster in Bhopal, India, happened because of inadequate maintenance by Union Carbide and poor monitoring by the Indian authorities. Malfunctioning safety measures, inappropriate location of the plant, and lack of information about the identity and…
A workshop was held in Research Triangle Park, NC on November 18-19, 2002 to discuss scientific issues associated with measuring, modeling, and assessing exposure and risk to air containing contaminants generated as a result of national emergencies and disasters. Participants wer...
Interdisciplinary Environmental-health Science Throughout Disaster Lifecycles
NASA Astrophysics Data System (ADS)
Plumlee, G. S.; Morman, S. A.; Hoefen, T. M.
2014-12-01
Potential human health effects from exposures to hazardous disaster materials and environmental contamination are common concerns following disasters. Using several examples from US Geological Survey environmental disaster responses (e.g., 2001 World Trade Center, mine tailings spills, 2005 Hurricane Katrina, 2007-2013 wildfires, 2011 Gulf oil spill, 2012 Hurricane Sandy, 2013 Colorado floods) and disaster scenarios (2011 ARkStorm, 2013 SAFRR tsunami) this presentation will illustrate the role for collaborative earth, environmental, and health science throughout disaster lifecycles. Pre-disaster environmental baseline measurements are needed to help understand environmental influences on pre-disaster health baselines, and to constrain the magnitude of a disaster's impacts. During and following disasters, there is a need for interdisciplinary rapid-response and longer-term assessments that: sample and characterize the physical, chemical, and microbial makeup of complex materials generated by the disasters; fingerprint material sources; monitor, map, and model dispersal and evolution of disaster materials in the environment; help understand how the materials are modified by environmental processes; and, identify key characteristics and processes that influence the exposures and toxicity of disaster materials to humans and the living environment. This information helps emergency responders, public health experts, and cleanup managers: 1) identify short- and long-term exposures to disaster materials that may affect health; 2) prioritize areas for cleanup; and 3) develop appropriate disposal solutions or restoration uses for disaster materials. By integrating lessons learned from past disasters with geospatial information on vulnerable sources of natural or anthropogenic contaminants, the environmental health implications of looming disasters or disaster scenarios can be better anticipated, which helps enhance preparedness and resilience. Understanding economic costs of environmental cleanup and environmental-health impacts from disasters is an area of needed research. Throughout all disaster stages, effective communication between diverse scientific disciplines and stakeholder groups is both a necessity and a challenge.
Analysis and Remediation of the 2013 LAC-MÉGANTIC Train Derailment
NASA Astrophysics Data System (ADS)
Brunke, Suzanne; Aubé, Guy; Legaré, Serge; Auger, Claude
2016-06-01
On July 6, 2013 a train owned by Montréal, Maine & Atlantic Railway (MMA) Company derailed in Lac-Mégantic, Quebec, Canada triggering the explosion of the tankers carrying crude oil. Several buildings in the downtown core were destroyed. The Sûreté du Québec confirmed the death of 47 people in the disaster. Through the Canadian Space Agency (CSA) Rapid Information Products and Services (RIPS) program, MDA developed value-added products that allowed stakeholders and all levels of government (municipal, provincial and federal) to get an accurate picture of the disaster. The goal of this RIPS Project was to identify the contribution that remote sensing technology can provide to disasters such as the train derailment and explosion at Lac-Mégantic through response and remediation monitoring. Through monitoring and analysis, the Lac-Mégantic train derailment response and remediation demonstrated how Earth observation data can be used for situational awareness in a disaster and in documenting the remediation process. Both high resolution optical and RADARSAT-2 SAR image products were acquired and analyzed over the disaster remediation period as each had a role in monitoring. High resolution optical imagery provided a very clear picture of the current state of remediation efforts, however it can be difficult to acquire due to cloud cover and weather conditions. The RADARSAT-2 SAR images can be acquired in all weather conditions at any time of day making it ideal for mission critical information gathering. MDA's automated change detection processing enabled rapid delivery of advanced information products.
Developing integrated methods to address complex resource and environmental issues
Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.
2016-02-08
IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some applications of project products and research findings are included in this circular. The work helped support the USGS mission to “provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.” Activities within the project include the following:Spanned scales from microscopic to planetary;Demonstrated broad applications across disciplines;Included life-cycle studies of mineral resources;Incorporated specialized areas of expertise in applied geochemistry including mineralogy, hydrogeology, analytical chemistry, aqueous geochemistry, biogeochemistry, microbiology, aquatic toxicology, and public health; andIncorporated specialized areas of expertise in geophysics including magnetics, gravity, radiometrics, electromagnetics, seismic, ground-penetrating radar, borehole radar, and imaging spectroscopy.This circular consists of eight sections that contain summaries of various activities under the project. The eight sections are listed below:Laboratory Facilities and Capabilities, which includes brief descriptions of the various types of laboratories and capabilities used for the project;Method and Software Development, which includes summaries of remote-sensing, geophysical, and mineralogical methods developed or enhanced by the project;Instrument Development, which includes descriptions of geophysical instruments developed under the project;Minerals, Energy, and Climate, which includes summaries of research that applies to mineral or energy resources, environmental processes and monitoring, and carbon sequestration by earth materials;Element Cycling, Toxicity, and Health, which includes summaries of several process-oriented geochemical and biogeochemical studies and health-related research activities;Hydrogeology and Water Quality, which includes descriptions of innovative geophysical, remote-sensing, and geochemical research pertaining to hydrogeology and water-quality applications;Hazards and Disaster Assessment, which includes summaries of research and method development that were applied to natural hazards, human-caused hazards, and disaster assessments; andDatabases and Framework Studies, which includes descriptions of fundamental applications of geophysical studies and of the importance of archived data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Robert M; Potok, Thomas E
Assessing the potential property and social impacts of an event, such as tornado or wildfire, continues to be a challenging research area. From financial markets to disaster management to epidemiology, the importance of understanding the impacts that events create cannot be understated. Our work describes an approach to fuse information from multiple sources, then to analyze the information cycles to identify prior temporal patterns related to the impact of an event. This approach is then applied to the analysis of news reports from multiple news sources pertaining to several different natural disasters. Results show that our approach can project themore » severity of the impacts of certain natural disasters, such as heat waves on droughts and wild fires. In addition, results show that specific types of disaster consistently produce similar impacts when each time they occur.« less
NASA Astrophysics Data System (ADS)
Futagami, Toru; Omoto, Shohei; Hamamoto, Kenichirou
This research describes the risk communication towards improvement in the local disaster prevention power for Gobusho town in Marugame city which is only a high density city area in Kagawa Pref. Specifically, the key persons and authors of the area report the practice research towards improvement in the local disaster prevention power by the PDCA cycle of the area, such as formation of local voluntary disaster management organizations and implementation of an emergency drill, applying the fire spreading simulation system in case of a big earthquake. The fire spreading simulation system in case of the big earthquake which authors are developing describes the role and subject which have been achieved to BCP of the local community as a support system.
Managing the natural disasters from space technology inputs
NASA Astrophysics Data System (ADS)
Jayaraman, V.; Chandrasekhar, M. G.; Rao, U. R.
1997-01-01
Natural disasters, whether of meteorological origin such as Cyclones, Floods, Tornadoes and Droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. Though it is almost impossible to completely neutralise the damage due to these disasters, it is, however possible to (i) minimise the potential risks by developing disaster early warning strategies (ii) prepare developmental plans to provide resilience to such disasters, (iii) mobilize resources including communication and telemedicinal services and (iv) to help in rehabilitation and post-disaster reconstruction. Space borne platforms have demonstrated their capability in efficient disaster management. While communication satellites help in disaster warning, relief mobilisation and telemedicinal support, Earth observation satellites provide the basic support in pre-disaster preparedness programmes, in-disaster response and monitoring activities, and post-disaster reconstruction. The paper examines the information requirements for disaster risk management, assess developing country capabilities for building the necessary decision support systems, and evaluate the role of satellite remote sensing. It describes several examples of initiatives from developing countries in their attempt to evolve a suitable strategy for disaster preparedness and operational framework for the disaster management Using remote sensing data in conjunction with other collateral information. It concludes with suggestions and recommendations to establish a worldwide network of necessary space and ground segments towards strengthening the technological capabilities for disaster management and mitigation.
Global trends in satellite-based emergency mapping.
Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati
2016-07-15
Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective. Copyright © 2016, American Association for the Advancement of Science.
Practice parameter on disaster preparedness.
Pfefferbaum, Betty; Shaw, Jon A
2013-11-01
This Practice Parameter identifies best approaches to the assessment and management of children and adolescents across all phases of a disaster. Delivered within a disaster system of care, many interventions are appropriate for implementation in the weeks and months after a disaster. These include psychological first aid, family outreach, psychoeducation, social support, screening, and anxiety reduction techniques. The clinician should assess and monitor risk and protective factors across all phases of a disaster. Schools are a natural site for conducting assessments and delivering services to children. Multimodal approaches using social support, psychoeducation, and cognitive behavioral techniques have the strongest evidence base. Psychopharmacologic interventions are not generally used but may be necessary as an adjunct to other interventions for children with severe reactions or coexisting psychiatric conditions. Copyright © 2013. Published by Elsevier Inc.
GLOBAL DISASTERS: Geodynamics and Society
NASA Astrophysics Data System (ADS)
Vikulina, Marina; Vikulin, Alexander; Semenets, Nikolai
2013-04-01
The problem of reducing the damage caused by geodynamic and social disasters is a high priority and urgent task facing the humanity. The vivid examples of the earthquake in Japan in March 2011 that generated a new kind of threat - the radiation pollution, and the events in the Arabic world that began in the same year, are dramatic evidences. By the middle of this century, the damage from such disastrous events is supposed to exceed the combined GDP of all countries of the world. The database of 287 large-scale natural and social disasters and global social phenomena that have occurred in the period of II B.C.E. - XXI A.D. was compiled by the authors for the first time. We have proposed the following phenomenological model: the scale of disasters over the time does not decrease, there is a minimum of accidents in the XV century; the numbers of accidents have cycles lasting until the first thousand years, natural and social disasters in the aggregate are uniformly distributed in time, but separately natural and social disasters are nonuniform. Thus, due to the evaluation, a 500-year cycle of catastrophes and 200-300 and 700-800-year periodicities are identified. It is shown that catastrophes are grouped into natural and social types by forming clusters. The hypothesis of the united geo-bio-social planetary process is founded. A fundamentally new feature of this research is the assumptions about the statistical significance of the biosphere and the impact of society on the geodynamic processes. The results allow to formulate a new understanding of global disaster as an event the damage from which the humanity will be unable to liquidate even by means of the total resource potential and the consequence of which may turn into the irreversible destruction of civilization. The correlation between the natural and social phenomena and the possible action mechanism is suggested.
NASA Astrophysics Data System (ADS)
Leidig, Mathias; Teeuw, Richard M.; Gibson, Andrew D.
2016-08-01
The article presents a time series (2009-2013) analysis for a new version of the ;Digital Divide; concept that developed in the 1990s. Digital information technologies, such as the Internet, mobile phones and social media, provide vast amounts of data for decision-making and resource management. The Data Poverty Index (DPI) provides an open-source means of annually evaluating global access to data and information. The DPI can be used to monitor aspects of data and information availability at global and national levels, with potential application at local (district) levels. Access to data and information is a major factor in disaster risk reduction, increased resilience to disaster and improved adaptation to climate change. In that context, the DPI could be a useful tool for monitoring the Sustainable Development Goals of the Sendai Framework for Disaster Risk Reduction (2015-2030). The effects of severe data poverty, particularly limited access to geoinformatic data, free software and online training materials, are discussed in the context of sustainable development and disaster risk reduction. Unlike many other indices, the DPI is underpinned by datasets that are consistently provided annually for almost all the countries of the world and can be downloaded without restriction or cost.
NASA Astrophysics Data System (ADS)
Chen, H.; Zhang, W. C.; Deng, C.; Nie, N.; Yi, L.
2017-02-01
All phases of disaster management require up-to-date and accurate information. Different in-situ and remote sensor systems help to monitor dynamic properties such as air quality, water level or inundated areas. The rapid emergence of web-based services has facilitated the collection, dissemination, and cartographic representation of spatial information from the public, giving rise to the idea of using Volunteered Geographic Information (VGI) to aid disaster management. In this study, with a brief review on the concept and the development of disaster management, opportunities and challenges for applying VGI in disaster management were explored. The challenges, including Data availability, Data quality, Data management and Legal issues of using VGI for disaster management, were discussed in detail with particular emphasis on the actual needs of disaster management practice in China. Three different approaches to assure VGI data quality, namely the classification and authority design of volunteers, a government-led VGI data acquisition framework for disaster management and a quality assessment system for VGI, respectively, were presented and discussed. As a case study, a prototype of VGI oriented earthquake disaster databank & sharing platform, an open WebGIS system for volunteers and other interested individuals collaboratively create and manage the earthquake disaster related information, was proposed, to provide references for improving the level of earthquake emergency response and disaster mitigation in China.
Citizen Science to Support Community-based Flood Early Warning and Resilience Building
NASA Astrophysics Data System (ADS)
Paul, J. D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J. A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dewulf, A.; Dhital, M. R.; Hannah, D. M.; Liu, W.; Nayaval, J. L.; Schiller, A.; Smith, P. J.; Stoffel, M.; Supper, R.
2017-12-01
In Disaster Risk Management, an emerging shift has been noted from broad-scale, top-down assessments towards more participatory, community-based, bottom-up approaches. Combined with technologies for robust and low-cost sensor networks, a citizen science approach has recently emerged as a promising direction in the provision of extensive, real-time information for flood early warning systems. Here we present the framework and initial results of a major new international project, Landslide EVO, aimed at increasing local resilience against hydrologically induced disasters in western Nepal by exploiting participatory approaches to knowledge generation and risk governance. We identify three major technological developments that strongly support our approach to flood early warning and resilience building in Nepal. First, distributed sensor networks, participatory monitoring, and citizen science hold great promise in complementing official monitoring networks and remote sensing by generating site-specific information with local buy-in, especially in data-scarce regions. Secondly, the emergence of open source, cloud-based risk analysis platforms supports the construction of a modular, distributed, and potentially decentralised data processing workflow. Finally, linking data analysis platforms to social computer networks and ICT (e.g. mobile phones, tablets) allows tailored interfaces and people-centred decision- and policy-support systems to be built. Our proposition is that maximum impact is created if end-users are involved not only in data collection, but also over the entire project life-cycle, including the analysis and provision of results. In this context, citizen science complements more traditional knowledge generation practices, and also enhances multi-directional information provision, risk management, early-warning systems and local resilience building.
Following the collapse of the World Trade Center towers on September 11, 2001, New York State and Federal agencies initiated numerous air monitoring activities to better understand the ongoing impact of emissions from the disaster. This report focuses on these air measurement da...
Earthquake-Induced Building Damage Assessment Based on SAR Correlation and Texture
NASA Astrophysics Data System (ADS)
Gong, Lixia; Li, Qiang; Zhang, Jingfa
2016-08-01
Comparing with optical Remote Sensing, the Synthetic Aperture Radar (SAR) has unique advantages as applied to seismic hazard monitoring and evaluation. SAR can be helpful in the whole process of after an earthquake, which can be divided into three stages. On the first stage, pre-disaster imagery provides history information of the attacked area. On the mid-term stage, up-to-date thematic maps are provided for disaster relief. On the later stage, information is provided to assist secondary disaster monitoring, post- disaster assessment and reconstruction second stage. In recent years, SAR has become an important data source of earthquake damage analysis and evaluation.Correlation between pre- and post-event SAR images is considered to be related with building damage. There will be a correlation decrease when the building collapsed in a shock. Whereas correlation decrease does not definitely indicate building changes. Correlation is also affected by perpendicular baseline, the ground coverage type, atmospheric change and other natural conditions, data processing and other factors. Building samples in the earthquake are used to discriminate the relation between damage degree and SAR correlation.
NASA Astrophysics Data System (ADS)
Pan, Huali; Hu, Mingjian; Ou, Guoqiang
2017-04-01
According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few risk for the debris flow when the daily rainfall was between 50.0-100.0mm, once the soil was saturated or nearly saturated because of the continuous antecedent precipitation, debris flow disaster would occur even the daily rainfall was only 50.0mm. In addition, it was prone to trigger debris flow disaster when the daily heavy rainfall was more than 100.0mm or the torrential rainfall in 3 days was between 250.0 -300.0mm.
Woo, Hyekyung; Cho, Youngtae; Shim, Eunyoung; Lee, Kihwang; Song, Gilyoung
2015-09-03
The Sewol ferry disaster severely shocked Korean society. The objective of this study was to explore how the public mood in Korea changed following the Sewol disaster using Twitter data. Data were collected from daily Twitter posts from 1 January 2011 to 31 December 2013 and from 1 March 2014 to 30 June 2014 using natural language-processing and text-mining technologies. We investigated the emotional utterances in reaction to the disaster by analyzing the appearance of keywords, the human-made disaster-related keywords and suicide-related keywords. This disaster elicited immediate emotional reactions from the public, including anger directed at various social and political events occurring in the aftermath of the disaster. We also found that although the frequency of Twitter keywords fluctuated greatly during the month after the Sewol disaster, keywords associated with suicide were common in the general population. Policy makers should recognize that both those directly affected and the general public still suffers from the effects of this traumatic event and its aftermath. The mood changes experienced by the general population should be monitored after a disaster, and social media data can be useful for this purpose.
Rapid assessment of disaster damage using social media activity
Kryvasheyeu, Yury; Chen, Haohui; Obradovich, Nick; Moro, Esteban; Van Hentenryck, Pascal; Fowler, James; Cebrian, Manuel
2016-01-01
Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and an increasing intensity of natural disasters resulting from climate change. During such events, citizens turn to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. In addition, the spatiotemporal distribution of disaster-related messages helps with the real-time monitoring and assessment of the disaster itself. We present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandy’s path and hurricane-related social media activity. We show that real and perceived threats, together with physical disaster effects, are directly observable through the intensity and composition of Twitter’s message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. We verify our findings for a wide range of disasters and suggest that massive online social networks can be used for rapid assessment of damage caused by a large-scale disaster. PMID:27034978
Woo, Hyekyung; Cho, Youngtae; Shim, Eunyoung; Lee, Kihwang; Song, Gilyoung
2015-01-01
The Sewol ferry disaster severely shocked Korean society. The objective of this study was to explore how the public mood in Korea changed following the Sewol disaster using Twitter data. Data were collected from daily Twitter posts from 1 January 2011 to 31 December 2013 and from 1 March 2014 to 30 June 2014 using natural language-processing and text-mining technologies. We investigated the emotional utterances in reaction to the disaster by analyzing the appearance of keywords, the human-made disaster-related keywords and suicide-related keywords. This disaster elicited immediate emotional reactions from the public, including anger directed at various social and political events occurring in the aftermath of the disaster. We also found that although the frequency of Twitter keywords fluctuated greatly during the month after the Sewol disaster, keywords associated with suicide were common in the general population. Policy makers should recognize that both those directly affected and the general public still suffers from the effects of this traumatic event and its aftermath. The mood changes experienced by the general population should be monitored after a disaster, and social media data can be useful for this purpose. PMID:26404349
Rapid assessment of disaster damage using social media activity.
Kryvasheyeu, Yury; Chen, Haohui; Obradovich, Nick; Moro, Esteban; Van Hentenryck, Pascal; Fowler, James; Cebrian, Manuel
2016-03-01
Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and an increasing intensity of natural disasters resulting from climate change. During such events, citizens turn to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. In addition, the spatiotemporal distribution of disaster-related messages helps with the real-time monitoring and assessment of the disaster itself. We present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandy's path and hurricane-related social media activity. We show that real and perceived threats, together with physical disaster effects, are directly observable through the intensity and composition of Twitter's message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. We verify our findings for a wide range of disasters and suggest that massive online social networks can be used for rapid assessment of damage caused by a large-scale disaster.
Buzzelli, Michelle M; Morgan, Paula; Muschek, Alexander G; Macgregor-Skinner, Gavin
2014-01-01
Lack of success in disaster recovery occurs for many reasons, with one predominant catalyst for catastrophic failure being flawed and inefficient communication systems. Increased occurrences of devastating environmental hazards and human-caused disasters will continue to promulgate throughout the United States and around the globe as a result of the continuous intensive urbanization forcing human population into more concentrated and interconnected societies. With the rapid evolutions in technology and the advent of Information and communication technology (ICT) interfaces such as Facebook, Twitter, Flickr, Myspace, and Smartphone technology, communication is no longer a unidirectional source of information traveling from the newsroom to the public. In the event of a disaster, time critical information can be exchanged to and from any person or organization simultaneously with the capability to receive feedback. A literature review of current information regarding the use of ICT as information infrastructures in disaster management during human-caused and natural disasters will be conducted. This article asserts that the integrated use of ICTs as multidirectional information sharing tools throughout the disaster cycle will increase a community's resiliency and supplement the capabilities of first responders and emergency management officials by providing real-time updates and information needed to assist and recover from a disaster.
The road less taken: modularization and waterways as a domestic disaster response mechanism.
Donahue, Donald A; Cunnion, Stephen O; Godwin, Evelyn A
2013-01-01
Preparedness scenarios project the need for significant healthcare surge capacity. Current planning draws heavily from the military model, leveraging deployable infrastructure to augment or replace extant capabilities. This approach would likely prove inadequate in a catastrophic disaster, as the military model relies on forewarning and an extended deployment cycle. Local equipping for surge capacity is prohibitively costly while movement of equipment can be subject to a single point of failure. Translational application of maritime logistical techniques and an ancient mode of transportation can provide a robust and customizable approach to disaster relief for greater than 90 percent of the American population.
Extreme Geohazards: Reducing the Disaster Risk and Increasing Resilience
NASA Astrophysics Data System (ADS)
Plag, Hans-Peter; Stein, Seth; Brocklebank, Sean; Jules-Plag, Shelley; Marsh, Stuart; Campus, Paola
2013-04-01
Extreme geohazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Exposure of human assets to geohazards has increased dramatically in recent decades, and the sensitivity of the built environment and the embedded socio-economic fabric have changed. We are putting the urban environment, including megacities, in harm's way. Paradoxically, innovation during recent decades, in particular, urban innovation, has increased the disaster risk and coupled this risk to the sustainability crisis. Only more innovation can reduce disaster risk and lead us out of the sustainability crisis. Extreme geohazards (volcanic eruptions, earthquakes, tsunamis) that occurred regularly throughout the last few millennia mostly did not cause major disasters because population density was low and the built environment was not sprawling into hazardous areas to the same extent as today. Similar extreme events today would cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. The Geohazards Community of Practice of the Group on Earth Observations (GEO) with support from the European Science Foundation is preparing a white paper assessing the contemporary disaster risks associated with extreme geohazards and developing a vision for science and society to engage in deliberations addressing this risk (see http://www.geohazcop.org/projects/extgeowp). Risk awareness and monitoring is highly uneven across the world, and this creates two kinds of problems. Firstly, potential hazards are much more closely monitored in wealthy countries than in the developing world. But the largest hazards are global in nature, and it is critical to get as much forewarning as possible to develop an effective response. The disasters and near-misses of the past show that adherence to scientific knowledge, particularly during the early warning phase, can reduce disasters. This suggests that a strong global monitoring system for geohazards is needed, not least to support the early detection of extreme hazards. Secondly, low risk awareness combined with poverty, corruption, and a lack of building codes and informed land use management creates the conditions to turn hazards into disasters throughout much of the developing world. Democratizing knowledge about extreme geohazards is very important in order to inform deliberations of disaster risks and community strategies that can reduce the disaster risk by increasing resilience and adaptive capacities without compromising the livelihood of communities. We use a four-order scheme to define disaster risk outcomes and associated societal processes. This framework can be implemented in the context of deliberative democracy and governance with participation of the community. The current dialog between science and society is not fully capable of supporting deliberative governance and a democratizing of knowledge. Most scientific knowledge is created independent of those who could put it to use, and a transition to co-design and co-development of knowledge involving a broad stakeholder base is necessary to address the disaster risk associated with extreme events. This transition may have the consequence of more responsibility and even liability for science.
NASA Astrophysics Data System (ADS)
Panteras, G.; Cervone, G.
2016-12-01
Satellite-based disaster monitoring has been extensively and successfully used for numerous crisis response and impact delineation tasks until nowadays. Remote sensing satellite are routinely used data during disasters for damage assessment and to coordinate relief operations. Although there is a plethora of satellite sensors able to provide actionable data about an event, their temporal resolution is limited by the satellite revisit time and the presence of clouds. These limitations do not allow for an uninterrupted and timely sensitive monitoring, which is crucial during disasters and emergencies. This research presents an approach that leverages the increased temporal resolution of crowdsourced data to partially overcame the limitations of satellite data. The proposed approach focuses on the geostatistical analysis of Tweeter data to help delineate the flood extent on a daily basis. The crowdsourced data are used to augment satellite imagery from EO-1 ALI, Landsat 8, WorldView-2 and WorldView-3 by fusing them together to complement the satellite observations. The proposed methodology was applied to estimate the daily flood extents in Charleston, SC, caused by hurricane Joaquin on October 2015. The results of the proposed methodology indicate that the user-generated data can be utilized adequately to both bridge the temporal gaps in the satellite-based observations and also to increase the spatial resolution of the flood extents.
The potential of crowdsourcing and mobile technology to support flood disaster risk reduction
NASA Astrophysics Data System (ADS)
See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian
2016-04-01
The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.
NASA Astrophysics Data System (ADS)
Kaneda, Y.; Takahashi, N.; Hori, T.; Kawaguchi, K.; Isouchi, C.; Fujisawa, K.
2017-12-01
Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For instance, 2004 Sumatra Earthquake in Indonesia, 2008 Wenchuan Earthquake in China, 2010 Chile Earthquake and 2011 Tohoku Earthquake in Japan etc., these earthquakes generated very severe damages. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software developments/preparations for reduction and mitigation of natural disasters are quite important. In Japan, DONET as the real time monitoring system on the ocean floor is developed and deployed around the Nankai trough seismogenic zone southwestern Japan. So, the early detection of earthquakes and tsunamis around the Nankai trough seismogenic zone will be expected by DONET. The integration of the real time data and advanced simulation researches will lead to reduce damages, however, in the resilience society, the resilience methods will be required after disasters. Actually, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. This means the resilience society. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, geography and psychology etc. are very important research fields for restorations after natural disasters. Finally, to realize and progress disaster mitigation science, human resource cultivation is indispensable. We already carried out disaster mitigation science under `new disaster mitigation research project on Mega thrust earthquakes around Nankai/Ryukyu subduction zone', and `SATREPS project of earthquake and tsunami disaster mitigation in the Marmara region and disaster education in Turkey'. Furthermore, we have to progress the natural disaster mitigation science against destructive natural disaster in the near future.
NASA Astrophysics Data System (ADS)
Abas, Faizulsalihin bin; Takayama, Shigeru
2015-02-01
This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.
Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2013-12-01
Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.
Disaster Governance for Community Resilience in Coastal Towns: Chilean Case Studies.
Villagra, Paula; Quintana, Carolina
2017-09-14
This study aimed to further our understanding of a characteristic of Community Resilience known as Disaster Governance. Three attributes of Disaster Governance-redundancy, diversity, and overlap-were studied in four coastal towns in southern Chile that are at risk of tsunamis. Overall, we explored how different spatial structures of human settlements influence Disaster Governance. Using the Projective Mapping Technique, the distribution of emergency institutions (N = 32) and uses given to specific sites (e.g., for refuge, sanitary purposes and medical attention) were mapped. Content and GIS analyses (Directional Distribution and Kernel Density Index) were used to explore the dispersion and concentration of institutions and uses in each town. Disaster Governance was found to be highly influenced by decisions taken during regional, urban, and emergency planning. Governance is better in towns of higher order in the communal hierarchical structure. Most of the emergency institutions were found to be located in central and urban areas, which, in turn, assures more redundancy, overlap, and diversity in governance in the event of a tsunami. Lack of flexibility of emergency plans also limits governance in rural and indigenous areas. While the spatial relationships found in this study indicate that urban sectors have better Disaster Governance than rural and indigenous sectors, the influence of resource availability after tsunamis, the role and responsibility of different levels of governments, and the politics of disaster also play an important role in Disaster Governance for determining Community Resilience. These findings shed light on emergency planning and aspects of the Disaster Management cycle.
Flabouris, Arthas; Nocera, Antony; Garner, Alan
2004-01-01
Multiple casualty incidents (MCI) are infrequent events for medical systems. This renders audit and quality improvement of the medical responses difficult. Quality tools and use of such tools for improvement is necessary to ensure that the design of medical systems facilitates the best possible response to MCI. To describe the utility of incident reporting as a quality monitoring and improvement tool during the deployment of medical teams for mass gatherings and multiple casualty incidents. Voluntary and confidential reporting of incidents was provided by members of the disaster medical response teams during the period of disaster medical team deployment for the 2000 Sydney Olympic Games. Qualitative evaluations were conducted of reported incidents. The main outcome measures included the nature of incident and associated contributing factors, minimization factors, harm potential, and comparison with the post-deployment, cold debriefings. A total of 53 incidents were reported. Management-based decisions, poor or non-existent protocols, and equipment and communication-related issues were the principal contributing factors. Eighty nine percent of the incidents were considered preventable. A potential for harm to patients and/or team members was documented in 58% of reports, of which 76% were likely to cause at least significant harm. Of equipment incidents, personal protective equipment (33%), medical equipment (27%), provision of equipment (22%), and communication equipment (17%) predominated. Personal protective equipment (50%) was reported as the most frequent occupational health and safety incident followed by fatigue (25%). Pre-deployment planning was the most important factor for future incident impact minimization. Incident monitoring was efficacious as a quality tool in identifying incident contributing factors. Incident monitoring allowed for greater systems evaluation. Further evaluation of this quality tool within different disaster settings is required.
Diehl, Glendon; Bradstreet, Nicole; Monahan, Felicia
2016-01-01
Tasked with analyzing the effectiveness of the Department of Defense's (DoD's) global health engagements, the Uniformed Services University of the Health Sciences (USU) used the Measures Of Effectiveness in Defense Engagement and Learning (MODEL) study to conduct a qualitative analysis of the DoD's response efforts to the Ebola pandemic in West Africa. The research aims to summarize the findings of studies that monitor and evaluate the DoD's response to the Ebola pandemic or compare the effectiveness of different DoD response activities; it further aims to identify common themes around positive and negative lessons learned and recommendations that can be applied to future DoD humanitarian assistance and disaster response efforts. The search included documents and observations from PubMed, Disaster Lit: Resource Guide for Disaster Medicine and Public Health, the Joint Lessons Learned Information System, the DoD and US Africa Command websites, and Google Scholar. The records selected from the search were analyzed to provide insights on the DoD's humanitarian assistance and disaster response engagements that could be employed to inform future operations and policy. Furthermore, the research identifies strengths and gaps in military capabilities to respond to disasters, which can be used to inform future training and education courses. Overall, the findings demonstrate the importance of monitoring, evaluating, and assessing disaster response activities and provide new evidence to support the implementation of activities, in accordance with the Global Health Security Agenda, to strengthen all-threat prevention, detection, and response capabilities worldwide.
Education in Disaster Management and Emergencies: Defining a New European Course.
Khorram-Manesh, Amir; Ashkenazi, Michael; Djalali, Ahmadreza; Ingrassia, Pier Luigi; Friedl, Tom; von Armin, Gotz; Lupesco, Olivera; Kaptan, Kubilay; Arculeo, Chris; Hreckovski, Boris; Komadina, Radko; Fisher, Philipp; Voigt, Stefan; James, James; Gursky, Elin
2015-06-01
Unremitting natural disasters, deliberate threats, pandemics, and humanitarian suffering resulting from conflict situations necessitate swift and effective response paradigms. The European Union's (EU) increasing visibility as a disaster response enterprise suggests the need not only for financial contribution but also for instituting a coherent disaster response approach and management structure. The DITAC (Disaster Training Curriculum) project identified deficiencies in current responder training approaches and analyzed the characteristics and content required for a new, standardized European course in disaster management and emergencies. Over 35 experts from within and outside the EU representing various organizations and specialties involved in disaster management composed the DITAC Consortium. These experts were also organized into 5 specifically tasked working groups. Extensive literature reviews were conducted to identify requirements and deficiencies and to craft a new training concept based on research trends and lessons learned. A pilot course and program dissemination plan was also developed. The lack of standardization was repeatedly highlighted as a serious deficiency in current disaster training methods, along with gaps in the command, control, and communication levels. A blended and competency-based teaching approach using exercises combined with lectures was recommended to improve intercultural and interdisciplinary integration. The goal of a European disaster management course should be to standardize and enhance intercultural and inter-agency performance across the disaster management cycle. A set of minimal standards and evaluation metrics can be achieved through consensus, education, and training in different units. The core of the training initiative will be a unit that presents a realistic situation "scenario-based training."
Use of NASA Near Real-Time and Archived Satellite Data to Support Disaster Assessment
NASA Technical Reports Server (NTRS)
McGrath, Kevin M.; Molthan, Andrew L.; Burks, Jason E.
2014-01-01
NASA's Short-term Prediction Research and Transition (SPoRT) Center partners with the NWS to provide near realtime data in support of a variety of weather applications, including disasters. SPoRT supports NASA's Applied Sciences Program: Disasters focus area by developing techniques that will aid the disaster monitoring, response, and assessment communities. SPoRT has explored a variety of techniques for utilizing archived and near real-time NASA satellite data. An increasing number of end-users - such as the NWS Damage Assessment Toolkit (DAT) - access geospatial data via a Web Mapping Service (WMS). SPoRT has begun developing open-standard Geographic Information Systems (GIS) data sets via WMS to respond to end-user needs.
The Gender Analysis Tools Applied in Natural Disasters Management: A Systematic Literature Review
Sohrabizadeh, Sanaz; Tourani, Sogand; Khankeh, Hamid Reza
2014-01-01
Background: Although natural disasters have caused considerable damages around the world, and gender analysis can improve community disaster preparedness or mitigation, there is little research about the gendered analytical tools and methods in communities exposed to natural disasters and hazards. These tools evaluate gender vulnerability and capacity in pre-disaster and post-disaster phases of the disaster management cycle. Objectives: Identifying the analytical gender tools and the strengths and limitations of them as well as determining gender analysis studies which had emphasized on the importance of using gender analysis in disasters. Methods: The literature search was conducted in June 2013 using PubMed, Web of Sciences, ProQuest Research Library, World Health Organization Library, Gender and Disaster Network (GDN) archive. All articles, guidelines, fact sheets and other materials that provided an analytical framework for a gender analysis approach in disasters were included and the non-English documents as well as gender studies of non-disasters area were excluded. Analysis of the included studies was done separately by descriptive and thematic analyses. Results: A total of 207 documents were retrieved, of which only nine references were included. Of these, 45% were in form of checklist, 33% case study report, and the remaining 22% were article. All selected papers were published within the period 1994-2012. Conclusions: A focus on women’s vulnerability in the related research and the lack of valid and reliable gender analysis tools were considerable issues identified by the literature review. Although non-English literatures with English abstract were included in the study, the possible exclusion of non-English ones was found as the limitation of this study. PMID:24678441
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
Next Generation Grating Spectrometer Sounders for LEO and GEO
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.
2011-01-01
AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads
NASA Astrophysics Data System (ADS)
Liu, Xiaofei; Wang, Enyuan
2018-06-01
A rockburst is a dynamic disaster that occurs during underground excavation or mining which has been a serious threat to safety. Rockburst prediction and control are as important as any other underground engineering in deep mines. For this paper, we tested electromagnetic radiation (EMR) signals generated during the deformation and fracture of rock samples from a copper mine under uniaxial compression, tension, and cycle-loading experiments, analyzed the changes in the EMR intensity, pulse number, and frequency corresponding to the loading, and a high correlation between these EMR parameters and the applied loading was observed. EMR apparently reflects the deformation and fracture status to the loaded rock. Based on this experimental work, we invented the KBD5-type EMR monitor and used it to test EMR signals generated in the rock surrounding the Hongtoushan copper mine. From the test results, it is determined the responding characteristics of EMR signals generated by changes in mine-generated stresses and stress concentrations and it is proposed that this EMR monitoring method can be used to provide early warning for rockbursts.
The establishment of experimental watershed in Taiwan
NASA Astrophysics Data System (ADS)
Wang, Yu-Chi; Tsung, Shun-Chung; Wang, Hau-Wei; Chen, Cheng-Hsin; Chang, Ya-Chi; Ho, Jui-Yi; Lee, Shih-Chiang; Hong, Jian-Hao
2015-04-01
The rainfall distribution in Taiwan is non-uniform in space and unsteady in time. The water level in the river usually rises rapidly due to the steep slope gradient in the upland area of the watershed. In addition, urbanization and high rainfall intensity result in an increase in surface runoff and decrease the time of concentration. All of these lead to flooding-related disasters and influence people's lives. Thus, the establishment of a more complete hydro-information will increase our understanding of the characteristics of watersheds, prevent disasters, and mitigate damages. To overcome these deficiencies, the Water Resources Agency (WRA), Ministry of Economic Affairs has identified Yilan and Dianbao River Basin to develop a long-term monitoring, then Taiwan Typhoon and Flood Research Institute is responsible for this project. The monitoring sites had been installed in 2012. The sensors for monitoring include rainfall gauge, water level sensor, water surface velocity sensor and pressure-type water depth sensor. Totally, there are 73 sites in the experimental watershed, including the sites installed by the Central Weather Bureau and the Water Resources Agency. Over 30 million data have been collected and validated. Most of data have been passed the processes and considered reliable data. Then, three types of models are applied including rainfall-runoff, river routing and two-dimensional flood models. The simulation results can properly fit the monitored data in these selected events and indicates these models are proper for the experimental watersheds and suitable used for real-time warning. Finally, for purpose of hydrological monitoring and disaster mitigation, a website has been created to show the monitoring data. The users can login and browse the real time monitoring data and figure of temporal data in the past 24 hours and get the information for flood mitigation and emergent evacuation.
Flares, Fears, and Forecasts: Public Misconceptions About the Sunspot Cycle
NASA Astrophysics Data System (ADS)
Larsen, K.
2012-06-01
Among the disaster scenarios perpetrated by 2012 apocalypse aficionados is the destruction of humankind due to solar flares and coronal mass ejections (CMEs). These scenarios reflect common misconceptions regarding the solar cycle. This paper (based on an annual meeting poster) sheds light on those misconceptions and how the AAVSO Solar Section can address them.
Land cover changes induced by the great east Japan earthquake in 2011
NASA Astrophysics Data System (ADS)
Ishihara, Mitsunori; Tadono, Takeo
2017-03-01
The east Japan earthquake that occurred on March 11, 2011 was a big natural disaster, comprising the large earthquake shock, tsunami, and Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. These disasters caused changes in the land use and land cover (LULC) in Japan’s Tohoku district. While the LULC map created before the disaster is available, as yet there is no precise LULC map of the district after the disaster. In this study, we created a precise LULC map for the years 2013-2015 post-disaster with 30-m spatial resolution using the Landsat-8 with the Operational Land Imager (OLI) to evaluate the changes in LULC induced by the disaster. Our results indicate many changes in areas categorized as rice paddies primarily into grass categories along the coast damaged by the tsunami and in the evacuation zone around the FDNPP. Since there is a possibility of future LULC changes according to the change of the evacuation zone and implementation of reconstruction and revitalization efforts, we recommend continual monitoring of the changes in LULC by the use of satellite data in order to evaluate the long-term effects of the disaster.
Land cover changes induced by the great east Japan earthquake in 2011.
Ishihara, Mitsunori; Tadono, Takeo
2017-03-31
The east Japan earthquake that occurred on March 11, 2011 was a big natural disaster, comprising the large earthquake shock, tsunami, and Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. These disasters caused changes in the land use and land cover (LULC) in Japan's Tohoku district. While the LULC map created before the disaster is available, as yet there is no precise LULC map of the district after the disaster. In this study, we created a precise LULC map for the years 2013-2015 post-disaster with 30-m spatial resolution using the Landsat-8 with the Operational Land Imager (OLI) to evaluate the changes in LULC induced by the disaster. Our results indicate many changes in areas categorized as rice paddies primarily into grass categories along the coast damaged by the tsunami and in the evacuation zone around the FDNPP. Since there is a possibility of future LULC changes according to the change of the evacuation zone and implementation of reconstruction and revitalization efforts, we recommend continual monitoring of the changes in LULC by the use of satellite data in order to evaluate the long-term effects of the disaster.
Disaster Governance for Community Resilience in Coastal Towns: Chilean Case Studies
Quintana, Carolina
2017-01-01
This study aimed to further our understanding of a characteristic of Community Resilience known as Disaster Governance. Three attributes of Disaster Governance—redundancy, diversity, and overlap—were studied in four coastal towns in southern Chile that are at risk of tsunamis. Overall, we explored how different spatial structures of human settlements influence Disaster Governance. Using the Projective Mapping Technique, the distribution of emergency institutions (N = 32) and uses given to specific sites (e.g., for refuge, sanitary purposes and medical attention) were mapped. Content and GIS analyses (Directional Distribution and Kernel Density Index) were used to explore the dispersion and concentration of institutions and uses in each town. Disaster Governance was found to be highly influenced by decisions taken during regional, urban, and emergency planning. Governance is better in towns of higher order in the communal hierarchical structure. Most of the emergency institutions were found to be located in central and urban areas, which, in turn, assures more redundancy, overlap, and diversity in governance in the event of a tsunami. Lack of flexibility of emergency plans also limits governance in rural and indigenous areas. While the spatial relationships found in this study indicate that urban sectors have better Disaster Governance than rural and indigenous sectors, the influence of resource availability after tsunamis, the role and responsibility of different levels of governments, and the politics of disaster also play an important role in Disaster Governance for determining Community Resilience. These findings shed light on emergency planning and aspects of the Disaster Management cycle. PMID:28906480
A Survey about resilience of Turkish People to a Potential Disaster
NASA Astrophysics Data System (ADS)
Gurbas, P.
2012-04-01
As it is known, some of the cities in Turkey have experienced such disasters as earthquake; flood and they are continuing to experience. After all these disasters, it takes a long time for a city to recover itself. In this period, the people living in that city are important factors to use this time more effectively. For this purpose, this paper is prepared using a survey in order to evaluate and comment on the resilient capacity of the society in Turkey. This paper, which is composed of ten questions of survey, covers basic questions that the individuals should apply in the stages of mitigation, preparedness, response, recovery which are among the cycles of a disaster such as if they have disaster plans or policies, if they are capable of applying first aid, also their knowledge about the golden hours term. Some questions are asked in order to obtain opinions of individuals about the options to fix the resilience problem. This survey has been carried out among the people who live in different cities and various occupations and also belongs to different socio-economic groups, in Turkey. This study indicates whether Turkish citizens are resilient to a potential disaster or not. The survey has been implemented to 100 people using the telephone and the internet. According to the survey, Turkish people are not resilient to a potential disaster. Only 20% of the society is aware of the concepts of being resilient, other 80% is lack of training and knowledge to a potential disaster. Reasons to absence of preparedness, and mitigation are listed as being not educated and financial difficulties. Although the disasters that experienced in Turkey, the society have short-time awareness but then, it disappears in process of time rapidly after disaster.
Roorda, J; van Stiphout, W A H J; Huijsman-Rubingh, R R R
2004-12-01
Public health policy is increasingly concerned with the care for victims of a disaster. This article describes the design and implementation of an epidemiological study, which seeks to match care services to the specific problems of persons affected by a large scale incident. The study was prompted by the explosion of a firework depot in Enschede, the Netherlands. All those directly affected by this incident (residents, emergency services personnel, and people who happened to be in the area at the time), some of whom suffered personal loss or injury. The project investigates both the physical and psychological effects of the disaster, as well as the target group's subsequent call on healthcare services. A questionnaire based follow up survey of those directly affected and an ongoing monitoring of health problems relying on reports from healthcare professionals. The follow up survey started three weeks after the incident and was repeated 18 months and almost four years after the incident. The monitoring is conducted over a four year period by general practitioners, the local mental health services department, occupational health services, and the youth healthcare services department. It provides ongoing information. The results of the study are regularly discussed with healthcare professionals and policy makers, and are made known to the research participants. The paper also explains the considerations that were made in designing the study to help others making up their research plans when confronted with possible health effects of a disaster.
Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao
2014-01-01
Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186
Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao
2014-01-01
Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.
NASA Astrophysics Data System (ADS)
Boni, G.
2009-04-01
CIMA is a Research Foundation which aim is to advance science and engineering in environmentally related fields, focusing on public health and safety, civil protection and the preservation of terrestrial and water-related ecosystems. This aim is accomplished through scientific research, technology transfer and high level training services. Here we present the "New Aphrodite school on Disasters Food and Poverty" jointly managed by CIMA Foundation, and the University of Genova. The school is organized to provide to international students, professionals and government officials, mainly from poor or developing countries, formation for the management, prediction and prevention of natural and man made disasters. The expertise of the teachers, mainly CIMA's researchers, comes from a long term support of CIMA Foundation to the Italian Civil Protection in developing the advanced national system for risk prediction, prevention and management. The school is organized in two levels. The first level includes an international master of science degree in "Environmental Engineering: Sustainable Development and Risk Management", which classes are given in English, and a master for professional and government officials in "Disasters, food and poverty". The second level includes an international Ph.D. programme in "Information sciences and technologies for system monitoring and environmental risk management". Short training courses for international government official are periodically organized. At present the school is organizing short courses for officials of Civil Protections of Venezuela, Barbados and Mozambique. The philosophy underlying the teaching activities is to promote a multi-disciplinary approach to disaster mitigation, prevention and prediction. Special focus is on the potential of high-tech low-cost technologies for rapid communication and disaster monitoring, such as satellite based technologies. Such technologies are seen as the best way to support the development of autonomous capacities in developing countries, with affordable investment costs, and to improve globally the understanding of the phenomena leading to disasters.
Public awareness and disaster risk reduction: just-in-time networks and learning.
Ardalan, Ali; Linkov, Faina; Shubnikov, Eugene; LaPorte, Ronald E
2008-01-01
Improving public awareness through education has been recognized widely as a basis for reducing the risk of disasters. Some of the first disaster just-in-time (JIT) education modules were built within 3-6 days after the south Asia tsunami, Hurricane Katrina, and the Bam, Pakistan, and Indonesia earthquakes through a Supercourse. Web monitoring showed that visitors represented a wide spectrum of disciplines and educational levels from 120 developed and developing countries. Building disaster networks using an educational strategy seizes the opportunity of increased public interest to teach and find national and global expertise in hazard and risk information. To be effective, an expert network and a template for the delivery of JIT education must be prepared before an event occurs, focusing on developing core materials that could be customized rapidly, and then be based on the information received from a recent disaster. The recyclable process of the materials would help to improve the quality of the teaching, and decrease the time required for preparation. The core materials can be prepared for disasters resulting from events such as earthquakes, hurricanes, tsunamis, floods, and bioterrorism.
Multi-Satellite Observation Scheduling for Large Area Disaster Emergency Response
NASA Astrophysics Data System (ADS)
Niu, X. N.; Tang, H.; Wu, L. X.
2018-04-01
an optimal imaging plan, plays a key role in coordinating multiple satellites to monitor the disaster area. In the paper, to generate imaging plan dynamically according to the disaster relief, we propose a dynamic satellite task scheduling method for large area disaster response. First, an initial robust scheduling scheme is generated by a robust satellite scheduling model in which both the profit and the robustness of the schedule are simultaneously maximized. Then, we use a multi-objective optimization model to obtain a series of decomposing schemes. Based on the initial imaging plan, we propose a mixed optimizing algorithm named HA_NSGA-II to allocate the decomposing results thus to obtain an adjusted imaging schedule. A real disaster scenario, i.e., 2008 Wenchuan earthquake, is revisited in terms of rapid response using satellite resources and used to evaluate the performance of the proposed method with state-of-the-art approaches. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.
Ozaki, Akihiko; Yokota, Takeru; Nomura, Shuhei; Tsubokura, Masaharu; Leppold, Claire; Tanimoto, Tetsuya; Miura, Toru; Yamamoto, Kana; Sawano, Toyoaki; Tsukada, Manabu; Kami, Masahiro; Kanazawa, Yukio; Ohira, Hiromichi
2017-10-01
Animals, including arthropods, are one health threat that can be affected by disasters. This institution-based study aimed to assess trends in Hymenoptera stings following the 2011 Fukushima nuclear disaster. We reviewed the medical records of patients with hymenopteran stings who visited Minamisoma Municipal General Hospital, located 23 km from Fukushima Daiichi Nuclear Power Plant, from March 2005 to March 2016. Patient and sting characteristics of post-disaster patients were examined, and the annual incidence of hospital visits for hymenopteran stings was compared with the pre-disaster baseline, calculating an incidence rate ratio (IRR) for each year. We identified 152 pre-disaster patients (2005-2011) and 222 post-disaster patients (2011-2016). In the post-disaster period, 160 males (72.1%) were identified, with a median age of 59 years (range: 2-89 years). A total of 45 patients (20.3%) were decontamination workers. Post-disaster increases were found in the IRR for hymenopteran stings, peaking first in 2011 (IRR: 2.8; 95% confidence interval [CI]: 1.9-4.2) and later in 2014 (IRR: 3.2; 95% CI: 2.4-4.3) and 2015 (IRR 3.3; 95% CI: 2.5-4.4). Long-term increases were found in the IRR of hospital visits for hymenopteran stings in an institution affected by the Fukushima nuclear disaster. Decontamination workers appear to have been particularly affected by this phenomenon. Better disaster field worker monitoring and education about potential environmental health hazards may help to identify and prevent worker exposure to insect stings and other vectors in these settings. (Disaster Med Public Health Preparedness. 2017;11:545-551).
Post-disaster health impact of natural hazards in the Philippines in 2013.
Salazar, Miguel Antonio; Pesigan, Arturo; Law, Ronald; Winkler, Volker
2016-01-01
In 2011, the Health Emergency Management Bureau (HEMB) created the Surveillance for Post Extreme Emergencies and Disasters (SPEED), a real-time syndromic surveillance system that allows the early detection and monitoring of post-disaster disease trends. SPEED can assist health leaders in making informed decisions on health systems affected by disasters. There is a need for further validation of current concepts in post-disaster disease patterns in respect to actual field data. This study aims to evaluate the temporal post-disaster patterns of selected diseases after a flood, an earthquake, and a typhoon in the Philippines in 2013. We analyzed the 21 syndromes provided by SPEED both separately and grouped into injuries, communicable diseases, and non-communicable diseases (NCDs) by calculating daily post-disaster consultation rates for up to 150 days post-disaster. These were compared over time and juxtaposed according to the type of disaster. Communicable diseases were found to be the predominant syndrome group in all three disaster types. The top six syndromes found were: acute respiratory infections, open wounds, bruises and burns, high blood pressure, skin disease, fever, and acute watery diarrhea. Overall, the results aligned with the country's morbidity profile. Within 2 months, the clear gradation of increasing syndrome rates reflected the severity (flood
Sprung, Charles L; Cohen, Robert; Adini, Bruria
2010-04-01
In December 2007, the European Society of Intensive Care Medicine established a Task Force to develop standard operating procedures (SOPs) for operating intensive care units (ICU) during an influenza epidemic or mass disaster. To provide direction for health care professionals in the preparation and management of emergency ICU situations during an influenza epidemic or mass disaster, standardize activities, and promote coordination and communication among the medical teams. Based on a literature review and contributions of content experts, a list of essential categories for managing emergency situations in the ICU were identified. Based on three cycles of a modified Delphi process, consensus was achieved regarding the categories. A primary author along with an expert group drafted SOPs for each category. Based on the Delphi cycles, the following key topics were found to be important for emergency preparedness: triage, infrastructure, essential equipment, manpower, protection of staff and patients, medical procedures, hospital policy, coordination and collaboration with interface units, registration and reporting, administrative policies and education. The draft SOPs serve as benchmarks for emergency preparedness and response of ICUs to emergencies or outbreak of pandemics.
Physical and environmental considerations for first responders.
Migl, Karen S; Powell, Rose M
2010-12-01
To prioritize the most common effects of a disaster, HCPs must decide in advance what is needed and how, when, and whom to provide the necessary support to deal with the posteffects of a disaster. During the rescue mission, the primary public health concern is clean drinking water, food, shelter, and medical care. Medical care is critical especially in areas where little or no medical care exists. Natural disasters do not necessarily cause an increase in infectious disease outbreaks. However, contaminated water and food supplies as well as the lack of shelter and medical care may have a secondary effect of worsening illnesses that already exists in the affected region. Appropriate preparation in the form of preplanning for immunizations as well as education about other forms of protection, such as appropriate apparel and water decontamination, promotes a safer environment for first responders and survivors. The continued need for postdisaster health monitoring for HCPs is imperative. The effects of a disaster last a long time; therefore there is an ongoing need to focus on the physical and environmental effects, including surveying and monitoring for infectious water or insect-transmitted diseases; restoring normal primary health services, water systems, transportation, housing, and employment; and continuing to assist the community’s recovery after the immediate crisis has subsided. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jiren; Yesou, Herve; Malosti, Rita; Andreoli, Remi; Huang, Shifeng; Xin, Jingfeng; Cattaneo, Fabrizia
2008-04-01
The Flood Dragon project enhances the Envisat contribution for natural disaster monitoring. Flood DFRAGON project had much more exploited the ENVISAT resource for crisis management than the International Charter Space and major Disasters since 2002. Indeed, during the 2005, 2006 and 2007 Chinese flood seasons, over the 27 attempted NRT exploitations of Envisat, 23 were successful. Obtained results over floods, affecting Yangtze and Songua, Huaihe watersheds as pollution events on Taihue lake and Nen River are illustrated. Lessons are discussed in terms of programming, downloading, processing, and images type and format. Recommendations for the background mission of the future Sentinel 1 constellation are given.
The Gujarat Earthquake: Mitigations Failures and Lessons learnt for Future Strategies
NASA Astrophysics Data System (ADS)
Katuri, A. K.; Mittal, J.; Kumar, K.
Time and again, the Indian subcontinent has been suffering from diverse natural calamities, ranging from droughts to floods, landslides to earthquakes, and cyclones to spells of famines. Recently, in October 1999, a severe cyclone battered the eastern coast of Orissa affecting millions of people, blowing away homes, damaging buildings, destroying crops and wiping out a huge cattle population. The Gujarat earthquake of January 2001 was another monumental disaster that affected more than 15 million people causing colossal loss of life and property estimated at US 1.30 billion, though actual may be much higher. More than 200 international and domestic voluntary agencies promptly rushed aid to the damaged areas at the shake of the quake-2001. In this crucial rescue phase, teams were scattered across affected villages and urban centers, clueless of precise locations and extent of damage. Problems faced during the relief and rehabilitation were- absence of a comprehensive information system (both spatial and attribute), absence of a nodal agency to disseminate information on the type of relief required, absence of high precision remotely sensed data, appropriate for preparation and implementation of long term reconstruction and rehabilitation plan (Development Plan). Repeated disaster assessments by multiple agencies led to wastage of time and resources. All this led to non-coherence amongst the coordinating agencies, and rescue &relief teams. Spatial and attribute damage assessment could have been easier in the presence of comprehensive geographic and demographic information supported by high precision satellite imageries to compare pre and post disaster situation. Disaster management includes pre-disaster preparedness planning, post- disaster damage assessment, search and rescue, rehabilitation and reconstruction activities. Unlike other disasters, scientific alerts, forecasts and warnings of impending earthquake still require more attention. Disaster Preparedness Plan for speedy rescue and relief operations needs to be in place with improved information system for post disaster recovery. This paper draws upon the shortfalls faced in the management of Gujarat earthquake; a lesson learnt and presents a comprehensive strategy for Systems networking including the role of space programs in disaster management. The proposed structure is a top down approach for cooperation, emerging from bottom level demand. The missing key elements in the post-disaster situation were - effective information system, high resolution remote sensing data (for effective town planning), operational GIS, with support network from some or all of the governmental agencies. An integrated global communication network for wider dissemination of forecasts, warning and monitoring on a global level and sharing of related knowledge and information can play a vital role in disaster reduction. Needless to say, the local, regional and national disaster communication networks must be fully integrated in the global grid. The proposed structure for disaster management has a National Disaster Mitigation Establishment (NDME) as the apex body under the auspices of the central government, which would be networked across nations to similar other NDMEs. Each NDME would handle the coordination and monitoring of its state units which may be called as State Disaster Management Establishments (SDME). The SDMEs with various district or sub-district level units would collate data. The Network would be supported with field staff at its offices and would liaison with respective higher level DMEs where the lowest unit may be a village / town or cluster of villages. This paper emphasizes the need for comprehensive information system with Spatial Decision Support System (DSS) at three different levels for total disaster management.
Stealth and Natural Disasters: Science, Policy and Human Behavior
NASA Astrophysics Data System (ADS)
Kieffer, S. W.
2008-12-01
Geophysicists, earth scientists, and other natural scientists play a key role in studying disasters, and are challenged to convey the science to the public and policy makers (including government and business). I have found it useful to introduce the concept of two general types of disasters to these audiences: natural and stealth. Natural disasters are geological phenomena over which we humans have some, but relatively little, control. Earthquakes, tsunamis, floods and volcanic eruptions are the most familiar examples, but exogenous events such as meteorite impacts, solar flares, and supernovae are also possibly disruptive. Natural disasters typically have an abrupt onset, cause immediate major change, are familiar from the historic record, and get much media and public attention. They cannot be prevented, but preplanning can ameliorate their effects. Natural disasters are increasingly amplified by us (humans), and we are increasingly affected by them due to our expanding presence on the planet. Less familiar disasters are unfolding in the near-term, but they are not happening in the minds of most people. They are approaching us stealthily, and for this reason I propose that we call them stealth disasters. They differ from natural disasters in several important ways: stealth disasters are primarily caused by, or driven by, the interaction of humans with complex cycles of processes on the planet. Examples are: fresh water shortages and contamination, soil degradation and loss, climate changes, ocean degradation. The onset of stealth disasters is incremental rather than abrupt. They may not unfold significantly during the course of one term of political office, but they are unfolding in our lifetime. We as individuals may or may not escape their consequences, but they will affect our children and grandchildren. If humans are familiar with stealth disasters at all, it is from a relatively local experience, e.g., flooding of the Mississippi or the Dust Bowl in the U.S., or their counterparts in other places globally. Knowledge of stealth disasters is not universal at the scale now required for global attention. Pre-planning can allay the impacts of stealth disasters, or possibly even prevent them. It is imperative that a new Congress and new Administration be informed of the need to respond to both the near-term natural disasters, and to immediately institute thoughtful planning to ally or prevent the stealth disasters.
Xavier, Diego Ricardo; Barcellos, Christovam; Barros, Heglaucio da Silva; Magalhães, Monica de Avelar Figueiredo Mafra; Matos, Vanderlei Pascoal de; Pedroso, Marcel de Moraes
2014-09-01
The occurrence of disasters is often related to unforeseeable able natural processes. However, the analysis of major databases may highlight seasonal and long-term trends, as well as some spatial patterns where risks are concentrated. In this paper the process of acquiring and organizing climate-related disaster data collected by civil protection institutions and made available by the Brazilian Climate and Health Observatory is described. Preliminary analyses show the concentration of disasters caused by heavy rainfall events along the Brazilian coastline especially during the summer. Droughts have longer duration and extent, affecting large areas of the south and northeast regions of the country. These data can be used to analyze and monitor the impact of extreme climatic events on health, as well as identify the vulnerability and climate deteminants.
Natural disasters and suicidal behaviours: a systematic literature review.
Kõlves, Kairi; Kõlves, Keili E; De Leo, Diego
2013-03-20
Various consequences including suicidal behaviours can arise in the aftermath of natural disasters. The aim of the present review was to systematically analyse the existing literature on the potential impact of natural disasters on suicidal behaviours. A systematic search of English-language articles indexed in electronic databases was conducted. The current review covers 42 papers containing empirical analyses of the relationship between natural disasters and suicidal behaviours. In total, 19 papers analysed suicide mortality and 23 non-fatal suicidal behaviours. The effects of earthquakes on suicidal behaviours are the most frequently studied among natural disasters (n=20), followed by hurricanes (n=11). Further, there were four papers about tsunamis, three about floods, three about heat waves and drought, and one investigating the effects of multiple natural disasters. The studies show different directions in suicide mortality following natural disasters. Nevertheless, there seems to be a drop in non-fatal suicidal behaviours in the initial post-disaster period, which has been referred to as the 'honeymoon' phase. A delayed increase in suicidal behaviours has been reported in some studies. However, other factors increasing the risk of suicidal behaviours after natural disasters have been reported, such as previous and current mental health problems. Furthermore, contributing factors, such as economic conditions, should also be considered. The exclusion of non-English articles. In light of the various methodological limitations observed, there is a need for further studies using proper designs. Mental health and suicidal behaviours should continue to be monitored for several years after the disaster. Copyright © 2012 Elsevier B.V. All rights reserved.
Building Change Detection from Harvey using Unmanned Aerial System (UAS)
NASA Astrophysics Data System (ADS)
Chang, A.; Yeom, J.; Jung, J.; Choi, I.
2017-12-01
Unmanned Aerial System (UAS) is getting to be the most important technique in recent days since the fine spatial and high temporal resolution data previously unobtainable from traditional remote sensing platforms. Advanced UAS data can provide a great opportunity for disaster monitoring. Especially, building change detection is the one of the most important topics for damage assessment and recovery from disasters. This study is proposing a method to monitor building change with UAS data for Holiday Beach in Texas, where was directly hit by Harvey on 25 August 2017. This study adopted 3D change detection to monitor building damage and recovery levels with building height as well as natural color information. We used a rotorcraft UAS to collect RGB data twice on 9 September and 18 October 2017 after the hurricane. The UAS data was processed using Agisoft Photoscan Pro Software to generate super high resolution dataset including orthomosaic, DSM (Digital Surface Model), and 3D point cloud. We compared the processed dataset with an airborne image considerable as before-hurricane data, which was acquired on January 2016. Building damage and recovery levels were determined by height and color change. The result will show that UAS data is useful to assess building damage and recovery for affected area by the natural disaster such as Harvey.
Multi-hazard risk analysis using the FP7 RASOR Platform
NASA Astrophysics Data System (ADS)
Koudogbo, Fifamè N.; Duro, Javier; Rossi, Lauro; Rudari, Roberto; Eddy, Andrew
2014-10-01
Climate change challenges our understanding of risk by modifying hazards and their interactions. Sudden increases in population and rapid urbanization are changing exposure to risk around the globe, making impacts harder to predict. Despite the availability of operational mapping products, there is no single tool to integrate diverse data and products across hazards, update exposure data quickly and make scenario-based predictions to support both short and long-term risk-related decisions. RASOR (Rapid Analysis and Spatialization Of Risk) will develop a platform to perform multi-hazard risk analysis for the full cycle of disaster management, including targeted support to critical infrastructure monitoring and climate change impact assessment. A scenario-driven query system simulates future scenarios based on existing or assumed conditions and compares them with historical scenarios. RASOR will thus offer a single work environment that generates new risk information across hazards, across data types (satellite EO, in-situ), across user communities (global, local, climate, civil protection, insurance, etc.) and across the world. Five case study areas are considered within the project, located in Haiti, Indonesia, Netherlands, Italy and Greece. Initially available over those demonstration areas, RASOR will ultimately offer global services to support in-depth risk assessment and full-cycle risk management.
Pathfinder-Plus aircraft in flight
NASA Technical Reports Server (NTRS)
1998-01-01
The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.
Snow Cover Mapping and Ice Avalanche Monitoring from the Satellite Data of the Sentinels
NASA Astrophysics Data System (ADS)
Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q.
2018-04-01
In order to monitor ice avalanches efficiently under disaster emergency conditions, a snow cover mapping method based on the satellite data of the Sentinels is proposed, in which the coherence and backscattering coefficient image of Synthetic Aperture Radar (SAR) data (Sentinel-1) is combined with the atmospheric correction result of multispectral data (Sentinel-2). The coherence image of the Sentinel-1 data could be segmented by a certain threshold to map snow cover, with the water bodies extracted from the backscattering coefficient image and removed from the coherence segment result. A snow confidence map from Sentinel-2 was used to map the snow cover, in which the confidence values of the snow cover were relatively high. The method can make full use of the acquired SAR image and multispectral image under emergency conditions, and the application potential of Sentinel data in the field of snow cover mapping is exploited. The monitoring frequency can be ensured because the areas obscured by thick clouds are remedied in the monitoring results. The Kappa coefficient of the monitoring results is 0.946, and the data processing time is less than 2 h, which meet the requirements of disaster emergency monitoring.
NASA Astrophysics Data System (ADS)
Koay, Swee Peng; Fukuoka, Hiroshi; Tien Tay, Lea; Murakami, Satoshi; Koyama, Tomofumi; Chan, Huah Yong; Sakai, Naoki; Hazarika, Hemanta; Jamaludin, Suhaimi; Lateh, Habibah
2016-04-01
Every year, hundreds of landslides occur in Malaysia and other tropical monsoon South East Asia countries. Therefore, prevention casualties and economical losses, by rain induced slope failure, are those countries government most important agenda. In Malaysia, millions of Malaysian Ringgit are allocated for slope monitoring and mitigation in every year budget. Besides monitoring the slopes, here, we propose the IT system which provides hazard map information, landslide historical information, slope failure prediction, knowledge on natural hazard, and information on evacuation centres via internet for user to understand the risk of landslides as well as flood. Moreover, the user can obtain information on rainfall intensity in the monitoring sites to predict the occurrence of the slope failure. Furthermore, we are working with PWD, Malaysia to set the threshold value for the landslide prediction system which will alert the officer if there is a risk of the slope failure in the monitoring sites by calculating rainfall intensity. Although the IT plays a significant role in information dissemination, education is also important in disaster prevention by educating school students to be more alert in natural hazard, and there will be bottom up approach to alert parents on what is natural hazard, by conversion among family members, as most of the parents are busy and may not have time to attend natural hazard workshop. There are many races living in Malaysia as well in most of South East Asia countries. It is not easy to educate them in single education method as the level of living and education are different. We started landslides education workshops in primary schools in rural and urban area, in Malaysia. We found out that we have to use their mother tongue language while conducting natural hazard education for better understanding. We took questionnaires from the students before and after the education workshop. Learning from the questionnaire result, the students are more alert on natural disaster then before, after attending the workshop.
The environmental and medical geochemistry of potentially hazardous materials produced by disasters
Plumlee, Geoffrey S.; Morman, Suzette A.; Meeker, G.P.; Hoefen, Todd M.; Hageman, Philip L.; Wolf, Ruth E.
2014-01-01
Many natural or human-caused disasters release potentially hazardous materials (HM) that may pose threats to the environment and health of exposed humans, wildlife, and livestock. This chapter summarizes the environmentally and toxicologically significant physical, mineralogical, and geochemical characteristics of materials produced by a wide variety of recent disasters, such as volcanic eruptions, hurricanes and extreme storms, spills of mining/mineral-processing wastes or coal extraction by-products, and the 2001 attacks on and collapse of the World Trade Center towers. In describing these characteristics, this chapter also illustrates the important roles that geochemists and other earth scientists can play in environmental disaster response and preparedness. In addition to characterizing in detail the physical, chemical, and microbial makeup of HM generated by the disasters, these roles also include (1) identifying and discriminating potential multiple sources of the materials; (2) monitoring, mapping, and modeling dispersal and evolution of the materials in the environment; (3) understanding how the materials are modified by environmental processes; (4) identifying key characteristics and processes that influence the materials' toxicity to exposed humans and ecosystems; (5) estimating shifts away from predisaster environmental baseline conditions; and (6) using geochemical insights learned from past disasters to help estimate, prepare for, and increase societal resilience to the environmental and related health impacts of future disasters.
The Role of Epidemiology in Disaster Response Policy Development
Thorpe, Lorna E; Assari, Shervin; Deppen, Stephen; Glied, Sherry; Lurie, Nicole; Mauer, Matthew P; Mays, Vickie M.; Trapido, Edward
2015-01-01
Purpose Disasters expose the general population and responders to a range of potential contaminants and stressors which may harm physical and mental health. This article addresses the role of epidemiology in informing policies after a disaster to mitigate ongoing exposures, provide care and compensation, and improve preparedness for future disasters. Methods The World Trade Center (WTC) disaster response is used as a case study. We examine how epidemiologic evidence was used to shape post-disaster policy and identify important gaps in early research. Results In the wake of WTC attacks, epidemiologic research played a key role in identifying and characterizing affected populations, assessing environmental exposures, quantifying physical and mental health impacts, and producing evidence to ascribe causation. However, most studies suffered from methodological challenges, including delays, selection biases, poor exposure measurement, and nonstandardized outcomes. Gaps included measuring unmet health needs and financing coverage, as well as coordination across longitudinal cohorts of studies for rare conditions with long latency, such as cancer. Conclusions Epidemiologists can increase their impact on evidence-based policymaking by ensuring core mechanisms are in place prior to a disaster to mount monitoring of responders and other affected populations, improve early exposure assessment efforts, identify critical gaps in scientific knowledge, and coordinate communication of scientific findings to policymakers and the public. PMID:25150446
Investment in online self-evaluation tests: A theoretical approach.
de Gara, Francesco; Gallo, William T; Bisson, Jonathan I; Endrass, Jerome; Vetter, Stefan
2008-04-15
Large-scale traumatic events may burden any affected public health system with consequential charges. One major post-disaster, expense factor emerges form early psychological interventions and subsequent, posttraumatic mental health care. Due to the constant increase in mental health care costs, also post-disaster public mental health requires best possible, cost-effective care systems. Screening and monitoring the affected population might be one such area to optimize the charges. This paper analyzes the potential cost-effectiveness of monitoring a psychologically traumatized population and to motivate individuals at risk to seek early treatment. As basis for our model served Grossman's health production function, which was modified according to fundamental concepts of cost-benefit analyzes, to match the basic conditions of online monitoring strategies. We then introduce some fundamental concepts of cost-benefit analysis. When performing cost-benefit analyses, policy makers have to consider both direct costs (caused by treatment) and indirect costs (due to non-productivity). Considering both costs sources we find that the use of Internet-based psychometric screening instruments may reduce the duration of future treatment, psychological burden and treatment costs. The identification of individuals at risk for PTSD following a disaster may help organizations prevent both the human and the economic costs of this disease. Consequently future research on mental health issues should put more emphasis on the importance of monitoring to detect early PTSD and focus the most effective resources within early treatment and morbidity prevention.
Ghana's experience in the establishment of a national digital seismic network observatory
NASA Astrophysics Data System (ADS)
Ahulu, Sylvanus; Danuor, Sylvester Kojo
2015-07-01
The Government of Ghana has established a National Digital Seismic Network Observatory in Ghana with the aim of monitoring events such as earthquakes, blasts from mining and quarrying, nuclear tests, etc. The Digital Observatory was commissioned on 19 December 2012, and was dedicated to Geosciences in Ghana. Previously Ghana did not have any operational, digital seismic network acquisition system with the capability of monitoring and analysing data for planning and research purposes. The Ghana Geological Survey has been monitoring seismic events with an analogue system which was not efficient and does not deliver real-time data. Hence, the importance of setting up the National Digital Seismic Network System which would enable the Geological Survey to constantly monitor, manage and coordinate both natural and man-made seismic activities in the country and around the globe, to some extent on real-time basis. The Network System is made up of six remote digital stations that transmit data via satellite to the central observatory. Sensors used are 3× Trillium Compact and 3× Trillium 120PA with Trident digitizers. The department has also acquired strong motion equipment: Titan accelerometers with Taurus digitizers from Nanometrics. Three of each of these instruments have been installed at the Akosombo and Kpong hydrodams, and also at the Weija water supply dam. These instruments are used to monitor dams. The peak ground acceleration (PGA) values established from the analysed data from the accelerometers will be used to retrofit or carry out maintenance work of the dam structures to avoid collapse. Apart from these, the observatory also assesses and analyses seismic waveforms relevant to its needs from the Global Seismographic Network (GSN) system operated by the US Geological Survey. The Ghana Geological Survey, through its Seismic Network Observatory makes data available to its stakeholder institutions for earthquake disaster mitigation; reports on all aspects of seismic-related disasters to the relevant government agencies that deal with disasters; makes recommendations to the government of Ghana on earthquake safety measures; and provides information to assist government institutions develop appropriate land and building policies. The Geological Survey Department, in collaboration with stakeholder agencies, periodically organises public lectures on earthquake disaster risk mitigation.
Geraldo José Lucatelli Dória de Araújo; João Antônio Raposo Pereira; Tânia Maria Vieira da Silva; Helvécio Mafra; James A. Brass; Robert N. Lockwood; Robert G. Higgins; Philip J. Riggan
2008-01-01
This study has as objective to assess AIRDAS (Airborne Infrared Disaster Assessment System) sensor for the monitoring of deforestation in the northern area of Mato Grosso State, between the latitudes 10° and 12° south and longitudes 54° and 56° west, within the area known as deforestation arch. The results show that the main advantage of...
Disaster risk profile and existing legal framework of Nepal: floods and landslides
Gaire, Surya; Castro Delgado, Rafael; Arcos González, Pedro
2015-01-01
Nepal has a complicated geophysical structure that is prone to various kinds of disasters. Nepal ranks the most disaster-prone country in the world and has experienced several natural calamities, causing high property and life losses. Disasters are caused by natural processes, but may be increased by human activities. The overall objective of this paper is to analyze the disaster risk profile and existing legal framework of Nepal. The paper is based on secondary data sources. Major causative factors for floods and landslides are heavy and continuous rainfall, outburst floods, infrastructure failure, and deforestation. Historical data of natural disasters in Nepal show that water-induced disasters have killed hundreds of people and affected thousands every year. Likewise, properties worth millions of US dollars have been damaged. There is an increasing trend toward landslides and floods, which will likely continue to rise if proper intervention is not taken. A positive correlation between water-induced disasters and deaths has been observed. Nepal has a poor Index for Risk Management (INFORM). There are fluctuations in the recording of death data caused by flood and landslides. The Government of Nepal focuses more on the response phase than on the preparedness phase of disasters. The existing disaster management act seems to be weak and outdated. There is a gap in current legal procedure, so the country is in dire need of a comprehensive legal framework. The new proposed act seems to take a much broader approach to disaster management. With a long-term vision of managing disaster risk in the country, the Government of Nepal has begun the Nepal Risk Reduction Consortium (NRRC) in collaboration with development and humanitarian partners. In order to improve the vulnerability of Nepal, an early warning system, mainstreaming disasters with development, research activities, community participation and awareness, and a rainfall monitoring system must all be a focus. PMID:26366106
Disaster risk profile and existing legal framework of Nepal: floods and landslides.
Gaire, Surya; Castro Delgado, Rafael; Arcos González, Pedro
2015-01-01
Nepal has a complicated geophysical structure that is prone to various kinds of disasters. Nepal ranks the most disaster-prone country in the world and has experienced several natural calamities, causing high property and life losses. Disasters are caused by natural processes, but may be increased by human activities. The overall objective of this paper is to analyze the disaster risk profile and existing legal framework of Nepal. The paper is based on secondary data sources. Major causative factors for floods and landslides are heavy and continuous rainfall, outburst floods, infrastructure failure, and deforestation. Historical data of natural disasters in Nepal show that water-induced disasters have killed hundreds of people and affected thousands every year. Likewise, properties worth millions of US dollars have been damaged. There is an increasing trend toward landslides and floods, which will likely continue to rise if proper intervention is not taken. A positive correlation between water-induced disasters and deaths has been observed. Nepal has a poor Index for Risk Management (INFORM). There are fluctuations in the recording of death data caused by flood and landslides. The Government of Nepal focuses more on the response phase than on the preparedness phase of disasters. The existing disaster management act seems to be weak and outdated. There is a gap in current legal procedure, so the country is in dire need of a comprehensive legal framework. The new proposed act seems to take a much broader approach to disaster management. With a long-term vision of managing disaster risk in the country, the Government of Nepal has begun the Nepal Risk Reduction Consortium (NRRC) in collaboration with development and humanitarian partners. In order to improve the vulnerability of Nepal, an early warning system, mainstreaming disasters with development, research activities, community participation and awareness, and a rainfall monitoring system must all be a focus.
SIMEDIS: a Discrete-Event Simulation Model for Testing Responses to Mass Casualty Incidents.
Debacker, Michel; Van Utterbeeck, Filip; Ullrich, Christophe; Dhondt, Erwin; Hubloue, Ives
2016-12-01
It is recognized that the study of the disaster medical response (DMR) is a relatively new field. To date, there is no evidence-based literature that clearly defines the best medical response principles, concepts, structures and processes in a disaster setting. Much of what is known about the DMR results from descriptive studies and expert opinion. No experimental studies regarding the effects of DMR interventions on the health outcomes of disaster survivors have been carried out. Traditional analytic methods cannot fully capture the flow of disaster victims through a complex disaster medical response system (DMRS). Computer modelling and simulation enable to study and test operational assumptions in a virtual but controlled experimental environment. The SIMEDIS (Simulation for the assessment and optimization of medical disaster management) simulation model consists of 3 interacting components: the victim creation model, the victim monitoring model where the health state of each victim is monitored and adapted to the evolving clinical conditions of the victims, and the medical response model, where the victims interact with the environment and the resources at the disposal of the healthcare responders. Since the main aim of the DMR is to minimize as much as possible the mortality and morbidity of the survivors, we designed a victim-centred model in which the casualties pass through the different components and processes of a DMRS. The specificity of the SIMEDIS simulation model is the fact that the victim entities evolve in parallel through both the victim monitoring model and the medical response model. The interaction between both models is ensured through a time or medical intervention trigger. At each service point, a triage is performed together with a decision on the disposition of the victims regarding treatment and/or evacuation based on a priority code assigned to the victim and on the availability of resources at the service point. The aim of the case study is to implement the SIMEDIS model to the DMRS of an international airport and to test the medical response plan to an airplane crash simulation at the airport. In order to identify good response options, the model then was used to study the effect of a number of interventional factors on the performance of the DMRS. Our study reflects the potential of SIMEDIS to model complex systems, to test different aspects of DMR, and to be used as a tool in experimental research that might make a substantial contribution to provide the evidence base for the effectiveness and efficiency of disaster medical management.
Roorda, J; van Stiphout, W A H J; Huijsman-Rubingh, R
2004-01-01
Background: Public health policy is increasingly concerned with the care for victims of a disaster. This article describes the design and implementation of an epidemiological study, which seeks to match care services to the specific problems of persons affected by a large scale incident. The study was prompted by the explosion of a firework depot in Enschede, the Netherlands. Study population: All those directly affected by this incident (residents, emergency services personnel, and people who happened to be in the area at the time), some of whom suffered personal loss or injury. The project investigates both the physical and psychological effects of the disaster, as well as the target group's subsequent call on healthcare services. Study design: A questionnaire based follow up survey of those directly affected and an ongoing monitoring of health problems relying on reports from healthcare professionals. The follow up survey started three weeks after the incident and was repeated 18 months and almost four years after the incident. The monitoring is conducted over a four year period by general practitioners, the local mental health services department, occupational health services, and the youth healthcare services department. It provides ongoing information. Results and Conclusions: The results of the study are regularly discussed with healthcare professionals and policy makers, and are made known to the research participants. The paper also explains the considerations that were made in designing the study to help others making up their research plans when confronted with possible health effects of a disaster. PMID:15547056
32 CFR 1656.5 - Eligible employment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., park and recreational activities, pollution control and monitoring systems, and disaster relief; (iv... retraining programs, senior citizens activities, crisis intervention and poverty relief; (v) Community...
32 CFR 1656.5 - Eligible employment.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., park and recreational activities, pollution control and monitoring systems, and disaster relief; (iv... retraining programs, senior citizens activities, crisis intervention and poverty relief; (v) Community...
Natural disasters and climate change call for the urgent decentralization of urban water systems.
Vázquez-Rowe, Ian; Kahhat, Ramzy; Lorenzo-Toja, Yago
2017-12-15
Lima is gradually upgrading its urban water cycle to comply with improved sanitation standards, with the aim of treating the entire flow of water and wastewater that it creates. However, this paper examines the basic characteristics of the main treatment systems that are currently in operation in the Peruvian capital, highlighting the myopic and inefficient nature of these investments. It digs deep in the debate between centralized and decentralized water management systems in a city that is exposed to numerous hydro-meteorological and geological hazards. Previous errors that have occurred in the developed world throughout the evolution process of the urban water cycle should be taken into consideration prior to any infrastructure development in emerging countries. For the particular case of Lima, special emphasis should be given to the resilience of its urban water system in order to guarantee rapid recovery after disaster events. Copyright © 2017 Elsevier B.V. All rights reserved.
Helz, Rosalind L.; Gaynor, John E.
2007-01-01
Natural and technological disasters, such as hurricanes and other extreme weather events, earthquakes, volcanic eruptions, landslides and debris flows, wildland and urban-interface fires, floods, oil spills, and space-weather storms, impose a significant burden on society. Throughout the United States, disasters inflict many injuries and deaths, and cost the nation $20 billion each year (SDR, 2003). Disasters in other countries can affect U.S. assets and interests overseas (e.g. the eruption of Mt. Pinatubo in the Philippines, which effectively destroyed Clark Air Force Base). Also, because they have a disproportionate impact on developing countries, disasters are major barriers to sustainable development. Improving our ability to assess, predict, monitor, and respond to hazardous events is a key factor in reducing the occurrence and severity of disasters, and relies heavily on the use of information from well-designed and integrated Earth observation systems. To fully realize the benefits gained from the observation systems, the information derived must be disseminated through effective warning systems and networks, with products tailored to the needs of the end users and the general public.
Land use, urban, environmental, and cartographic applications, chapter 2, part D
NASA Technical Reports Server (NTRS)
1975-01-01
Microwave data and its use in effective state, regional, and national land use planning are dealt with. Special attention was given to monitoring land use change, especially dynamic components, and the interaction between land use and dynamic features of the environment. Disaster and environmental monitoring are also discussed.
Disaster Risk Management and Measurement Indicators for Cultural Heritage in Taiwan
NASA Astrophysics Data System (ADS)
Yen, Y. N.; Cheng, C. F.; Cheng, H. M.
2015-08-01
Under the influence of global climate change, the risk preparedness has become a universal issue in different research fields. In the conservation of cultural heritage, disaster risk management is becoming one of the major research topics. Besides researches on the theory and mechanism of disaster risk management, the tools for the performance of site managers to protect cultural heritage is another important issue that needs development. UNESCO and ICOMOS have released some important documents on disaster risk management including its concept, identification, evaluation, mitigation, monitoring and resilience, etc. However, there is a big gap between concept and implementation in Taiwan. Presently there are 2000 monuments in Taiwan that hardly meet the modern code. First, based on international documents released, this research presents 13 disaster indicators on monuments and their environments. Next, 345 monuments in northern Taiwan are taken as examples to evaluate their risk situations with indicators designed in 2011. Some positive recommendations were given at the same time. As a result, a comparative evaluation was completed in 2012 and some key issues are found, such as too many electrical facilities, lack of efficient firefighting equipment, and a shortage of management mechanism, just to name a few. Through the improvement of the management, some major risk can be mitigated. In 2013~14, this research took 23 national monuments from the 345 monuments to evaluate their risk situations and compare the differences between national and local monuments. Results show that almost all management mechanisms in the national monuments have been established and are running well. However, problems like inappropriate electrical facilities and insufficient monitoring equipment remain. In addition, the performance of private monuments is not as good as public ones. Based on the collected information and evaluation, this research develops safety measures of heritage conservation in two aspects. One is for researchers to measure the risk of the heritage; the other is for site managers to manage the risk of their monument with ease. In conclusion, intendants of monuments in Taiwan have to develop more disaster risk management ideas to mitigate and prevent risks. In the meantime, the management and monitoring mechanisms available are helpful tools for risk mitigation. The awareness and training of the site managers are important issues for the implementation of risk prevention.
Megacity Indicator System for Disaster Risk Management in Istanbul (MegaIST)
NASA Astrophysics Data System (ADS)
Yahya Menteşe, Emin; Kılıç, Osman; Baş, Mahmut; Khazai, Bijan; Ergün Konukcu, Betul; Emre Basmacı, Ahmet
2017-04-01
Decision makers need tools to understand the priorities and to set up benchmarks and track progress in their disaster risk reduction activities, so that they can justify their decisions and investments. In this regard, Megacity Indicator System for Disaster Risk Management (MegaIST), is developed in order to be used in disaster risk management studies, for decision makers and managers to establish right strategies and proper risk reduction actions, enhance resource management and investment decisions, set priorities, monitor progress in DRM and validate decisions taken with the aim of helping disaster oriented urban redevelopment, inform investors about risk profile of the city and providing a basis for dissemination and sharing of risk components with related stakeholders; by Directorate of Earthquake and Ground Research of Istanbul Metropolitan Municipality (IMM). MegaIST achieves these goals by analyzing the earthquake risk in three separate but complementary sub-categories consisting of "urban seismic risk, coping capacity and disaster risk management index" in an integrated way. MegaIST model fosters its analyses by presenting the outputs in a simple and user friendly format benefiting from GIS technology that ensures the adoptability of the model's use. Urban seismic risk analysis includes two components, namely; Physical Risk and Social Vulnerability Analysis. Physical risk analysis is based on the possible physical losses (such as building damage, casualties etc.) due to an earthquake while social vulnerability is considered as a factor that increases the results of the physical losses in correlation with the level of education, health, economic status and disaster awareness/preparedness of society. Coping capacity analysis is carried out with the aim of understanding the readiness of the Municipality to respond and recover from a disaster in Istanbul can be defined both in terms of the Municipality's operational capacities - the capacity of the Municipality in terms of the demand on its resources to respond to emergencies and restore services - as well as functional capacities - the policies and planning measures at the Municipality which lead to reduction of risk and protection of people. Disaster Risk Management Index (DRMI) is used as "control system" within the conceptual framework of MegaIST. This index has been developed to understand impact of corporate governance and enforcement structures and policies on total Urban Seismic Risk and in order to make the performance evaluation. Also, DRMI is composed of macro indicators that are developed in order to monitor progress in reducing disaster risk management of institution. They are presented in four broad indicator groups: Legal and Institutional Requirements, Risk Reduction Implementation and Preparedness Activities, Readiness to Respond and Recover, and Strategy and Coordination. As a result; in MegaIST, with the identification and analysis of physical and social vulnerabilities along with coping capacity and disaster risk management performance indicators; an integrated and analytical decision support system has been established to enhance DRM process and reach to a disaster resilient urban environment.
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Malet, Jean-Philippe; Roessner, Sigrid
2017-04-01
Landslides occur around the world, on every continent, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, it has been estimated that past landslide and landslide potential maps cover less than 1% of the slopes in these landmasses. Systematic information on the type, abundance, and distribution of existing landslides is lacking. Even in countries where landslide information is abundant (e.g. Italy), the vast majority of landslides caused by meteorological (intense or prolonged rainfall, rapid snowmelt) or geophysical (earthquake) triggers go undetected. This paucity of knowledge has consequences on the design of effective remedial and mitigation measures. Systematic use of Earth observation (EO) data and technologies can contribute effectively to detect, map, and monitor landslides, and landslide prone hillsides, in different physiographic and climatic regions. The CEOS (Committee on Earth Observation Satellites) Working Group on Disasters has recently launched a Landslide Pilot (period 2017-2019) with the aim to demonstrate the effective exploitation of satellite EO across the full cycle of landslide disaster risk management, including preparedness, response, and recovery at global, regional, and local scales, with a distinct multi-hazard focus on cascading impacts and risks. The Landslide Pilot is focusing efforts on three objectives: 1. Establish effective practices for merging different Earth Observation data (e.g. optical and radar) to better monitor and map landslide activity over time and space. 2. Demonstrate how landslide products, models, and services can support disaster risk management for multi-hazard and cascading landslide events. 3. Engage and partner with data brokers and end users to understand requirements and user expectations and get feedback through the activities described in objectives 1-2. The Landslide Pilot was endorsed in April 2016 and work started in fall 2016. The first data from the CEOS space agencies will become available in early 2017. The pilot is focused on two main regions (Nepal and the US Pacific Northwest), and five experimental regions (US Southeast Alaska, sub-part of China, the Caribbean, Peru, and Indonesia. The objective of this contribution is to present the Landslide Pilot and the working methodology to a broader scientific community with the goal of further encouraging active involvement.
NASA Astrophysics Data System (ADS)
Mayberry, G. C.; Pallister, J. S.
2015-12-01
The Volcano Disaster Assistance Program (VDAP) is a joint effort between USGS and the U.S. Agency for International Development's (USAID) Office of U.S. Foreign Disaster Assistance (OFDA). OFDA leads and coordinates disaster responses overseas for the U.S. government and is a unique stakeholder concerned with volcano disaster risk reduction as an international humanitarian assistance donor. One year after the tragic eruption of Nevado del Ruiz in 1985, OFDA began funding USGS to implement VDAP. VDAP's mission is to reduce the loss of life and property and limit the economic impact from foreign volcano crises, thereby preventing such crises from becoming disasters. VDAP fulfills this mission and complements OFDA's humanitarian assistance by providing crisis response, capacity-building, technical training, and hazard assessments to developing countries before, during, and after eruptions. During the past 30 years, VDAP has responded to more than 27 major volcanic crises, built capacity in 12+ countries, and helped counterparts save tens of thousands of lives and hundreds of millions of dollars in property. VDAP responses have evolved as host-country capabilities have grown, but the pace of work has not diminished; as a result of VDAP's work at 27 volcanoes in fiscal year 2014, more than 1.3 million people who could have been impacted by volcanic activity benefitted from VDAP assistance, 11 geological policies were modified, 188 scientists were trained, and several successful eruption forecasts were made. VDAP is developing new initiatives to help counterparts monitor volcanoes and communicate volcanic risk. These include developing the Eruption Forecasting Information System (EFIS) to learn from compiled crisis data from 30 years of VDAP responses, creating event trees to forecast eruptions at restless volcanoes, and exploring the use of unmanned aerial systems for monitoring. The use of these new methods, along with traditional VDAP assistance, has improved VDAP's ability to assist counterparts with preparing for eruptions.
Disaster risk reduction policies and regulations in Aceh after the 2004 Indian Ocean Tsunami
NASA Astrophysics Data System (ADS)
Syamsidik; Rusydy, I.; Arief, S.; Munadi, K.; Melianda, E.
2017-02-01
The 2004 Indian Ocean Tsunami that struck most of coastal cities in Aceh has motivated a numerous changes in the world of disaster risk reduction including to the policies and regulations at local level in Aceh. This paper is aimed at elaborating the changes of policies and regulations in Aceh captured and monitored during 12-year of the tsunami recovery process. A set of questionnaires were distributed to about 245 respondents in Aceh to represent government officials at 6 districts in Aceh. The districts were severely damaged due to the 2004 tsunami. Four aspects were investigated during this research, namely tsunami evacuation mechanism and infrastructures, disaster risk map, disaster data accessibility, perceptions on tsunami risks, and development of tsunami early warning at local level in Aceh. This research found that the spatial planning in several districts in Aceh have adopted tsunami mitigation although they were only significant in terms of land-use planning within several hundreds meter from the coastline. Perceptions of the government officials toward all investigated aspects were relatively good. One concern was found at coordination among disaster stakeholders in Aceh.
NASA Astrophysics Data System (ADS)
Archer, Reginald S.
This research focuses on measuring and monitoring long term recovery progress from the impacts of Hurricane Katrina on New Orleans, LA. Remote sensing has frequently been used for emergency response and damage assessment after natural disasters. However, techniques for analysis of long term disaster recovery using remote sensing have not been widely explored. With increased availability and lower costs, remote sensing offers an objective perspective, systematic and repeatable analysis, and provides a substitute to multiple site visits. In addition, remote sensing allows access to large geographical areas and areas where ground access may be disrupted, restricted or denied. This dissertation addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators. Maximum likelihood classification and post-classification change detection were applied to multi-temporal high resolution aerial images to quantitatively measure the progress of recovery. Images were classified to automatically identify disaster recovery indicators and exploit the indicators that are visible within each image. The spectral analysis demonstrated that employing maximum likelihood classification to high resolution true color aerial images performed adequately and provided a good indication of spectral pattern recognition, despite the limited spectral information. Applying the change detection to the classified images was effective for determining the temporal trajectory of indicators categorized as blue tarps, FEMA trailers, houses, vegetation, bare earth and pavement. The results of the post classification change detection revealed a dominant change trajectory from bluetarp to house, as damaged houses became permanently repaired. Specifically, the level of activity of blue tarps, housing, vegetation, FEMA trailers (temporary housing) pavement and bare earth were derived from aerial image processing to measure and monitor the progress of recovery. Trajectories of recovery for each individual indicator were examined to provide a better understanding of activity during reconstruction. A collection of spatial metrics was explored in order to identify spatial patterns and characterize classes in terms of patches of pixels. One of the key findings of the spatial analysis is that patch shapes were more complex in the presence of debris and damaged or destroyed buildings. The combination of spectral, temporal, and spatial analysis provided a satisfactory, though limited, solution to the question of whether remote sensing alone, can be used to quantitatively assess and monitor the progress of long term recovery following a major disaster. The research described in this dissertation provided a detailed illustration of the level of activity experienced by different recovery indicators during the long term recovery process. It also addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators identified from classified high resolution true color aerial imagery. The results produced in this research demonstrate that the observed trajectories for actual indicators of recovery indicate different levels of recovery activity even within the same community. The level of activity of the long term reconstruction phase observed in the Kates model is not consistent with the level of activity of key recovery indicators in the Lower 9th Ward during the same period. Used in the proper context, these methods and results provide decision making information for determining resources. KEYWORDS: Change detection, classification, Katrina, New Orleans, remote sensing, disaster recovery, spatial metrics
Three-Dimensional Maps for Disaster Management
NASA Astrophysics Data System (ADS)
Bandrova, T.; Zlatanova, S.; Konecny, M.
2012-07-01
Geo-information techniques have proven their usefulness for the purposes of early warning and emergency response. These techniques enable us to generate extensive geo-information to make informed decisions in response to natural disasters that lead to better protection of citizens, reduce damage to property, improve the monitoring of these disasters, and facilitate estimates of the damages and losses resulting from them. The maintenance and accessibility of spatial information has improved enormously with the development of spatial data infrastructures (SDIs), especially with second-generation SDIs, in which the original product-based SDI was improved to a process-based SDI. Through the use of SDIs, geo-information is made available to local, national and international organisations in regions affected by natural disasters as well as to volunteers serving in these areas. Volunteer-based systems for information collection (e.g., Ushahidi) have been created worldwide. However, the use of 3D maps is still limited. This paper discusses the applicability of 3D geo-information to disaster management. We discuss some important aspects of maps for disaster management, such as user-centred maps, the necessary components for 3D maps, symbols, and colour schemas. In addition, digital representations are evaluated with respect to their visual controls, i.e., their usefulness for the navigation and exploration of the information. Our recommendations are based on responses from a variety of users of these technologies, including children, geospecialists and disaster managers from different countries.
The Transmission Channel Tower Identification and Landslide Disaster Monitoring Based on Insar
NASA Astrophysics Data System (ADS)
Li, G.; Tan, Q.; Xie, C.; Fei, X.; Ma, X.; Zhao, B.; Ou, W.; Yang, Z.; Wang, J.; Fang, H.
2018-04-01
The transmission distance of transmission lines is long, the line affected by the diversity of climate and topography of the corridors of transmission lines, differences in regional geological structure conditions, variability of rock and soil types, and the complexity of groundwater. Under the influence of extreme weather conditions (ice-covered, strong wind, etc.) and sudden geological disasters (such as mudslides, flash floods, earthquakes, etc.), catastrophic damage and basic deformation problems of the tower foundations are prone, and even tower collapse accidents occur in severe cases, which affect the safe operation of transmission lines. Monitoring the deformation of power transmission towers and surrounding grounds, it is critical to ensuring the normal operation of transmission lines by assessing and controlling potential risks in advance. In this paper, using ALOS-2 PALSAR radar satellite data, differential interferometry was used to monitor surface deformation near the Sichuan Jinsu line transmission channel. The analysis found that a significant landslide hazard was found near the transmission channel tower in Yibin-Zhaotong section of Jinsu, Sichuan Province, the cumulative deformation reaches 9cm. The results of this paper can provide new monitoring means for safety monitoring of transmission towers.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
De Graff, Jerome V.; Gallegos, Alan J.; Reid, Mark E.; Lahusen, Richard G.; Denlinger, Roger P.
2015-01-01
Rapid onset natural disasters such as large landslides create a need for scientific information about the event, which is vital to ensuring public safety, restoring infrastructure, preventing additional damage, and resuming normal economic activity. At the same time, there is limited data available upon which to base reliable scientific responses. Monitoring movement and modeling runout are mechanisms for gaining vital data and reducing the uncertainty created about a rapid onset natural disaster. We examine the effectiveness of this approach during the 2006 Ferguson rock slide disaster, which severed California Highway 140. Even after construction of a bypass restoring normal access to the community of El Portal, CA and a major entrance to Yosemite National Park, significant scientific questions remained. The most important for the affected public and emergency service agencies was the likelihood that access would again be severed during the impending rainy season and the possibility of a landslide dam blocking flow in the Merced River. Real-time monitoring of the Ferguson rock slide yielded clear information on the continuing movement of the rock slide and its implications for emergency response actions. Similarly, simulation of runout deposits using a physically based model together with volumes and slope steepness information demonstrated the conditions necessary for a landslide dam-forming event and the possible consequences of such an event given the dimensions of potential rock slide deposits.
Research on Resilience of Power Systems Under Natural Disasters—A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yezhou; Chen, Chen; Wang, Jianhui
2016-03-01
Natural disasters can cause large blackouts. Research into natural disaster impacts on electric power systems is emerging to understand the causes of the blackouts, explore ways to prepare and harden the grid, and increase the resilience of the power grid under such events. At the same time, new technologies such as smart grid, micro grid, and wide area monitoring applications could increase situational awareness as well as enable faster restoration of the system. This paper aims to consolidate and review the progress of the research field towards methods and tools of forecasting natural disaster related power system disturbances, hardening andmore » pre-storm operations, and restoration models. Challenges and future research opportunities are also presented in the paper.« less
Tweeting Supertyphoon Haiyan: Evolving Functions of Twitter during and after a Disaster Event.
David, Clarissa C; Ong, Jonathan Corpus; Legara, Erika Fille T
2016-01-01
When disaster events capture global attention users of Twitter form transient interest communities that disseminate information and other messages online. This paper examines content related to Typhoon Haiyan (locally known as Yolanda) as it hit the Philippines and triggered international humanitarian response and media attention. It reveals how Twitter conversations about disasters evolve over time, showing an issue attention cycle on a social media platform. The paper examines different functions of Twitter and the information hubs that drive and sustain conversation about the event. Content analysis shows that the majority of tweets contain information about the typhoon or its damage, and disaster relief activities. There are differences in types of content between the most retweeted messages and posts that are original tweets. Original tweets are more likely to come from ordinary users, who are more likely to tweet emotions, messages of support, and political content compared with official sources and key information hubs that include news organizations, aid organization, and celebrities. Original tweets reveal use of the site beyond information to relief coordination and response.
Tweeting Supertyphoon Haiyan: Evolving Functions of Twitter during and after a Disaster Event
David, Clarissa C.; Ong, Jonathan Corpus; Legara, Erika Fille T.
2016-01-01
When disaster events capture global attention users of Twitter form transient interest communities that disseminate information and other messages online. This paper examines content related to Typhoon Haiyan (locally known as Yolanda) as it hit the Philippines and triggered international humanitarian response and media attention. It reveals how Twitter conversations about disasters evolve over time, showing an issue attention cycle on a social media platform. The paper examines different functions of Twitter and the information hubs that drive and sustain conversation about the event. Content analysis shows that the majority of tweets contain information about the typhoon or its damage, and disaster relief activities. There are differences in types of content between the most retweeted messages and posts that are original tweets. Original tweets are more likely to come from ordinary users, who are more likely to tweet emotions, messages of support, and political content compared with official sources and key information hubs that include news organizations, aid organization, and celebrities. Original tweets reveal use of the site beyond information to relief coordination and response. PMID:27019425
Geophysical Hazards and Preventive Disaster Management of Extreme Natural Events
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Takeuchi, K.
2007-12-01
Geophysical hazard is potentially damaging natural event and/or phenomenon, which may cause the loss of life or injury, property damage, social and economic disruption, or environmental degradation. Extreme natural hazards are a key manifestation of the complex hierarchical nonlinear Earth system. An understanding, accurate modeling and forecasting of the extreme hazards are most important scientific challenges. Several recent extreme natural events (e.g., 2004 Great Indian Ocean Earthquake and Tsunami and the 2005 violent Katrina hurricane) demonstrated strong coupling between solid Earth and ocean, and ocean and atmosphere. These events resulted in great humanitarian tragedies because of a weak preventive disaster management. The less often natural events occur (and the extreme events are rare by definition), the more often the disaster managers postpone the preparedness to the events. The tendency to reduce the funding for preventive disaster management of natural catastrophes is seldom follows the rules of responsible stewardship for future generations neither in developing countries nor in highly developed economies where it must be considered next to malfeasance. Protecting human life and property against earthquake disasters requires an uninterrupted chain of tasks: from (i) understanding of physics of the events, analysis and monitoring, through (ii) interpretation, modeling, hazard assessment, and prediction, to (iii) public awareness, preparedness, and preventive disaster management.
Policy and administrative issues for large-scale clinical interventions following disasters.
Scheeringa, Michael S; Cobham, Vanessa E; McDermott, Brett
2014-02-01
Large, programmatic mental health intervention programs for children and adolescents following disasters have become increasingly common; however, little has been written about the key goals and challenges involved. Using available data and the authors' experiences, this article reviews the factors involved in planning and implementing large-scale treatment programs following disasters. These issues include funding, administration, choice of clinical targets, workforce selection, choice of treatment modalities, training, outcome monitoring, and consumer uptake. Ten factors are suggested for choosing among treatment modalities: 1) reach (providing access to the greatest number), 2) retention of patients, 3) privacy, 4) parental involvement, 5) familiarity of the modality to clinicians, 6) intensity (intervention type matches symptom acuity and impairment of patient), 7) burden to the clinician (in terms of time, travel, and inconvenience), 8) cost, 9) technology needs, and 10) effect size. Traditionally, after every new disaster, local leaders who have never done so before have had to be recruited to design, administer, and implement programs. As expertise in all of these areas represents a gap for most local professionals in disaster-affected areas, we propose that a central, nongovernmental agency with national or international scope be created that can consult flexibly with local leaders following disasters on both overarching and specific issues. We propose recommendations and point out areas in greatest need of innovation.
Near Real-Time Georeference of Umanned Aerial Vehicle Images for Post-Earthquake Response
NASA Astrophysics Data System (ADS)
Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.
2018-04-01
The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL). The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.
Operational early warning platform for extreme meteorological events
NASA Astrophysics Data System (ADS)
Mühr, Bernhard; Kunz, Michael
2015-04-01
Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.
Proposing a Framework for Mobile Applications in Disaster Health Learning.
Liu, Alexander G; Altman, Brian A; Schor, Kenneth; Strauss-Riggs, Kandra; Thomas, Tracy N; Sager, Catherine; Leander-Griffith, Michelle; Harp, Victoria
2017-08-01
Mobile applications, or apps, have gained widespread use with the advent of modern smartphone technologies. Previous research has been conducted in the use of mobile devices for learning. However, there is decidedly less research into the use of mobile apps for health learning (eg, patient self-monitoring, medical student learning). This deficiency in research on using apps in a learning context is especially severe in the disaster health field. The objectives of this article were to provide an overview of the current state of disaster health apps being used for learning, to situate the use of apps in a health learning context, and to adapt a learning framework for the use of mobile apps in the disaster health field. A systematic literature review was conducted by using the PRISMA checklist, and peer-reviewed articles found through the PubMed and CINAHL databases were examined. This resulted in 107 nonduplicative articles, which underwent a 3-phase review, culminating in a final selection of 17 articles. While several learning models were identified, none were sufficient as an app learning framework for the field. Therefore, we propose a learning framework to inform the use of mobile apps in disaster health learning. (Disaster Med Public Health Preparedness. 2017;11:487-495).
The economics of natural disasters
NASA Astrophysics Data System (ADS)
Hallegatte, S.
2007-05-01
Mitigating natural disasters is probably more important for society than it can be inferred from direct losses. Total economic losses, indeed, can be much larger than direct losses, especially for large disasters, which affect the economy for extended periods of time (e.g., New Orleans after Katrina), and represent an important obstacle to economic development in certain regions (e.g. Central America). A series of recent modelling exercises highlights several findings. First, total economic losses due to an event are increasing nonlinearly as a function of its direct losses, because destructions both increase reconstruction needs and reduce reconstruction capacity. Second, endogenous economic dynamics has to be taken into account in the assessment of disaster consequences. More particularly, an economy in the expansion phase of its business cycle appears to be more vulnerable to extreme events than an economy in recession. This result is supported by the fact that worker availability is found to be one of the main obstacles to a rapid and efficient reconstruction. Third, natural disasters can create poverty traps for poor countries, which have a lower ability to fund and carry out reconstruction. As a consequence, climate change impacts from extreme events may be significant, and will depend on how societies are able to adapt their reconstruction capacity to new levels of risk.
Medical Support for Aircraft Disaster Search and Recovery Operations at Sea: the RSN Experience.
Teo, Kok Ann Colin; Chong, Tse Feng Gabriel; Liow, Min Han Lincoln; Tang, Kong Choong
2016-06-01
The maritime environment presents a unique set of challenges to search and recovery (SAR) operations. There is a paucity of information available to guide provision of medical support for SAR operations for aircraft disasters at sea. The Republic of Singapore Navy (RSN) took part in two such SAR operations in 2014 which showcased the value of a military organization in these operations. Key considerations in medical support for similar operations include the resultant casualty profile and challenges specific to the maritime environment, such as large distances of area of operations from land, variable sea states, and space limitations. Medical support planning can be approached using well-established disaster management life cycle phases of preparedness, mitigation, response, and recovery, which all are described in detail. This includes key areas of dedicated training and exercises, force protection, availability of air assets and chamber support, psychological care, and the forensic handling of human remains. Relevant lessons learned by RSN from the Air Asia QZ8501 search operation are also included in the description of these key areas. Teo KAC , Chong TFG , Liow MHL , Tang KC . Medical support for aircraft disaster search and recovery operations at sea: the RSN experience. Prehosp Disaster Med. 2016; 31(3):294-299.
Liu, Xueqin; Li, Ning; Yuan, Shuai; Xu, Ning; Shi, Wenqin; Chen, Weibin
2015-12-15
As a random event, a natural disaster has the complex occurrence mechanism. The comprehensive analysis of multiple hazard factors is important in disaster risk assessment. In order to improve the accuracy of risk analysis and forecasting, the formation mechanism of a disaster should be considered in the analysis and calculation of multi-factors. Based on the consideration of the importance and deficiencies of multivariate analysis of dust storm disasters, 91 severe dust storm disasters in Inner Mongolia from 1990 to 2013 were selected as study cases in the paper. Main hazard factors from 500-hPa atmospheric circulation system, near-surface meteorological system, and underlying surface conditions were selected to simulate and calculate the multidimensional joint return periods. After comparing the simulation results with actual dust storm events in 54years, we found that the two-dimensional Frank Copula function showed the better fitting results at the lower tail of hazard factors and that three-dimensional Frank Copula function displayed the better fitting results at the middle and upper tails of hazard factors. However, for dust storm disasters with the short return period, three-dimensional joint return period simulation shows no obvious advantage. If the return period is longer than 10years, it shows significant advantages in extreme value fitting. Therefore, we suggest the multivariate analysis method may be adopted in forecasting and risk analysis of serious disasters with the longer return period, such as earthquake and tsunami. Furthermore, the exploration of this method laid the foundation for the prediction and warning of other nature disasters. Copyright © 2015 Elsevier B.V. All rights reserved.
A Location Based Communication Proposal for Disaster Crisis Management
NASA Astrophysics Data System (ADS)
Gülnerman, A. G.; Goksel, C.; Tezer, A.
2014-12-01
The most vital applications within urban applications under the title of Geographical Information system applications are Disaster applications. Especially, In Turkey the most occured disaster type Earthquakes impacts are hard to retain in urban due to greatness of area, data and effected resident or victim. Currently, communications between victims and institutions congested and collapsed, after disaster that results emergency service delay and so secondary death and desperation. To avoid these types of life loss, the communication should be established between public and institutions. Geographical Information System Technology is seen capable of data management techniques and communication tool. In this study, Life Saving Kiosk Modal Proposal designed as a communication tool based on GIS, after disaster, takes locational emegency demands, meets emergency demands over notification maps which is created by those demands,increase public solidarity by visualizing close emergency demanded area surrounded another one and gathers emergency service demanded institutions notifications and aims to increasethe capability of management. This design prosals' leading role is public. Increase in capability depends on public major contribution to disaster management by required communication infrastructure establishment. The aim is to propound public power instead of public despiration. Apart from general view of disaster crisis management approaches, Life Saving Kiosk Modal Proposal indicates preparedness and response phases within the disaster cycle and solve crisis management with the organization of design in preparedness phase, use in response phase. This resolution modal flow diagram is builded between public, communication tool (kiosk) amd response force. The software is included in communication tools whose functions, interface designs and user algorithms are provided considering the public participation. In this study, disaster crisis management with public participation and power use with data flow modal based on location is came up for discussion by comparing with the other available applications in manner of time, detail of data, required staff and expertise degree, data reality and data archive.
Improving European Wildfire Emergency Information Services
NASA Astrophysics Data System (ADS)
Bielski, Conrad; Whitmore, Ceri; O'Brien, Victoria; Zeug, Gunter; Kalas, Milan; Porras, Ignasi; Solé, Josep Maria; Gálvez, Pedro; Navarro, Maria; Nurmi, Pertti; Kilpinen, Juha; Ylinen, Kaisa; Furllanelo, Cesare; Maggio, Valerio; Alikadic, Azra; Dolci, Claudia
2017-04-01
European wildfires are a seasonal natural hazard that many regions must battle regularly. However, as European urbanization continues to encroach on natural areas and the climate changes it is likely that the frequency of wildfires will increase likewise the number of areas prone to wildfires. It is therefore paramount not only to increase public awareness of this natural hazard but also to be prepared by improving wildfire hazard forecasting, monitoring, and mapping. As part of the H2020 funded project entitled Improving Resilience to Emergencies through Advanced Cyber Technologies: I-REACT (Grant Agreement #700256) , there is a task with the goal to develop models and implement technologies to improve the support around the entire emergency management cycle with respect to wildfire hazards. Based on operational weather forecasts, pan-European geospatial data as well as regularly acquired Earth Observation imagery through the Copernicus program, and other sources of information such as social media channels a European wildfire service is being developed. This will be achieved by improving on the successes of the European Forest Fire Information Service (EFFIS) and the guidance of emergency managers experienced in wildfire hazards. Part of the research will be to reduce the number of false alarms. However, once a wildfire has been identified, the system focuses on the disaster region to provide situational information to the decision makers applying state-of-the-art approaches to improve disaster response. Post-wildfire information will continue to be produced for damage and recovery assessments. Ultimately, I-REACT expects to reduce wildfire costs to life, property and livelihood. This work will improve wildfire disaster emergency management through the development and integration of new data and technologies respectively as well as the knowledge from emergency managers who not only understand the hazard itself but also can provide insights into the information that can help them do their jobs better.
NASA Astrophysics Data System (ADS)
Guha-Sapir, Debarati; Davis, Rhonda; Gall, Melanie; Wallemacq, Pascaline; Cutter, Susan
2015-04-01
As extreme climate events such as precipitation driven flooding, storms and droughts are increasingly devastating, assessing impacts accurately becomes critically important in guiding decisions and investments on disaster risk reduction. Capturing disaster impacts includes not only quantitative information such as the economic and human effects but also the determination of where and when the impacts occurred. Among the most commonly used impact indicators are the number of deaths and the number of people affected or homeless, and the economic damages. Unfortunately, these figures are typically used in their raw form and conclusions are drawn without due consideration to denominators. For example, key parameters such as the population base or the size of the region affected are often not factored in when judging the severity of the event or calculating increases or decreases in an indicator. To increase the meaningfulness and comparability of disaster impacts across time and space, however, it is important to mathematically standardize indicators and utilize common denominators such as number of population exposed, area affected, GDP, and so forth. Geospatial techniques such as geo-referencing and spatial overlays are coming into greater use to facilitate this process. In 2013, EM-DAT, one of the main providers of global disaster impact data, launched an effort to enhance its contents through spatial analyses. The challenge was to develop a sustainable methodology and protocol for a large dataset and to systematically collect and enter geocoded profiles for each event that is registered in EM-DAT. Along with specialists in geography from different institutions EM-DAT launched an effort to geocode each disaster event working backwards in time starting from the most recent. For geo-referencing purposes, EM-DAT requires a standardized dataset of sub-national administrative boundaries. Though a number of such initiatives exist, the Food and Agriculture Organization's (FAO) Global Administrative Unit Layers (GAUL) was selected as the most appropriate since the data are updated annually, disputed areas are labelled as such and not assigned to a national entity, and the FAO uses a community-based approach whereby users of the dataset can provide updated administrative boundaries and related shapefiles. Geocoding the impact areas of disaster events not only allows for more accurate spatial analyses and mapping but it also enhances the interoperability of EM-DAT data with other spatially explicit data (such as population or land use data), or with nationally-developed loss datasets such as SHELDUS. Most importantly, geocoding permits the monitoring of key parameters of disaster impacts such as exposure, vulnerable populations, effectiveness of disaster risk reduction measures, as well as the investigation of linkages and ripple effects between a catastrophic event and other external factors. For example, the intersection between extreme malnutrition and the spatial extent of droughts or floods aids in the identification of hot spots and facilitates strategic delivery of nutrition interventions. With the need for tracking and monitoring progress towards sustainable development and disaster risk reduction gaining in importance, the ability to express disaster impacts in standardized terms such as ratios or percentages per some unit area will increase transparency and comparability of disaster management programmes.
"Capture" Me if You Can: Estimating Abundance of Dolphin Populations
ERIC Educational Resources Information Center
Thompson, Jessica; Curran, Mary Carla; Cox, Tara
2016-01-01
Animal populations are monitored over time to assess the effects of environmental disaster and disease, as well as the efficacy of laws designed to protect them. Determining the abundance of a species within a defined area is one method of monitoring a population. In "Capture" Me if You Can, middle school students will use data collected…
NASA Astrophysics Data System (ADS)
Saito, K.; Brown, D.; Spence, R.; Chenvidyakarn, T.; Adams, B.; Bevington, J.; Platt, S.; Chuenpagdee, R.; Juntarashote, K.; Khan, A.
2009-04-01
The use of high-resolution optical satellite images is being investigated for evaluating and monitoring recovery after natural disasters. Funded by EPSRC, UK, the aim of the RECOVERY project is to develop indicators of recovery that can exploit the wealth of data now available, including those from satellite imagery, internet-based statistics and advanced field survey techniques. The final output will be a set of guidelines that suggests how remote sensing can be used to help monitor and evaluate the recovery process after natural disasters. The final guideline that will be produced at the end of the two year project, which started in February 2008, will be freely available to aid agencies and anyone that is interested. Currently there is no agreed standard approach for evaluating the effectiveness of recovery aid, although international frameworks such as PDNA (Post-Disaster Needs Assessment, United Nations Development Program, European Commission and World Bank) is currently being developed, and TRIAMS (Tsunami Recovery and Impact Assessment and Monitoring System, by UNDP and WHO) is being implemented to monitor the recovery from the Indian Ocean Tsunami. The RECOVERY project consists of three phases. Phase 1 was completed by September 2008 and focused on user needs survey, developing the recovery indicators and satellite image data identification/acquisition. The user needs survey was conducted to identify whether there were any indicators that the aid community would like to see prioritised. The survey result suggested that most indicators are equally important. Based on this result and also referring to the TRIAMS framework, a comprehensive list of indicators were developed which belong to six large categories, i.e. housing, infrastructure, services, livelihood, environment, social/security, risk reduction. For the RECOVERY project, two case study sites have been identified, i.e. the village of Baan Nam Khem on the west coast of Thailand, which was heavily damaged by the 2004 Indian Ocean Tsunami, and the city of Muzaffarabad, Pakistan, which was hit by the October 2005 Kashmir earthquake. For both sites, high-resolution optical satellite images from the following time periods have been acquired: for Baan Nam Khem, pre-event (-30 months), 1 week after, 4 months after, 7 months after, 13 months after, 23 months after and 38 months after; for Muzaffarabad, pre-event (-14 months), 14 days after, 8 months after and . The potential indicators cover all aspects of recovery. However not all of them can be monitored and evaluated using remote sensing. A set of indicators that can be monitored using remote sensing has been identified, and the images are currently being analysed for these indicators. In early February 2009, a field trip to Baan Nam Khem will take place to verify the findings of the image analysis. A narrative of the change that is observed in the images will be presented to the local community, and feedback will be sought to see how accurate the narrative produced by the image analysis is, and also to identify the issues that cannot be monitored using images. Interviews will be carried out with aid agencies that have been working in Baan Nam Khem, as well as household surveys to capture the recovery process. Preliminary results from the field trip to Thailand will be presented.
NASA Astrophysics Data System (ADS)
Liu, C.
2009-12-01
Formosat-2 is the first satellite with high-spatial-resolution sensor deployed in a daily-revisit orbit in the world. Together with its agility of pointing ±45 degree both across and along track, we are able to observe each accessible scene from the same angle under the similar illumination conditions. These characteristics make Formosat-2 an ideal satellite for site surveillance. We developed a Formosat-2 automatic image processing system (F-2 AIPS) that can accurately and rapidly process a large amount of Formosat-2 images to produce the higher levels of products, including rigorous band-to-band coregistration, automatic orthorectification, multi-temporal image coregistration and radiance normalization, and pan-sharpening. This system has been successfully employed to rapidly respond to many international disaster events in the past five years, including flood caused by Typhoon Mindulle (2004), landslide caused by Typhoon Aere (2004), South Asia earthquake and tsunami (2004), Hurricane Katrina (2005), California wildfire (2007), Sichuan Earthquake (2008), Typhoon Kalmaegi (2008), Typhoon Sinlaku (2008), Mountain Ali wildfire (2009), Victoria bushfire in Australia (2009), Honduras earthquake (2009), Typhoon Morakot (2009). This paper reviews the applications of Formosat-2 on rapidly responding to global disasters and monitoring earth environment.
Emergency and Disaster Information Service
NASA Astrophysics Data System (ADS)
Boszormenyi, Zsolt
2010-05-01
The Hungarian National Association of Radio Distress-Signalling and Infocommunications (RSOE) operates Emergency and Disaster Information Service (EDIS) within the frame of its own website which has the objective to monitor and document all the events on the Earth which may cause disaster or emergency. Our service is using the speed and the data spectrum of the internet to gather information. We are monitoring and processing several foreign organisation's data to get quick and certified information. The EDIS website operated together by the General-Directorate of National Disaster Management (OKF) and RSOE, in co-operation with the Crisis Management Centre of the Ministry of Foreign Affairs, provides useful information regarding emergency situations and their prevention. Extraordinary events happening in Hungary, Europe and other areas of the World are being monitored in 24 hours per day. All events processed by RSOE EDIS are displayed real time - for the sake of international compatibility - according to the CAP protocol on a secure website. To ensure clear transparency all events are categorized separately in the RSS directory (e.g. earthquake, fire, flood, landslide, nuclear event, tornado, vulcano). RSOE EDIS also contributes in dissemination of the CAP protocol in Hungary. Beside the official information, with the help of special programs nearly 900-1000 internet press publication will be monitored and the publication containing predefined keywords will be processed. However, these "news" cannot be considered as official and reliable information, but many times we have learnt critical information from the internet press. We are screening the incoming information and storing in a central database sorted by category. After processing the information we are sending it immediately via E-Mail (or other format) for the organisations and persons who have requested it (e.g. National Disaster Management, United Nations etc.). We are aspiring that the processed data will be validated and reliable in all cases, to avoid the possible panic situation caused by unreal information. That is why we are trying to create and keep contact with all organisations, which can provide validated information for us, to operate the RSOE EDIS. Certainly we are publishing all incoming data and information at our website to provide up-to-date information to the citizens as well as we are publishing useful knowledge for them. We have a knowledge database, which contains all necessary information, which can help the citizens in an emergency situation. For the prevention and the most relevant information we are willing to amend our published data with the population information.
Qureshi, Kristine A; Gershon, Robyn R M; Smailes, Elizabeth; Raveis, Victoria H; Murphy, Bridgette; Matzner, Frederick; Fleischman, Alan R
2007-01-01
This report addresses the development, implementation, and evaluation of a protocol designed to protect participants from inadvertent emotional harm or further emotional trauma due to their participation in the World Trade Center Evacuation (WTCE) Study research project. This project was designed to identify the individual, organizational, and structural (environmental) factors associated with evacuation from the World Trade Center Towers 1 and 2 on 11 September 2001. Following published recommended practices for protecting potentially vulnerable disaster research participants, protective strategies and quality assurance processes were implemented and evaluated, including an assessment of the impact of participation on study subjects enrolled in the qualitative phase of the WTCE Study. The implementation of a protocol designed to protect disaster study participants from further emotional trauma was feasible and effective in minimizing risk and monitoring for psychological injury associated with study participation. Details about this successful strategy provide a roadmap that can be applied in other post-disaster research investigations.
Seawater influence monitored by NaCl on the growth of Trametes versicolor.
Yanagawa, Aya
2016-01-01
There are only a few scientific data about the function of ecosystems after tsunami disasters. The ecosystems help the environment to recover after a disaster, and therefore, the research on its function is important. We estimated the seawater influences on wood degradation after a tsunami disaster by the growth of Trametes versicolor. The debris from the Great East Japan Earthquake on the pacific coast in March 2011 was used for the simulations. Its growth on debris was compared with those on seawater-treated woods, and the amount of sodium chloride was examined to know the approximate amount of salts in the samples. Sodium chloride contents were employed as an indicative parameter of sea salts, which contained many elements. As a result, this common white-rot fungus degraded wood debris in the same way as sound sapwood. Although the study was conducted at the laboratory level, this is the first report from the real debris, which assessed the fungal decomposition ability of the ecosystem after a tsunami disaster.
UAVSAR for the Management of Natural Disasters
NASA Astrophysics Data System (ADS)
Lou, Y.; Hensley, S.; Jones, C. E.
2014-12-01
The unique capabilities of imaging radar to penetrate cloud cover and collect data in darkness over large areas at high resolution makes it a key information provider for the management and mitigation of natural and human-induced disasters such as earthquakes, volcanoes, landslides, floods, and wildfires. Researchers have demonstrated the use of UAVSAR's fully polarimetric data to determine flood extent, forest fire extent, lava flow, and landslide. The ability for UAVSAR to provide high accuracy repeated flight tracks and precise imaging geometry for measuring surface deformation to a few centimeter accuracy using InSAR techniques. In fact, UAVSAR's repeat-pass interferometry capability unleashed new potential approaches to manage the risk of natural disasters prior to the occurrence of these events by modeling and monitoring volcano inflation, earthquake fault movements, landslide rate and extent, and sink hole precursory movement. In this talk we will present examples of applications of UAVSAR for natural disaster management. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Sturgis, Sue
2009-01-01
A series of mishaps in a reactor at the Three Mile Island (TMI) nuclear plant led to the 1979 meltdown of almost half the uranium fuel and uncontrolled releases of radiation into the air and surrounding Susquehanna River. It was the single worst disaster ever to befall the U.S. nuclear power industry. Health physics technician Randall Thompson's story about what he witnessed while monitoring radiation there after the incident is being publicly disclosed for the first time. It is supported by a growing body of evidence and it contradicts the U.S. government's contention that the TMI accident posed no threat to the public. Thompson and his wife, a nuclear health physicist who also worked at TMI in the disaster's wake, warn that the government's failure to acknowledge the full scope of the disaster is leading officials to underestimate the risks posed by a new generation of nuclear power plants.
Climate Change, Disaster and Sentiment Analysis over Social Media Mining
NASA Astrophysics Data System (ADS)
Lee, J.; McCusker, J. P.; McGuinness, D. L.
2012-12-01
Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.
Han, Ya-ling; Liang, Zhuo; Yao, Tian-ming; Sun, Jing-yang; Liang, Ming; Huo, Yu; Wang, Geng; Wang, Xiao-zeng; Liang, Yan-chun; Meng, Wei-hong
2012-03-01
Natural disasters have been frequent in recent years. Effective treatment of patients with cardiovascular disease following natural disasters is an unsolved problem. We aimed to develop a novel miniature mobile cardiac catheterization laboratory (Mini Mobile Cath Lab) to provide emergency interventional services for patients with critical cardiovascular disease following natural disasters. A feasibility study was performed by testing the Mini Mobile Cath Lab on dogs with ST-elevation myocardial infarction (STEMI) model in a hypothetical natural-disaster-stricken area. The Mini Mobile Cath Lab was transported to the hypothetical natural-disaster-stricken area by truck. Coronary angiography and primary percutaneous coronary intervention (PCI) were performed on six dogs with STEMI model. The transportation and transformation of the Mini Mobile Cath Lab were monitored and its functioning was evaluated through the results of animal experiments. The Mini Mobile Cath Lab could be transported by truck at an average speed of 80 km/h on mountain roads during daytime in the winter, under conditions of light snow (-15°C to -20°C/-68°F to -59°F). The average time required to prepare the Mini Mobile Cath Lab after transportation, in a wetland area, was 30 minutes. Coronary angiography, and primary PCI were performed successfully. This preliminary feasibility study of the use of the Mini Mobile Cath Lab for emergency interventional treatment of dogs with STEMI indicated that it may perform well in the rescue of critical cardiovascular disease following natural disasters.
A MODIS-based automated flood monitoring system for southeast asia
NASA Astrophysics Data System (ADS)
Ahamed, A.; Bolten, J. D.
2017-09-01
Flood disasters in Southeast Asia result in significant loss of life and economic damage. Remote sensing information systems designed to spatially and temporally monitor floods can help governments and international agencies formulate effective disaster response strategies during a flood and ultimately alleviate impacts to population, infrastructure, and agriculture. Recent destructive flood events in the Lower Mekong River Basin occurred in 2000, 2011, 2013, and 2016 (http://ffw.mrcmekong.org/historical_rec.htm, April 24, 2017). The large spatial distribution of flooded areas and lack of proper gauge data in the region makes accurate monitoring and assessment of impacts of floods difficult. Here, we discuss the utility of applying satellite-based Earth observations for improving flood inundation monitoring over the flood-prone Lower Mekong River Basin. We present a methodology for determining near real-time surface water extent associated with current and historic flood events by training surface water classifiers from 8-day, 250-m Moderate-resolution Imaging Spectroradiometer (MODIS) data spanning the length of the MODIS satellite record. The Normalized Difference Vegetation Index (NDVI) signature of permanent water bodies (MOD44W; Carroll et al., 2009) is used to train surface water classifiers which are applied to a time period of interest. From this, an operational nowcast flood detection component is produced using twice daily imagery acquired at 3-h latency which performs image compositing routines to minimize cloud cover. Case studies and accuracy assessments against radar-based observations for historic flood events are presented. The customizable system has been transferred to regional organizations and near real-time derived surface water products are made available through a web interface platform. Results highlight the potential of near real-time observation and impact assessment systems to serve as effective decision support tools for governments, international agencies, and disaster responders.
NASA Astrophysics Data System (ADS)
Kotovirta, V.; Toivanen, T.; Tergujeff, R.; Hame, T.; Molinier, M.
2015-04-01
Citizen science is a promising way to increase temporal and spatial coverages of in-situ data, and to aid in data processing and analysis. In this paper, we present how citizen science can be used together with Earth observation, and demonstrate its value through three pilot projects focusing on forest biomass analysis, data management in emergencies and water quality monitoring. We also provide recommendations and ideas for follow-up activities. In the forest biomass analysis pilot, in the state of Durango (Mexico), local volunteers make in-situ forest inventory measurements with mobile devices. The collected data is combined with Landsat-8 imagery to derive forest biomass map of the area. The study area includes over 390 permanent sampling plots that will provide reference data for concept validation and verification. The emergency data management pilot focuses in the Philippines, in the areas affected by the typhoons Haiyan in November 2013 and Hagupit in December 2014. Data collected by emergency workers and citizens are combined with satellite data (Landsat-8, VHR if available) to intensify the disaster recovery activities and the coordination efforts. Simple processes for citizens, nongovernmental organisations and volunteers are developed to find and utilize up to date and freely available satellite imagery for coordination purposes and for building new not-for-profit services in disaster situations. In the water quality monitoring pilot, citizens around the Baltic Sea area contribute to the algae situation awareness by collecting algae observations using a mobile application. In-situ observations are compared with surface algal bloom products based on the satellite imagery, e.g. Aqua MODIS images with 500 meter resolution. As an outcome, the usability of the citizen observations together with satellite data in the algae monitoring will be evaluated.
NASA Astrophysics Data System (ADS)
Lindquist, Eric; Pierce, Jen; Wuerzer, Thomas; Glenn, Nancy; Dialani, Jijay; Gibble, Katie; Frazier, Tim; Strand, Eva
2015-04-01
The stages of planning for and responding to natural hazards, such as wildfires and related events, are often conducted as discrete (and often not connected) efforts. Disaster response often takes precedence, exhausting agency and stakeholder resources, and the planning stages are conducted by different agencies or entities with different and often competing agendas and jurisdictions. The result is that evaluation after a disaster can be minimal or even non-existent as resources are expended and interest moves on to the next event. Natural disasters and hazards, however, have a tendency to cascade and multiply: wildfires impact the vulnerability of hillslopes, for example, which may result in landslides, flooding and debris flows long after the initial event has occurred. Connecting decisions across multiple events and time scales is ignored, yet these connections could lead to better policy making at all stages of disaster risk reduction. Considering this situation, we present an adapted life cycle analysis (LCA) approach to examine fire-related hazards at the Wildland-Urban Interface in the American West. The LCHA focuses on the temporal integration of : 1) the 'pre-fire' set of physical conditions (e.g. fuel loads) and human conditions (e.g. hazard awareness), 2) the 'fire event', focusing on computational analysis of the communication patterns and responsibility for response to the event, and 3) the 'post-event' analysis of the landscape susceptibility to fire-related debris flows. The approach of the LCHA follows other models used by governmental agencies to prepare for disasters through 1) preparation and prevention, 2) response and 3) recovery. As an overlay are the diverse agencies and policies associated with these stages and their respective resource and management decisions over time. LCAs have evolved from a business-centric consideration of the environmental impact of a specific product over the products life. This approach takes several phases to end up with an assessment of the impact of the product on the environment over time and is being considered beyond the business and logistics communities in such areas as biodiversity and ecosystem impacts. From our perspective, we consider wildfire as the "product" and want to understand how it impacts the environment (spatially, temporally, across the bio-physical and social domains). Through development of this LCHA we adapt the LCA approach with a focus on the inputs (from fire and pre-fire efforts) outputs (from post fire conditions) and how they evolve and are responded to by the responsible agencies and stakeholders responsible. A Life Cycle Hazard Assessment (LCHA) approach extends and integrates the understanding of hazards over much longer periods of time than previously considered. The LCHA also provides an integrated platform for the necessary interdisciplinary approach to understanding decision and environmental change across the life cycle of the fire event. This presentation will discuss our theoretical and empirical framework for developing a longitudinal LCHA and contribute to the overall goals of the NH7.1 session.
Cyber Surveillance for Flood Disasters
Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han
2015-01-01
Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609
Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery
NASA Astrophysics Data System (ADS)
Ferreira Pichardo, E.
2017-12-01
Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.
NASA Astrophysics Data System (ADS)
Yhokha, Akano; Goswami, Pradeep K.; Chang, Chung-Pai; Yen, Jiun-Yee; Ching, Kuo-En; Aruche, K. Manini
2018-02-01
Orogenic movements and sub-tropical climate have rendered the slopes of the Himalayan region intensely deformed and weathered. As a result, the incidences of slope failure are quite common all along the Himalayan region. The Lesser Himalayan terrane is particularly vulnerable to mass-movements owing to geological fragility, and many parts of it are bearing a high-risk of associated disaster owing to the high population density. An important step towards mitigation of such disasters is the monitoring of slope movement. Towards this, the Persistent Scatterer Interferometry (PSI) technique can be applied. In the present study, the PSI technique is employed in Lesser Himalayan town of Nainital in Uttarakhand state of India to decipher and monitor slope movements. A total of 15 multi-date ENVISAT ASAR satellite images, acquired during August 2008 to August 2010 period, were subjected to PSI, which revealed a continuous creep movement along the hillslopes located towards the eastern side of the Nainital lake. The higher reaches of the hill seem to be experiencing accelerated creep of {˜ }21 mm/year, which decreases downslope to {˜ }5 mm/year. Based on spatial pattern of varying PSI Mean LOS Velocity (MLV) values, high (H), moderate (M), low (L) and very low (S) creeping zones have been delineated in the hillslopes. Given the long history of mass movements and continuously increasing anthropogenic activities in Nainital, these results call for immediate measures to avert any future disaster in the town.
Solar-Powered Airplane with Cameras and WLAN
NASA Technical Reports Server (NTRS)
Higgins, Robert G.; Dunagan, Steve E.; Sullivan, Don; Slye, Robert; Brass, James; Leung, Joe G.; Gallmeyer, Bruce; Aoyagi, Michio; Wei, Mei Y.; Herwitz, Stanley R.;
2004-01-01
An experimental airborne remote sensing system includes a remotely controlled, lightweight, solar-powered airplane (see figure) that carries two digital-output electronic cameras and communicates with a nearby ground control and monitoring station via a wireless local-area network (WLAN). The speed of the airplane -- typically <50 km/h -- is low enough to enable loitering over farm fields, disaster scenes, or other areas of interest to collect high-resolution digital imagery that could be delivered to end users (e.g., farm managers or disaster-relief coordinators) in nearly real time.
Engineering and Design: Structural Deformation Surveying
2002-06-01
loading deformations. Long-term measurements are far more common and somewhat more complex given their external nature . Long-term monitoring of a...fitting of structural elements, environmental protection, and development of mitigative measures in the case of natural disasters (land slides, earthquakes...of additional localized monitoring points (i.e., points not intended for routine observation) to determine the nature and extent of large displacements
Scheduling Mission-Critical Flows in Congested and Contested Airborne Network Environments
2018-03-01
precision agriculture [64–71]. However, designing, implementing, and testing UAV networks poses numerous interdisciplinary challenges because the...applications including search and rescue, disaster relief, precision agriculture , environmental monitoring, and surveillance. Many of these applications...monitoring enabling precision agriculture ,” in Automation Science and Engineering (CASE), 2015 IEEE International Conference on. IEEE, 2015, pp. 462–469. [65
Policy and Administrative Issues for Large-Scale Clinical Interventions Following Disasters
Cobham, Vanessa E.; McDermott, Brett
2014-01-01
Abstract Objective: Large, programmatic mental health intervention programs for children and adolescents following disasters have become increasingly common; however, little has been written about the key goals and challenges involved. Methods: Using available data and the authors' experiences, this article reviews the factors involved in planning and implementing large-scale treatment programs following disasters. Results: These issues include funding, administration, choice of clinical targets, workforce selection, choice of treatment modalities, training, outcome monitoring, and consumer uptake. Ten factors are suggested for choosing among treatment modalities: 1) reach (providing access to the greatest number), 2) retention of patients, 3) privacy, 4) parental involvement, 5) familiarity of the modality to clinicians, 6) intensity (intervention type matches symptom acuity and impairment of patient), 7) burden to the clinician (in terms of time, travel, and inconvenience), 8) cost, 9) technology needs, and 10) effect size. Traditionally, after every new disaster, local leaders who have never done so before have had to be recruited to design, administer, and implement programs. Conclusion: As expertise in all of these areas represents a gap for most local professionals in disaster-affected areas, we propose that a central, nongovernmental agency with national or international scope be created that can consult flexibly with local leaders following disasters on both overarching and specific issues. We propose recommendations and point out areas in greatest need of innovation. PMID:24521227
NASA Astrophysics Data System (ADS)
Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.
2017-12-01
The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We will provide an overview of the response activities and data products provided by the NASA Earth Science Disasters program, partnerships with federal end-users and the International Charter, and preliminary feedback from end-user partners during response efforts following Hurricanes Harvey, Irma, and Maria..
Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, Harry
Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.
Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster
Miley, Harry
2018-02-07
Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.
NASA Astrophysics Data System (ADS)
Tsironis, Vassilis; Herekakis, Themistocles; Tsouni, Alexia; Kontoes, Charalampos Haris
2016-04-01
The rapid changes in climate over the last decades, together with the explosion of human population, have shaped the context for a fragile biosphere, prone to natural and manmade disasters that result in massive flows of environmental immigrants and great disturbances of ecosystems. The magnitude of the latest great disasters have shown evidence for high quality Earth Observation (EO) services as it regards disaster risk reduction and emergency support (DRR & EMS). The EO community runs ambitious initiatives in order to generate services with direct impact in the biosphere, and intends to stimulate the wider participation of citizens, enabling the Openness effect through the Open Innovation paradigm. This by its turn results in the tremendous growth of open source software technologies associated with web, social media, mobile and Crowdsourcing. The Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of National Observatory of Athens has developed, in the framework of the BEYOND Centre of Excellence for EO-based monitoring of Natural Disasters (http://www.beyond-eocenter.eu), a rich ecosystem of Copernicus compliant services addressing diverse hazardous phenomena caused from climate and weather extremes (fires, floods, windstorms, heat waves), atmospheric disturbances (smoke, dust, ozone, UV), and geo-hazards (earthquakes, landslides, volcanoes). Several services are delivered in near-real time to the public and the institutional authorities at national and regional level in southeastern Europe. Specific ones have been recognized worldwide for their innovation and operational aspects (e.g. FIREHUB was awarded the first prize as Best Service Challenge in the Copernicus Masters Competition, 2014). However, a communication gap still exists between the BEYOND ecosystem and those directly concerned by the natural disasters, the citizens and emergency response managers. This disruption of information flow between interested parties is addressed by DisasterHub, an application proposal that won the MYGEOSS Second Call for Innovative Apps (http://beyond-eocenter.eu/index.php/ann-blog/197-disasterhub-mygeoss). DisasterHub will fill the gap by introducing a mobile application that will act as a middleware between mobile users and BEYOND services, building on the concept of citizen observatories in support of Copernicus, GEO, GEOSS, and UN-SPIDER. In this context the roadmap for generating beneficial EO services through DisasterHub is sketched in two main branches: (i) ingestion, processing and fusion of big multimodal data with additional spatiotemporal evidences (originated from Core Copernicus, GEO, GEOSS) for deriving higher value DRR and EMS products, (ii) interlinking the web and mobile platforms for the exchange and ease access of the societies to open EO/crowd generated data. The benefited communities will be effectively enlarged through DisasterHub mobile app. Mutually the BEYOND ecosystem will profit from the large amount of tagged information returned from the field, forming a unique input to the production chains and assimilation of predictive modeling. In conclusion DisasterHub will showcase in the EO community an enhanced EO services ecosystem with a software infrastructure for easy access of mobile users to the real-time monitoring and early-warning systems of BEYOND and tools for incorporating crowd-sourced data with open geospatial and socioeconomic data via open/linked data ingestion mechanisms (APIs), retrieved from the GEOSS Data-CORE, Copernicus and other EU portals.
Using Spacecraft in Climate and Natural Disasters Registration
NASA Astrophysics Data System (ADS)
Sokol, Galyna; Kotlov, Vladyslav; Khorischenko, Oleksandr; Davydova, Angelica; Heti, Kristina
2017-04-01
Since the beginning of the space age it become possible the global monitoring of the planet Earth's state. Since the second half of the 20th century there are observations of the atmosphere's state and the Earth's climate have been held by a spacecraft. Also become possible large-scale monitoring of climate change. An attempt was made to define the role of infrasound in the interaction between a space weather, climate and biosphere of the Earth using spacecraft sensors recording. Many countries are involving in the detection of earthquakes, predicting volcanic eruptions and floods and also the monitoring of irregular solar activity. Understanding this leads to the conclusion that international cooperation for the protection of humanity is not only a political priority in the international arena, but also a question of the quality of living standards of any state. Commonly known following monitoring systems: Disaster Monitoring Constellation (DMC), FUEGO program (Spain), Sentinel-Asia program (Japan) and International aerospace system for monitoring of global phenomena (MAKCM, Russia). The Disaster Monitoring Constellation for International Imaging (DMCii) consists of a number of remote sensing satellites constructed by Surrey Satellite Technology Ltd (SSTL) and operated for the Algerian, Nigerian, Turkish, British and Chinese governments by DMC International Imaging. The DMC has monitored the effects and aftermath of the Indian Ocean Tsunami (December 2004), Hurricane Katrina (August 2005), and many other floods, fires and disasters. The individual DMC satellites are: 1. First generation satellites (AlSAT-1 - Algeria, BilSAT - Turkey, NigeriaSAT-1 - Nigeria, UK-DMC - United Kingdom); 2. Second generation satellites (Beijing - China, UK-DMC 2 - United Kingdom, Deimos-1 - Spanish commercial, NigeriaSAT-2 and NigeriaSAT-X). The sun-synchronous orbits of these satellites are coordinated so that the satellites follow each other around an orbital plane, ascending north over the Equator at 10:15 am local time (and 10:30 am local time for Beijing-1). Some of these satellites also include other imaging payloads and experimental payloads: onboard hardware-based image compression (on BilSAT), a GPS reflectometry experiment and onboard Internet router (on the UK-DMC satellite). The DMC satellites are notable for communicating with their ground stations using the Internet Protocol for payload data transfer and command and control, so extending the Internet into space, and allowing experiments with the Interplanetary Internet to be carried out. Many of the technologies used in the design of the DMC satellites, including Internet Protocol use, were tested in space beforehand on SSTL's earlier UoSAT-12 satellite. Currently, there is a great need to establish combining space and ground-based observation systems that will accurately capture key climate variables on a scale from regional to global and stable functioning for decades to determine climate variability and trends. With the help of modern computer systems were calculated moving of infrasonic waves in the atmosphere. This data can be used to predict the weather.
Simulation and monitoring tools to protect disaster management facilities against earthquakes
NASA Astrophysics Data System (ADS)
Saito, Taiki
2017-10-01
The earthquakes that hit Kumamoto Prefecture in Japan on April 14 and 16, 2016 severely damaged over 180,000 houses, including over 8,000 that were completely destroyed and others that were partially damaged according to the Cabinet Office's report as of November 14, 2016 [1]. Following these earthquakes, other parts of the world have been struck by earthquakes including Italy and New Zealand as well as the central part of Tottori Prefecture in October, where the earthquake-induced collapse of buildings has led to severe damage and casualties. The earthquakes in Kumamoto Prefecture, in fact, damaged various disaster management facilities including Uto City Hall, which significantly hindered the city's evacuation and recovery operations. One of the most crucial issues in times of disaster is securing the functions of disaster management facilities such as city halls, hospitals and fire stations. To address this issue, seismic simulations are conducted on the East and the West buildings of Toyohashi City Hall using the analysis tool developed by the author, STERA_3D, with the data of the ground motion waveform prediction for the Nankai Trough earthquake provided by the Ministry of Land, Infrastructure, Transport and Tourism. As the result, it was found that the buildings have sufficient earthquake resistance. It turned out, however, that the west building is at risk for wall cracks or ceiling panel's collapse while in the east building, people would not be able to stand through the strong quakes of 7 on the seismic intensity scale and cabinets not secured to the floors or walls would fall over. Additionally, three IT strong-motion seismometers were installed in the city hall to continuously monitor vibrations. Every five minutes, the vibration data obtained by the seismometers are sent to the computers in Toyohashi University of Technology via the Internet for the analysis tools to run simulations in the cloud. If an earthquake strikes, it is able to use the results of the simulations to assess whether it is safe to continue using the buildings. There is a plan to implement more measures against earthquakes, for example by having additional monitoring locations including fire stations and evacuation facilities, and installing a dedicated line for disaster prevention. Accumulating real-time data in the cloud can also improve the accuracy of the simulations.
Assessment of Flood Disaster Impacts in Cambodia: Implications for Rapid Disaster Response
NASA Astrophysics Data System (ADS)
Ahamed, Aakash; Bolten, John; Doyle, Colin
2016-04-01
Disaster monitoring systems can provide near real time estimates of population and infrastructure affected by sudden onset natural hazards. This information is useful to decision makers allocating lifesaving resources following disaster events. Floods are the world's most common and devastating disasters (UN, 2004; Doocy et al., 2013), and are particularly frequent and severe in the developing countries of Southeast Asia (Long and Trong, 2001; Jonkman, 2005; Kahn, 2005; Stromberg, 2007; Kirsch et al., 2012). Climate change, a strong regional monsoon, and widespread hydropower construction contribute to a complex and unpredictable regional hydrodynamic regime. As such, there is a critical need for novel techniques to assess flood impacts to population and infrastructure with haste during and following flood events in order to enable governments and agencies to optimize response efforts following disasters. Here, we build on methods to determine regional flood extent in near real time and develop systems that automatically quantify the socioeconomic impacts of flooding in Cambodia. Software developed on cloud based, distributed processing Geographic Information Systems (GIS) is used to demonstrate spatial and numerical estimates of population, households, roadways, schools, hospitals, airports, agriculture and fish catch affected by severe monsoon flooding occurring in the Cambodian portion of Lower Mekong River Basin in 2011. Results show modest agreement with government and agency estimates. Maps and statistics generated from the system are intended to complement on the ground efforts and bridge information gaps to decision makers. The system is open source, flexible, and can be applied to other disasters (e.g. earthquakes, droughts, landslides) in various geographic regions.
Medical management of the consequences of the Fukushima nuclear power plant incident.
Hachiya, Misao; Tominaga, Takako; Tatsuzaki, Hideo; Akashi, Makoto
2014-02-01
A huge earthquake struck the northeast coast of the main island of Japan on March 11, 2011, triggering a tsunami with 14-15 meter-high waves hitting the area. The earthquake was followed by numerous sustained aftershocks. The earthquake affected the nuclear power plant (NPP) in Fukushima prefecture, resulting in large amounts of radioactive materials being released into the environment. The major nuclides released on land were ¹³¹I, ¹³⁴Cs, and ¹³⁷Cs. Therefore, almost 170,000 people had to be evacuated or stay indoors. Besides the NPP and the telecommunications system, the earthquake also affected infrastructures such as the supplies of water and electricity as well as the radiation monitoring system. The local hospital system was dysfunctional; hospitals designated as radiation-emergency facilities were not able to function because of damage from the earthquake and tsunami, and some of them were located within a 20 km radius of the NPP, the designated evacuation zone. Local fire department personnel were also asked to evacuate. Furthermore, the affected hospitals had not established their evacuation plans at that time. We have learned from this "combined disaster" that the potential for damage to lifelines as well as the monitoring systems for radiation in case of an earthquake requires our intense focus and vigilance, and that hospitals need comprehensive plans for evacuation, including patients requiring life support equipment during and after a nuclear disaster. There is an urgent need for a "combined disaster" strategy, and this should be emphasized in current disaster planning and response. © 2013 Wiley Periodicals, Inc.
Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring
NASA Astrophysics Data System (ADS)
Wang, Shixin; Yang, Baolin; Zhou, Yi; Wang, Futao; Zhang, Rui; Zhao, Qing
2018-05-01
To more efficiently use GaoFen-1 (GF-1) satellite images for landslide emergency monitoring, a Digital Surface Model (DSM) can be generated from GF-1 across-track stereo image pairs to build a terrain dataset. This study proposes a landslide 3D information extraction method based on the terrain changes of slope objects. The slope objects are mergences of segmented image objects which have similar aspects; and the terrain changes are calculated from the post-disaster Digital Elevation Model (DEM) from GF-1 and the pre-disaster DEM from GDEM V2. A high mountain landslide that occurred in Wenchuan County, Sichuan Province is used to conduct a 3D information extraction test. The extracted total area of the landslide is 22.58 ha; the displaced earth volume is 652,100 m3; and the average sliding direction is 263.83°. The accuracies of them are 0.89, 0.87 and 0.95, respectively. Thus, the proposed method expands the application of GF-1 satellite images to the field of landslide emergency monitoring.
Satellites, tweets, forecasts: the future of flood disaster management?
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos
2017-04-01
Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.
Impedance based sensor technology to monitor stiffness of biological structures
NASA Astrophysics Data System (ADS)
Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar
2010-04-01
In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.
Environmental Standards for Storage of Books and Manuscripts
ERIC Educational Resources Information Center
Banks, Paul N.
1974-01-01
Deals with those factors included in building planning that can influence preservation, deterioration, or destruction of books--temperature, humidity, light, air cleanness, ventilation, exhibition, shelving and transportation, storage of microfilm, disaster control, and monitoring systems. (CH)
Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation
NASA Astrophysics Data System (ADS)
Zhang, P.; Zhao, Z.
2018-04-01
In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.
Sensor Network Provides Environmental Data
NASA Technical Reports Server (NTRS)
2007-01-01
The National Biocomputation Center, a joint partnership between the Stanford University School of Medicine's Department of Surgery and NASA's Ames Research Center, is the test bed for much of NASA's research in telemedicine, the remote delivery of medical care. In early 2005, researchers at the National Biocomputation Center formed a spinoff company, Intelesense Technologies, to use the telemedicine sensors to provide integrated global monitoring systems. Intelesense uses the systems to better understand how environments and people are linked, monitor and protect natural resources, predict and adapt to environmental changes, provide for sustainable development, reduce the costs and impacts of natural disasters, and provide an effective and intelligent response to such disasters. Current projects range from protecting the environment to tracking emerging infectious diseases like avian influenza (bird flu) and helping people from around the world connect and interact with each other to better understand their environment and themselves.
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
Forecasting and Communicating Water-Related Disasters in Africa
NASA Astrophysics Data System (ADS)
Hong, Y.; Clark, R. A.; Mandl, D.; Gourley, J. J.; Flamig, Z.; Zhang, K.; Macharia, D.; Frye, S. W.; Cappelaere, P. G.; Handy, M.
2016-12-01
Accurate forecasting and communication of water and water-related hazards in developing regions could save untold lives and property. To this end, the CREST (Coupled Routing and Excess Storage) hydrologic model has been implemented over East Africa, and in dozens of other countries as a user-friendly, flexible, and highly extensible platform for monitoring water resources, floods, droughts, and landslides since 2009. We will present the updated CREST/EF5 hydrologic ensemble modeling framework with new model physics and better forecasts of streamflow, soil moisture, and other hydrologic states to RCMRD (the Regional Centre for Mapping of Resources for Development) and SERVIR global hub network. The central goal of this project is to develop an ensemble hydrologic prediction system, forced by weather and climate forecasts in a single continuum, to communicate forecasts on scales ranging from sub-daily to seasonal and in formats designed for better decision making about water and water-related disasters. The CREST/EF5 is a proven performer at getting researcher and officials in emerging regions excited about and confident in their ability to independently monitor, forecast, and understand water and water-related disasters, through a series of training workshops and capacity building activities in USA, Africa, Mesoamerica, and South Asia and is thus particularly well-suited for hydrologic capacity building in emerging countries.
Maslow, Carey B; Caramanica, Kimberly; Li, Jiehui; Stellman, Steven D; Brackbill, Robert M
2016-10-01
To estimate associations between exposure to the events of September 11, 2001, (9/11) and low birth weight (LBW), preterm delivery (PD), and small size for gestational age (SGA). We matched birth certificates filed in New York City for singleton births between 9/11 and the end of 2010 to 9/11-related exposure data provided by mothers who were World Trade Center Health Registry enrollees. Generalized estimating equations estimated associations between exposures and LBW, PD, and SGA. Among 3360 births, 5.8% were LBW, 6.5% were PD, and 9% were SGA. Having incurred at least 2 of 4 exposures, having performed rescue or recovery work, and probable 9/11-related posttraumatic stress disorder 2 to 3 years after 9/11 were associated with PD and LBW during the early study period. Disasters on the magnitude of 9/11 may exert effects on reproductive outcomes for several years. Women who are pregnant during and after a disaster should be closely monitored for physical and psychological sequelae. In utero and maternal disaster exposure may affect birth outcomes. Researchers studying effects of individual disasters should identify commonalities that may inform postdisaster responses to minimize disaster-related adverse birth outcomes.
Disaster risk reduction in developing countries: costs, benefits and institutions.
Kenny, Charles
2012-10-01
Some 60,000 people worldwide die annually in natural disasters, mostly due to the collapse of buildings in earthquakes, and primarily in the developing world. This is despite the fact that engineering solutions exist that can eliminate almost completely the risk of such deaths. Why is this? The solutions are expensive and technically demanding, so their cost-benefit ratio often is unfavourable as compared to other interventions. Nonetheless, there are various public disaster risk reduction interventions that are highly cost-effective. That such interventions frequently remain unimplemented or ineffectively executed points to a role for issues of political economy. Building regulations in developing countries appear to have limited impact in many cases, perhaps because of inadequate capacity and corruption. Public construction often is of low quality, perhaps for similar reasons. This suggests the need for approaches that emphasise simple and limited disaster risk regulation covering only the most at-risk structures-and that, preferably, non-experts can monitor-as well as numerous transparency and oversight mechanisms for public construction projects. © 2012 The Author(s). Journal compilation © Overseas Development Institute, 2012.
Guimarães, Raphael Mendonça; Mazoto, Maíra Lopes; Martins, Raphael Nascimento; do Carmo, Cleber Nascimento; Asmus, Carmen Ildes Fróes
2014-10-01
Floods account for approximately 40% of natural disasters that occur around the world and they are therefore considered a major public health problem. While floods constitute a global problem, data from the International Strategy for Disaster Reduction showed that almost all of the deaths or individuals affected are concentrated in developing countries. It is assumed that, although they have natural causes, the consequences of floods also involve social issues. To try to predict such vulnerability in the occurrence of natural disasters, a social and environmental index that shows the degree of vulnerability of a location was developed in this paper. This index was developed using multivariate analysis involving factor analysis and demographic, social and environmental variables. The index was applied in the municipalities of the state of Rio de Janeiro and compared with the official figures of the Civil Defense Unit. The results found suggest that the proposed index meets the expectation of predicting the vulnerability of the local population.
Application of Modern Tools and Techniques for Mine Safety & Disaster Management
NASA Astrophysics Data System (ADS)
Kumar, Dheeraj
2016-04-01
The implementation of novel systems and adoption of improvised equipment in mines help mining companies in two important ways: enhanced mine productivity and improved worker safety. There is a substantial need for adoption of state-of-the-art automation technologies in the mines to ensure the safety and to protect health of mine workers. With the advent of new autonomous equipment used in the mine, the inefficiencies are reduced by limiting human inconsistencies and error. The desired increase in productivity at a mine can sometimes be achieved by changing only a few simple variables. Significant developments have been made in the areas of surface and underground communication, robotics, smart sensors, tracking systems, mine gas monitoring systems and ground movements etc. Advancement in information technology in the form of internet, GIS, remote sensing, satellite communication, etc. have proved to be important tools for hazard reduction and disaster management. This paper is mainly focused on issues pertaining to mine safety and disaster management and some of the recent innovations in the mine automations that could be deployed in mines for safe mining operations and for avoiding any unforeseen mine disaster.
Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P; Loretti, Alessandro
2015-10-01
A Conceptual Framework upon which the study of disasters can be organized is essential for understanding the epidemiology of disasters, as well as the interventions/responses undertaken. Application of the structure provided by the Conceptual Framework should facilitate the development of the science of Disaster Health. This Framework is based on deconstructions of the commonly used Disaster Management Cycle. The Conceptual Framework incorporates the steps that occur as a hazard progresses to a disaster. It describes an event that results from the changes in the release of energy from a hazard that may cause Structural Damages that in turn, may result in Functional Damages (decreases in levels of function) that produce needs (goods and services required). These needs can be met by the goods and services that are available during normal, day-to-day operations of the community, or the resources that are contained within the community's Response Capacity (ie, an Emergency), or by goods and services provided from outside of the affected area (outside response capacities). Whenever the Local Response Capacity is unable to meet the needs, and the Response Capacities from areas outside of the affected community are required, a disaster occurs. All responses, whether in the Relief or Recovery phases of a disaster, are interventions that use the goods, services, and resources contained in the Response Capacity (local or outside). Responses may be directed at preventing/mitigating further deterioration in levels of functions (damage control, deaths, injuries, diseases, morbidity, and secondary events) in the affected population and filling the gaps in available services created by Structural Damages (compromise in available goods, services, and/or resources; ie, Relief Responses), or may be directed toward returning the affected community and its components to the pre-event functional state (ie, Recovery Responses). Hazard Mitigation includes interventions designed to decrease the likelihood that a hazard will cause an event, and should an event occur, that the amount of energy released will be reduced. Capacity Building consists of all interventions undertaken before an event occurs in order to increase the resilience of the community to an event related to a hazard that exists in an area-at-risk. Resilience is the combination of the Absorbing, Buffering, and Response Capacities of a community-at-risk, and is enhanced through Capacity-Building efforts. A disaster constitutes a failure of resilience.
Mobile Response Team Saves Lives in Volcano Crises
Ewert, John W.; Miller, C. Dan; Hendley, James W.; Stauffer, Peter H.
1997-01-01
The world's only volcano crisis response team, organized and operated by the USGS, can be quickly mobilized to assess and monitor hazards at volcanoes threatening to erupt. Since 1986, the team has responded to more than a dozen volcano crises as part of the Volcano Disaster Assistance Program (VDAP), a cooperative effort with the Office of Foreign Disaster Assistance of the U.S. Agency for International Development. The work of USGS scientists with VDAP has helped save countless lives, and the valuable lessons learned are being used to reduce risks from volcano hazards in the United States.
Cloud Based Web 3d GIS Taiwan Platform
NASA Astrophysics Data System (ADS)
Tsai, W.-F.; Chang, J.-Y.; Yan, S. Y.; Chen, B.
2011-09-01
This article presents the status of the web 3D GIS platform, which has been developed in the National Applied Research Laboratories. The purpose is to develop a global earth observation 3D GIS platform for applications to disaster monitoring and assessment in Taiwan. For quick response to preliminary and detailed assessment after a natural disaster occurs, the web 3D GIS platform is useful to access, transfer, integrate, display and analyze the multi-scale huge data following the international OGC standard. The framework of cloud service for data warehousing management and efficiency enhancement using VMWare is illustrated in this article.
Re-establishing clean water in a disaster.
Fournier, Chris
2011-09-01
When a disaster occurs, water systems can be overwhelmed with sediment, chemicals, microbes, and other harmful organisms. Dialysis clinics need to have disaster management plans and protocols in place to meet the demands of any situation. During emergency events, such as large widespread natural disasters, it is necessary to have the support of outside resources to keep the clinic operating or to aid in returning it to service as quickly and as safely as possible. Before proceeding with any medical treatments that use water, such as dialysis, facilities should address five different response actions to establish the safety and effectiveness of their water system. Test the water quality prior to treating patients. Make sure the system is working properly by performing critical water tests. Compare all results with pre-disaster data to help spot any warning signs. Inspect the water system, including all connections, timers, and settings. Consider contacting your water treatment vendor for additional verification and support. Be sure to closely monitor the water system equipment; make sure it is not overwhelmed by staying in touch with local water authorities. They may "shock" their distribution system to regain compliance. Make every effort to conserve water during this time. Change the water system. If the central water system has been compromised, consider using portable RO units or portable exchange DI tanks. Finally, moving your patients to another facility may be the only alternative, so work with other local facilities unaffected by the disaster.
Chronic disease and disasters medication demands of Hurricane Katrina evacuees.
Jhung, Michael A; Shehab, Nadine; Rohr-Allegrini, Cherise; Pollock, Daniel A; Sanchez, Roger; Guerra, Fernando; Jernigan, Daniel B
2007-09-01
Preparing for natural disasters has historically focused on treatment for acute injuries, environmental exposures, and infectious diseases. Many disaster survivors also have existing chronic illness, which may be worsened by post-disaster conditions. The relationship between actual medication demands and medical relief pharmaceutical supplies was assessed in a population of 18,000 evacuees relocated to San Antonio TX after Hurricane Katrina struck the Gulf Coast in August 2005. Healthcare encounters from day 4 to day 31 after landfall were monitored using a syndromic surveillance system based on patient chief complaint. Medication-dispensing records were collected from federal disaster relief teams and local retail pharmacies serving evacuees. Medications dispensed to evacuees during this period were quantified into defined daily doses and classified as acute or chronic, based on their primary indications. Of 4,229 categorized healthcare encounters, 634 (15%) were for care of chronic medical conditions. Sixty-eight percent of all medications dispensed to evacuees were for treatment of chronic diseases. Cardiovascular medications (39%) were most commonly dispensed to evacuees. Thirty-eight percent of medication doses dispensed by federal relief teams were for chronic care, compared to 73% of doses dispensed by retail pharmacies. Federal disaster relief teams supplied 9% of all chronic care medicines dispensed. A substantial demand for drugs used to treat chronic medical conditions was identified among San Antonio evacuees, as was a reliance on retail pharmacy supplies to meet this demand. Medical relief pharmacy supplies did not consistently reflect the actual demands of evacuees.
Biomarkers reveal sea turtles remained in oiled areas following the Deepwater Horizon oil spill
Vander Zanden, Hannah B.; Bolten, Alan B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Reich, Kimberly J.; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Pajuelo, Mariela; Bjorndal, Karen A.
2016-01-01
Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the 10 individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster.
NASA Astrophysics Data System (ADS)
Mayberry, G. C.
2009-12-01
The U.S. Agency for International Development’s (USAID) Office of U.S. Foreign Disaster Assistance (OFDA) supports several geologic-hazard related projects that help reduce the impact of geologic disasters by utilizing advances in science to monitor hazards and mitigate their effects. OFDA’s main responsibility is to rapidly respond to disasters, but OFDA also supports disaster risk reduction activities that aim to ultimately decrease the need for external responders and help to sustain development efforts by lessening the impact of potential disasters and strengthening at-risk community’s resiliency. One of OFDA’s success stories in geologic hazard risk reduction is the Volcano Disaster Assistance Program (VDAP). Following the deadly 1985 eruption of Nevado del Ruiz volcano in Colombia that killed about 25,000 people, the U.S. Geological Survey (USGS) and OFDA formed the VDAP team to provide technical assistance worldwide when potentially dangerous volcanoes show signs of unrest. VDAP also provides technical assistance for capacity-building projects at foreign observatories in order to strengthen their volcano monitoring networks and better prepare them for future activity. VDAP has deployed to 24 major crises in the past 23 years and helped to build infrastructure in 12 countries. They have helped their local counterparts save tens of thousands of lives, and hundreds of millions of dollars in property. Several factors contribute to VDAP’s success: sustained technical assistance allows VDAP to build upon previous efforts, working in the background with counterparts promotes independence, and addressing response and capacity-building needs leads to sustained development among counterpart agencies. Some of the lessons learned from VDAP will be parlayed into the newly formed OFDA-USGS Earthquake Disaster Assistance Team (EDAT), which will provide technical assistance to scientists shortly after large earthquakes occur in foreign countries so that they can “build back better” after events. An example of how OFDA is using advances in science to address the impact of earthquakes on society is the Prompt Assessment of Global Earthquakes for Response (PAGER). PAGER, which is implemented by the USGS, distributes notifications that provide an estimate of the impact of significant earthquakes shortly after they occur. The notifications include earthquake information such as location, magnitude and depth, an estimate of the number of people exposed to varying levels of shaking based on the Modified Mercalli Intensity Scale, and a description of the region’s vulnerability to earthquakes. The science-based information that PAGER provides has proven to be a valuable asset for responders who have to quickly make potentially life-saving decisions often with little data. In addition, scenarios can be run using the PAGER system that provide a visual means to communicate the potential seismic hazard to at-risk communities and decision makers so that they can make informed decisions about future development. OFDA’s disaster risk reduction projects such as VDAP, EDAT, and PAGER, help promote sustained development by lessening the impact of future geologic events.
Implementation of New Technologies to Monitor Phytoplankton Blooms in the South of Chile
NASA Astrophysics Data System (ADS)
Rodríguez-Benito, C.; Haag, C.; Alvial, A.
2004-05-01
A pilot project has been carried out to demonstrate the applicability of remote sensing in the Xth region of Chile, related to the monitoring of algal blooms. Most of the fish farms of the country are located in this area, where considerable economic losses for this activity are the consequence of algal blooms. The implementation of new technologies to monitor this natural disaster is one of the main goals of local institutions. The project has been developed using ENVISAT/MERIS and AATSR images and oceanographic instrumentation in order to improve the information of the ongoing coastal monitoring programs.
ERIC Educational Resources Information Center
Frasier, Debra
2008-01-01
In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…
An experimental system for flood risk forecasting and monitoring at global scale
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter
2017-04-01
Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.
Piezo impedance sensors to monitor degradation of biological structure
NASA Astrophysics Data System (ADS)
Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav
2010-04-01
In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.
Natural disasters and gender dynamics
NASA Astrophysics Data System (ADS)
Roder, Giulia; Tarolli, Paolo
2016-04-01
Worldwide statistics reveal that the increasing number of risks and disaster impacts within the last decades have caused highly severe damages, with high death toll and huge economic damages (World Bank, 2010). As a consequence people's vulnerabilities have increased disproportionally in recent years. Individuals' ability to anticipate, prepare, cope, respond and recover from disasters differs according to some socio-economic attributes present in each community. The research on natural disasters in a gendered perspective is fairly limited compared to other variables. In fact, the need to track social vulnerabilities and investigate gender dynamics into all levels of the disaster life cycle has been recognized only recently, during the Sendai Framework for Disaster Risk Reduction (March 2015). For this purpose, we propose a review of the literature regarding the ways men and women conceptualise natural disasters, prepare and react, both physically and psychologically, to catastrophic events. This work tries to give some interpretation to these subjects analysing the social context in which sex discrepancies are developed, in different countries, cultures and in various socio-economic backgrounds. Findings highlighted that women perceived more the risk, and they have developed personal strategies to better react and withstand the impacts of negative occurrences. Being at home, working in the house and caring the children have been always placed them at a higher exposure to disasters. However, these circumstances, they gave them the means to organize the family for evacuations thanks to their deep knowledge of the territory they live and the neighbourhood networks they create. Women seem to be not sole victims, but valuable resources able to take leading roles in building disaster resilience. Some case studies, however, continue to demonstrate a female's higher fear and powerless face hazardous events than their counterparts, showing various mental health disorders. Men, on the other side, feel more often prepared to overcome the crises, but what emerges from the stress and the losses caused by disasters are different types of violence (self-harm and interpersonal violence). It is therefore necessary to recognize violence and mental health pathologies as part of the negative consequences that occur after natural disasters and that can be part of people's vulnerability if those events recur frequently. Living conditions, demographic, economic attributes, behaviours and beliefs reflect gender power relations in the disaster context. Failing to recognize it, may lead to inefficient community-based risk management plans. Gender dynamics in the disaster context should be the interest not only of non-governmental and/or international organizations. They should be a priority for researchers that have to contribute more in their studies to find a gendered differentiation, without limiting gender to an isolated attribute. This will help public authorities to develop sensitive management plans in order to let the disaster relief an easy process to achieve. This work will contribute to the scientific recognition of gender in the disaster management context, in order to raise further investigations on this topic. World Bank (2010) Natural Hazards, Unnatural Disasters: The Economics of Effective Prevention. The International Bank for Reconstruction and Development Reports.
Furquim, Gustavo; Filho, Geraldo P R; Jalali, Roozbeh; Pessin, Gustavo; Pazzi, Richard W; Ueyama, Jó
2018-03-19
The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN.
Furquim, Gustavo; Filho, Geraldo P. R.; Pessin, Gustavo; Pazzi, Richard W.
2018-01-01
The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN. PMID:29562657
Dual use of distributed remote sensing satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
1992-12-02
Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.
Dual use of distributed remote sensing satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
1993-03-01
Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.
Dual use of distributed remote sensing satellites
NASA Astrophysics Data System (ADS)
Canavan, G. H.
1992-12-01
Satellites can serve both defense and the environment, simultaneously monitoring preparations for aggression, the environment, pollution, and natural disasters. These applications have been discussed extensively in international meetings, which have produced specific projects for cooperation and growing acceptance of dual-use concepts.
Modeling, Forecasting and Mitigating Extreme Earthquakes
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.
2012-12-01
Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).
NASA Technical Reports Server (NTRS)
Anderson, Eric
2016-01-01
SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.
NASA Technical Reports Server (NTRS)
Viter, V.
1993-01-01
The basic data of the automatic space station ALMAZ-1B is overviewed, including the orbit parameters and maximum power. The principal technical characteristics of its remote sensing equipment is listed for the synthetic aperture and side-looking radar, optoelectronic equipment for stereophotography, high-resolution electronic scanner, middle-resolution optomechanical scanner, spectroradiometer for ocean satellite monitoring, and information transmission and reception. The main objectives and uses of the ALMAZ-1B information are cartography, land monitoring, geology, ecological monitoring, oceanology, pilotage, fishery, and information supply during an emergency such as controlling situation in natural disasters.
Local health care system utilizing the LPG (liquid propane gas) network.
Umemoto, T; Hoshi, H; Tsuda, M; Horio, S; Itou, N; Neriki, T
1998-07-01
JAC's LPG monitoring network system is mainly provided in mountain villages. However, by using this system, it will be possible to start a Digital Network Program for the Elderly while maintaining superior economic feasibility and public benefit using existing information infrastructures. This project also has the capabilities for the creation of a fire/disaster monitoring system, as well as a health care system by using conventional LPG monitoring systems. Telemedicine is an option for the future, as well, by connecting medical equipment and a tele-conferencing system.
NASA Astrophysics Data System (ADS)
Hardin, D.; Graves, S.; Sever, T.; Irwin, D.
2005-05-01
In 2002 and 2003 NASA, the World Bank and the United States Agency for International Development (USAID) joined with the Central American Commission for Environment and Development (CCAD) to develop an advanced decision support system for Mesoamerica (named SERVIR). Mesoamerica - composed of the seven Central American countries and the five southernmost states of Mexico - makes up only a small fraction of the world's land surface. However, the region is home to approximately eight percent of the planet's biodiversity (14 biosphere reserves, 31 Ramsar sites, 8 world heritage sites, 589 protected areas) and 45 million people including more than 50 different ethnic groups. Mesoamerica's biological and cultural diversity are severely threatened by human impact and natural disasters including extensive deforestation, illegal logging, water pollution, slash and burn agriculture, earthquakes, hurricanes, drought, and volcanic eruption. NASA Marshall Space Flight Center (NASA/MSFC), together with the University of Alabama in Huntsville (UAH) and the SERVIR partners are developing state-of-the-art decision support tools for environmental monitoring as well as disaster prevention and mitigation in Mesoamerica. These partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system that is being used by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters, and better understand both natural and human induced effects. The decision support and environmental monitoring data products are typically formatted as conventional two-dimensional, static and animated imagery. However, in addition to conventional data products and as a major portion of our research, we are employing commercial applications that generate three-dimensional interactive visualizations that allow data products to be viewed from multiple angles and at different scales. One of these is a 15 meter resolution mosaic of the entire Mesoamerican region. This paper gives an overview of the SERVIR project and its associated visualization methods.
Sensing Disaster: The Use of Wearable Sensor Technology to Decrease Firefighter Line-of-Duty Deaths
2015-12-01
peripheral oxygen or SpO2), and temperature , to name but a few.164 The current GTWM allows these sensors to be plugged in anywhere on the shirt, although...desired monitoring parameters included the “heart rate, respiratory rate, body temperature , blood oxygen saturation levels, environmental...physiological tests and parameters of firefighters that should be monitored are the EKG, heart rate (HR), body temperature , blood oxygen saturation
Design and development of compact monitoring system for disaster remote health centres.
Santhi, S; Sadasivam, G S
2015-02-01
To enhance speedy communication between the patient and the doctor through newly proposed routing protocol at the mobile node. The proposed model is applied for a telemedicine application during disaster recovery management. In this paper, Energy Efficient Link Stability Routing Protocol (EELSRP) has been developed by simulation and real time. This framework is designed for the immediate healing of affected persons in remote areas, especially at the time of the disaster where there is no hospital proximity. In case of disasters, there might be an outbreak of infectious diseases. In such cases, the patient's medical record is also transferred by the field operator from disaster place to the hospital to facilitate the identification of the disease-causing agent and to prescribe the necessary medication. The heterogeneous networking framework provides reliable, energy efficientand speedy communication between the patient and the doctor using the proposed routing protocol at the mobile node. The performance of the simulation and real time versions of the Energy Efficient Link Stability Routing Protocol (EELSRP) protocol has been analyzed. Experimental results prove the efficiency of the real-time version of EESLRP protocol. The packet delivery ratio and throughput of the real time version of EELSRP protocol is increased by 3% and 10%, respectively, when compared to the simulated version of EELSRP. The end-to-end delay and energy consumption are reduced by 10% and 2% in the real time version of EELSRP.
Yin, Kedong; Zhang, Ya; Li, Xuemei
2017-01-01
Owing to the difference of the sequences’ orders and the surface structure in the current panel grey relational models, research results will not be unique. In addition, individual measurement of indicators and objects and the subjectivity of combined weight would significantly weaken the effective information of panel data and reduce the reliability and accuracy of research results. Therefore, we propose the concept and calculation method of dispersion of panel data, establish the grey relational model based on dispersion of panel data (DPGRA), and prove that DPGRA exhibits the effective properties of uniqueness, symmetry, and normality. To demonstrate its applicability, the proposed DPGRA model is used to research on storm-tide disaster losses in China’s coastal areas. Comparing research results of three models, which are DPGRA, Euclidean distance grey relational model, and grey grid relational model, it was shown that DPGRA is more effective, feasible, and stable. It is indicated that DPGRA can entirely utilize the effective information of panel data; what’s more, it can not only handle the non-uniqueness of the grey relational model’s results but also improve the reliability and accuracy of research results. The research results are of great significance for coastal areas to focus on monitoring storm–tide disasters hazards, strengthen the protection measures of natural disasters, and improve the ability of disaster prevention and reduction. PMID:29104262
Yin, Kedong; Zhang, Ya; Li, Xuemei
2017-11-01
Owing to the difference of the sequences' orders and the surface structure in the current panel grey relational models, research results will not be unique. In addition, individual measurement of indicators and objects and the subjectivity of combined weight would significantly weaken the effective information of panel data and reduce the reliability and accuracy of research results. Therefore, we propose the concept and calculation method of dispersion of panel data, establish the grey relational model based on dispersion of panel data (DPGRA), and prove that DPGRA exhibits the effective properties of uniqueness, symmetry, and normality. To demonstrate its applicability, the proposed DPGRA model is used to research on storm-tide disaster losses in China's coastal areas. Comparing research results of three models, which are DPGRA, Euclidean distance grey relational model, and grey grid relational model, it was shown that DPGRA is more effective, feasible, and stable. It is indicated that DPGRA can entirely utilize the effective information of panel data; what's more, it can not only handle the non-uniqueness of the grey relational model's results but also improve the reliability and accuracy of research results. The research results are of great significance for coastal areas to focus on monitoring storm-tide disasters hazards, strengthen the protection measures of natural disasters, and improve the ability of disaster prevention and reduction.
Mongin, Steven J; Baron, Sherry L; Schwartz, Rebecca M; Liu, Bian; Taioli, Emanuela; Kim, Hyun
2017-12-01
The unexpected nature of disasters leaves little time or resources for organized health surveillance of the affected population, and even less for those who are unaffected. An ideal epidemiologic study would monitor both groups equally well, but would typically be decided against as infeasible or costly. Exposure and health outcome data at the level of the individual can be difficult to obtain. Despite these challenges, the health effects of a disaster can be approximated. Approaches include 1) the use of publicly available exposure data in geographic detail, 2) health outcomes data-collected before, during, and after the event, and 3) statistical modeling designed to compare the observed frequency of health outcomes with the counterfactual frequency hidden by the disaster itself. We applied these strategies to Hurricane Sandy, which struck the northeastern United States in October 2012. Hospital admissions data from the state of New York with information on primary payer as well as patient demographic characteristics were analyzed. To illustrate the method, we present multivariate logistic regression results for the first 2 months after the hurricane. Inferential implications of admissions data on nearly the entire target population in the wake of a disaster are discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Does Social Protection on Education Increase the Capacity of Communities in Facing Disasters?
NASA Astrophysics Data System (ADS)
Suroso, D. S. A.; Sagala, S. A.; Alberdi, H. A.; Wulandari, Y.
2018-05-01
Based on the crunch model, the root causes of vulnerability to disasters include political, natural, economic, and social aspects. To target these root causes, there needs to be a focus on developing education as it plays an important role in increasing the capacity of an individual and a community. The Indonesian has prioritized the development of education and even allocated about 20 percent of its spending. In addition, the government has a social protection program that also affects the education, particularly for children namely Indonesia Smart Program (“Program Indonesia Pintar”). For this paper, Cianjur Regency was chosen as a case study for several reasons. First, Cianjur is the regency most vulnerable to disasters in West Java, particularly of floods and landslides. Second, Cianjur is one of the regencies in West Java with many social problems. The objective of this paper is to analyse the role of the Indonesia Smart Program in increasing the capacity of children to strengthen disaster resilience in Cianjur Regency. The PIP faces many challenges particularly in Cianjur Regency such as the accessibility of the beneficiaries to get the financial aid and the monitoring aspect of utilization of the money. The Indonesia Smart Program has an indirect effect in increasing the capacity of children in general. However, the effect of increasing the capacity of children in disaster risk reduction is relatively limited and indirect.
Understanding and responding to earthquake hazards
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Lundgren, P. R.; Madsen, S. N.; Rundle, J. B.
2002-01-01
Advances in understanding of the earthquake cycle and in assessing earthquake hazards is a topic of great importance. Dynamic earthquake hazard assessments resolved for a range of spatial scales and time scales will allow a more systematic approach to prioritizing the retrofitting of vulnerable structures, relocating populations at risk, protecting lifelines, preparing for disasters, and educating the public.
Biomarkers reveal sea turtles remained in oiled areas following the Deepwater Horizon oil spill.
Vander Zanden, Hannah B; Bolten, Alan B; Tucker, Anton D; Hart, Kristen M; Lamont, Margaret M; Fujisaki, Ikuko; Reich, Kimberly J; Addison, David S; Mansfield, Katherine L; Phillips, Katrina F; Pajuelo, Mariela; Bjorndal, Karen A
2016-10-01
Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the 10 individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster. © 2016 by the Ecological Society of America.
SIAM-SERVIR: An Environmental Monitoring and Decision Support System for Mesoamerica
NASA Technical Reports Server (NTRS)
Irwin, D. E.; Sever, T. L.; Graves, S.; Hardin, Dan
2004-01-01
In 2002/2003 NASA, the World Bank and the United States Agency for International Development (USAID) joined with the Central American Commission for Environment and Development (CCAD) to develop an advanced decision support system for Mesoamerica (named SERVIR) as part of the Mesoamerican Environmental Information System (SIAM). Mesoamerica, composed of the seven Central American countries and the five southernmost states of Mexico, make up only a small fraction of the world's land surface. However, the region is home to seven to eight percent of the planet's biodiversity (14 biosphere reserves, 31 Ramsar sites, 8 world heritage sites, 589 protected areas) and 45 million people including more than 50 different ethnic groups. Today Mesoamerica's biological and cultural diversity is severely threatened by extensive deforestation, illegal logging, water pollution, and uncontrolled slash and burn agriculture. Additionally, Mesoamerica's distinct geology and geography result in disproportionate vulnerability to natural disasters such as earthquakes, hurricanes, drought, and volcanic eruptions. NASA Marshall Space Flight Center, together with the University of Alabama in Huntsville (UAH) and the SIAM-SERVIR partners are developing state-of-the-art decision support tools for environmental monitoring as well as disaster prevention and mitigation in Mesoamerica. These partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system that is being used by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters and better understand both natural and human induced effects. In its first year of development and operation, the SIAM-SERVIR project has already yielded valuable information on Central American fires, weather conditions, and the first ever real-time data on red tides. This paper presents the progress thus far in the development of SIAM-SERVIR and the plans for the future.
Lessons on humanitarian assistance.
Gracia Antequera, M.; Morales Suárez-Varela, M.
1999-01-01
Conflict almost completely destroyed Rwanda's infrastructure in 1994. Natural disasters, as well as disasters caused by humans, have severely challenged humanitarian aid available within the country. In this study, we have analysed the experiences of nongovernmental organizations since the summer of 1994 to evaluate how these difficulties may be overcome. One of the problems identified has been restrictions on the ability to introduce effective health planning due to the poor quality of available local information. The implementation of effective plans that show due consideration to the environment and society is clearly necessary. Effective monitoring and detailed observation are identified as being essential to the continuity of existing humanitarian assistance. PMID:10444885
The Monitoring and Spatial-Temporal Evolution Characteristic Analysis for Land Subsidence in Beijing
NASA Astrophysics Data System (ADS)
Zhou, Q.; Zhao, W.; Yu, J.
2018-05-01
At present the land subsidence has been the main geological disaster in the plain area of China, and became one of the most serious disaster that restrict the social and economic sustainable development, it also is an important content in the project of national geographic conditions monitoring. With the development of economy and society, Beijing as the capital of China has experienced significant population growth in the last few decades which led to over-exploitation of the ground water to meet the water demand of more than 20 million inhabitants, especially in the urban region with high population density. However, the rainfall and surface runoff can't satisfy the need of aquifer recharge that product the land subsidence. As China's political center and a metropolis, there are a lot of large constructions, underground traffic projects and complicated municipal pipeline network, and Beijing is also an important traffic hub for national railway and highway network, all of them would be threatened by the land subsidence disaster. In this article the author used twenty ENVISAT Synthetic Aperture Radar (SAR) images acquired in 2008 June-2010 August and ten TerraSAR images acquired in 2011 June-2012 September were processed with Small Baseline Subset SAR Interferometry (SBAS-InSAR) techniques, to investigate spatial and temporal patterns of land subsidence in the urban area of Beijing.
NASA Astrophysics Data System (ADS)
Bandurin, M. A.; Volosukhin, V. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.
2018-05-01
At present theoretical substations for fundamental methods of forecasting possible natural disasters and for quantitative evaluating remaining live technical state of landfall dams in the mountain regions with higher danger are lacking. In this article, the task was set to carry out finite-element simulation of possible natural disasters with changes in the climate as well as in modern seismic conditions of operation in the mountain regions of the Greater Caucasus with higher danger. The research is aimed at the development of methods and principles for monitoring safety of possible natural disasters, evaluating remaining live technical state of landfall dams having one or another damage and for determination of dam failure riskiness, as well. When developing mathematical models of mudflow descents by inflows tributaries into the main bed, an intensive danger threshold was determined, taking into consideration geomorphological characteristics of earthflow courses, physico-chemical and mechanical state of mudflow mass and the dynamics of their state change. Consequences of mudflow descents into river basins were simulated with assessment of threats and risks for projects with different infrastructures located in the river floodplain.
Real Time Fire Reconnaissance Satellite Monitoring System Failure Model
NASA Astrophysics Data System (ADS)
Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique
2013-09-01
In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.
Hubble Space Telescope 2004 Battery Update
NASA Technical Reports Server (NTRS)
Hollandsworth, Roger; Armantrout, Jon; Whitt, Tom; Rao, Gopalakrishna M.
2006-01-01
Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.
MEASURING AIRBORNE PAHS FROM THE NEW YORK WORLD TRADE CENTER DISASTER
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in ambient air, are suspected human carcinogens, and have been linked to genotoxic and mutagenic effects. Although there are no specific monitoring programs for PAHs in ambient air in the United States, there is a national...
Runtime Simulation for Post-Disaster Data Fusion Visualization
2006-10-01
Center for Multisource Information Fusion ( CMIF ) The State University of New York at Buffalo Buffalo, NY 14260 USA kesh@eng.buffalo.edu ABSTRACT...Fusion ( CMIF ) The State University of New York at Buffalo Buffalo, NY 14260 USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Landslide susceptibility mapping in the coastal region in the State of São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Alvala, R. C.; Camarinha, P. I.; Canavesi, V.
2013-05-01
The exposure of populations in risk areas is a matter of global concern, because it is a determining factor for the natural disasters occurrences. Furthermore, it has also been observed an intensification of extreme hydrometeorological events that has triggered disasters in various parts of the globe, further increasing the need for monitoring and alerting for natural disasters, aiming the safeguarding of life and minimize economic losses. Accordingly, different methodologies for risk assessment have been proposed, focusing on the specific natural hazards. Particularly for Brazil, which has economic axis of development in the regions near the coast, it is common to observe the process of urbanization advancing on steep slopes of the mountain regions. This characteristic causes the population exposure to the natural hazards related to the mass movements, which the landslides stood out as the cause of many deaths and economic losses every year. Thus, prior to risk analysis (when human occupation intersect with natural hazard), it is essential to analyze the susceptibility, which reflects the physical and environmental conditions that trigger for such phenomena. However, this task becomes a major challenge due to the difficulty of finding databases with good quality. In this context, this paper presents a methodology based only on spatial information in the public domain, integrated into a Geographic Information System free, in order to analyze the landslides susceptibility. In a first effort, we evaluated four counties of Southeastern Brazil - Santos, Cubatão, Caraguatatuba and Ubatuba - located in a region that includes the rugged reliefs of Serra do Mar and the transition to the coastal region, that have historic of disasters related. It is noteworthy that the methodology takes into account many variables that was weighted and crossed by Fuzzy Gamma technique, such as: topography (horizontal and vertical curvature of the slopes), geology, geomorphology, slope, land use and pedology. As a result, we obtain 5 susceptibility classes: very low, low, medium, high and very high. To validate the methodology, there was overlapped the Landslides Susceptibility Map with real risk areas previously mapped, provided by the National Centre for Monitoring and Alert of Natural Disasters. This step is important especially to assess the methodology adherence to evaluate the classes that was mapped with high and very high susceptibility. The preliminary results indicate that over 70% of the the mapped risks areas are located into the classes more susceptible. We observed small inconsistencies that are related with spatial displacement of the various databases considered, which has different resolutions and scales. Therefore, the results indicated that the methodology is robust and showed the high vulnerability of the counties analyzed, which further highlights that the landslides susceptibility should be monitored carefully by the decision makers in order to prevent and minimize the natural disasters impact, so that provide better territorial planning.
A Bilateral U.S. - Russia Contribution to Disaster Risk Reduction in the Asia-Pacific Region
NASA Astrophysics Data System (ADS)
Eichelberger, J. C.; Gordeev, E.; Bratton, J.; Ismail-Zadeh, A.
2012-12-01
An accepted principle of disaster risk reduction is that all stakeholders should be engaged in the process. For extreme geophysical events, this almost always means stakeholders in more than one country. Even when the direct impacts on the ground from violent shaking or explosive eruptions are confined to a single country, effects to lives and property may be carried thousands of kilometers from the event source by tsunamis or ash clouds, respectively. The formation of G-EVER recognizes the need for neighbors to join together on disaster risk reduction. There is much to be gained by sharing real-time monitoring data and databases on past extreme events, mapping risks seamlessly across borders, and establishing best practices through sharing of experiences. Each extreme event is a learning opportunity, and the recent lessons have been particularly painful. Our science, while progressing, is still inadequate both in content and in application. There has also been lack of recognition that the "worst case" is indeed possible. Among the various collaborations needed to reduce disaster risk is bilateral collaboration, because borders are obstacles and exist between two countries with rules that have been determined by those countries. Borders are used by all countries for protection of national and economic security. They restrict flow of people, equipment, and information, but not seismic waves, tsunamis, and ash. Even the relatively minor event of sea ice arriving early in Nome, Alaska last fall involved both Russia and the U.S. in a relief effort to bring fuel. It is the responsibility of natural hazard scientists and crisis managers to work together across borders, and where necessary make the case to their governments for sharing of data and information based on an expanded view of national security. The Bilateral Presidential Commission initiated by U.S. President Barrack Obama and Russian President Dmitry Medvedev has provided a framework in which to expand collaboration in dealing with the geohazards of the Russian Far East - Alaska region. Subduction within this segment of the Pacific Rim has produced 50% of the top 30 earthquakes recorded instrumentally worldwide, numerous Pacific-crossing tsunamis, and the largest ash eruption in almost 200 years. Recognizing that Russia and the United States need to develop a whole-region perspective of disaster risk, scientists and program managers from several Russian and U.S. government agencies met at the Russian Academy of Sciences in Moscow in July to identify bilateral steps that would improve safety for communities of the Kuril-Kamchatka-Aleutian-Alaska region. Significantly, the meeting included disaster preparation and response agencies EMERCOM and FEMA. Participants proposed development of a standing committee to advocate and facilitate bilateral collaboration, expanded exchange of real-time monitoring data, development of a strategy for monitoring currently unmonitored sections of plate and micro-plate boundaries, and holding of an inclusive, all-stakeholders meeting in the U.S. next year.
Social Media in Crisis Management and Forensic Disaster Analysis
NASA Astrophysics Data System (ADS)
Dittrich, André; Lucas, Christian
2014-05-01
Today, modern sensors or sensor networks provide good quality measurements for the observation of large-scale emergencies as a result of natural disasters. Mostly however, only at certain points in their respective locations and for a very limited number of measurement parameters (e.g. seismograph) and not over the entire course of a disaster event. The proliferation of different social media application (e.g. Twitter, Facebook, Google+, etc.), yields the possibility to use the resulting data as a free and fast supplement or complement to traditional monitoring techniques. In particular, these new channels can serve for rapid detection, for information gathering for emergency protection and for information dissemination. Thus, each user of these networks represents a so-called virtual sensor ('social sensor'), whose eyewitness account can be important for understanding the situation on the ground. The advantages of these social sensors are the high mobility, the versatility of the parameters that can be captured (text, images, videos, etc.) as well as the rapid spread of information. Due to the subjective characteristics however, the data often show different quality and quantity. Against this background, it is essential for an application in crisis management to reasonably (pre-)process the data from social media. Hence, fully-automated processes are used which adequately filter and structure the enormous amount of information and associate it with an event, respectively, a geographic location. This is done through statistical monitoring of the volume of messages (Twitter) in different geographic regions of the world. In combination with a frequency analysis with respect to disaster-relevant terms (in 43 languages), thematic as well as spatio-temporal clustering, an initial assessment regarding the severity and extent of the detected event, its classification and (spatio-temporal) localization can be achieved. This detection in real time (2-5 minutes) thus allows gathering first responder reports or eyewitness reports, which can provide important information for a first situation analysis for the various officials and volunteers, especially in case of large-scale emergencies. Eventually, this can be used in combination with conventional sensors and information sources to conduct a detailed forensic disaster analysis of an event.
2017-06-01
high. One factor that contributed to success was cross- fertilization of skills. NDMA is a hybrid organization with officers from military, civil...Majeed Raja, Fahad Irshad, and Donny Bayu Sukarno 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000...8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10. SPONSORING / MONITORING AGENCY
Development and application of a modified wireless tracer for disaster prevention
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Su, Chih Chiang
2016-04-01
Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.
Exposure and Human Health Evaluation of Airborne Pollution ...
In the days following the September 11, 2001, terrorist attack on New York City's World Trade Center (WTC) towers, many Federal agencies, including the U.S. Environmental Protection Agency (EPA), were called upon to bring their technical and scientific expertise to the national emergency. Several EPA offices, including the Office of Research and Development (ORD), quickly became involved with the Agency's response. This project entails an exposure and human health risk assessment of the impact of air emissions from the collapse of the World Trade Center Towers. ORD's National Center for Environmental Assessment (NCEA) are conducting this assessment at the request of EPA's Region II, which includes the New York City metropolitan area in both New York and New Jersey. The assessment relies primarily on the results of ambient air samples from monitors at various sites in Lower Manhattan and surrounding areas. These monitoring activities were undertaken by Federal, State and local agencies that have made their analytical results available to EPA for analysis. Most of the monitors were placed following the disaster with the intent of surrounding the World Trade Center site at different distances. Some monitors for particulate matter, operated by New York State, existed prior to the disaster. In addition, this report provides a limited discussion of the results of both indoor and outdoor dust samples and the results of some indoor air samples. The project focus
Extreme Geohazards: Reducing Disaster Risk and Increasing Resilience
NASA Astrophysics Data System (ADS)
Plag, Hans-Peter; Stein, Seth; Brocklebank, Sean; Jules-Plag, Shelley; Campus, Paola
2014-05-01
Extreme natural hazards have the potential to cause global disasters and to lead to an escalation of the global sustainability crisis. Floods and droughts pose threats that could reach planetary extent, particularly through secondary economic and social impacts. Earthquakes and tsunamis cause disasters that could exceed the immediate coping capacity of the global economy, particularly in hazardous areas containing megacities, that can be particularly vulnerable to natural hazards if proper emergency protocols and infrastructures are not set in place. Recent events illustrate the destruction extreme hazards can inflict, both directly and indirectly, through domino effects resulting from the interaction with the built environment. Unfortunately, the more humanity learns to cope with relatively frequent (50 to 100 years) natural hazard events, the less concerns remain about the low-probability (one in a few hundred or more years) high-impact events. As a consequence, threats from low-probability extreme floods, droughts, and volcanic eruptions are not appropriately accounted for in Disaster Risk Reduction (DRR) discussions. With the support of the European Science Foundation (ESF), the Geohazards Community of Practice (GHCP) of the Group on Earth Observations (GEO) has developed a White Paper (WP) on the risk associated with low-probability, high-impact geohazards. These events are insufficiently addressed in risk management, although their potential impacts are comparable to those of a large asteroid impact, a global pandemic, or an extreme drought. The WP aims to increase awareness of the risk associated with these events as a basis for a comprehensive risk management. Extreme geohazards have occurred regularly throughout the past, but mostly did not cause major disasters because the exposure of human assets to such hazards and the global population density were much lower than today. The most extreme events during the last 2,000 years would cause today unparalleled damage on a global scale for a globally connected and stressed society. In particular, large volcanic eruptions could impact climate, damage anthropogenic infrastructure and interrupt resource supplies on a global scale. The occurrence of one or more of the largest volcanic eruptions that took place during the last 2,000 years under today's conditions would likely cause global disasters or catastrophes challenging civilization. Integration of these low-probability, high-impact events in DRR requires an approach focused on resilience and antifragility, as well as the ability to cope with, and recover from failure of infrastructures and social systems. Resilience results from social capital even more than from the robustness of infrastructure. While it is important to understand the hazards through the contribution of geosciences, it is equally important to understand through the contribution of social sciences and engineering the societal processes involved with coping with hazards or leading to failure. For comprehensive development of resilience to natural hazards and, in particular, extreme geohazards, synergy between geosciences, engineering and social sciences, jointed to an improved science-policy relationship is key to success. For example, a simple cost-benefit analysis shows that a comprehensive monitoring system that could identify the onset of an extreme volcanic eruption with sufficient lead time to allow for a globally coordinated preparation makes economic sense. The WP recommends implementation of such a monitoring system with global coverage, assesses the existing assets in current monitoring systems, and illustrates many benefits, besides providing early warning for extreme volcanic eruptions. However, such a monitoring system can provide resilience only via the capability of the global community to react to early warnings. The WP recommends achieving this through the establishment of a global coordination platform comparable to IPCC's role in addressing climate-change related issues to assess knowledge and related adaptive capabilities for disasters due to extreme geohazards.
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
NASA Astrophysics Data System (ADS)
Prenger-Berninghoff, Kathrin; Cortes, V. Juliette; Aye, Zar Chi; Sprague, Teresa
2013-04-01
The management of natural hazards involves, as generally known, the four stages of the risk management cycle: Prevention, preparedness, response and recovery. Accordingly, the mitigation of disasters can be performed in terms of short-term and long-term purposes. Whereas emergency management or civil protection helps to strengthen a community's capacity to be better prepared for natural hazards and to better respond in case a disaster strikes, thus addressing the short-term perspective, spatial planning serves long-term planning goals and can therefore implement long-term prevention measures. A purposefully applied risk mitigation strategy requires coordination of short-term and long-term mitigation measures and thus an effective coordination of emergency management and spatial planning. Several actors are involved in risk management and should consequently be linked throughout the whole risk management cycle. However, these actors, partly because of a historically fragmented administrative system, are hardly connected to each other, with spatial planning only having a negligible role compared to other actors1, a problem to which Young (2002) referred to as the "problem of interplay". In contrast, information transfer and decision-taking happen at the same time and are not coordinated among different actors. This applies to the prevention and preparedness phase as well as to the recovery phase, which basically constitutes the prevention phase for the next disaster2. Since investments in both risk prevention and emergency preparedness and response are considered necessary, a better coordination of the two approaches is required. In this regard, Decision Support Systems (DSS) can be useful in order to provide support in the decision-making aspect of risk management. The research work currently undertaken examines the problem of interplay in the four case study areas of the Marie Curie ITN, CHANGES3. The link between different risk management actors will be explored by means of exploratory questionnaires and interviews with government agencies, local administrations, community and research organizations on each study site. First results provided will address the general role of spatial planning in risk management. Additionally, preliminary observations are made in regard to the coordination of emergency preparedness and long-term spatial planning activities. The observations consider that integration facilitates proactive strategies that aim at preventing disaster occurrence and promote interaction between involved parties. Finally, consideration is given to the potential use of a DSS tool to cover both aspects of spatial planning and emergency management in the risk management cycle.
PM2.5 monitoring system based on ZigBee wireless sensor network
NASA Astrophysics Data System (ADS)
Lin, Lukai; Li, Xiangshun; Gu, Weiying
2017-06-01
In the view of the haze problem, aiming at improving the deficiency of the traditional PM2.5 monitoring methods, such as the insufficient real-time monitoring, limited transmission distance, high cost and the difficulty to maintain, the atmosphere PM2.5 monitoring system based on ZigBee technology is designed. The system combines the advantages of ZigBee’s low cost, low power consumption, high reliability and GPRS/Internet’s capability of remote transmission of data. Furthermore, it adopts TI’s Z-Stack protocol stack, and selects CC2530 chip and TI’s MSP430 microcontroller as the core, which establishes the air pollution monitoring network that is helpful for the early prediction of major air pollution disasters.
Zhang, Yuting; Beenakker, Karel G M; Butala, Pankil M; Lin, Cheng-Chieh; Little, Thomas D C; Maier, Andrea B; Stijntjes, Marjon; Vartanian, Richard; Wagenaar, Robert C
2012-01-01
Changes in gait parameters have been shown to be an important indicator of several age-related cognitive and physical declines of older adults. In this paper we propose a method to monitor and analyze walking and cycling activities based on a triaxial accelerometer worn on one ankle. We use an algorithm that can (1) distinguish between static and dynamic functional activities, (2) detect walking and cycling events, (3) identify gait parameters, including step frequency, number of steps, number of walking periods, and total walking duration per day, and (4) evaluate cycling parameters, including cycling frequency, number of cycling periods, and total cycling duration. Our algorithm is evaluated against the triaxial accelerometer data obtained from a group of 297 middle-aged to older adults wearing an activity monitor on the right ankle for approximately one week while performing unconstrained daily activities in the home and community setting. The correlation coefficients between each of detected gait and cycling parameters on two weekdays are all statistically significant, ranging from 0.668 to 0.873. These results demonstrate good test-retest reliability of our method in monitoring walking and cycling activities and analyzing gait and cycling parameters. This algorithm is efficient and causal in time and thus implementable for real-time monitoring and feedback.
Scalable Algorithms for Global Scale Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Vatsavai, R. R.; Bhaduri, B. L.; Singh, N.
2015-12-01
Recent decade has witnessed major changes on the Earth, for example, deforestation, varying cropping and human settlement patterns, and crippling damages due to disasters. Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to the growing population, as well as human migration to the disaster prone regions of the world. Rapid assessment of these changes and dissemination of accurate information is critical for creating an effective emergency response. Change detection using high-resolution satellite images is a primary tool in assessing damages, monitoring biomass and critical infrastructures, and identifying new settlements. Existing change detection methods suffer from registration errors and often based on pixel (location) wise comparison of spectral observations from single sensor. In this paper we present a novel probabilistic change detection framework based on patch comparison and a GPU implementation that supports near real-time rapid damage exploration capability.
NASA Astrophysics Data System (ADS)
Taubenböck, H.; Wurm, M.; Netzband, M.; Zwenzner, H.; Roth, A.; Rahman, A.; Dech, S.
2011-02-01
Estimating flood risks and managing disasters combines knowledge in climatology, meteorology, hydrology, hydraulic engineering, statistics, planning and geography - thus a complex multi-faceted problem. This study focuses on the capabilities of multi-source remote sensing data to support decision-making before, during and after a flood event. With our focus on urbanized areas, sample methods and applications show multi-scale products from the hazard and vulnerability perspective of the risk framework. From the hazard side, we present capabilities with which to assess flood-prone areas before an expected disaster. Then we map the spatial impact during or after a flood and finally, we analyze damage grades after a flood disaster. From the vulnerability side, we monitor urbanization over time on an urban footprint level, classify urban structures on an individual building level, assess building stability and quantify probably affected people. The results show a large database for sustainable development and for developing mitigation strategies, ad-hoc coordination of relief measures and organizing rehabilitation.
Runkle, Jennifer R; Zhang, Hongmei; Karmaus, Wilfried; Brock-Martin, Amy; Svendsen, Erik R
2013-01-01
In the aftermath of an environmental public health disaster (EPHD) a healthcare system may be the least equipped entity to respond. Preventable visits for ambulatory care-sensitive conditions (ACSCs) may be used as a population-based indicator to monitor health system access postdisaster. The objective of this study was to examine whether ACSC rates among vulnerable subpopulations are sensitive to the impact of a disaster. We conducted a retrospective analysis on the 2005 chlorine spill in Graniteville, South Carolina using a Medicaid claims database. Poisson regression was used to calculate change in monthly ACSC visits at the disaster site in the postdisaster period compared with the predisaster period after adjusting for parallel changes in a control group. The adjusted rate of a predisaster ACSC hospital visit for the direct group was 1.68 times the rate for the control group (95% confidence interval [CI] 1.47-1.93), whereas the adjusted ACSC hospital rate postdisaster for the direct group was 3.10 times the rate for the control group (95% CI 1.97-5.18). For ED ACSC visits, the adjusted rate among those directly affected predisaster were 1.82 times the rate for the control group (95% CI 1.61-2.08), whereas the adjusted ACSC rate postdisaster was 2.81 times the rate for the control group (95% CI 1.92-5.17). Results revealed that an increased demand on the health system altered health services delivery for vulnerable populations directly affected by a disaster. Preventable visits for ACSCs may advance public health practice by identifying healthcare disparities during disaster recovery.
NASA Astrophysics Data System (ADS)
Bye, B. L.; Kontoes, C.; Catarino, N.; De Lathouwer, B.; Concalves, P.; Meyer-Arnek, J.; Mueller, A.; Kraft, C.; Grosso, N.; Goor, E.; Voidrot, M. F.; Trypitsidis, A.
2017-12-01
Landslides are geohazards potentially resulting in disasters. Landslides both vary enormously in their distribution in space and time. The surface deformation varies considerably from one type of instability to another. Individual ground instabilities may have a common trigger (extreme rainfall, earthquake), and therefore occur alongside many equivalent occurrences over a large area. This means that they can have a significant regional impact demanding national and international disaster risk reduction strategies. Regional impacts require collaboration across boarders as reflected in The Sendai Framework for Disaster Risk Reduction (2015-2030). The data demands related to the SDGs are unprecedented, another factor that will require coordinated efforts at the global, regional and national levels. Data of good quality are vital for governments, international organizations, civil society, the private sector and the general public in order to make informed decisions, included for disaster risk reduction. The NextGEOSS project evolves the European vision of a user driven GEOSS data exploitation for innovation and business, relying on 3 main pillars; engaging communities of practice, delivering technological advancements, and advocating the use of GEOSS. These 3 pillars support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will explain how one of the 10 NextGEOSS pilots, Disaster Risk Reduction (DRR), plan to provide an enhanced multi-hazard risk assessment framework based on statistical analysis of long time series of data. Landslide events monitoring and landslides susceptibility estimation will be emphazised. Workflows will be based on models developed in the context of the Copernicus Emergency Management Service. Data envisaged to be used are: Radar SAR data; Yearly ground deformation/velocities; Historic landslide inventory; data related to topographic, geological, hydrological, geomorphological settings and ground observations from field trips. The development of NextGEOSS pilots opens up for interactions with international communities. Contributions from communities engaged in SDG activities and the implementation of the Sendai Framework for Disaster Risk Reduction are welcome
Joint System of the National Hydrometeorology for disaster prevention
NASA Astrophysics Data System (ADS)
Lim, J.; Cho, K.; Lee, Y. S.; Jung, H. S.; Yoo, H. D.; Ryu, D.; Kwon, J.
2014-12-01
Hydrological disaster relief expenditure accounts for as much as 70 percent of total expenditure of disasters occurring in Korea. Since the response to and recovery of disasters are normally based on previous experiences, there have been limitations when dealing with ever-increasing localized heavy rainfall with short range in the era of climate change. Therefore, it became necessary to establish a system that can respond to a disaster in advance through the analysis and prediction of hydrometeorological information. Because a wide range of big data is essential, it cannot be done by a single agency only. That is why the three hydrometeorology-related agencies cooperated to establish a pilot (trial) system at Soemjingang basin in 2013. The three governmental agencies include the National Emergency Management Agency (NEMA) in charge of disaster prevention and public safety, the National Geographic Information Institute (NGII under Ministry of Land, Infrastructure and Transport) in charge of geographical data, and the Korea Meteorological Administration (KMA) in charge of weather information. This pilot system was designed to be able to respond to disasters in advance through providing a damage prediction information for flash flood to public officers for safety part using high resolution precipitation prediction data provided by the KMA and high precision geographic data by NGII. To produce precipitation prediction data with high resolution, the KMA conducted downscaling from 25km×25km global model to 3km×3km local model and is running the local model twice a day. To maximize the utility of weather prediction information, the KMA is providing the prediction information for 7 days with 1 hour interval at Soemjingang basin to monitor and predict not only flood but also drought. As no prediction is complete without a description of its uncertainty, it is planned to continuously develop the skills to improve the uncertainty of the prediction on weather and its impact. I will introduce more the flow chart to produce and provide the weather prediction information in AGU fall meeting.
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards
NASA Astrophysics Data System (ADS)
Kerlow, I.
2017-12-01
Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.
NASA Astrophysics Data System (ADS)
Hashimoto, Manabu; Fujino, Yozo
Image sensing technologies are expected as useful and effective way to suppress damages by criminals and disasters in highly safe and relieved society. In this paper, we describe current important subjects, required functions, technical trends, and a couple of real examples of developed system. As for the video surveillance, recognition of human trajectory and human behavior using image processing techniques are introduced with real examples about the violence detection for elevators. In the field of facility monitoring technologies as civil engineering, useful machine vision applications such as automatic detection of concrete cracks on walls of a building or recognition of crowded people on bridge for effective guidance in emergency are shown.
7 CFR 759.3 - Abbreviations and definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., as a result of the natural disaster. U.S. Drought Monitor is a system for classifying drought severity according to a range of abnormally dry to exceptional drought. It is a collaborative effort..., outlooks, and drought impacts on a map and in narrative form. This synthesis of indices is reported by the...
7 CFR 759.3 - Abbreviations and definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., as a result of the natural disaster. U.S. Drought Monitor is a system for classifying drought severity according to a range of abnormally dry to exceptional drought. It is a collaborative effort..., outlooks, and drought impacts on a map and in narrative form. This synthesis of indices is reported by the...
Perspectives or Telemedicine Development in Ukraine
2001-05-01
National Register of the individuals who are suffering from consequences of the Chernobyl disaster. This Register monitors the health of more than 700,000...integrate the Chernobyl Register net into ’UkrMedNet’ and to create a WWW server containing the Chernobyl Register information. To provide access to the
Remote Sensing of Earth--A New Perspective
ERIC Educational Resources Information Center
Boyer, Robert E.
1973-01-01
Photographs of the earth taken from space are used to illustrate the advantages and application of remote sensing. This technique may be used in such areas as the immediate appraisal of disasters, surveillance of the oceans, monitoring of land, food and water resources, detection of natural resources, and identification of pollution. (JR)
NASA Astrophysics Data System (ADS)
Aulov, Oleg
This dissertation presents a novel approach that utilizes quantifiable social media data as a human aware, near real-time observing system, coupled with geophysical predictive models for improved response to disasters and extreme events. It shows that social media data has the potential to significantly improve disaster management beyond informing the public, and emphasizes the importance of different roles that social media can play in management, monitoring, modeling and mitigation of natural and human-caused extreme disasters. In the proposed approach Social Media users are viewed as "human sensors" that are "deployed" in the field, and their posts are considered to be "sensor observations", thus different social media outlets all together form a Human Sensor Network. We utilized the "human sensor" observations, as boundary value forcings, to show improved geophysical model forecasts of extreme disaster events when combined with other scientific data such as satellite observations and sensor measurements. Several recent extreme disasters are presented as use case scenarios. In the case of the Deepwater Horizon oil spill disaster of 2010 that devastated the Gulf of Mexico, the research demonstrates how social media data from Flickr can be used as a boundary forcing condition of GNOME oil spill plume forecast model, and results in an order of magnitude forecast improvement. In the case of Hurricane Sandy NY/NJ landfall impact of 2012, we demonstrate how the model forecasts, when combined with social media data in a single framework, can be used for near real-time forecast validation, damage assessment and disaster management. Owing to inherent uncertainties in the weather forecasts, the NOAA operational surge model only forecasts the worst-case scenario for flooding from any given hurricane. Geolocated and time-stamped Instagram photos and tweets allow near real-time assessment of the surge levels at different locations, which can validate model forecasts, give timely views of the actual levels of surge, as well as provide an upper bound beyond which the surge did not spread. Additionally, we developed AsonMaps---a crisis-mapping tool that combines dynamic model forecast outputs with social media observations and physical measurements to define the regions of event impacts.
Trentini, Cristina; Lauriola, Marco; Giuliani, Alessandro; Maslovaric, Giada; Tambelli, Renata; Fernandez, Isabel; Pagani, Marco
2018-01-01
This study explored the effects of the EMDR Integrative Group Treatment Protocol (EMDR-IGTP) on child survivors of the earthquakes that struck Umbria, a region of central Italy, on August 24th and on October 26th 2016. Three hundred and thirty-two children from the town of Norcia and nearby severely disrupted villages received 3 cycles of EMDR-IGTP. The Emotion Thermometers (ET-5) and the Children's Revised Impact of Event Scale (CRIES-13) were administered before (T0) and about 1 week after the conclusion of the third cycle (T3) of EMDR-IGTP. At T3, older children showed a reduction of distress and anger, whereas younger children reported an increase on these domains; moreover, older children reported a greater reduction of anxiety than younger ones. A greater reduction of distress, anxiety, and need for help was evidenced in females, whereas a greater improvement in depressive symptoms was evidenced in males. The effects of the EMDR-IGTP treatment on post-traumatic symptoms were particularly evident in older children, compared to younger ones, and marginally greater in females than in males; moreover, a greater improvement was found in children who had received a timelier intervention, than in those who received delayed treatment. These results provide further evidence for the utility of EMDR-IGTP in dealing with the extensive need for mental health services in mass disaster contexts. Also, these data highlight the importance of providing EMDR-IGTP in the immediate aftermath of a natural disaster, to contribute significantly in restoring adaptive psychological functioning in children, especially in older ones. PMID:29915550
Suzuki, Hitoshi; Yamada, Shinya; Kamiyama, Yoshiyuki; Takeishi, Yasuchika
2014-01-01
Several studies have revealed that stress after catastrophic disasters can trigger cardiovascular events, however, little is known about its association with the occurrence of heart failure in past earthquakes. The objective of the present study was to determine whether the Great East Japan Earthquake on March 11, 2011, increased the incidence of worsening heart failure in chronic heart failure (CHF) patients with implantable devices. Furthermore, we examined whether intrathoracic impedance using remote monitoring was effective for the management of CHF.We enrolled 44 CHF patients (32 males, mean age 63 ± 12 years) with implantable devices that can check intrathoracic impedance using remote monitoring. We defined the worsening heart failure as accumulated impedance under reference impedance exceeding 60 ohms-days (fluid index threshold), and compared the incidence of worsening heart failure and arrhythmic events 30 days before and after March 11.Within the 30 days after March 11, 10 patients exceeded the threshold compared with only 2 patients in the preceding 30 days (P < 0.05). Although 9 patients using remote monitoring among the 10 patients with threshold crossings were not hospitalized, one patient without the system was hospitalized due to acute decompensated heart failure. On the contrary, arrhythmic events did not change between before and after March 11.Our results suggest that earthquake-induced stress causes an increased risk of worsening heart failure without changes in arrhythmia. Furthermore, intrathoracic impedance using remote monitoring may be a useful tool for the management of CHF in catastrophic disasters.
Kim, Eun Ji; Nam, Hee Sun; Kim, Hak Beom; Chung, Unsun; Lee, So Hee; Chae, Jeong-Ho
2018-03-01
We monitored a group of students from Danwon High School who survived the Sewol ferry disaster for 27 months to examine the course of their psychological symptoms. We performed a chart review at the Danwon High School Mental Health Center at the following time points (T): 9 months (T1), 12 months (T2), and 15 months (T3) after the disaster. Additionally, we performed a follow-up review at 27 months (T4). Subjects completed the 'State' section of the State-Trait Anxiety Inventory for Children, the Center for Epidemiological Studies-Depression assessment, the Child Report of Post-traumatic Symptoms, and the Inventory of Complicated Grief. Data from the 32 subjects who completed all four assessments were used in the statistical analyses. Scores of psychological variables tended to increase until T2 and then slowly decreased until T4. The severity of anxiety and complicated grief symptoms changed significantly over time, but the severity of depression and posttraumatic stress symptoms did not. We found that the symptoms of anxiety and complicated grief reported by Sewol ferry survivors from Danwon High School were exacerbated at the first anniversary of the disaster, but these symptoms subsided after the students graduated from high school.
Kim, Eun Ji; Nam, Hee Sun; Kim, Hak Beom; Chung, Unsun; Lee, So Hee; Chae, Jeong-Ho
2018-01-01
Objective We monitored a group of students from Danwon High School who survived the Sewol ferry disaster for 27 months to examine the course of their psychological symptoms. Methods We performed a chart review at the Danwon High School Mental Health Center at the following time points (T): 9 months (T1), 12 months (T2), and 15 months (T3) after the disaster. Additionally, we performed a follow-up review at 27 months (T4). Subjects completed the ‘State’ section of the State-Trait Anxiety Inventory for Children, the Center for Epidemiological Studies-Depression assessment, the Child Report of Post-traumatic Symptoms, and the Inventory of Complicated Grief. Data from the 32 subjects who completed all four assessments were used in the statistical analyses. Results Scores of psychological variables tended to increase until T2 and then slowly decreased until T4. The severity of anxiety and complicated grief symptoms changed significantly over time, but the severity of depression and posttraumatic stress symptoms did not. Conclusion We found that the symptoms of anxiety and complicated grief reported by Sewol ferry survivors from Danwon High School were exacerbated at the first anniversary of the disaster, but these symptoms subsided after the students graduated from high school. PMID:29475236
Bayesian modeling to assess populated areas impacted by radiation from Fukushima
NASA Astrophysics Data System (ADS)
Hultquist, C.; Cervone, G.
2017-12-01
Citizen-led movements producing spatio-temporal big data are increasingly important sources of information about populations that are impacted by natural disasters. Citizen science can be used to fill gaps in disaster monitoring data, in addition to inferring human exposure and vulnerability to extreme environmental impacts. As a response to the 2011 release of radiation from Fukushima, Japan, the Safecast project began collecting open radiation data which grew to be a global dataset of over 70 million measurements to date. This dataset is spatially distributed primarily where humans are located and demonstrates abnormal patterns of population movements as a result of the disaster. Previous work has demonstrated that Safecast is highly correlated in comparison to government radiation observations. However, there is still a scientific need to understand the geostatistical variability of Safecast data and to assess how reliable the data are over space and time. The Bayesian hierarchical approach can be used to model the spatial distribution of datasets and flexibly integrate new flows of data without losing previous information. This enables an understanding of uncertainty in the spatio-temporal data to inform decision makers on areas of high levels of radiation where populations are located. Citizen science data can be scientifically evaluated and used as a critical source of information about populations that are impacted by a disaster.
Monitoring of pipeline ruptures by means of a Robust Satellite Technique (RST)
NASA Astrophysics Data System (ADS)
Filizzola, C.; Baldassarre, G.; Corrado, R.; Mazzeo, G.; Marchese, F.; Paciello, R.; Pergola, N.; Tramutoli, V.
2009-04-01
Pipeline ruptures have deep economic and ecologic consequences so that pipeline networks represent critical infrastructures to be carefully monitored particularly in areas which are frequently affected by natural disasters like earthquakes, hurricanes, landslide, etc. In order to minimize damages, the detection of harmful events along pipelines should be as rapid as possible and, at the same time, what is detected should be an actual incident and not a false alarm. In this work, a Robust Satellite Technique (RST), already applied to the prevision and NRT (Near Real Time) monitoring of major natural and environmental hazards (such as seismically active areas, volcanic activity, hydrological risk, forest fires and oil spills) has been employed to automatically identify, from satellite, anomalous Thermal Infrared (TIR) transients related to explosions of oil/gas pipelines. In this context, the combination of the RST approach with high temporal resolution, offered by geostationary satellites, seems to assure both a reliable and timely detection of such events. The potentials of the technique (applied to MSG-SEVIRI data) were tested over Iraq, a region which is sadly known for the numerous (mainly manmade) accidents to pipelines, in order to have a simulation of the effects (such as fires or explosions near or directly involving a pipeline facility) due to natural disasters.
The CEOS Global Observation Strategy for Disaster Risk Management: An Enterprise Architect's View
NASA Astrophysics Data System (ADS)
Moe, K.; Evans, J. D.; Frye, S.
2013-12-01
The Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS), on behalf of the Global Earth Observation System of Systems (GEOSS), is defining an enterprise architecture (known as GA.4.D) for the use of satellite observations in international disaster management. This architecture defines the scope and structure of the disaster management enterprise (based on disaster types and phases); its processes (expressed via use cases / system functions); and its core values (in particular, free and open data sharing via standard interfaces). The architecture also details how a disaster management enterprise describes, obtains, and handles earth observations and data products for decision-support; and how it draws on distributed computational services for streamlined operational capability. We have begun to apply this architecture to a new CEOS initiative, the Global Observation Strategy for Disaster Risk Management (DRM). CEOS is defining this Strategy based on the outcomes of three pilot projects focused on seismic hazards, volcanoes, and floods. These pilots offer a unique opportunity to characterize and assess the impacts (benefits / costs) of the GA.4.D architecture in practice. In particular, the DRM Floods Pilot is applying satellite-based optical and radar data to flood mitigation, warning, and response, including monitoring and modeling at regional to global scales. It is focused on serving user needs and building local institutional / technical capacity in the Caribbean, Southern Africa, and Southeast Asia. In the context of these CEOS DRM Pilots, we are characterizing where and how the GA.4D architecture helps participants to: - Understand the scope and nature of hazard events quickly and accurately - Assure timely delivery of observations into analysis, modeling, and decision-making - Streamline user access to products - Lower barriers to entry for users or suppliers - Streamline or focus field operations in disaster reduction - Reduce redundancies and gaps in inter-organizational systems - Assist in planning / managing / prioritizing information and computing resources - Adapt computational resources to new technologies or evolving user needs - Sustain capability for the long term Insights from this exercise are helping us to abstract best practices applicable to other contexts, disaster types, and disaster phases, whereby local communities can improve their use of satellite data for greater preparedness. This effort is also helping to assess the likely impacts and roles of emerging technologies (such as cloud computing, "Big Data" analysis, location-based services, crowdsourcing, semantic services, small satellites, drones, direct broadcast, or model webs) in future disaster management activities.
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit
NASA Astrophysics Data System (ADS)
Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.
2017-11-01
Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (<< 1 μrad) are required, which are the major challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).
NASA Astrophysics Data System (ADS)
Xing, Shaoxu; Anakok, Isil; Zuo, Lei
2017-04-01
Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.
Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi
2009-01-01
The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018
NASA Keeps Watch on a Potential Disaster in the Icy Andes
2003-04-11
An Earth-monitoring instrument aboard NASA's Terra satellite is keeping a close eye on a potential glacial disaster in the making in Peru's spectacular, snow-capped Cordillera Blanca (White Mountains), the highest range of the Peruvian Andes. Data from NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster) is assisting Peruvian government officials and geologists in monitoring a glacier that feeds Lake Palcacocha, located high above the city of Huaraz, 270 kilometers (168 miles) north of Lima. An ominous crack has developed in the glacier. Should the large glacier chunk break off and fall into the lake, the ensuing flood could hurtle down the Cojup Valley into the Rio Santa Valley below, reaching Huaraz, population 60,000, in less than 15 minutes. "Glacial natural hazards like the one in Huaraz are an increasing threat to people in many parts of the world," said Dr. Michael Abrams, associate Aster team leader at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Remote sensing instruments like Aster can serve a vital role in mountain hazard management and disaster mapping by providing rapid access to data, even in regions not easily accessible by humans. Aster's unique vantage point from space gives scientists another tool with which to see early signs of potential glacial flood-burst events and to monitor changes in glacial behavior over time. In Huaraz, Peruvian authorities and scientists will incorporate Aster data along with data from ground-based monitoring techniques to better assess current conditions and take steps necessary to reduce risks to human lives and property." Comparison images of the area are available at: http://asterweb.jpl.nasa.gov . Huaraz can be seen in the images' left-center, with Lake Palcacocha in the images' upper right corners at the head of a valley, below the snow and glacier cap. The left image was acquired on November 5, 2001; the right on April 8, 2003. Glacial flood-bursts, known by Peruvians as "aluviones," occur periodically when water is released abruptly from a previously ice-dammed lake alongside, within, or above a glacier. The release can be caused by various triggering events. These flood-bursts typically arrive with little or no warning, carrying liquid mud, large rock boulders and blocks of ice. The Rio Santa Valley is no stranger to such disasters. Since 1702, floods caused by glaciological conditions have repeatedly caused death and destruction in the region. One particularly devastating event in 1941 destroyed approximately one-third of Huaraz, killing an estimated 5,000 to 7,000 people. Since then, the Peruvian government has emphasized control of the water level in Lake Palcacocha and other lakes in the region that pose similar threats. The efforts appear to have worked; since 1972, no destructive floods resulting from the breakout of glacial lakes have occurred. Nevertheless, officials are still monitoring the current situation closely. http://photojournal.jpl.nasa.gov/catalog/PIA03899
Woodward, Robert L.; Benz, Harley Mitchell; Shedlock, Kaye M.; Brown, William M.
2000-01-01
During the past 35 years, scientists have developed a vast network of seismometers that record earthquakes, volcanic eruptions, and nuclear explosions throughout the world. Seismographic data support disaster response, scientific research, and global security. With this network, the United States maintains world leadership in monitoring the greatest natural and technological events that threaten our planet's population.
Woodward, Robert L.; Benz, Harly M.; Brown, William M.
1997-01-01
During the past 35 years, scientists have developed a vast network of seismometers that record earthquakes, volcanic eruptions, and nuclear explosions throughout the world. Seismographic data support disaster response, scientific research, and global security. With this network, the United States maintains world leadership in monitoring the greatest natural and technological events that threaten our planet's population.
DNA-based technology helps people solve problems. It can be used to correctly match organ donors with recipients, identify victims of natural and man-made disasters, and detect bacteria and other organisms that may pollute air, soil, food, or water.
Search and rescue response to a large-scale rockfall disaster.
Procter, Emily; Strapazzon, Giacomo; Balkenhol, Karla; Fop, Ernst; Faggionato, Alessandro; Mayr, Karl; Falk, Markus; Brugger, Hermann
2015-03-01
To describe the prehospital management and safety of search and rescue (SAR) teams involved in a large-scale rockfall disaster and monitor the acute and chronic health effects on personnel with severe dolomitic dust exposure. SAR personnel underwent on-site medical screening and lung function testing 3 months and 3 years after the event. The emergency dispatch center was responsible for central coordination of resources. One hundred fifty SAR members from multidisciplinary air- and ground-based teams as well as geotechnical experts were dispatched to a provisionary operation center. Acute exposure to dolomite dust with detectable silicon and magnesium concentrations was not associated with (sub)acute or chronic sequelae or a clinically significant impairment in lung function in exposed personnel. The risk for personnel involved in mountain SAR operations is rarely reported and not easily investigated or quantified. This case exemplifies the importance of a multiskilled team and additional considerations for prehospital management during natural hazard events. Safety plans should include compulsory protective measures and medical monitoring of personnel. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Iimoto, T; Nunokawa, J; Fujii, H; Takashima, R; Hashimoto, M; Fukuhara, T; Yajima, T; Matsuzawa, H; Kurosawa, K; Yanagawa, Y; Someya, S
2015-11-01
Activities were introduced in Kashiwa city in the Tokyo metropolitan area to correspond to the elevated environmental radiation level after the disaster of the Fukushima Daiichi nuclear power plant. These were based on a strong cooperation between local governments and experts. Ambient dose rate and radioactivity of foodstuff produced inside of the city have been monitored. Representative ambient dose rates around living environments have almost already become their original levels of the pre-accident because of the decontamination activity, natural washout and effective half-lives of radioactivity. The internal annual dose due to radioactive cesium under the policy of 'Local Production for Local Consumption' is estimated as extremely low comparing the variation range due to natural radioactivity. Systematic survey around a retention basin has been started. All of these latest monitoring data would be one of the core information for the policy making as well as a cost-benefit discussion and risk communication. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bangladesh Agro-Climatic Environmental Monitoring Project
NASA Technical Reports Server (NTRS)
Vermillion, C.; Maurer, H.; Williams, M.; Kamowski, J.; Moore, T.; Maksimovich, W.; Obler, H.; Gilbert, E.
1988-01-01
The Agro-Climatic Environmental Monitoring Project (ACEMP) is based on a Participating Agency Service Agreement (PASA) between the Agency for International Development (AID) and the National Oceanic and Atmospheric Administration (NOAA). In FY80, the Asia Bureau and Office of Federal Disaster Assistance (OFDA), worked closely to develop a funding mechanism which would meet Bangladesh's needs both for flood and cyclone warning capability and for application of remote sensing data to development problems. In FY90, OFDA provided for a High Resolution Picture Transmission (HRPT) receiving capability to improve their forecasting accuracy for cyclones, flooding and storm surges. That equipment is primarily intended as a disaster prediction and preparedness measure. The ACEM Project was designed to focus on the development applications of remote sensing technology. Through this Project, AID provided to the Bangladesh Government (BDG) the equipment, technical assistance, and training necessary to collect and employ remote sensing data made available by satellites as well as hydrological data obtained from data collection platforms placed in major rivers. The data collected will enable the BDG to improve the management of its natural resources.
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hanchung; Liu, Yung Y.; Shuler, James
The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination andmore » radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being developed by Argonne National Laboratory. ARG-US RAMM, powered by on-board battery, can sustain extended autonomous surveillance operation during and following an incident. The benefits could be invaluable to such critical facilities as nuclear power plants, research and test reactors, fuel cycle manufacturing centers, spent-fuel dry-cask storage facilities, and other nuclear installations. (authors)« less
Gun Launch System: efficient and low-cost means of research and real-time monitoring
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Ventskovsky, Oleg; Korostelev, Oleg; Yakovenko, Peter; Kanevsky, Valery; Tselinko, Alexander
2005-08-01
The Gun Launch System with a reusable sub-orbital launch vehicle as a central element is proposed by a consortium of several Ukrainian high-tech companies as an effective, fast-response and low-cost means of research and real-time monitoring. The system is described in details, with the emphasis on its most important advantages. Multiple applications of the system are presented, including ones for the purposes of microgravity research; chemical, bacteriological and radiation monitoring and research of atmosphere and ionosphere; operational monitoring of natural and man-made disasters, as well as for some other areas of great practical interest. The current level of the system development is given, and the way ahead towards full system's implementation is prescribed.
Ensuring Disaster Risk Reduction via Sustainable Wetland Development
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Lindborg, R.; Nyström, S.; Silengo, M.; Tumbo, M.; Koutsouris, A. J.
2015-12-01
Wetland ecosystems around the world are increasingly being targeted as land use development 'hotspots' under growing concerns of climate variability and food security. Anthropogenic encroachment on natural wetland ecosystems can have direct consequences locally through loss of biodiversity and regionally through increased disaster risks associated with, for example, flooding. We consider two regionally-relevant wetland ecosystems in eastern Africa, namely Zambia's Lukanga Swamps and Tanzania's Kilombero Valley, experiencing varying trajectories of development under climatic variations. These regions have been targeted for inclusive, multi-stakeholder initiatives that aim at developing agricultural potential through combinations of large and small scale irrigation schemes. Through our data-driven analysis we highlight the potential for shifts in hydrologic regime of each wetland ecosystem which can have significant regional impacts on disaster risks. In the case of the Lukanga Swamps, wetlands maintain water table fluctuations that help mitigate water cycling with implications for the downstream flooding impact of annual rains. With regards to Kilombero Valley, understanding seasonal changes in hydrological processes and storages provides the cornerstone for managing future water resource impacts/feedbacks under different scenarios of land management. This work emphasizes the need to tailor strategies towards sustainable uses of wetlands that reduce disaster risks regionally while contributing to improved community health and wellbeing. It remains an open (and fundamental) question of how to best define management recommendations and activities that not only achieve climate resiliency but also are acceptable for stakeholders without compromising the balance between ecosystem service supply and biodiversity conservation.
Sulaiman, Zaharah; Mohamad, Noraini; Ismail, Tengku Alina Tengku; Johari, Nazirah; Hussain, Nik Hazlina Nik
2016-01-01
The flood that hit Kelantan in December 2014 was the worst in Malaysian history. Women and their infants accounted for a large proportion of the people at risk who were badly affected, as almost half of the population in Kelantan was in the reproductive age group. This report serves to raise awareness that breastfeeding mothers and infants are a special population with unique needs during a disaster. Four of their concerns were identified during this massive flood: first, the negative impact of flood on infant nutritional status and their health; second, open space and lack of privacy for the mothers to breastfeed their babies comfortably at temporary shelters for flood victims; third, uncontrolled donations of infant formula, teats, and feeding bottles that are often received from many sources to promote formula feeding; and lastly, misconceptions related to breastfeeding production and quality that may be affected by the disaster. The susceptibility of women and their infant in a natural disaster enhances the benefits of promoting the breastfeeding rights of women. Women have the right to be supported which enables them to breastfeed. These can be achieved through monitoring the distribution of formula feeding, providing water, electricity and medical care for breastfeeding mothers and their infants. A multifaceted rescue mission team involving various agencies comprising of local government, including the health and nutrition departments, private or non-governmental organizations and individual volunteers have the potential to improve a satisfactory condition of women and infants affected by floods and other potential natural disasters.
Banwell, Nicola; Montoya, Jaime; Opeña, Merlita; IJsselmuiden, Carel; Law, Ronald; Balboa, Gloria J; Rutherford, Shannon; Chu, Cordia; Murray, Virginia
2016-10-25
The recent Philippine National Health Research System (PNHRS) Week Celebration highlighted the growing commitment to Disaster Risk Reduction (DRR) in the Philippines. The event was lead by the Philippine Council for Health Research and Development of the Department of Science and Technology and the Department of Health, and saw the participation of national and international experts in DRR, and numerous research consortia from all over the Philippines. With a central focus on the Sendai Framework for Disaster Risk Reduction, the DRR related events recognised the significant disaster risks faced in the Philippines. They also illustrated the Philippine strengths and experience in DRR. Key innovations in science and technology showcased at the conference include the web-base hazard mapping applications 'Project NOAH' and 'FaultFinder'. Other notable innovations include 'Surveillance in Post Extreme Emergencies and Disasters' (SPEED) which monitors potential outbreaks through a syndromic reporting system. Three areas noted for further development in DRR science and technology included: integrated national hazard assessment, strengthened collaboration, and improved documentation. Finally, the event saw the proposal to develop the Philippines into a global hub for DRR. The combination of the risk profile of the Philippines, established national structures and experience in DRR, as well as scientific and technological innovation in this field are potential factors that could position the Philippines as a future global leader in DRR. The purpose of this article is to formally document the key messages of the DRR-related events of the PNHRS Week Celebration.
Stennis all-hazards network adopted throughout NASA
2009-10-13
Stennis Space Center employees Mike McKinion (left), with Erica Lane Enterprises, and Luke Scianna, with the Jacobs Facility Operating Services Contract, monitor the facility and surrounding area on the 'all-hazards network' known as HazNet. The HazNet system at Stennis was developed by a local Mississippi company to help facilitate coordinated response during emergency and disaster situations. The system was installed in the new Emergency Operations Center built at Stennis before being implemented throughout NASA. HazNet was designed by NVision Solutions Inc. of Bay St. Louis, Miss., through NASA's Innovative Partnerships Program. In addition to being used at Stennis, it has been installed at other Gulf Coast communities to help coordinate response during emergencies and such natural disasters as hurricanes.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Further, for OBD monitors that run during engine-off conditions, the period of engine-off time following... drive cycle if the monitor has run and made one or more determinations during a drive cycle that the...) The monitor has run and made one or more determinations during a drive cycle that the malfunction is...
SIAM-SERVIR: An Environmental Monitoring and Decision Support System for Mesoamerica
NASA Technical Reports Server (NTRS)
Irwin, Daniel E.; Sever, Tom; Graves, Sara; Hardin, Danny
2005-01-01
In 2002/2003 NASA, the World Bank and the United States Agency for International Development (USAID) joined with the Central American Commission for Environment and Development (CCAD) to develop an advanced decision support system for Mesoamerica (named SERVIR) as part of the Mesoamerican Environmental Information System (SIAM). Mesoamerica - composed of the seven Central American countries and the five southernmost states of Mexico - make up only a small fraction of the world s land surface. However, the region is home to seven to eight percent of the planet s biodiversity (14 biosphere reserves, 31 Ramsar sites, 8 world heritage sites, 589 protected areas) and 45 million people including more than 50 different ethnic groups. Today Mesoamerica s biological and cultural diversity is severely threatened by extensive deforestation, illegal logging, water pollution, and uncontrolled slash and burn agriculture. Additionally, Mesoamerica's distinct geology and geography result in disproportionate vulnerability to natural disasters such as earthquakes, hurricanes, drought, and volcanic eruptions. NASA Marshall Space Flight Center, together with the University of Alabama in Huntsville (UAH) and the SIAM-SERVIR partners are developing state-of-the-art decision support tools for environmental monitoring as well as disaster prevention and mitigation in Mesoamerica. These partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system that is being used by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters and better understand both natural and human induced effects. In its first year of development and operation, the SIAM-SERVIR project has already yielded valuable information on Central American fires, weather conditions, and the first ever real-time data on red tides. This paper presents the progress thus far in the development of SIAM-SERVIR and the plans for the future.
Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.
Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R
2018-03-01
The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.
Development of a car-borne γ-ray survey system, KURAMA
NASA Astrophysics Data System (ADS)
Tanigaki, M.; Okumura, R.; Takamiya, K.; Sato, N.; Yoshino, H.; Yamana, H.
2013-10-01
A compact radiometric survey system, named KURAMA (Kyoto University RAdiation MApping system), has been developed as a response to the nuclear disaster of Fukushima Daiichi nuclear power plant. KURAMA is based on GPS (Global Positioning System) and network technology, and intended for the realtime data accumulation of multiple mobile monitoring stations, such as monitoring cars. KURAMA now serves for the car-borne surveys in Fukushima and surrounding prefectures by the Japanese Government and local authorities. An outline of KURAMA and discussions on car-borne γ-ray surveys using KURAMA are introduced.
Building Capacity for Earthquake Monitoring: Linking Regional Networks with the Global Community
NASA Astrophysics Data System (ADS)
Willemann, R. J.; Lerner-Lam, A.
2006-12-01
Installing or upgrading a seismic monitoring network is often among the mitigation efforts after earthquake disasters, and this is happening in response to the events both in Sumatra during December 2004 and in Pakistan during October 2005. These networks can yield improved hazard assessment, more resilient buildings where they are most needed, and emergency relief directed more quickly to the worst hit areas after the next large earthquake. Several commercial organizations are well prepared for the fleeting opportunity to provide the instruments that comprise a seismic network, including sensors, data loggers, telemetry stations, and the computers and software required for the network center. But seismic monitoring requires more than hardware and software, no matter how advanced. A well-trained staff is required to select appropriate and mutually compatible components, install and maintain telemetered stations, manage and archive data, and perform the analyses that actually yield the intended benefits. Monitoring is more effective when network operators cooperate with a larger community through free and open exchange of data, sharing information about working practices, and international collaboration in research. As an academic consortium, a facility operator and a founding member of the International Federation of Digital Seismographic Networks, IRIS has access to a broad range of expertise with the skills that are required to help design, install, and operate a seismic network and earthquake analysis center, and stimulate the core training for the professional teams required to establish and maintain these facilities. But delivering expertise quickly when and where it is unexpectedly in demand requires advance planning and coordination in order to respond to the needs of organizations that are building a seismic network, either with tight time constraints imposed by the budget cycles of aid agencies following a disastrous earthquake, or as part of more informed national programs for hazard assessment and mitigation.
Micro-satellite constellations for monitoring cryospheric processes and related natural hazards
NASA Astrophysics Data System (ADS)
Kaeaeb, A.; Altena, B.; Mascaro, J.
2016-12-01
Currently, several micro-satellite constellations for earth-observation are planned or under build-up. Here, we assess the potential of the well-advanced Planet satellite constellation for investigating cryospheric processes. In its final stage, the Planet constellation will consist of 150 free-flying micro-satellites in near-polar and ISS orbits. The instruments carry RGB+NIR frame cameras that image the Earth surface in nadir direction with resolutions of 3-5 m, covering 20 x 13 km per image. In its final set-up, the constellation will be able to image the (almost) entire land surface at least once per day, under the limitation of cloud cover. Here, we explore new possibilities for insight into cryospheric processes that this very high repeat cycle combined with high image resolution offer. Based on repeat Planet imagery we derive repeat glacier velocity fields for example glaciers in the northern and southern hemispheres. We find it especially useful to monitor the ice velocities near calving fronts and simultaneously detect changes of the front, pointing to calving events. We also explore deformation fields over creeping mountain permafrost, so-called rockglaciers. As a second, very promising cryospheric application we suggest monitoring of glacier and permafrost related natural hazards. In cases such as temporary lakes, lake outbursts, landslides, rock avalanches, visual information over remote areas and at high frequencies are crucial for hazard assessment, early warning or disaster management. Based on several examples, we demonstrate that massive micro-satellite constellations such Planet's are exactly able to provide this type of information. As a third promising example, we show how such high-repeat optical satellite data are useful to monitor river ice and related jams and flooding. At certain latitudes, the repeat frequency of the data is even high enough to track river ice floes and thus water velocities.
NASA Astrophysics Data System (ADS)
Shim, J. B.; Won, C. Y.; Park, J.; Lee, K.
2017-12-01
Korea experiences frequent flood disasters, which cause considerable economic losses and damages to towns and farms. Especially, a regional torrential storm is about 98.5mm/hr on September 21, 2010 in Seoul. The storm exceeds the capacity of urban drainage system of 75mm/hr, and 9,419 houses. How to monitor and control the urban flood disasters is an important issue in Korea. To mitigate the flood damage, a customizing system was developed to estimate urban floods and inundation using by integrating drainage system data and river information database which are managed by local governments and national agencies. In the case of Korean urban city, there are a lot of detention ponds and drainage pumping stations on end of drainage system and flow is going into river. The drainage pumping station, it is very important hydraulic facility for flood control between river and drainage system. So, it is possible to occur different patterns of flood inundation according to operation rule of drainage pumping station. A flood disaster is different damage as how to operate drainage pumping station and plan operation rule.
NASA Astrophysics Data System (ADS)
Chen, K. H.; Liang, W. T.; Wu, Y. F.; Yen, E.
2014-12-01
To prevent the future threats of natural disaster, it is important to understand how the disaster happened, why lives were lost, and what lessons have been learned. By that, the attitude of society toward natural disaster can be transformed from training to learning. The citizen-seismologists-in-Taiwan project is designed to elevate the quality of earthquake science education by means of incorporating earthquake/tsunami stories and near-real time earthquake games competition into the traditional curricula in schools. Through pilot of courses and professional development workshops, we have worked closely with teachers from elementary, junior high, and senior high schools, to design workable teaching plans through a practical operation of seismic monitoring at home or school. We will introduce how the 9-years-old do P- and S-wave picking and measure seismic intensity through interactive learning platform, how do scientists and school teachers work together, and how do we create an environment to facilitate continuous learning (i.e., near-real time earthquake games competition), to make earthquake science fun.
Cycle 24 COS FUV Internal/External Wavelength Scale Monitor
NASA Astrophysics Data System (ADS)
Fischer, William J.
2018-02-01
We report on the monitoring of the COS FUV wavelength scale zero-points during Cycle 24 in program 14855. Select cenwaves were monitored for all FUV gratings at Lifetime Position 3. The target and cenwaves have remained the same since Cycle 21, with a change only to the target acquisition sequence. All measured offsets are within the error goals, although the G140L cenwaves show offsets at the short-wavelength end of segment A that are approaching the tolerance. This behavior will be closely monitored in subsequent iterations of the program.
Building infrastructure to prevent disasters like Hurricane Maria
NASA Astrophysics Data System (ADS)
Bandaragoda, C.; Phuong, J.; Mooney, S.; Stephens, K.; Istanbulluoglu, E.; Pieper, K.; Rhoads, W.; Edwards, M.; Pruden, A.; Bales, J.; Clark, E.; Brazil, L.; Leon, M.; McDowell, W. G.; Horsburgh, J. S.; Tarboton, D. G.; Jones, A. S.; Hutton, E.; Tucker, G. E.; McCready, L.; Peckham, S. D.; Lenhardt, W. C.; Idaszak, R.
2017-12-01
2000 words Recovery efforts from natural disasters can be more efficient with data-driven information on current needs and future risks. We aim to advance open-source software infrastructure to support scientific investigation and data-driven decision making with a prototype system using a water quality assessment developed to investigate post-Hurricane Maria drinking water contamination in Puerto Rico. The widespread disruption of water treatment processes and uncertain drinking water quality within distribution systems in Puerto Rico poses risk to human health. However, there is no existing digital infrastructure to scientifically determine the impacts of the hurricane. After every natural disaster, it is difficult to answer elementary questions on how to provide high quality water supplies and health services. This project will archive and make accessible data on environmental variables unique to Puerto Rico, damage caused by Hurricane Maria, and will begin to address time sensitive needs of citizens. The initial focus is to work directly with public utilities to collect and archive samples of biological and inorganic drinking water quality. Our goal is to advance understanding of how the severity of a hazard to human health (e.g., no access to safe culinary water) is related to the sophistication, connectivity, and operations of the physical and related digital infrastructure systems. By rapidly collecting data in the early stages of recovery, we will test the design of an integrated cyberinfrastructure system to for usability of environmental and health data to understand the impacts from natural disasters. We will test and stress the CUAHSI HydroShare data publication mechanisms and capabilities to (1) assess the spatial and temporal presence of waterborne pathogens in public water systems impacted by a natural disaster, (2) demonstrate usability of HydroShare as a clearinghouse to centralize selected datasets related to Hurricane Maria, and (3) develop a prototype cyberinfrastructure to assess environmental conditions and public health impacted by natural disasters. The project thus serves to not only document post-disaster conditions, but develops a process to track the impact of recovery over time, as monitored through health, power availability and water quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leifer, Ira; Melton, Christopher; Frash, Jason
Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less
Leifer, Ira; Melton, Christopher; Frash, Jason; ...
2016-09-22
Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less
ERIC Educational Resources Information Center
Zantal-Wiener, Kathy; Horwood, Thomas J.
2010-01-01
The authors propose a comprehensive evaluation framework to prepare for evaluating school emergency management programs. This framework involves a logic model that incorporates Government Performance and Results Act (GPRA) measures as a foundation for comprehensive evaluation that complements performance monitoring used by the U.S. Department of…
Introduction to Radiological Monitoring; A Programmed Home Study Course. Four Self-Study Units.
ERIC Educational Resources Information Center
Defense Civil Preparedness Agency (DOD), Battle Creek, MI.
This progrmed course of study is designed to prepare local government officials and individual citizens to act in nuclear emergencies or disasters. Each of the four units has two lessons beginning with a brief overview and proceeding with self study frames. Line drawings are used to illustrate effects. Topics covered are the radiological monitor…
2008-01-01
special needs should enhance their awareness of risk and threats, develop household emergency plans that include care for pets and service animals , and...including persons, property, and structures. – Individuals with special needs, including those with service animals . – Individuals with household pets...supplies for household pets and service animals . See the recommended disaster supplies list at http://www.ready.gov. • Monitoring emergency
In the days following the collapse of the World Trade Center (WTC) towers on September 11, 2001 (9/11), the U.S. Environmental Protection Agency (EPA) initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these...
Informing Mitigation of Disaster Loss through Social Media: Evidence from Thailand
NASA Astrophysics Data System (ADS)
Allaire, M.
2015-12-01
This paper is the first to investigate the role of online information and social media in enabling households to reduce natural disaster losses. The historic 2011 Bangkok flood is utilized as a case study to assess how internet use allowed households to mitigate flood losses. This event was one of the first major disasters to affect an urban area with a substantial population connected to social media. The role of online information is investigated with a mixed methods approach, using both quantitative (propensity score matching and multivariate regression analysis) and qualitative (in-depth interviews) techniques. The study relies on two data sources - survey responses from 469 Bangkok households and in-depth interviews with internet users who are a subset of the survey participants. Propensity score matching indicates that social media use enabled households to reduce mean total losses by 37%, using a nearest neighbor estimator. Average loss reductions amounted to USD 3,708 to USD 4,886, depending on the matching estimator. In addition, regression analysis suggests that social media use is associated with lower flood losses (average reduction of USD 2,784). These reductions are notable when considering that total flood losses in 2011 averaged USD 4,903. Social media offered information that was not available from other sources, such as localized and nearly real-time updates of flood location and depth. With knowledge of current flood conditions, Bangkok households could move belongings to higher ground before floodwaters arrived. These findings suggest that utilizing social media users as sensors could better inform populations during natural disasters, particularly in locations that lack real-time, accurate flood monitoring networks. Therefore, expanded access to the internet and social could especially be useful in developing countries, ungagged basins, and highly complex urban environments. There is also an enormous opportunity for disseminating government disaster communication through social media. Overall, the study reveals that online information can enable effective disaster preparedness and reduce flood losses.
Disease prevalence among nursery school children after the Great East Japan earthquake
Ishikuro, Mami; Matsubara, Hiroko; Kikuya, Masahiro; Obara, Taku; Sato, Yuki; Metoki, Hirohito; Isojima, Tsuyoshi; Yokoya, Susumu; Kato, Noriko; Tanaka, Toshiaki; Chida, Shoichi; Ono, Atsushi; Hosoya, Mitsuaki; Yamagata, Zentaro; Tanaka, Soichiro; Kure, Shigeo; Kuriyama, Shinichi
2017-01-01
Objective To investigate the relationship between personal experience of the Great East Japan Earthquake and various disease types among nursery school children. Design We conducted a nationwide survey of nursery school children born between 2 April 2006 and 1 April 2007. Nursery school teachers completed questionnaires if they agreed to join the study. Questionnaire items for children consisted of their birth year and month, sex, any history of moving into or out of the current nursery school, presence of diseases diagnosed by a physician at the age of 66–78 months and type of disaster experience. The survey was conducted from September 2012 to December 2012. Setting Japan, nationwide. Participants A total of 60 270 nursery school children were included in the analysis, 840 of whom experienced the disaster on 11 March 2011. Main outcome measures The health status of children 1.5 years after the disaster based on nursery school records. Results Experiencing the disaster significantly affected the prevalence of overall and individual diseases. Furthermore, there was a difference in disease prevalence between boys and girls. In boys, experiencing the tsunami (OR 2.53, 95% CI 1.22 to 5.24) and living in an evacuation centre (OR 2.92, 95% CI 1.46 to 5.83) were remarkably associated with a higher prevalence of atopic dermatitis, but these trends were not observed among girls. Instead, the home being destroyed (OR 3.50, 95% CI 2.02 to 6.07) and moving house (OR 4.19, 95% CI 2.01 to 8.71) were positively associated with a higher prevalence of asthma among girls. Conclusions Our study indicates that experiencing the disaster may have affected the health status of nursery school children at least up to 1.5 years after the disaster. Continuous monitoring of the health status of children is necessary to develop strategic plans for child health. PMID:28589008
Disease prevalence among nursery school children after the Great East Japan earthquake.
Ishikuro, Mami; Matsubara, Hiroko; Kikuya, Masahiro; Obara, Taku; Sato, Yuki; Metoki, Hirohito; Isojima, Tsuyoshi; Yokoya, Susumu; Kato, Noriko; Tanaka, Toshiaki; Chida, Shoichi; Ono, Atsushi; Hosoya, Mitsuaki; Yokomichi, Hiroshi; Yamagata, Zentaro; Tanaka, Soichiro; Kure, Shigeo; Kuriyama, Shinichi
2017-01-01
To investigate the relationship between personal experience of the Great East Japan Earthquake and various disease types among nursery school children. We conducted a nationwide survey of nursery school children born between 2 April 2006 and 1 April 2007. Nursery school teachers completed questionnaires if they agreed to join the study. Questionnaire items for children consisted of their birth year and month, sex, any history of moving into or out of the current nursery school, presence of diseases diagnosed by a physician at the age of 66-78 months and type of disaster experience. The survey was conducted from September 2012 to December 2012. Japan, nationwide. A total of 60 270 nursery school children were included in the analysis, 840 of whom experienced the disaster on 11 March 2011. The health status of children 1.5 years after the disaster based on nursery school records. Experiencing the disaster significantly affected the prevalence of overall and individual diseases. Furthermore, there was a difference in disease prevalence between boys and girls. In boys, experiencing the tsunami (OR 2.53, 95% CI 1.22 to 5.24) and living in an evacuation centre (OR 2.92, 95% CI 1.46 to 5.83) were remarkably associated with a higher prevalence of atopic dermatitis, but these trends were not observed among girls. Instead, the home being destroyed (OR 3.50, 95% CI 2.02 to 6.07) and moving house (OR 4.19, 95% CI 2.01 to 8.71) were positively associated with a higher prevalence of asthma among girls. Our study indicates that experiencing the disaster may have affected the health status of nursery school children at least up to 1.5 years after the disaster. Continuous monitoring of the health status of children is necessary to develop strategic plans for child health.
A tsunami early warning system for the coastal area modeling
NASA Astrophysics Data System (ADS)
Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery
2015-04-01
The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.
A Study about the 3S-based Great Ruins Monitoring and Early-warning System
NASA Astrophysics Data System (ADS)
Xuefeng, W.; Zhongyuan, H.; Gongli, L.; Li, Z.
2015-08-01
Large-scale urbanization construction and new countryside construction, frequent natural disasters, and natural corrosion pose severe threat to the great ruins. It is not uncommon that the cultural relics are damaged and great ruins are occupied. Now the ruins monitoring mainly adopt general monitoring data processing system which can not effectively exert management, display, excavation analysis and data sharing of the relics monitoring data. Meanwhile those general software systems require layout of large number of devices or apparatuses, but they are applied to small-scope relics monitoring only. Therefore, this paper proposes a method to make use of the stereoscopic cartographic satellite technology to improve and supplement the great ruins monitoring index system and combine GIS and GPS to establish a highly automatic, real-time and intelligent great ruins monitoring and early-warning system in order to realize collection, processing, updating, spatial visualization, analysis, distribution and sharing of the monitoring data, and provide scientific and effective data for the relics protection, scientific planning, reasonable development and sustainable utilization.
Linking disaster resilience and urban sustainability: a glocal approach for future cities.
Asprone, Domenico; Manfredi, Gaetano
2015-01-01
Resilience and sustainability will be two primary objectives of future cities. The violent consequences of extreme natural events and the environmental, social and economic burden of contemporary cities make the concepts of resilience and sustainability extremely relevant. In this paper we analyse the various definitions of resilience and sustainability applied to urban systems and propose a synthesis, based on similarities between the two concepts. According to the proposed approach, catastrophic events and the subsequent transformations occurring in urban systems represent a moment in the city life cycle to be seen in terms of the complex sustainability framework. Hence, resilience is seen as a requirement for urban system sustainability. In addition, resilience should be evaluated not only for single cities, with their physical and social systems, but also on a global scale, taking into account the complex and dynamic relationships connecting contemporary cities. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
NASA Technical Reports Server (NTRS)
Helfert, M. R.; Mccrary, D. G.; Gray, T. I. (Principal Investigator)
1981-01-01
The 1979 Lower Mississippi River flood was selected as a test case of environmental disaster monitoring utilizing NOAA-n imagery. A small scale study of the St. Louis Missouri area comparing ERTS-1 (LANDSAT) and NOAA-2 imagery and flood studies using only LANDSAT imagery for mapping the Rad River of the North, and Nimbus-5 imagery for East Australia show the nonmeteorological applications of NOAA satellites. While the level of NOAA-n imagery detail is not that of a LANDSAT image, for operational environmental monitoring users the NOAA-n imagery may provide acceptable linear resolution and spectral isolation.
Meier, Frederick A; Souers, Rhona J; Howanitz, Peter J; Tworek, Joseph A; Perrotta, Peter L; Nakhleh, Raouf E; Karcher, Donald S; Bashleben, Christine; Darcy, Teresa P; Schifman, Ron B; Jones, Bruce A
2015-06-01
Many production systems employ standardized statistical monitors that measure defect rates and cycle times, as indices of performance quality. Clinical laboratory testing, a system that produces test results, is amenable to such monitoring. To demonstrate patterns in clinical laboratory testing defect rates and cycle time using 7 College of American Pathologists Q-Tracks program monitors. Subscribers measured monthly rates of outpatient order-entry errors, identification band defects, and specimen rejections; median troponin order-to-report cycle times and rates of STAT test receipt-to-report turnaround time outliers; and critical values reporting event defects, and corrected reports. From these submissions Q-Tracks program staff produced quarterly and annual reports. These charted each subscriber's performance relative to other participating laboratories and aggregate and subgroup performance over time, dividing participants into best and median performers and performers with the most room to improve. Each monitor's patterns of change present percentile distributions of subscribers' performance in relation to monitoring durations and numbers of participating subscribers. Changes over time in defect frequencies and the cycle duration quantify effects on performance of monitor participation. All monitors showed significant decreases in defect rates as the 7 monitors ran variously for 6, 6, 7, 11, 12, 13, and 13 years. The most striking decreases occurred among performers who initially had the most room to improve and among subscribers who participated the longest. All 7 monitors registered significant improvement. Participation effects improved between 0.85% and 5.1% per quarter of participation. Using statistical quality measures, collecting data monthly, and receiving reports quarterly and yearly, subscribers to a comparative monitoring program documented significant decreases in defect rates and shortening of a cycle time for 6 to 13 years in all 7 ongoing clinical laboratory quality monitors.
Integrating Climate Change Into Nursing Curricula.
McDermott-Levy, Ruth; Jackman-Murphy, Kathryn P; Leffers, Jeanne M; Jordan, Lisa
2018-03-28
Climate change is a significant threat to human health across the life cycle. Nurses play an important role in mitigation, adaptation, and resilience to climate change. The use of health care resources, air quality and extreme heat, mental health, and natural disasters are major content areas across undergraduate nursing curricula that influence or are influenced by climate change. Teaching strategies and resources are offered to prepare nursing students to address climate change and human health.
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
Terra, Aqua, and Aura Direct Broadcast - Providing Earth Science Data for Realtime Applications
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Coronado, Patrick L.; Case, Warren F.; Franklin, Ameilia
2010-01-01
The need for realtime data to aid in disaster management and monitoring has been clearly demonstrated for the past several years, e.g., during the tsunami in Indonesia in 2004, the hurricane Katrina in 2005, fires, etc. Users want (and often require) the means to get earth observation data for operational regional use as soon as they are generated by satellites. This is especially true for events that can cause loss of human life and/or property. To meet this need, NASA's Earth Observing System (EOS) satellites, Terra and Aqua, provide realtime data useful to disaster management teams. This paper describes the satellites, their Direct Broadcast (DB) capabilities, the data uses, what it takes to deploy a DB ground station, and the future of the DB.
DVI missions in the Carribean-the practical aspects of disaster victim identification.
Winskog, Calle
2012-06-01
Human trafficking of young men from Africa to Europe is a crime with often devastating consequences. The African continent loses members of the younger generation and many die during the attempt to reach their destinations. The identification of these victims is often difficult, however the structured and by now well-established procedures utilizing standard disaster victim identification protocols provide a reliable and functional approach. The logistics involved are straightforward, and one of the many functions of the team leader is to monitor and control the flow of cases through the system. The importance of ante mortem data for the purposes of identification is clear-no ante mortem data means no identification. Two different missions conducted in the Caribbean are described to illustrate particular difficulties that may occur.
Lenert, L A; Kirsh, D; Griswold, W G; Buono, C; Lyon, J; Rao, R; Chan, T C
2011-01-01
There is growing interest in the use of technology to enhance the tracking and quality of clinical information available for patients in disaster settings. This paper describes the design and evaluation of the Wireless Internet Information System for Medical Response in Disasters (WIISARD). WIISARD combined advanced networking technology with electronic triage tags that reported victims' position and recorded medical information, with wireless pulse-oximeters that monitored patient vital signs, and a wireless electronic medical record (EMR) for disaster care. The EMR system included WiFi handheld devices with barcode scanners (used by front-line responders) and computer tablets with role-tailored software (used by managers of the triage, treatment, transport and medical communications teams). An additional software system provided situational awareness for the incident commander. The WIISARD system was evaluated in a large-scale simulation exercise designed for training first responders. A randomized trial was overlaid on this exercise with 100 simulated victims, 50 in a control pathway (paper-based), and 50 in completely electronic WIISARD pathway. All patients in the electronic pathway were cared for within the WIISARD system without paper-based workarounds. WIISARD reduced the rate of the missing and/or duplicated patient identifiers (0% vs 47%, p<0.001). The total time of the field was nearly identical (38:20 vs 38:23, IQR 26:53-1:05:32 vs 18:55-57:22). Overall, the results of WIISARD show that wireless EMR systems for care of the victims of disasters would be complex to develop but potentially feasible to build and deploy, and likely to improve the quality of information available for the delivery of care during disasters.
Kirsh, D; Griswold, W G; Buono, C; Lyon, J; Rao, R; Chan, T C
2011-01-01
Background There is growing interest in the use of technology to enhance the tracking and quality of clinical information available for patients in disaster settings. This paper describes the design and evaluation of the Wireless Internet Information System for Medical Response in Disasters (WIISARD). Materials and methods WIISARD combined advanced networking technology with electronic triage tags that reported victims' position and recorded medical information, with wireless pulse-oximeters that monitored patient vital signs, and a wireless electronic medical record (EMR) for disaster care. The EMR system included WiFi handheld devices with barcode scanners (used by front-line responders) and computer tablets with role-tailored software (used by managers of the triage, treatment, transport and medical communications teams). An additional software system provided situational awareness for the incident commander. The WIISARD system was evaluated in a large-scale simulation exercise designed for training first responders. A randomized trial was overlaid on this exercise with 100 simulated victims, 50 in a control pathway (paper-based), and 50 in completely electronic WIISARD pathway. All patients in the electronic pathway were cared for within the WIISARD system without paper-based workarounds. Results WIISARD reduced the rate of the missing and/or duplicated patient identifiers (0% vs 47%, p<0.001). The total time of the field was nearly identical (38:20 vs 38:23, IQR 26:53–1:05:32 vs 18:55–57:22). Conclusion Overall, the results of WIISARD show that wireless EMR systems for care of the victims of disasters would be complex to develop but potentially feasible to build and deploy, and likely to improve the quality of information available for the delivery of care during disasters. PMID:21709162
Noe, Rebecca S; Schnall, Amy H; Wolkin, Amy F; Podgornik, Michelle N; Wood, April D; Spears, Jeanne; Stanley, Sharon A R
2013-01-01
To describe the injuries and illnesses treated by the American Red Cross (Red Cross) during Hurricanes Gustav and Ike disaster relief operations reported on a new Aggregate Morbidity Report Form. From August 28 to October 18, 2008, 119 Red Cross field service locations in Louisiana, Mississippi, Tennessee, and Texas addressed the healthcare needs of people affected by the hurricanes. From these locations, individual client visit data were retrospectively collated per site onto new 24-hour Aggregate Morbidity Report Forms. A total of 3863 clients were treated. Of the clients, 48% were girls and women and 44% were boys and men; 61% were 19 to 64 years old. Ninety-eight percent of the visits occurred in shelters. The reasons for half of the visits were acute illness and symptoms (eg, pain) and 16% were for routine follow-up care. The majority (65%) of the 2516 visits required treatment at a field location, although 34%, or 1296 visits, required a referral, including 543 healthcare facility transfers. During the hurricanes, a substantial number of displaced evacuees sought care for acute and routine healthcare needs. The capacity of the Red Cross to address the immediate and ongoing health needs of sheltered clients for an extended period of time is a critical resource for local public health agencies, which are often overwhelmed during a disaster. This article highlights the important role that this humanitarian organization fills, to decrease surge to local healthcare systems and to monitor health effects following a disaster. The Aggregate Morbidity Report Form has the potential to assist greatly in this role, and thus its utility for real-time reporting should be evaluated further.
Liu, Xueqin; Li, Ning; Xie, Wei; Wu, Jidong; Zhang, Peng; Ji, Zhonghui
2012-09-01
This study presents a methodology for return period analysis and risk assessment of severe dust storm disaster. Meteorological observation data, soil moisture data, and remote sensing data from 30 meteorological stations in Inner Mongolia (western China) from 1985 to 2006 were used for the study. A composite index of severe dust storm disaster (Index I (SDS)) based on the influence mechanisms of the main contributing factors was developed by using the analytic hierarchy process and the weighted comprehensive method, and the hazard risk curves (i.e., the transcendental probability curves of I (SDS)) for the 30 stations were established using the parameter estimation method. We then analyzed the risk of the occurrence of severe dust storm under different scenarios of 5-, 10-, 20-, and 50-year return periods. The results show that the risk decreased from west to east across Inner Mongolia, and there are four severe dust storm occurrence peak value centers, including Guaizihu, Jilantai, Hailisu, and Zhurihe-Erenhot. The severity of dust storms in seven places will be intolerable in the 50-year return period scenario and in three places in the 20-year return period scenario. These results indicate that these locations should concentrate forces on disaster prevention, monitoring, and early warning. The I (SDS) was developed as an easily understandable tool useful for the assessment and comparison of the relative risk of severe dust storm disasters in different areas. The risk assessment was specifically intended to support local and national government agencies in their management of severe dust storm disasters in their efforts to (1) make resource allocation decisions, (2) make high-level planning decisions, and (3) raise public awareness of severe dust storm risk.
Hurricane preparedness: Current procedures at Blue Cross Blue Shield of Florida.
Devaney, Everett
2008-01-01
This paper discusses experience, methodology and recommendations for successful business continuity and disaster recovery planning for health care organisations. Hurricanes, tornadoes and other natural disasters are a regular occurrence in Florida. Low-lying coastal areas are at increased risk, with populations in inland areas as far as 200-300 miles with potential to suffer heavy damage. This case study shows how one institution, Blue Cross Blue Shield of Florida, provides and maintains emergency response plans for critical functions, services or processes before, during and after a disaster, in support of its 8.3 million customers, its stakeholders and colleagues such as providers and vendors. Even though modern tracking gives fair warning regarding hurricanes, the use of specific and tested emergency response planning is critical to allow business continuity decision-making well before disaster strikes. This study examines how functional units within a health care organisation can plan and prepare to protect the public who depend on their services and resources, as well as minimise the risk to employees and business stakeholders. Coordination of a Contingency Response Team (within the functional units) and an Enterprise Operations Centre must be well managed to minimise adverse customer service disruptions and at the same time minimise impact to the company. Decision making and communications are strictly organised to protect stakeholders, make temporary business rule changes, allow for alternative business processes and handle benefit decisions, following methodology known, tested and used in past scenarios. In summary, the paper explores key points to achieve active and engaged business continuity in the face of natural disasters - (1) planning & coordination, (2) monitoring, (3) response/activation and (4) recovery.
Mental health consequences of the Chernobyl disaster.
Bromet, Evelyn J
2012-03-01
The psychosocial consequences of disasters have been studied for more than 100 years. The most common mental health consequences are depression, anxiety, post-traumatic stress disorder, medically unexplained somatic symptoms, and stigma. The excess morbidity rate of psychiatric disorders in the first year after a disaster is in the order of 20%. Disasters involving radiation are particularly pernicious because the exposure is invisible and universally dreaded, and can pose a long-term threat to health. After the Chernobyl disaster, studies of clean-up workers (liquidators) and adults from contaminated areas found a two-fold increase in post-traumatic stress and other mood and anxiety disorders and significantly poorer subjective ratings of health. Among liquidators, the most important risk factor was severity of exposure. In general population samples, the major risk factor was perceived exposure to harmful levels of radiation. These findings are consistent with results from A-bomb survivors and populations studied after the Three Mile Island nuclear power plant accident. With regard to children, apart from findings from ecological studies that lack direct data on radiation or other teratologic exposures and local studies in Kiev, the epidemiologic evidence suggests that neither radiation exposure nor the stress of growing up in the shadow of the accident was associated with emotional disorders, cognitive dysfunction, or impaired academic performance. Thus, based on the studies of adults, the Chernobyl Forum concluded that mental health was the largest public health problem unleashed by the accident. Since mental health is a leading cause of disability, physical morbidity, and mortality, health monitoring after radiation accidents like Fukushima should include standard measures of well-being. Moreover, given the comorbidity of mental and physical health, the findings support the value of training non-psychiatrist physicians in recognizing and treating common mental health problems like depression in Fukushima patients.
An Information Architect's View of Earth Observations for Disaster Risk Management
NASA Astrophysics Data System (ADS)
Moe, K.; Evans, J. D.; Cappelaere, P. G.; Frye, S. W.; Mandl, D.; Dobbs, K. E.
2014-12-01
Satellite observations play a significant role in supporting disaster response and risk management, however data complexity is a barrier to broader use especially by the public. In December 2013 the Committee on Earth Observation Satellites Working Group on Information Systems and Services documented a high-level reference model for the use of Earth observation satellites and associated products to support disaster risk management within the Global Earth Observation System of Systems context. The enterprise architecture identified the important role of user access to all key functions supporting situational awareness and decision-making. This paper focuses on the need to develop actionable information products from these Earth observations to simplify the discovery, access and use of tailored products. To this end, our team has developed an Open GeoSocial API proof-of-concept for GEOSS. We envision public access to mobile apps available on smart phones using common browsers where users can set up a profile and specify a region of interest for monitoring events such as floods and landslides. Information about susceptibility and weather forecasts about flood risks can be accessed. Users can generate geo-located information and photos of local events, and these can be shared on social media. The information architecture can address usability challenges to transform sensor data into actionable information, based on the terminology of the emergency management community responsible for informing the public. This paper describes the approach to collecting relevant material from the disasters and risk management community to address the end user needs for information. The resulting information architecture addresses the structural design of the shared information in the disasters and risk management enterprise. Key challenges are organizing and labeling information to support both online user communities and machine-to-machine processing for automated product generation.
Klasing, Amanda M; Moses, P Scott; Satterthwaite, Margaret L
2011-07-14
This article provides results from an online survey of humanitarian workers and volunteers that was conducted in May and June 2010. The purpose of the survey was to understand how the humanitarian aid system adopts or incorporates human rights into its post-natural disaster work and metrics. Data collected from Haiti suggest that humanitarians have embraced a rights-based approach but that they do not agree about how this is defined or about what standards and indicators can be considered rights-based. This disagreement may reveal that humanitarians are aware of a mismatch between the rights-based approach to post-disaster humanitarian work and the legal framework of human rights. Using participation and accountability as examples, this article identifies and examines this mismatch and suggests that the humanitarian aid system should more fully embrace engagement with the human rights framework. To do so, the article concludes, humanitarian actors and the human rights community should have an open dialogue about the development of metrics that accurately reflect and monitor adherence to the legal framework of human rights. This would allow the humanitarian aid system to ensure its interventions enhance the capacity of the disaster-affected state to fulfill its human rights obligations, and would allow humanitarian and human rights actors alike to measure the impact of such interventions on the realization of human rights in post-natural disaster settings. Copyright © 2011 Klasing, Moses, and Satterthwaite. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
People-centred landslide early warning systems in the context of risk management
NASA Astrophysics Data System (ADS)
Haß, S.; Asch, K.; Fernandez-Steeger, T.; Arnhardt, C.
2009-04-01
In the current hazard research people-centred warning becomes more and more important, because different types of organizations and groups have to be involved in the warning process. This fact has to be taken into account when developing early warning systems. The effectiveness of early warning depends not only on technical capabilities but also on the preparedness of decision makers and their immediate response on how to act in case of emergency. Hence early warning systems have to be regarded in the context of an integrated and holistic risk management. Disaster Risk Reduction (DRR) measures include people-centred, timely and understandable warning. Further responsible authorities have to be identified in advance and standards for risk communication have to be established. Up to now, hazard and risk assessment for geohazards focuses on the development of inventory, susceptibility, hazard and risk maps. But often, especially in Europe, there are no institutional structures for managing geohazards and in addition there is a lack of an authority that is legally obliged to alarm on landslides at national or regional level. One of the main characteristics within the warning process for natural hazards e.g. in Germany is the split of responsibility between scientific authorities (wissenschaftliche Fachbehörde) and enforcement authorities (Vollzugsbehörde). The scientific authority provides the experts who define the methods and measures for monitoring and evaluate the hazard level. The main focus is the acquisition and evaluation of data and subsequently the distribution of information. The enforcement authority issues official warnings about dangerous natural phenomena. Hence the information chain in the context of early warning ranges over two different institutions, the forecast service and the warning service. But there doesn't exist a framework for warning processes in terms of landslides as yet. The concept for managing natural disasters is often reduced to hazard assessment and emergency response. Great importance is attached to the scientific understanding of hazards and protective structures, while analysis of socio-economic impacts and risk assessment are not considered enough. The reduction of vulnerability has to be taken into greater account. Also the information needs of different stakeholders have to be identified at an early stage and should be integrated in the development of early warning systems. The content of the warning message must be simple, understandable and should cover instructions on how to react. Further the timeliness of the messages has to be guarented. In this context the aim of the landslide monitoring and early warning system SLEWS (Sensor Based Landslide Early Warning System) is to integrate the above mentioned aspects of a holistic disaster and risk management. The technology of spatial data infrastructures and web services provides the use of multiple communication channels within an early warning system. Thus people-centred early warning messages and information about slope stability can be sent in nearly real-time. It has to be underlined that the technological information process is just one element of an effective warning system. Moreover the warning system has also to be considered as a social system and has to make allowance to socio-economic and gender aspects : «[...] Develop early warning systems that are people centered, in particular systems whose warnings are timely and understandable to those at risk, which take into account the demographic, gender, cultural and livelihood characteristics of the target audiences, including guidance on how to act upon warnings, and that support effective operations by disaster managers and other decision makers » (Hyogo Framework, 2005) References : UNITED NATIONS INTERNATIONAL STRATEGY FOR DISASTER REDUCTION SECRETARIAT (UNISDR) (2006): Developing early warning systems: a checklist, Third international conference on early warning (EWC III): from concept to action: 27-29 March 2006, Bonn, Germany. Geneva, Switzerland: International Strategy for Disaster Reduction. WORLD CONFERENCE ON DISASTER REDUCTION (2005) : Report of the World Conference on Disaster Reduction: Kobe, Hyogo, Japan, 18-22 January 2005. Geneva, Switzerland, Secretariat, World Conference on Disaster Reduction. INTER-AGENCY SECRETARIAT OF THE ISDR & GLOBAL PLATFORM FOR DISASTER RISK REDUCTION (2007): Disaster risk reduction: 2007 global review. Geneva, UN, ISDR.
NASA Astrophysics Data System (ADS)
Massabo, Marco; Molini, Luca; Kostic, Bojan; Campanella, Paolo; Stevanovic, Slavimir
2015-04-01
Disaster risk reduction has long been recognized for its role in mitigating the negative environmental, social and economic impacts of natural hazards. Flood Early Warning System is a disaster risk reduction measure based on the capacities of institutions to observe and predict extreme hydro-meteorological events and to disseminate timely and meaningful warning information; it is furthermore based on the capacities of individuals, communities and organizations to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss. An operational definition of an Early Warning System has been suggested by ISDR - UN Office for DRR [15 January 2009]: "EWS is the set of capacities needed to generate and disseminate timely and meaningful warning information to enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss.". ISDR continues by commenting that a people-centered early warning system necessarily comprises four key elements: 1-knowledge of the risks; 2-monitoring, analysis and forecasting of the hazards; 3-communication or dissemination of alerts and warnings; and 4- local capabilities to respond to the warnings received." The technological platform DEWETRA supports the strengthening of the first three key elements of EWS suggested by ISDR definition, hence to improve the capacities to build real-time risk scenarios and to inform and warn the population in advance The technological platform DEWETRA has been implemented for the Republic of Serbia. DEWETRA is a real time-integrate system that supports decision makers for risk forecasting and monitoring and for distributing warnings to end-user and to the general public. The system is based on the rapid availability of different data that helps to establish up-to-date and reliable risk scenarios. The integration of all relevant data for risk management significantly increases the value of available information and the level of knowledge of forecasters and disaster managers. Different data, forecast and monitoring products, which are generated by different national and international institution and organizations, can be visualized and processed in real-time within the platform. DEWETRA is a web application ensuring the capillary distribution of information among institutions. The system is used as an infrastructure for exchanging and sharing data, procedures, models and expertise among the Sector of Emergency Management (SEM), the Republic Hydro-Meteorological Service of Serbia (RHMSS) and the Serbian Public Water Companies (PWCs): Serbia Waters, Vojvodina Waters and Belgrade Waters.
NASA Astrophysics Data System (ADS)
Yegoshina, O. V.; Voronov, V. N.; Yarovoy, V. O.; Bolshakova, N. A.
2017-11-01
There are many problems in domestic energy at the present that require urgent solutions in the near future. One of these problems - the aging of the main and auxiliary equipment. Wear of equipment is the cause of decrease reliability and efficiency of power plants. Reliability of the equipment are associated with the introduction of cycle chemistry monitoring system. The most damageable equipment’s are boilers (52.2 %), turbines (12.6 %) and heating systems (12.3 %) according to the review of failure rate on the power plants. The most part of the damageability of the boiler is heated surfaces (73.2 %). According to the Russian technical requirements, the monitoring systems are responsible to reduce damageability the boiler heating surfaces and to increase the reliability of the equipment. All power units capacity of over 50 MW are equipped with cycle chemistry monitoring systems in order to maintain water chemistry within operating limits. The main idea of cycle chemistry monitoring systems is to improve water chemistry at power plants. According to the guidelines, cycle chemistry monitoring systems of a single unit depends on its type (drum or once-through boiler) and consists of: 20…50 parameters of on-line chemical analyzers; 20…30 «grab» sample analyses (daily) and about 15…20 on-line monitored operating parameters. The operator of modern power plant uses with many data at different points of steam/water cycle. Operators do not can estimate quality of the cycle chemistry due to the large volume of daily and every shift information and dispersion of data, lack of systematization. In this paper, an algorithm for calculating the quality index developed for improving control the water chemistry of the condensate, feed water and prevent scaling and corrosion in the steam/water cycle.
The design of the intelligent monitoring system for dam safety
NASA Astrophysics Data System (ADS)
Yuan, Chun-qiao; Jiang, Chen-guang; Wang, Guo-hui
2008-12-01
Being a vital manmade water-control structure, a dam plays a very important role in the living and production of human being. To make a dam run safely, the best design and the superior construction quality are paramount; moreover, with working periods increasing, various dynamic, alternative and bad loads generate little by little various distortions on the dam structure inevitably, which shall lead to potential safety problems or further a disaster (dam burst). There are many signs before the occurrence of a dam accident, so the timely and effective surveying on the distortion of a dam is important. On the basis of the cause supra, two intelligent (automatic) monitoring systems about the dam's safety based on the RTK-GPS technology and the measuring robot has been developed. The basic principle, monitoring method and monitoring process of these two intelligent (automatic) monitoring systems are introduced. It presents examples of monitor and puts forward the basic rule of dam warning based on data of actual monitor.
Villacorta-Linaza, Rocio
2009-10-01
Access to essential medicines remains one of the biggest problems that developing countries are facing in health care systems. Non-governmental organizations (NGOs) are implementing health programmes on the ground in areas affected by natural disasters or conflict. A vital component of these health programmes is the drug supply system. Based on a field research conducted in Pakistan 2007 and a field work experience in Afghanistan within an international NGO-Merlin-this paper analysed the four functions of the Drug Supply Cycle (Selection, Procurement, Distribution and Use) focusing attention on the importance in management support systems once the emergency phase is over. It shows the core role that the pharmacist plays within NGOs as a member of the health staff with the ability to improve the management of the Drug Supply Cycle. Copyright (c) 2009 John Wiley & Sons, Ltd.
Watershed safety and quality control by safety threshold method
NASA Astrophysics Data System (ADS)
Da-Wei Tsai, David; Mengjung Chou, Caroline; Ramaraj, Rameshprabu; Liu, Wen-Cheng; Honglay Chen, Paris
2014-05-01
Taiwan was warned as one of the most dangerous countries by IPCC and the World Bank. In such an exceptional and perilous island, we would like to launch the strategic research of land-use management on the catastrophe prevention and environmental protection. This study used the watershed management by "Safety Threshold Method" to restore and to prevent the disasters and pollution on island. For the deluge prevention, this study applied the restoration strategy to reduce total runoff which was equilibrium to 59.4% of the infiltration each year. For the sediment management, safety threshold management could reduce the sediment below the equilibrium of the natural sediment cycle. In the water quality issues, the best strategies exhibited the significant total load reductions of 10% in carbon (BOD5), 15% in nitrogen (nitrate) and 9% in phosphorus (TP). We found out the water quality could meet the BOD target by the 50% peak reduction with management. All the simulations demonstrated the safety threshold method was helpful to control the loadings within the safe range of disasters and environmental quality. Moreover, from the historical data of whole island, the past deforestation policy and the mistake economic projects were the prime culprits. Consequently, this study showed a practical method to manage both the disasters and pollution in a watershed scale by the land-use management.
NASA Astrophysics Data System (ADS)
Seneviratne, S. I.; Nicholls, N.; Easterling, D.; Goodess, C. M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; Sorteberg, A.; Vera, C.; Zhang, X.
2012-04-01
In April 2009, the Intergovernmental Panel on Climate Change (IPCC) decided to prepare a new special report with involvement of the UN International Strategy for Disaster Reduction (ISDR) on the topic "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX, http://ipcc-wg2.gov/SREX/). This special report reviews the scientific literature on past and projected changes in weather and climate extremes, and the relevance of such changes to disaster risk reduction and climate change adaptation. The SREX Summary for Policymakers was approved at an IPCC Plenary session on November 14-18, 2011, and the full report is planned for release in February 2012. This presentation will provide an overview on the structure and contents of the SREX, focusing on Chapter 3: "Changes in climate extremes and their impacts on the natural physical environment" [1]. It will in particular present the main findings of the chapter, including differences between the SREX's conclusions and those of the IPCC Fourth Assessment of 2007, and the implications of this new assessment for disaster risk reduction. Finally, aspects relevant to impacts on the biogeochemical cycles will also be addressed. [1] Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Following the collapse of the New York World Trade Center (WTC) towers on September 11, 2001, Local, State, and Federal agencies initiated numerous air monitoring activities to better understand the ongoing impacts of emissions from the disaster. The collapse of the World Trade C...
Following the collapse of the New York City World Trade Center towers on September 11, 2001, Local, State and Federal agencies initiated numerous air monitoring activities to better understand the impact of emissions from the disaster. A study of the estimated pathway that a pote...
System Design of an Unmanned Aerial Vehicle (UAV) for Marine Environmental Sensing
2013-02-01
Malaysia to the north. Sea trials have been located through the green band. ................................................................... 56 Figure...light of recent disasters, pressure monitoring nodes mounted to the seafloor now provide advanced tsunami warning in countries including Malaysia ...organisms in huge number. Human health can also be impacted through the consumption of shellfish or other seafood contaminated with bloom-related
Early Warning Systems of natural disasters in the frame of EUNADICS-AV
NASA Astrophysics Data System (ADS)
Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; Kopp, Anna; Graf, Kaspar; Mona, Lucia; Coltelli, Mauro; Peltonen, Tuomas; Hirtl, Marcus; Virtanen, Timo; Nína Petersen, Guðrún
2017-04-01
Aviation is one of the most critical infrastructures of the 21st century. In Europe, safe flight operations, air traffic management and air traffic control are shared responsibilities of EUROCONTROL, national authorities, airlines and pilots. All stakeholders have one common goal, namely to warrant and maintain the safety of flight crews and passengers. Currently, however, there is a significant gap in the availability of real-time hazard measurement and monitoring information for airborne hazards. The main objective of the new Horizon 2020 project EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation; http://www.eunadics.eu) is to close this gap in data and information availability, enabling all stakeholders in the aviation system to obtain fast, coherent, and consistent information. Here we report on WP5 of EUNADICS-AV, the objective of which is to develop a prototype multi-hazard monitoring and early warning system. This task includes the development of a service for improved near real-time analyses (delay of a few hours maximum) of observations from satellite and ground-based platforms in order to detect ash and SO2 plumes (at the global scale), as well as desert sand dusts, fire plumes, and radioactive plumes.
Pityaratstian, Nuttorn; Piyasil, Vinadda; Ketumarn, Panom; Sitdhiraksa, Nanthawat; Ularntinon, Sirirat; Pariwatcharakul, Pornjira
2015-09-01
Post-traumatic stress disorder (PTSD) is a common and debilitating consequence of natural disaster in children and adolescents. Accumulating data show that cognitive behavioural therapy (CBT) is an effective treatment for PTSD. However, application of CBT in a large-scale disaster in a setting with limited resources, such as when the tsunami hit several Asian countries in 2004, poses a major problem. This randomized controlled trial aimed to test for the efficacy of the modified version of CBT for children and adolescents with PSTD. Thirty-six children (aged 10-15 years) who had been diagnosed with PSTD 4 years after the tsunami were randomly allocated to either CBT or wait list. CBT was delivered in 3-day, 2-hour-daily, group format followed by 1-month posttreatment self-monitoring and daily homework. Compared to the wait list, participants who received CBT demonstrated significantly greater improvement in symptoms of PTSD at 1-month follow-up, although no significant improvement was observed when the measures were done immediately posttreatment. Brief, group CBT is an effective treatment for PTSD in children and adolescents when delivered in conjunction with posttreatment self-monitoring and daily homework.
De la Cruz-Reyna, Servando; Tilling, Robert I.
2015-01-01
Before 1985, Mexico lacked civil-protection agencies with a mission to prevent and respond to natural and human-caused disasters; thus, the government was unprepared for the sudden eruption of El Chichón Volcano in March–April 1982, which produced the deadliest volcanic disaster in the country’s recorded history (~2,000 fatalities). With the sobering lessons of El Chichón still fresh, scientists and governmental officials had a higher awareness of possible disastrous outcome when Tacaná Volcano began to exhibit unrest in late 1985. Seismic and geochemical studies were quickly initiated to monitor activity. At the same time, scientists worked actively with officials of the Federal and local agencies to develop the “Plan Operativo” (Operational Plan)—expressly designed to effectively communicate hazards information and reduce confusion and panic among the affected population. Even though the volcano-monitoring data obtained during the Tacaná crisis were limited, when used in conjunction with protocols of the Operational Plan, they proved useful in mitigating risk and easing public anxiety. While comprehensive monitoring is not yet available, both El Chichón and Tacaná volcanoes are currently monitored—seismically and geochemically—within the scientific and economic resources available. Numerous post-eruption studies have generated new insights into the volcanic systems that have been factored into subsequent volcano monitoring and hazards assessments. The State of Chiapas is now much better positioned to deal with any future unrest or eruptive activity at El Chichón or Tacaná, both of which at the moment are quiescent as of 2014. Perhaps more importantly, the protocols first tested in 1986 at Tacaná have served as the basis for the development of risk-management practices for hazards from other active and potentially active volcanoes in Mexico. These practices have been most notably employed since 1994 at Volcán Popocatépetl since a major eruption under unfavorable prevailing winds may constitute a substantial threat to densely populated metropolitan Mexico City. While the 1982 El Chichón disaster was a national tragedy, it greatly accelerated volcanic emergency preparedness and multidisciplinary scientific studies of eruptive processes and products, not only at El Chichón but also at other explosive volcanoes in Mexico and elsewhere in the world.
Integrated Research and Capacity Building in Geophysics
NASA Astrophysics Data System (ADS)
Willemann, R. J.; Lerner-Lam, A.; Nyblade, A.
2008-05-01
There have been special opportunities over the past several years to improve the ways that newly-constructed geophysical observatories in Southeast Asia and the Americas are linked with educational and civil institutions. Because these opportunities have been only partially fulfilled, there remains the possibility that new networks will not fully address desired goals or even lose operational capabilities. In contrast, the AfricaArray project continues to progress towards goals for linkages among education, research, mitigation and observatories. With support from the Office of International Science and Education at the US National Science Foundation, we convened a workshop to explore lessons learned from the AfricaArray experience and their relevance to network development opportunities in other regions. We found closer parallels than we expected between geophysical infrastructure in the predominantly low income countries of Africa with low risk of geophysical disasters and the mostly middle-income countries of Southeast Asia and the Americas with high risk of geophysical disasters. Except in larger countries of South America, workshop participants reported that there are very few geophysicists engaged in research and observatory operations, that geophysical education programs are nearly non-existent even at the undergraduate university level, and that many monitoring agencies continue to focus on limited missions even though closer relationships researchers could facilitate new services that would make important contributions to disaster mitigation and sustainable operations. Workshop participants began discussing plans for international research collaborations that, unlike many projects of even the recent past, would include long-term capacity building and disaster mitigation among their goals. Specific project objectives would include national or regional hazard mapping, development of indigenous education programs, training to address the needs of local monitoring agencies, strategic international university partnerships, commitments to open data, and installation of permanent analysis systems that include open- source software. Such projects are intrinsically more complex than pure research - partly because they require funding from multiple sources to address diverse goals - but experience in Africa suggests that integrated programs contribute to long-term capacity building in ways that projects founded on basic research questions may not.
The Volcano Disaster Assistance Program—Helping to save lives worldwide for more than 30 years
Lowenstern, Jacob B.; Ramsey, David W.
2017-10-20
What do you do when a sleeping volcano roars back to life? For more than three decades, countries around the world have called upon the U.S. Geological Survey’s (USGS) Volcano Disaster Assistance Program (VDAP) to contribute expertise and equipment in times of crisis. Co-funded by the USGS and the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance (USAID/OFDA), VDAP has evolved and grown over the years, adding newly developed monitoring technologies, training and exchange programs, and eruption forecasting methodologies to greatly expand global capabilities that mitigate the impacts of volcanic hazards. These advances, in turn, strengthen the ability of the United States to respond to its own volcanic events.VDAP was formed in 1986 in response to the devastating volcanic mudflow triggered by an eruption of Nevado del Ruiz volcano in Colombia. The mudflow destroyed the city of Armero on the night of November 13, 1985, killing more than 25,000 people in the city and surrounding areas. Sadly, the tragedy was avoidable. Better education of the local population and clear communication between scientists and public officials could have allowed warnings to be received, understood, and acted upon prior to the disaster.VDAP strives to ensure that such a tragedy will never happen again. The program’s mission is to assist foreign partners, at their request, in volcano monitoring and empower them to take the lead in mitigating hazards at their country’s threatening volcanoes. Since 1986, team members have responded to over 70 major volcanic crises at more than 50 volcanoes and have strengthened response capacity in 12 countries. The VDAP team consists of approximately 20 geologists, geophysicists, and engineers, who are based out of the USGS Cascades Volcano Observatory in Vancouver, Washington. In 2016, VDAP was a finalist for the Samuel J. Heyman Service to America Medal for its work in improving volcano readiness and warning systems worldwide, helping countries to forecast eruptions, save lives, and reduce economic losses while enhancing America’s ability to respond to domestic volcanic events.
NASA Astrophysics Data System (ADS)
Perrou, Theodora; Papastergios, Asterios; Parcharidis, Issaak; Chini, Marco
2017-10-01
Flood disaster is one of the heaviest disasters in the world. It is necessary to monitor and evaluate the flood disaster in order to mitigate the consequences. As floods do not recognize borders, transboundary flood risk management is imperative in shared river basins. Disaster management is highly dependent on early information and requires data from the whole river basin. Based on the hypothesis that the flood events over the same area with same magnitude have almost identical evolution, it is crucial to develop a repository database of historical flood events. This tool, in the case of extended transboundary river basins, could constitute an operational warning system for the downstream area. The utility of SAR images for flood mapping, was demonstrated by previous studies but the SAR systems in orbit were not characterized by high operational capacity. Copernicus system will fill this gap in operational service for risk management, especially during emergency phase. The operational capabilities have been significantly improved by newly available satellite constellation, such as the Sentinel-1A AB mission, which is able to provide systematic acquisitions with a very high temporal resolution in a wide swath coverage. The present study deals with the monitoring of a transboundary flood event in Evros basin. The objective of the study is to create the "migration story" of the flooded areas on the basis of the evolution in time for the event occurred from October 2014 till May 2015. Flood hazard maps will be created, using SAR-based semi-automatic algorithms and then through the synthesis of the related maps in a GIS-system, a spatiotemporal thematic map of the event will be produced. The thematic map combined with TanDEM-X DEM, 12m/pixel spatial resolution, will define the non- affected areas which is a very useful information for the emergency planning and emergency response phases. The Sentinels meet the main requirements to be an effective and suitable operational tool in transboundary flood risk management.
Design of Simple Landslide Monitoring System
NASA Astrophysics Data System (ADS)
Meng, Qingjia; Cai, Lingling
2018-01-01
The simple landslide monitoring system is mainly designed for slope, collapse body and surface crack. In the harsh environment, the dynamic displacement data of the disaster body is transmitted to the terminal acquisition system in real time. The main body of the system adopt is PIC32MX795F512. This chip is to realize low power design, wakes the system up through the clock chip, and turns on the switching power supply at set time, which makes the wireless transmission module running during the interval to ensure the maximum battery consumption, so that the system can be stable long term work.
Evaluation of volcanic risk management in Merapi and Bromo Volcanoes
NASA Astrophysics Data System (ADS)
Bachri, S.; Stöetter, J.; Sartohadi, J.; Setiawan, M. A.
2012-04-01
Merapi (Central Java Province) and Bromo (East Java Province) volcanoes have human-environmental systems with unique characteristics, thus causing specific consequences on their risk management. Various efforts have been carried out by many parties (institutional government, scientists, and non-governmental organizations) to reduce the risk in these areas. However, it is likely that most of the actions have been done for temporary and partial purposes, leading to overlapping work and finally to a non-integrated scheme of volcanic risk management. This study, therefore, aims to identify and evaluate actions of risk and disaster reduction in Merapi and Bromo Volcanoes. To achieve this aims, a thorough literature review was carried out to identify earlier studies in both areas. Afterward, the basic concept of risk management cycle, consisting of risk assessment, risk reduction, event management and regeneration, is used to map those earlier studies and already implemented risk management actions in Merapi and Bromo. The results show that risk studies in Merapi have been developed predominantly on physical aspects of volcanic eruptions, i.e. models of lahar flows, hazard maps as well as other geophysical modeling. Furthermore, after the 2006 eruption of Merapi, research such on risk communication, social vulnerability, cultural vulnerability have appeared on the social side of risk management research. Apart from that, disaster risk management activities in the Bromo area were emphasizing on physical process and historical religious aspects. This overview of both study areas provides information on how risk studies have been used for managing the volcano disaster. This result confirms that most of earlier studies emphasize on the risk assessment and only few of them consider the risk reduction phase. Further investigation in this field work in the near future will accomplish the findings and contribute to formulate integrated volcanic risk management cycles for both Merapi and Bromo. Keywords: Risk management, volcanoes hazard, Merapi and Bromo Volcano Indonesia
NASA Astrophysics Data System (ADS)
Lee, Ja-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen
2008-04-01
The cloning and transcription techniques on gene cloned fluorescent proteins have been widely used in many applications. They have been used as reporters of some conditions in a series of reactions. However, it is usually difficult to monitor the specific target with the exactly number of proteins during the process in turbid media, especially at micrometer scales. We successfully revealed an alternative way to monitor the cell cycle behavior and quantitatively analyzed the target cells with green and red fluorescent proteins (GFP and RFP) during different phases of the cell cycle by quantitatively analyzing its behavior and also monitoring its spatial distribution.
Bromet, E J; Hobbs, M J; Clouston, S A P; Gonzalez, A; Kotov, R; Luft, B J
2016-03-01
Post-traumatic symptomatology is one of the signature effects of the pernicious exposures endured by responders to the World Trade Center (WTC) disaster of 11 September 2001 (9/11), but the long-term extent of diagnosed Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) post-traumatic stress disorder (PTSD) and its impact on quality of life are unknown. This study examines the extent of DSM-IV PTSD 11-13 years after the disaster in WTC responders, its symptom profiles and trajectories, and associations of active, remitted and partial PTSD with exposures, physical health and psychosocial well-being. Master's-level psychologists administered sections of the Structured Clinical Interview for DSM-IV and the Range of Impaired Functioning Tool to 3231 responders monitored at the Stony Brook University World Trade Center Health Program. The PTSD Checklist (PCL) and current medical symptoms were obtained at each visit. In all, 9.7% had current, 7.9% remitted, and 5.9% partial WTC-PTSD. Among those with active PTSD, avoidance and hyperarousal symptoms were most commonly, and flashbacks least commonly, reported. Trajectories of symptom severity across monitoring visits showed a modestly increasing slope for active and decelerating slope for remitted PTSD. WTC exposures, especially death and human remains, were strongly associated with PTSD. After adjusting for exposure and critical risk factors, including hazardous drinking and co-morbid depression, PTSD was strongly associated with health and well-being, especially dissatisfaction with life. This is the first study to demonstrate the extent and correlates of long-term DSM-IV PTSD among responders. Although most proved resilient, there remains a sizable subgroup in need of continued treatment in the second decade after 9/11.
Son, Byungjik; Jeon, Seunggon
2018-01-01
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven. PMID:29747403
Heo, Gwanghee; Son, Byungjik; Kim, Chunggil; Jeon, Seunggon; Jeon, Joonryong
2018-05-09
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven.
NASA Technical Reports Server (NTRS)
Rochon, Gilbert L.
1989-01-01
Parameters were described for spatial database to facilitate drought monitoring and famine early warning in the African Sahel. The proposed system, referred to as the African Drought and Famine Information System (ADFIS) is ultimately recommended for implementation with the NASA/FEMA Spatial Analysis and Modeling System (SAMS), a GIS/Dymanic Modeling software package, currently under development. SAMS is derived from FEMA'S Integration Emergency Management Information System (IEMIS) and the Pacific Northwest Laborotory's/Engineering Topographic Laboratory's Airland Battlefield Environment (ALBE) GIS. SAMS is primarily intended for disaster planning and resource management applications with the developing countries. Sources of data for the system would include the Developing Economics Branch of the U.S. Dept. of Agriculture, the World Bank, Tulane University School of Public Health and Tropical Medicine's Famine Early Warning Systems (FEWS) Project, the USAID's Foreign Disaster Assistance Section, the World Resources Institute, the World Meterological Institute, the USGS, the UNFAO, UNICEF, and the United Nations Disaster Relief Organization (UNDRO). Satellite imagery would include decadal AVHRR imagery and Normalized Difference Vegetation Index (NDVI) values from 1981 to the present for the African continent and selected Landsat scenes for the Sudan pilot study. The system is initially conceived for the MicroVAX 2/GPX, running VMS. To facilitate comparative analysis, a global time-series database (1950 to 1987) is included for a basic set of 125 socio-economic variables per country per year. A more detailed database for the Sahelian countries includes soil type, water resources, agricultural production, agricultural import and export, food aid, and consumption. A pilot dataset for the Sudan with over 2,500 variables from the World Bank's ANDREX system, also includes epidemiological data on incidence of kwashiorkor, marasmus, other nutritional deficiencies, and synergistically-related infectious diseases.
NASA Astrophysics Data System (ADS)
Araújo, M. D. N. M.
2015-12-01
In the past ten years Acre State, located in Brazil´s southwestern Amazonia, has confronted sequential and severe extreme events in the form of droughts and floods. In particular, the droughts and forest fires of 2005 and 2010, the 2012 flood within Acre, the 2014 flood of the Madeira River which isolated Acre for two months from southern Brazil, and the most severe flooding throughout the state in 2015 shook the resilience of Acrean society. The accumulated costs of these events since 2005 have exceeded 300 million dollars. For the last 17 years, successive state administrations have been implementing a socio-environmental model of development that strives to link sustainable economic production with environmental conservation, particularly for small communities. In this context, extreme climate events have interfered significantly with this model, increasing the risks of failure. The impacts caused by these events on development in the state have been exacerbated by: a) limitations in monitoring; b) extreme events outside of Acre territory (Madeira River Flood) affecting transportation systems; c) absence of reliable information for decision-making; and d) bureaucratic and judicial impediments. Our experience in these events have led to the following needs for scientific input to reduce the risk of disasters: 1) better monitoring and forecasting of deforestation, fires, and hydro-meteorological variables; 2) ways to increase risk perception in communities; 3) approaches to involve more effectively local and regional populations in the response to disasters; 4) more accurate measurements of the economic and social damages caused by these disasters. We must improve adaptation to and mitigation of current and future extreme climate events and implement a robust civil defense, adequate to these new challenges.
Effects of a tropical cyclone on the drinking-water quality of a remote Pacific island.
Mosley, Luke M; Sharp, Donald S; Singh, Sarabjeet
2004-12-01
The effect of a cyclone (Ami, January 2003) on drinking-water quality on the island of Vanua Levu, Fiji was investigated. Following the cyclone nearly three-quarters of the samples analysed did not conform to World Health Organisation (WHO) guideline values for safe drinking-water in terms of chlorine residual, total and faecal coliforms, and turbidity. Turbidity and total coliform levels significantly increased (up 56 and 62 per cent, respectively) from pre-cyclone levels, which was likely due to the large amounts of silt and debris entering water-supply sources during the cyclone. The utility found it difficult to maintain a reliable supply of treated water in the aftermath of the disaster. Communities were unaware they were drinking water that had not been adequately treated. Circumstances permitted this cyclone to be used as a case study to assess whether a simple paper-strip water-quality test (the hydrogen sulphide, H(2)S) kit could be distributed and used for community-based monitoring following such a disaster event to better protect public health. The H(2)S test results correlated well with faecal and total coliform results as found in previous studies. A small percentage of samples (about 10 per cent) tested positive for faecal and total coliforms but did not test positive in the H(2)S test. It was concluded that the H(2)S test would be well suited to wider use, especially in the absence of water-quality monitoring capabilities for outer island groups as it is inexpensive and easy to use, thus enabling communities and community health workers with minimal training to test their own water supplies without outside assistance. The importance of public education before and after natural disasters is also discussed.
High Frontier: The Journal for Space & Missile Professionals. Volume 2, Number 3
2006-04-01
of businesses that do not have a disaster plan go out of business after a major loss like a fire, a break-in, or a storm.”2 Gartner Dataquest...information exchange between and across all echelons of com- mand and control, logistics, and intelligence , surveillance, and reconnaissance (ISR...swiftly process, manage, and fuse intelligence from across a variety of sources in order to reduce information cycle timelines and thus shorten the
2010-03-01
AFIT/GEM/ENV/10-M01 Abstract Rising global energy demand and natural disasters continuously threaten energy supplies and prices. As a result , the...light bulbs. The study used the Process-Sum and Economic Input-Output Life-cycle Assessment (EIO- LCA ) methods. The results of the study found that... results for this phase of the analysis. Summary This chapter has detailed the methodology used in this study. Using both LCCA and EIO- LCA allowed for
Diagnosing vascular variability anomalies, not only MESOR-hypertension
Halberg, Franz; Powell, Deborah; Otsuka, Kuniaki; Watanabe, Yoshihiko; Beaty, Larry A.; Rosch, Paul; Czaplicki, Jerzy; Hillman, Dewayne; Schwartzkopff, Othild
2013-01-01
Chronobiology is the study of biological rhythms. Chronomics investigates interactions with environmental cycles in a genetically coded autoresonance of the biosphere with wrangling space and terrestrial weather. Analytical global and local methods applied to human blood pressure records of around-the-clock measurements covering decades detect physiological-physical interactions, a small yet measurable response to solar and terrestrial magnetism. The chronobiological and chronomic interpretation of ambulatory blood pressure monitoring (C-ABPM) records in the light of time-specified reference values derived from healthy peers matched by sex and age identify vascular variability anomalies (VVAs) for an assessment of cardio-, cerebro-, and renovascular disease risk. Even within the conventionally accepted normal range, VVAs have been associated with a statistically significant increase in risk. Long-term C-ABPM records help to “know ourselves,” serving for relief of psychological and other strain once transient VVAs are linked to the source of a load, prompting adjustment of one's lifestyle for strain reduction. Persistent circadian VVAs can be treated, sometimes by no more than a change in timing of the daily administration of antihypertensive medication. Circadian VVA assessment is an emergency worldwide, prompted in the United States by 1,000 deaths per day every day from problems related to blood pressure. While some heads of state met under United Nation and World Health Organization sponsorship to declare that noncommunicable diseases are a slow-motion disaster, a resolution has been drafted to propose C-ABPM as an added tool complementing purely physical environmental monitoring to contribute also to the understanding of social and natural as well as personal cataclysms. PMID:23709604
Assessing Impacts of National Scale Droughts on Cereal Production
NASA Astrophysics Data System (ADS)
Udmale, P. D.; Ichikawa, Y.
2017-12-01
Till date, several drought indices have been developed and used to monitor local to regional scale droughts on various temporal scales. However, there are no generalized criteria to define a threshold to declare a national level drought using drought indices. EM-DAT (a global database on natural and technological disasters) lists disasters (including drought) from 1900 until the present confirming one of the following criteria: 10 or more people dead; 100 or more people affected; the declaration of a state of emergency; or a call for international assistance. This data is gathered from various organizations like United Nations Institutes, Governments, etc. and do not cover all disasters or have political limitations that could affect the numbers. These criteria are neither objective nor quantitative, and accordingly may cause uncertainties when the data is used for further investigation on disaster impacts. Here we present a methodology to define drought at a national scale and its impacts on national level crop production (mainly cereals). We define drought based on the percentage of cropland area affected by drought in a country during its seasonal rainfall. For this purpose meteorological definition of drought in combination with country's cropland area is proposed to prepare a drought inventory for major cereal producing countries (1902-2012). This drought inventory together with FAO's Crop data is used to identify the impacts of drought on a national level cereal production (and yield) using Superposed Epoch Analysis for the period 1961-2012.
A community-based gastroenteritis outbreak after Typhoon Haiyan, Leyte, Philippines, 2013.
Ventura, Ray Justin; Muhi, Edzel; de los Reyes, Vikki Carr; Sucaldito, Ma Nemia; Tayag, Enrique
2015-01-01
Three weeks after Typhoon Haiyan, an increasing number of acute gastroenteritis cases were reported in Kananga, Leyte, an area where evacuated residents had returned home two days after the disaster. An outbreak investigation was conducted to identify the source and risk factors associated with the increase of gastroenteritis. A case was defined as any person in Kananga who developed acute diarrhoea (≥ 3 times/24 hours) and any of the following symptoms: fever, nausea, vomiting or abdominal pain from 11 November 2013 to 10 December 2013. Active case finding was conducted by reviewing medical records, and a case-control study was conducted. Rectal swabs and water samples were tested for bacteriological examination. One hundred and five cases were identified. Multivariate analysis revealed that consumption of untreated drinking-water was associated with illness (adjusted odds ratio: 18.2). Both rectal swabs and municipal water samples tested positive for Aeromonas hydrophila. On inspection of the municipal water system, breaks in the distribution pipes were found with some submerged in river water. This acute gastroenteritis outbreak was most likely caused by Aeromonas hydrophila and transmitted through a contaminated water source. This study highlights that areas less damaged by a disaster that do not require ongoing evacuation centres can still have acute gastroenteritis outbreaks. All affected areas should be monitored during a disaster response, not just those with evacuation centres. Boiling or chlorinating of water should also be recommended for all areas affected by disaster.
Feng, Shihui; Hossain, Liaquat; Crawford, John W; Bossomaier, Terry
2018-02-01
Social media provides us with a new platform on which to explore how the public responds to disasters and, of particular importance, how they respond to the emergence of infectious diseases such as Ebola. Provided it is appropriately informed, social media offers a potentially powerful means of supporting both early detection and effective containment of communicable diseases, which is essential for improving disaster medicine and public health preparedness. The 2014 West African Ebola outbreak is a particularly relevant contemporary case study on account of the large number of annual arrivals from Africa, including Chinese employees engaged in projects in Africa. Weibo (Weibo Corp, Beijing, China) is China's most popular social media platform, with more than 2 billion users and over 300 million daily posts, and offers great opportunity to monitor early detection and promotion of public health awareness. We present a proof-of-concept study of a subset of Weibo posts during the outbreak demonstrating potential and identifying priorities for improving the efficacy and accuracy of information dissemination. We quantify the evolution of the social network topology within Weibo relating to the efficacy of information sharing. We show how relatively few nodes in the network can have a dominant influence over both the quality and quantity of the information shared. These findings make an important contribution to disaster medicine and public health preparedness from theoretical and methodological perspectives for dealing with epidemics. (Disaster Med Public Health Preparedness. 2018;12:26-37).
Piyasil, Vinadda; Thammawasi, Tanawan; Tasri, Lakkana; Chaiyakun, Perayut; Ketumarn, Panom; Pityaratsatian, Nuttorn; Sitdhiraksa, Nantawat; Ularntinon, Sirirat
2014-06-01
The Tsunami disaster, which occurred on December 26, 2004 in Thailand, caused enormous damage to life, property and community. Although the tragedy occurred 6 years ago, many children and adolescents still suffer from mental health problems. To determine the quality of life and happiness of students who live in the Tsunami disaster area 6 years after the tragedy. A cross-sectional study was done on 648 students from three schools in Takua Pa district, Phang Nga. They had been provided with psychological or support by multidisciplinary teams from Queen Sirikit National Institute of Child Health, Siriraj Hospital and Chulalongkorn Hospital. The questionnaires consisted of 3 subsets which were self-report of general information, pediatric quality of life inventory and Thai happiness indicator. The student's quality of life was low 15.1%, moderate 68.7% and high 16.2%. Eighteen percent had good (27-42) score higher, 38% had a fair (27-32) score and 44% had a poor (< 27) score. Females and high school performance were associated with happiness. Disasters have long lasting effects on victims, especially in children. Although this group of children had regularly received assistance including welfare, finance, education and health advice, most had fair quality of life scores were fair and poor-is this needed. Nearly half of them had happiness level scores less than average. They still have psychosocial problems and will need long-term monitoring, support and assistance.
Longitudinal expandable shelter for medical response during disasters.
Miniati, Roberto; Dori, Fabrizio; Iadanza, Ernesto; Lo Sardo, Marco; Boncinelli, Sergio
2010-01-01
During medical emergencies, hospitals represent the final point of the whole rescue process. Therefore, effective health mobile structures have to be inserted between hospitals and the place of the event with the aim of giving the best of cures (using appropriate and easy to use equipment) for a safer and faster evacuation to hospitals. Literature review and national and international disaster medicine standards were the basis for this study to provide clinical, hygienical, and organizational needs to satisfy for the medical structure design. Project requirements have been obtained by analyzing structural, organizational, and clinical process necessities. Structural requirements respond to the possibility of installation on every ground type, resistance to every weather condition, and necessity of easy and fast transportation. Technological equipment is obtained from clinical evaluation for patient stabilization. The designed structure results to be a longitudinal expandable shelter (LES) for medical emergencies response organized in three internal functional areas. Possibility of automatic expandability allows rapid transportation and easy deployment. The functional internal organization provides three areas: "Diagnostic," "Therapeutic," and "Pre-evacuation monitoring." Further, longitudinal expandability supports the basic hygienical rules in healthcare processes allowing the unidirectional flow of casualties from dirtier to cleaner areas of the structure. LES represents the answer to expressed requisites by disaster medicine standards and guidelines. It aims to provide an efficient and effective support for sanitary aid in response to disasters or emergencies, by improving aspects related to effectiveness, hygiene, and quality of clinical performances especially for highest critical cases.
A New Master of Natural Hazards Program at The Australian National University
NASA Astrophysics Data System (ADS)
Pozgay, S.; Zoleta-Nantes, D.
2009-12-01
The new Master of Natural Hazards program at The Australian National University provides a multi-disciplinary approach to the study and monitoring of geophysical processes that can lead to the recognition of hazards and a consequent reduction of their impacts through emergency measures, disaster plans, and relief and rehabilitation. The program provides people with an understanding of the most up-to-date scientific understanding on the causes of natural hazards, their effects on human societies, and ways to mitigate their impacts and reduce their losses by focusing on Australia and the Asia-Pacific case studies. The Master of Natural Hazards program brings together the expertise of researchers across the university to provide an opportunity for students to do coursework and research projects that will provide them with extensive knowledge of the natural hazards that occur and pose the greatest risks on human communities in the Asia-Pacific, and an understanding of the human dimensions of the natural hazards occurrences. The program consists of two compulsory courses each in the Earth Sciences and in the Social Sciences that are designed to provide a complementary and comprehensive overview of natural hazards issues. Elective courses can be of a general grouping, or students may choose one of four Focus Streams: Environmental and Geographic Studies; Climate Change; Earth Structure and Imaging; or Socio-economic, Development and Policy Studies. A special case study project will involve writing a thesis on a topic to be approved by the Program Conveners and will comprise a body of work on an approved topic in natural hazards in the Asia-Pacific region. Students in this program will gain a broad scientific knowledge and methodological skills to understand the physical causes and frequency of the most important natural hazards in the Asia-Pacific region, as well as the latest scientific methods and best practices of monitoring them for hazard mapping and disaster reduction purposes. Furthermore, students will learn to apply critical thinking in studying the involvement of societies’ social systems in framing and influencing the severity of impacts and destructions that are brought about by different physical events. The academic training in hazards and disaster research that the program offers will enable students to get actively involved in the preparation of short- and long-term disaster mitigation programs that can help members of communities in Australia and the Asia-Pacific region who, without sufficient knowledge on hazards and skills on disaster management, would be left vulnerable against the adversities that can be brought about by natural hazards.
NASA Astrophysics Data System (ADS)
Yang, Zhixiao; Ito, Kazuyuki; Saijo, Kazuhiko; Hirotsune, Kazuyuki; Gofuku, Akio; Matsuno, Fumitoshi
This paper aims at constructing an efficient interface being similar to those widely used in human daily life, to fulfill the need of many volunteer rescuers operating rescue robots at large-scale disaster sites. The developed system includes a force feedback steering wheel interface and an artificial neural network (ANN) based mouse-screen interface. The former consists of a force feedback steering control and a six monitors’ wall. It provides a manual operation like driving cars to navigate a rescue robot. The latter consists of a mouse and a camera’s view displayed in a monitor. It provides a semi-autonomous operation by mouse clicking to navigate a rescue robot. Results of experiments show that a novice volunteer can skillfully navigate a tank rescue robot through both interfaces after 20 to 30 minutes of learning their operation respectively. The steering wheel interface has high navigating speed in open areas, without restriction of terrains and surface conditions of a disaster site. The mouse-screen interface is good at exact navigation in complex structures, while bringing little tension to operators. The two interfaces are designed to switch into each other at any time to provide a combined efficient navigation method.
A Community-Led Medical Response Effort in the Wake of Hurricane Sandy.
Kraushar, Matthew L; Rosenberg, Rebecca E
2015-08-01
On October 29, 2012, Hurricane Sandy made landfall in the neighborhood of Red Hook in Brooklyn, New York. The massive tidal surge generated by the storm submerged the coastal area, home to a population over 11,000 individuals, including the largest public housing development in Brooklyn. The infrastructure devastation was profound: the storm rendered electricity, heat, water, Internet, and phone services inoperative, whereas local ambulatory medical services including clinics, pharmacies, home health agencies, and other resources were damaged beyond functionality. Lacking these services or lines of communication, medically fragile individuals became isolated from the hospital and 911-emergency systems without a preexisting mechanism to identify or treat them. Medically fragile individuals primarily included those with chronic medical conditions dependent on frequent and consistent monitoring and treatments. In response, the Red Hook community established an ad hoc volunteer medical relief effort in the wake of the storm, filling a major gap that continues to exist in disaster medicine for low-income urban environments. Here we describe this effort, including an analysis of the medically vulnerable in this community, and recommend disaster risk reduction strategies and resilience measures for future disaster events.
Potential Landslide Early Detection Near Wenchuan by a Qualitatively Multi-Baseline Dinsar Method
NASA Astrophysics Data System (ADS)
Dai, K.; Chen, G.; Xu, Q.; Li, Z.; Qu, T.; Hu, L.; Lu, H.
2018-04-01
Early detection of landslides is important for disaster prevention, which was still very hard work with traditional surveying methods. Interferometric Synthetic Aperture Radar (InSAR) technology provided us the ability to monitor displacements along the slope with wide coverage and high accuracy. In this paper, we proposed a qualitatively multi-baseline DInSAR method to early detect and map the potential landslides. Two sections of China National Highway 317 and 213 were selected as study area. With this method 10 potential landslide areas were early detected and mapped in a quick and effective way. One of them (i.e. Shidaguan landslide) collapsed on August 2017, which was coincident with our results, suggesting that this method could become an effective way to acquire the landslide early detection map to assist the future disaster prevention work.
Detection of reflecting surfaces by a statistical model
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Chee-Hung H.
2009-02-01
Remote sensing is widely used assess the destruction from natural disasters and to plan relief and recovery operations. How to automatically extract useful features and segment interesting objects from digital images, including remote sensing imagery, becomes a critical task for image understanding. Unfortunately, current research on automated feature extraction is ignorant of contextual information. As a result, the fidelity of populating attributes corresponding to interesting features and objects cannot be satisfied. In this paper, we present an exploration on meaningful object extraction integrating reflecting surfaces. Detection of specular reflecting surfaces can be useful in target identification and then can be applied to environmental monitoring, disaster prediction and analysis, military, and counter-terrorism. Our method is based on a statistical model to capture the statistical properties of specular reflecting surfaces. And then the reflecting surfaces are detected through cluster analysis.
2014-05-01
There are two principal directions that disaster studies pursue: (1) interventional; and (2) noninterventional. Interventional studies are used to evaluate specific responses as to their effectiveness in meeting their respective objectives, their contribution to the overarching goal, the efficiency with which they are able to achieve their objectives, other effects created, and their respective costs. On the other hand, noninterventional studies examine the epidemiology of disasters and for the most part are observational. Both interventional and noninterventional studies require data/information obtained from assessments. This section of these Guidelines examines the operational framework used to study interventions/responses and includes the following processes: (1) assessments, (2) identification of needs; (3) strategic planning; (4) selection of intervention(s); (5) operational planning; (6) execution of interventions; and (7) monitoring and evaluation of effects and changes in levels of functions resulting from the intervention(s) being studied.
Accuracy assessment of minimum control points for UAV photography and georeferencing
NASA Astrophysics Data System (ADS)
Skarlatos, D.; Procopiou, E.; Stavrou, G.; Gregoriou, M.
2013-08-01
In recent years, Autonomous Unmanned Aerial Vehicles (AUAV) became popular among researchers across disciplines because they combine many advantages. One major application is monitoring and mapping. Their ability to fly beyond eye sight autonomously, collecting data over large areas whenever, wherever, makes them excellent platform for monitoring hazardous areas or disasters. In both cases rapid mapping is needed while human access isn't always a given. Indeed, current automatic processing of aerial photos using photogrammetry and computer vision algorithms allows for rapid orthophomap production and Digital Surface Model (DSM) generation, as tools for monitoring and damage assessment. In such cases, control point measurement using GPS is either impossible, or time consuming or costly. This work investigates accuracies that can be attained using few or none control points over areas of one square kilometer, in two test sites; a typical block and a corridor survey. On board GPS data logged during AUAV's flight are being used for direct georeferencing, while ground check points are being used for evaluation. In addition various control point layouts are being tested using bundle adjustment for accuracy evaluation. Results indicate that it is possible to use on board single frequency GPS for direct georeferencing in cases of disaster management or areas without easy access, or even over featureless areas. Due to large numbers of tie points in the bundle adjustment, horizontal accuracy can be fulfilled with a rather small number of control points, but vertical accuracy may not.
Longitudinal assessment of spirometry in the World Trade Center medical monitoring program.
Skloot, Gwen S; Schechter, Clyde B; Herbert, Robin; Moline, Jacqueline M; Levin, Stephen M; Crowley, Laura E; Luft, Benjamin J; Udasin, Iris G; Enright, Paul L
2009-02-01
Multiple studies have demonstrated an initial high prevalence of spirometric abnormalities following World Trade Center (WTC) disaster exposure. We assessed prevalence of spirometric abnormalities and changes in spirometry between baseline and first follow-up evaluation in participants in the WTC Worker and Volunteer Medical Monitoring Program. We also determined the predictors of spirometric change between the two examinations. Prebronchodilator and postbronchodilator spirometry, demographics, occupational history, smoking status, and respiratory symptoms and exposure onset were obtained at both examinations (about 3 years apart). At the second examination, 24.1% of individuals had abnormal spirometry findings. The predominant defect was a low FVC without obstruction (16.1%). Between examinations, the majority of individuals did not have a greater-than-expected decline in lung function. The mean declines in prebronchodilator FEV(1) and FVC were 13 mL/yr and 2 mL/yr, respectively (postbronchodilator results were similar and not reported). Significant predictors of greater average decline between examinations were lack of bronchodilator responsiveness at examination 1 and weight gain [corrected]. Elevated rates of spirometric abnormalities were present at both examinations, with reduced FVC most common. Although the majority had a normal decline in lung function, lack of bronchodilator response at examination 1 and weight gain were significantly associated with greater-than-normal lung function declines [corrected]. Due to the presence of spirometric abnormalities > 5 years after the disaster in many exposed individuals, longer-term monitoring of WTC responders is essential.
NASA Astrophysics Data System (ADS)
Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.
2016-06-01
North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
Monitoring of volcanic emissions for risk assessment at Popocatépetl volcano (Mexico)
NASA Astrophysics Data System (ADS)
Delgado, Hugo; Campion, Robin; Fickel, Matthias; Cortés Ramos, Jorge; Alvarez Nieves, José Manuel; Taquet, Noemi; Grutter, Michel; Osiris García Gómez, Israel; Darío Sierra Mondragón, Rubén; Meza Hernández, Israel
2015-04-01
In January 2014, the Mexican Agency FOPREDEN (Natural Disaster Prevention Fund) accepted to fund a project to renew, upgrade and complement the gas monitoring facilities. The UNAM-CENAPRED (National Center for Disaster Prevention) gas monitoring system currently consists of: • A COSPEC instrument and two mini-DOAS used for mobile traverse measurements • An SO2 camera used for punctual campaign • A network of three permanent scanning mini-DOAS (NOVAC type 1 instrument) and one permanent mini-DOAS (NOVAC type II, currently under repair). The activity planed in the framework of the new project, of which several of them are already successfully implemented, include: • Completely refurbished permanent scanning mini-DOAS network consisting of four stations and the punctual deployment of three RADES (Rapid Deployment System) for assessing plume geometry and chemistry or for responding to emergency situations. • Prolongation of the mobile traverse measurements in order to continuously update the 20 years-long SO2 flux database obtained with the COSPEC, now coupled with a mobile DOAS for redundancy. • The development and installation of a permanent SO2 camera, for monitoring in real time the short timescale variations of the SO2 emissions. • The installation of two permanent FTIR spectrometers, one measuring the plume thermal emissions and the other measuring with the solar occultation geometry, for frequent measurements of molecular ratio between SO2, HCl, HF and SiF4 • The exploitation in near-real time of the satellite imagery (OMI, MODIS and ASTER) available for the volcano. A special attention will be paid to increase the reliability and graphical representation of these data stream in order to facilitate their use for decision-making by the civil protection authority in charge of the volcano.
Lone-Insider Boards: Improved Monitoring or a Recipe for Disaster?
2008-06-13
Degree Awarded: Summer Semester, 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...related to cohesiveness (Forbes & Milliken, 1999; Wheelan & Mckeage, 1993). Summers , Coffelt, and Horton (1988) suggest cohesiveness is related to how...between fixed and random effects, both models were run and then compared using the Hausman procedure for each main hypothesis ( Hausman , 1978). The
Addressing the gaps in preparation for quarantine.
Nathawad, Rita; Roblin, Patricia M; Pruitt, Darrin; Arquilla, Bonnie
2013-04-01
In the event of an outbreak of a communicable respiratory illness, quarantine may become necessary. The New York Institute for All Hazard Preparedness (NYIAHP) of the State University of New York (SUNY) Downstate Medical Center, in cooperation with the New York City Department of Health and Mental Hygiene's Healthcare Emergency Preparedness Program, (NYC DOHMH-HEPP) quarantine working group, has developed a series of clinical protocols to help health care facilities respond to such an event. Two full-scale exercises (FSEs) were designed and conducted a year apart in the quarantine unit at Kings County Hospital Center (KCHC) to test the efficacy and feasibility of these quarantine protocols. The goal of these exercises was to identify the gaps in preparedness for quarantine and increase hospital readiness for such an event. Evaluators monitored for efficient management of critical physical plants, personnel and material resources. Players were expected to integrate and practice emergency response plans and protocols specific to quarantine. In developing the exercise objectives, five activities were selected for evaluation: Activation of the Unit, Staffing, Charting/Admission, Symptom Monitoring and Infection Control, and Client Management. The results of the initial FSE found that there were incomplete critical tasks within all five protocols: These deficiencies were detailed in an After Action Report and an Improvement Plan was presented to the KCHC Disaster Preparedness Committee a month after the initial FSE. In the second FSE a year later, all critical tasks for Activation of the unit, Staffing and Charting/Admission were achieved. Completion of critical tasks related to Symptom Monitoring and Infection Control and Client Management was improved in the second FSE, but some tasks were still not performed appropriately. In short, these exercises identified critical needs in disaster preparedness of the KCHC Quarantine Unit. The lessons learned from this logistical exercise enabled the planning group to have a better understanding of leadership needs, communication capabilities, and infection control procedures. Kings County Hospital Center performed well during these exercises. It was clear that performance in the second exercise was improved, and many problems noted in the first exercise were corrected. Staff also felt better prepared the second time. This supports the idea that frequent exercises are vital to maintain disaster readiness.
Blackwell, Leonard F; Vigil, Pilar; Gross, Barbara; d'Arcangues, Catherine; Cooke, Delwyn G; Brown, James B
2012-02-01
The UNDP/WHO/World Bank/Special Programme of Research, Development and Research Training in Human Reproduction (Geneva) set up a study to determine whether it is feasible for women to monitor their ovarian activity reliably by home testing. Daily self-monitoring of urinary hormone metabolites for menstrual cycle assessment was evaluated by comparison of results obtained with the Home Ovarian Monitor by untrained users both at home and in study centres. Women collected daily data for urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) for two cycles, then the procedure was repeated in the women's local centre (in Chile, Australia or New Zealand) giving a total of 113 duplicate cycles. The tests were performed without the benefit of replicates or quality controls. The home and centre cycles were normalized and compared to identify assay errors, and the resulting home and centre menstrual cycle profiles were averaged. Reliable mean cycle profiles were obtained with the home and centre excretion rates agreeing to within 36 ± 21 nmol/24 h for E1G and 0.77 ± 0.28 µmol/24 h for baseline PdG values (1-5 µmol/24 h). The cycles had a mean length of 28.1 ± 3.1 days (n = 112; 5th and 95th percentiles: 24 and 35 days, respectively), a mean follicular phase of 14.8 ± 3.1 days (n = 107; 5th and 95th percentiles: 11 and 21 days) and a mean luteal phase length of 13.3 ± 1.5 days (n = 106; 5th and 95th percentiles: 11 and 17 days), calculated from the day of the LH peak. The study confirmed that the Ovarian Monitor pre-coated assay tubes worked well even in the hands of lay users, without standard curves, quality controls or replicates. Point-of-care monitoring to give reliable fertility data is feasible.
Silva, H G; Lopes, I
Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.
Dark-cycle monitoring of biological subjects on Space Station Freedom
NASA Technical Reports Server (NTRS)
Chuang, Sherry; Mian, Arshad
1992-01-01
The operational environment for biological research on Space Station Freedom will incorporate video technology for monitoring plant and animal subjects. The video coverage must include dark-cycle monitoring because early experiments will use rodents that are nocturnal and therefore most active during the dark part of the daily cycle. Scientific requirements for monitoring during the dark cycle are exacting. Infrared (IR) or near-IR sensors are required. The trade-offs between these two types of sensors are based on engineering constraints, sensitivity spectra, and the quality of imagery possible from each type. This paper presents results of a study conducted by the Biological Flight Research Projects Office in conjunction with the Spacecraft Data Systems Branch at ARC to investigate the use of charged-coupled-device and IR cameras to meet the scientific requirements. Also examined is the effect of low levels of near-IR illumination on the circadian rhythm in rats.
Geiling, James; Burkle, Frederick M; West, T Eoin; Uyeki, Timothy M; Amundson, Dennis; Dominguez-Cherit, Guillermo; Gomersall, Charles D; Lim, Matthew L; Luyckx, Valerie; Sarani, Babak; Christian, Michael D; Devereaux, Asha V; Dichter, Jeffrey R; Kissoon, Niranjan
2014-10-01
Planning for mass critical care in resource-poor and constrained settings has been largely ignored, despite large, densely crowded populations who are prone to suffer disproportionately from natural disasters. As a result, disaster response has been suboptimal and in many instances hampered by lack of planning, education and training, information, and communication. The Resource-Poor Settings panel developed five key question domains; defining the term resource poor and using the traditional phases of the disaster cycle (mitigation/preparedness/response/recovery). Literature searches were conducted to identify evidence to answer the key questions in these areas. Given a lack of data on which to develop evidence-based recommendations, expert-opinion suggestions were developed, and consensus was achieved using a modified Delphi process. The five key questions were as follows: definition, capacity building and mitigation, what resources can we bring to bear to assist/surge, response, and reconstitution and recovery of host nation critical care capabilities. Addressing these led the panel to offer 33 suggestions. Because of the large number of suggestions, the results have been separated into two sections: part I, Infrastructure/Capacity in the accompanying article, and part II, Response/Recovery/Research in this article. A lack of rudimentary ICU resources and capacity to enhance services plagues resource-poor or constrained settings. Capacity building therefore entails preventative strategies and strengthening of primary health services. Assistance from other countries and organizations is often needed to mount a surge response. Moreover, the disengagement of these responding groups and host country recovery require active planning. Future improvements in all phases require active research activities.
NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area
NASA Astrophysics Data System (ADS)
Entin, J. K.
2004-05-01
Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.
Sampling and monitoring for the mine life cycle
McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.
2014-01-01
Sampling and Monitoring for the Mine Life Cycle provides an overview of sampling for environmental purposes and monitoring of environmentally relevant variables at mining sites. It focuses on environmental sampling and monitoring of surface water, and also considers groundwater, process water streams, rock, soil, and other media including air and biological organisms. The handbook includes an appendix of technical summaries written by subject-matter experts that describe field measurements, collection methods, and analytical techniques and procedures relevant to environmental sampling and monitoring.The sixth of a series of handbooks on technologies for management of metal mine and metallurgical process drainage, this handbook supplements and enhances current literature and provides an awareness of the critical components and complexities involved in environmental sampling and monitoring at the mine site. It differs from most information sources by providing an approach to address all types of mining influenced water and other sampling media throughout the mine life cycle.Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices that are an integral part of the handbook. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies, and to suggest resources for further information. Extensive references are included.
40 CFR 63.8244 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63.8244 How do I monitor and... temperature specified in § 63.8232(f)(1)(vii) during each heating phase of the regeneration cycle of your... determined according to § 63.8232(f)(2) for three consecutive regeneration cycles, your monitoring value is...
Design and implementation of smart sensor nodes for wireless disaster monitoring systems
NASA Astrophysics Data System (ADS)
Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung
2004-07-01
A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.
NASA Astrophysics Data System (ADS)
Kumsar, Halil; Aydan, Ömer; Tano, Hisataka; Çelik, Sefer Beran; Ulusay, Reşat
2016-06-01
A creep-like landslide in the Gündoğdu district of Babadağ town in Denizli (Turkey), where about 2000 people lived within the damaged houses, has been moving with a velocity of 4-14 cm/year since 1940s. Field observations and monitoring together with geomechanical laboratory tests were carried out to investigate the causative factors of the landslide. These studies were conducted as a part of an international research project performed by Turkish and Japanese scientists since 2000. Long-term monitoring stations established involved measurements of meteorological parameters, displacements, acoustic emission counts, variations in groundwater table, borehole strain measurement, in situ permeability and infiltration characteristics of the slope forming materials, and vibrations induced by weaving machines during their operation. Geomechanical properties of the sandstone and marl, which form the unstable slope, were determined from laboratory tests. In addition to the use of conventional 2-D equilibrium method of analyses, a new approach for modelling the long-term creep-like behaviour of the landslide body, based on discrete finite element method, was also proposed and used to analyse the landslide. It was found that the sliding mass has been involving several zones of weakness (interface) between the sandstone and marl layers through in situ monitoring. The monitoring data of pipe strain, groundwater level fluctuation and rainfall, and AE data showed that slope movement accelerated during and after rainy seasons. It was obtained that the proposed numerical method based on discrete finite element method (DFEM), which considers the softening and hardening of stiffness of the weakness zone as a function of rainfall and, is capable of simulating creep-like behaviour of the landslide. Disaster and Emergency Management Authority of Turkey also considered the results of this research and the landslide area was designated as a Natural Disaster Area and the people living in the unstable part of the town were re-settled at a new area.
Biogeochemistry and community ecology in a spring-fed urban river following a major earthquake.
Wells, Naomi S; Clough, Tim J; Condron, Leo M; Baisden, W Troy; Harding, Jon S; Dong, Y; Lewis, G D; Lear, Gavin
2013-11-01
In February 2011 a MW 6.3 earthquake in Christchurch, New Zealand inundated urban waterways with sediment from liquefaction and triggered sewage spills. The impacts of, and recovery from, this natural disaster on the stream biogeochemistry and biology were assessed over six months along a longitudinal impact gradient in an urban river. The impact of liquefaction was masked by earthquake triggered sewage spills (~20,000 m(3) day(-1) entering the river for one month). Within 10 days of the earthquake dissolved oxygen in the lowest reaches was <1 mg l(-1), in-stream denitrification accelerated (attenuating 40-80% of sewage nitrogen), microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. Following sewage system repairs, the river recovered in a reverse cascade, and within six months there were no differences in water chemistry, nutrient cycling, or benthic communities between severely and minimally impacted reaches. This study highlights the importance of assessing environmental impact following urban natural disasters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Animals as indicators of ecosystem responses to air emissions
Newman, James R.; Schreiber, R. Kent
1984-01-01
With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid
2004-01-01
The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.
Jonescheit, Linda
2012-01-01
The summer of 2011 proved to be a season of extreme events. Heavy snowfall in the western mountains and excessive spring rains caused flooding along the Missouri and Mississippi Rivers; whereas extended dry conditions enabled fires to rage out of control from Alaska and Canada, south to Texas, Arizona, New Mexico, Georgia, and Mexico. The Landsat archive holds nearly 40 years of continuous global earth observation data. Landsat data are used by emergency responders to monitor change and damage caused by natural and man-made disasters. Decision makers rely on Landsat as they create plans for future environmental concerns.
The Ulysses spacecraft control and monitoring concepts and realities
NASA Technical Reports Server (NTRS)
Hamer, Paul; Angold, Nigel
1993-01-01
Ulysses is a joint ESA-NASA mission, the primary purpose of the mission is to make scientific measurements of the Sun outside the plane of the ecliptic. The delay in launching Ulysses, due to the Challenger disaster, meant that the hardware on which the Spacecraft Control and Monitoring System (SCMS) resides was becoming obsolete, and it was decided to convert SCMS to run on a DEC/VAX machine under VMS. The paper will cover the spacecraft, the conversion, the converted SCMS, problems found, and the upgrades implemented for solutions. It will also discuss the future for and enhancements already made to the converted SCMS.
Developing psychophysiological profiles for monitoring stress
NASA Astrophysics Data System (ADS)
Moldow, Roberta L.; Bergen, Michael T.; Belin, Kari; Bululu, Luba; Couso, Olivita; McLaughlin, Joselyn; Short, Kenneth R.; Servatius, Richard J.
2006-05-01
Training prepares first responders for disasters including terrorist attacks. To train effectively it should be as realistic as possible and elicit the stress response. We are developing a profile that will be a marker for intensity of stress as well as differentiate stress from exertion. We have monitored stress during several training scenarios for different groups including civilian SWAT teams and the military. In addition, we can monitor stress to exposure to nonlethal weapons. We have monitored stress during exposure to blunt impact using a paintball paradigm. We have measured salivary substances (such as cortisol and DHEA [markers for the hypothalamic-pituitary-adrenal axis]) and amylase [marker for the sympathetic branch of the autonomic nervous system], physiological parameters (such as activity and heart rate), and neuropsychological assessment tools (such as Borg's perceived exertion scale, Spielberger's STAI and Thayer's ADC). With these neuroendocrine, physiological and behavioral indices in hand, we are poised to examine stress induction in preparedness in trainees.
Assessment of TRMM 3B43 product for drought monitoring in Singapore
NASA Astrophysics Data System (ADS)
Tan, Mou Leong; Chua, Vivien P.; Tan, Kok Chooi; Brindha, K.
2017-10-01
Drought is one of the most hazardous natural disasters for human beings and the environment. Using only rain gauge is insufficient to monitor the drought pattern effectively as it impacts large areas. This situation is more critical on small island countries, with limited rain gauges for monitoring drought pattern over the ocean regions. This study aims to assess the capability of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B43 product in monitoring drought in Singapore from 1998 to 2014. The Standardized Precipitation Index (SPI) at various time-scales is used for identifying drought patterns. Results show moderate to good correlations between TMPA- 3B43 and rain gauges in the SPI estimations. Besides that, TMPA-3B43 exhibits a similar temporal drought behavior as the rain gauges. These findings indicate the TMPA 3B43 product as a very useful tool to study drought pattern over Singapore.
Syncope During Competitive Events: Interrogating Heart Rate Monitor Watches May Be Useful!
Thabouillot, Oscar; Bostanci, Kevin; Bouvier, Francois; Dumitrescu, Nicolae; Stéfuriac, Maria; Paule, Philippe; Roche, Nicolas-Charles
2017-12-01
This is a case report of a 45-year-old man who reported complete amnesia during the very first kilometer of a 10-km run. He was wearing a heart rate monitor (HRM). The interrogation of his HRM watch showed 200 bpm tachycardia beginning in the first kilometer and increasing up to 220 bpm during the last kilometer. The patient was asked to wear a Holter-monitor (Holter Research Laboratory; Helena, Montana USA) electrocardiogram (ECG) while practicing a training session. This examination allowed for the diagnosis of an adrenergic paroxysmal atrial fibrillation (AF) with an impressive auriculo-ventricular conduction over 260 bpm. This case highlights that non-medical devices, such as connected watches, can be helpful to diagnose arrhythmias. Thabouillot O , Bostanci K , Bouvier F , Dumitrescu N , Stéfuriac M , Paule P , Roche NC . Syncope during competitive events: interrogating heart rate monitor watches may be useful! Prehosp Disaster Med. 2017;32(6):691-693.
NASA Astrophysics Data System (ADS)
Bell, J. R.; Molthan, A.; Dabboor, M.
2016-12-01
After a disaster occurs, decision makers require timely information to assist decision making and support. Earth observing satellites provide tools including optical remote sensors that sample in various spectral bands within the visible, near-infrared, and thermal infrared. However, views from optical sensors can be blocked when clouds are present, and cloud-free observations can be significantly delayed depending upon on their repeat cycle. Synthetic aperture radar (SAR) offers several advantages over optical sensors in terms of spatial resolution and the ability to map the Earth's surface whether skies are clear or cloudy. In cases where both SAR and cloud-free optical data are available, these instruments can be used together to provide additional confidence in what is being observed at the surface. This presentation demonstrates cases where SAR imagery can enhance the usefulness for mapping natural disasters and their impacts to the land surface, specifically from severe weather and flooding. The Missouri and Mississippi River flooding from early in 2016 and damage from hail swath in northwestern Iowa on 17 June 2016 are just two events that will be explored. Data collected specifically from the EO-1 (optical), Landsat (optical) and Sentinel 1 (SAR) missions are used to explore several applicable methodologies to determine which products and methodologies may provide decision makers with the best information to provide actionable information in a timely manner.
NASA Astrophysics Data System (ADS)
Musa, R. Abdullah; Harjanto, Meddy; Heni, Siti
2015-04-01
Sukowati site which is operated by Production Sharing Contract (PSC) Joint Operating Body Pertamina Petrochina East Java (JOB P-PEJ) located at Bojonegoro regency East Java Province. This site is close to densely populated settlements with approximately 6,010 people within a radius less than 600 m. The fluid produced have a dangerous potential to the above mention community, due to accompanying of hydrogen sulphide gas (H2S) with a concentration about 0.6% - 2% from the total gas produced. In 2006, there was incident of gas leak from drilling development well of Sukowati # 5. The incident made the surrounding community panic due to lack of preparedness and awareness. Learning from the incident, the company together with the government and local communities initiated to make improvements through the disaster management system approach. The efforts are carried out in accordance with the 4 (four) periods in a continuous cycle consist of (1) mitigation; (2) preparation; (3) response and (4) recovery. Emergency response drills conducted regularly at least once a year, its main purpose is to find out the results of the implementation of the existing disaster management. The results of the drills showed an increase in public awareness and responsiveness to emergency situations caused by the operational failures of oil and gas exploration and production activities near their settlement.
Use of FBG sensors for health monitoring of pipelines
NASA Astrophysics Data System (ADS)
Felli, Ferdinando; Paolozzi, Antonio; Vendittozzi, Cristian; Paris, Claudio; Asanuma, Hiroshi
2016-04-01
The infrastructures for oil and gas production and distribution need reliable monitoring systems. The risks for pipelines, in particular, are not only limited to natural disasters (landslides, earthquakes, extreme environmental conditions) and accidents, but involve also the damages related to criminal activities, such as oil theft. The existing monitoring systems are not adequate for detecting damages from oil theft, and in several occasion the illegal activities resulted in leakage of oil and catastrophic environmental pollution. Systems based on fiber optic FBG (Fiber Bragg Grating) sensors present a number of advantages for pipeline monitoring. FBG sensors can withstand harsh environment, are immune to interferences, and can be used to develop a smart system for monitoring at the same time several physical characteristics, such as strain, temperature, acceleration, pressure, and vibrations. The monitoring station can be positioned tens of kilometers away from the measuring points, lowering the costs and the complexity of the system. This paper describes tests on a sensor, based on FBG technology, developed specifically for detecting damages of pipeline due to illegal activities (drilling of the pipes), that can be integrated into a smart monitoring chain.
A Comprehensive Approach in Dissemination of Evidence-Based Care for PTSD
2009-09-01
Civilian Version (PCL-C) and 9-item Patient Health Questionnaire (PHQ-9) were selected as screening, diagnosis and severity monitoring instruments for PTSD...screening instrument for PTSD at 1 month after the disaster Assess for pre-trauma risk factors for ASD/PTSD prior exposure to trauma...with a borderline personality disorder typified by parasuicidal behaviors B Hypnosis may be used to alleviate PTSD symptoms B Insufficient
Preparedness for radiological emergency situations in Austria.
Ditto, Manfred
2012-02-01
This article presents the Austrian system of emergency preparedness for nuclear and radiological emergency situations. It demonstrates, in particular, the legal basis, the roles and competencies of the competent authorities, international and bilateral conventions on early notification of nuclear accidents, the Austrian emergency plans, the Austrian radiation monitoring system, the operated prognosis and decision support systems and the results of an estimation of possible impacts of nuclear power plant disasters on Austria.
Maltz, Jonathan; C Ng, Thomas; Li, Dustin; Wang, Jian; Wang, Kang; Bergeron, William; Martin, Ron; Budinger, Thomas
2005-01-01
In mass trauma situations, emergency personnel are challenged with the task of prioritizing the care of many injured victims. We propose a trauma patient tracking system (TPTS) where first-responders tag all patients with a wireless monitoring device that continuously reports the location of each patient. The system can be used not only to prioritize patient care, but also to determine the time taken for each patient to receive treatment. This is important in training emergency personnel and in identifying bottlenecks in the disaster response process. In situations where biochemical agents are involved, a TPTS may be employed to determine sites of cross-contamination. In order to track patient location in both outdoor and indoor environments, we employ both Global Positioning System (GPS) and Television/ Radio Frequency (TVRF) technologies. Each patient tag employs IEEE 802.11 (Wi-Fi)/TCP/IP networking to communicate with a central server via any available Wi-Fi basestation. A key component to increase TPTS fault-tolerance is a mobile Wi-Fi basestation that employs redundant Internet connectivity to ensure that tags at the disaster scene can send information to the central server even when local infrastructure is unavailable for use. We demonstrate the robustness of the system in tracking multiple patients in a simulated trauma situation in an urban environment.
Banwell, Nicola; Montoya, Jaime; Opeña, Merlita; IJsselmuiden, Carel; Law, Ronald; Balboa, Gloria J.; Rutherford, Shannon; Chu, Cordia; Murray, Virginia
2016-01-01
The recent Philippine National Health Research System (PNHRS) Week Celebration highlighted the growing commitment to Disaster Risk Reduction (DRR) in the Philippines. The event was lead by the Philippine Council for Health Research and Development of the Department of Science and Technology and the Department of Health, and saw the participation of national and international experts in DRR, and numerous research consortia from all over the Philippines. With a central focus on the Sendai Framework for Disaster Risk Reduction, the DRR related events recognised the significant disaster risks faced in the Philippines. They also illustrated the Philippine strengths and experience in DRR. Key innovations in science and technology showcased at the conference include the web-base hazard mapping applications ‘Project NOAH’ and ‘FaultFinder’. Other notable innovations include ‘Surveillance in Post Extreme Emergencies and Disasters’ (SPEED) which monitors potential outbreaks through a syndromic reporting system. Three areas noted for further development in DRR science and technology included: integrated national hazard assessment, strengthened collaboration, and improved documentation. Finally, the event saw the proposal to develop the Philippines into a global hub for DRR. The combination of the risk profile of the Philippines, established national structures and experience in DRR, as well as scientific and technological innovation in this field are potential factors that could position the Philippines as a future global leader in DRR. The purpose of this article is to formally document the key messages of the DRR-related events of the PNHRS Week Celebration. PMID:27867737
Dove, D B; Del Guercio, L R; Stahl, W M; Star, L D; Abelson, L C
1982-07-01
At the John F. Kennedy International Airport in New York City, disaster planning has been an integral part of the airport operations for the past 20 years. The medical component of this disaster planning has focused around the Medical Office at JFK. Through this office, on-site emergency medical teams have been established and trained from all ranks of airport personnel. Following the crash of a Boeing 727 aircraft in 1975, a new concept was added to disaster planning for JFK, which involves bringing the hospital, its facilities, and its personnel to the scene. A new piece of equipment, known as Emergency Mobile Hospital, was developed with the cooperation of the airlines, the operating authority of the airport, and other interested parties. Two such vehicles are now in constant readiness at the airport, and together provide two operating rooms, 12 monitored ICU beds, a 16-bed burn unit, and 72 other beds to be used for on-site stabilization of critically ill patients, before transfer to a definitive care facility. Under the auspices of a single area medical school (New York Medical College) and its affiliated departments of surgery, trauma teams are made available to be airlifted to the scene within 30 minutes of notification. Additional medical teams from other medical school hospitals serve as backup support. The principle of bringing the hospital to the emergency, and of assembling trauma teams for the initial phase, remains the same for Kennedy Airport as for that of any other metropolitan airport.
NASA Astrophysics Data System (ADS)
Fernandez Diaz, J. C.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Sartori, M. P.; Singhania, A.
2012-12-01
The National Center for Airborne Laser Mapping NCALM was created in 2003 through a grant from and National Science Foundation to support the use of airborne laser swath mapping technology (ALSM aka LiDAR) by the scientific community. NCALM's main goals are to provide research quality airborne LiDAR observations to the scientific community, to advance the state of the art in airborne laser mapping, and to train and educate graduate students with knowledge of airborne mapping to meet the needs of private industry, government agencies and academic institutions. Even before its creation, NCALM researchers had been exploring the application of LiDAR technologies for the monitoring of Geohazards and the response and recovery from man-made and natural disasters. Some of these applications include: mapping debris caused by the 11 September 2001 terrorist attacks in New York; mapping thousands of km of faults along the Pacific coast of the US extending from Southern California to Alaska, through the OSU/USGS B4 and UNAVCO EarthScope projects; mapping of lava fields in Hawaii; mapping post-forest-fire zones in the San Gabriel Mountains, CA and Valles Caldera, NM; mapping beach erosion/deposition induced by hurricanes along the Panhandle and Atlantic coasts of Florida; rapid-response mapping of the Iowa river floods in 2008 and the El Mayor - Cucapah Earthquake in 2010. The experience gained and lessons learned by NCALM regarding the long term monitoring of hazards for the preparation, response and recovery of disasters range from navigating the regulatory and logistic challenges of being present in a disaster area, to the production of real-time geodetic imagery and data for support of the authorities, to performing change detection (surface deformation, sediment transport, infrastructure damage) using LiDAR data products obtained by different vendors, with different equipment and operated under different specifications. End users of the information uniquely provided by airborne LiDAR have rapidly realized its value and are increasingly calling for the mapping of high-risk areas before emergencies, as soon as possible after a major event occurs. Unfortunately, obtaining immediate approval of export licenses for components subject to ITAR regulations (most particularly high accuracy Inertial Measure Units) continues to be a major issue in rapidly responding to events in locations outside the United States. Finally, the presentation will describe our view of how emerging technologies could provide solutions to current technical and regulatory limitations encountered in the field. These technologies include advanced LiDAR sensors, multi-sensor fusion, and novel sensor platforms that range from low-cost balloons to Unmanned Aircraft Systems (UAS aka UAVs).
NASA Technical Reports Server (NTRS)
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer; Britch, S. C.; Tucker, C. J.
2012-01-01
Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of arthropod-borne diseases. We show that epidemics and epizootics of previously unpredictable Rift Valley fever are directly influenced by large scale flooding associated with the El Ni o/Southern Oscillation. This flooding affects the ecology of disease transmitting arthropod vectors through vegetation development and other bioclimatic factors. This information is now utilized to monitor, model, and map areas of potential Rift Valley fever outbreaks and is used as an early warning system for risk reduction of outbreaks to human and animal health, trade, and associated economic impacts. The continuation of such satellite measurements is critical to anticipating, preventing, and managing disease epidemics and epizootics and other climate-related disasters.
Rebuilding Emergency Care After Hurricane Sandy.
Lee, David C; Smith, Silas W; McStay, Christopher M; Portelli, Ian; Goldfrank, Lewis R; Husk, Gregg; Shah, Nirav R
2014-04-09
A freestanding, 911-receiving emergency department was implemented at Bellevue Hospital Center during the recovery efforts after Hurricane Sandy to compensate for the increased volume experienced at nearby hospitals. Because inpatient services at several hospitals remained closed for months, emergency volume increased significantly. Thus, in collaboration with the New York State Department of Health and other partners, the Health and Hospitals Corporation and Bellevue Hospital Center opened a freestanding emergency department without on-site inpatient care. The successful operation of this facility hinged on key partnerships with emergency medical services and nearby hospitals. Also essential was the establishment of an emergency critical care ward and a system to monitor emergency department utilization at affected hospitals. The results of this experience, we believe, can provide a model for future efforts to rebuild emergency care capacity after a natural disaster such as Hurricane Sandy. (Disaster Med Public Health Preparedness. 2014;0:1-4).
SERVIR Science Applications for Capacity Building
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Searby, Nancy D.; Irwin, Daniel
2012-01-01
SERVIR is a regional visualization and monitoring system using Earth observations to support environmental management, climate adaptation, and disaster response in developing countries. SERVIR is jointly sponsored by NASA and the U.S. Agency for International Development (USAID). SERVIR has been instrumental in development of science applications to support the decision-making and capacity building in the developing countries with the help of SERVIR Hubs. In 2011, NASA Research Opportunities in Space and Earth Sciences (ROSES) included a call for proposals to form SERVIR Applied Sciences Team (SERVIR AST) under Applied Sciences Capacity Building Program. Eleven proposals were selected, the Principal Investigators of which comprise the core of the SERVIR AST. The expertise on the Team span several societal benefit areas including agriculture, disasters, public health and air quality, water, climate and terrestrial carbon assessments. This presentation will cover the existing SERVIR science applications, capacity building components, overview of SERVIR AST projects, and anticipated impacts.
Study on impacts of an exceptionally intense sandstorm upon Gansu region in summer
NASA Astrophysics Data System (ADS)
Wang, Xiwen; Huang, Yuxia; Liu, Zhiguo; Wei, Feng; Zhang, Tiejun
2007-09-01
The Climate features of summer sandstorms show that the season is rich in the disasters for the Gansu region, concentrated mainly in the Minqin, Dingxin and Jinta areas. The synoptic analysis of a rarely observed strong event indicates that in summer such dominant weather systems as the upper-level weak trough, shear line and thermal low are responsible for the sandstorm while in spring the tempest is generally triggered by large-scale systems. The upper-level jet's behaviors are not so manifest before the occurrence of the summertime sandstorm, with the jets suddenly intensified almost concurrently with its occurrence, which is one of the difficult points for forecasting the summer sandstorm. Now for the study we make use of satellite imagery and its sensings-based tracking as a more visualized tool for monitoring the onset, movement and coverage of the disaster.
Southern California Disasters II
NASA Technical Reports Server (NTRS)
Nicholson, Heather; Todoroff, Amber L.; LeBoeuf, Madeline A.
2015-01-01
The USDA Forest Service (USFS) has multiple programs in place which primarily utilize Landsat imagery to produce burn severity indices for aiding wildfire damage assessment and mitigation. These indices provide widely-used wildfire damage assessment tools to decision makers. When the Hyperspectral Infrared Imager (HyspIRI) is launched in 2022, the sensor's hyperspectral resolution will support new methods for assessing natural disaster impacts on ecosystems, including wildfire damage to forests. This project used simulated HyspIRI data to study three southern California fires: Aspen, French, and King. Burn severity indices were calculated from the data and the results were quantitatively compared to the comparable USFS products currently in use. The final results from this project illustrate how HyspIRI data may be used in the future to enhance assessment of fire-damaged areas and provide additional monitoring tools for decision support to the USFS and other land management agencies.
Mediterranean Storms: An Integrated Approach of Risk Management
NASA Astrophysics Data System (ADS)
Karageorgou, H.; Riza, E.; Linos, A.; Papanikolaou, D.
2010-09-01
Disaster by UN definition is "a serious disruption of the functioning of a community or a society, involving widespread human, material, economic, or environmental losses and impacts, which exceeds the ability of the affected community or society to cope using only its own resources". Mediterranean storms induce flash floods caused by excessive amounts of rainfall within a short lasting period of time. The intensity and duration of precipitation, region geomorphology, urbanization and different governmental emergency management structures trigger different consequences between Mediterranean countries. The integrated approach in management of storm risk represents a holistic perspective including interactions between government, science and technology institutions, developing agencies, private sector, NGOs and public. Local authorities and national government are responsible for the design, preparation and decision on storm risk management policies and strategies considering scientific risk identifying, assessing and understanding. Efficient governance management requires satisfied response to early warning systems, functionality of the affected systems upon which society depends and appropriate focus on variable interest, beliefs, values and ideologies between social groups. Also an appropriate balancing of benefits and costs in an efficient and equitable manner is important for the governance risk management. Natural sciences in corporation with the engineering science have developed effective early prediction, warning and monitoring systems on storm and flood risk. The health sciences use prediction systems for health related hazards and consequences and the social sciences research estimates the human resilience during disasters and the factors which affect and determine the human behavior. Also social sciences survey the response of public to early warning messages, the appropriate communicative methods to distributing messages and mechanisms to improve public response. The available and applied science and technology in prediction and early warning systems rely on the close collaboration between scientists and policy makers to achieve effective disaster prevention of human life and mitigation of damages. Developing agencies approach risk management as an integral part of development and encourage activities and measures to reduce the exposure and vulnerability to natural hazards through early warning systems, building codes, land use plans and disaster sensitive development plans. The human settlement and investment in high risk floodplains place greater numbers of people and economic assets in danger of being affected by storms and floods. Disasters and development are highly inter-related. Recurrent disasters and frequent localized disasters erode development and conversely the development processes can reduce disaster risk, or create new risks. The private sector participation in risk reduction efforts can help local communities mitigate disasters and increases the benefits of the businesses. The private insurance sector is highly involved in the prevention of disaster caused by natural hazards especially storms and floods. The collaboration between academic community and the insurance sector indicates the linkages between the mutual insurance actions and risk culture. Also tourism industry and private critical infrastructure sector get involved in prevention measures and activities against storm and flood risks to build sustainable functionality and keep public trust. NGOs focus on social, cultural, environmental, educational, or health issues in disaster management and their members are educated and experienced on their area of operations. The staff of local and national NGOs is familiar with culture, languages, governance structures, social networks, climate and geography of the affected area and holds a unique understanding of the specific problems of the affected population. Additionally, NGO’s operations do not suffer from bureaucracy and therefore are able to deploy on very short notice. The public awareness, behavior and response to disasters depend on the knowledge about the risk, the understanding of the information and the translation of what it means in their own particular circumstances. The majority of people judges the information to be credible and discusses the meaning of information with trusted family members, friends and colleagues to decide the next action. Well educated people, efficient management of previous experiences, successful communication methods and trust on government and authorities contribute towards efficient public response on disasters.
Savitz, David A; Oxman, Rachael T; Metzger, Kristina B; Wallenstein, Sylvan; Stein, Diane; Moline, Jacqueline M; Herbert, Robin
2008-01-01
Studies of long-term health consequences of disasters face unique methodologic challenges. The authors focused on studies of the health of cleanup and recovery workers, who are often poorly enumerated at the outset and difficult to follow over time. Comparison of the experience at the World Trade Center disaster with 4 past incidents of chemical and radiation releases at Seveso, Italy; Bhopal, India; Chernobyl, Ukraine; and Three Mile Island, USA, provided useful contrasts. Each event had methodologic advantages and disadvantages that depended on the nature of the disaster and the availability of records on area residents, and the emergency-response and cleanup protocol. The World Trade Center Worker Monitoring Program has well-defined eligibility criteria but lacks information on the universe of eligible workers to characterize response proportions or the potential for distortion of reported health effects. Nonparticipation may result from lack of interest, lack of awareness of the program, availability of another source of medical care, medical conditions precluding participation, inability to take time off from work, moving out of the area, death, or shift from initially ineligible to eligible status. Some of these considerations suggest selective participation by the sickest individuals, whereas others favor participation by the healthiest. The greatest concern with the validity of inferences regarding elevated health risks relative to external populations is the potential for selective enrollment among those who are affected. If there were a large pool of nonparticipating workers and those who suffered ill health were most motivated to enroll, the rates of disease among participants would be substantially higher than among all those eligible for the program. Future disaster follow-up studies would benefit substantially by having access to accurate estimates of the number of workers and information on the individuals who contributed to the cleanup and recovery effort. Copyright (c) 2008 Mount Sinai School of Medicine
Nates, Joseph L
2004-03-01
To increase awareness of specific risks to healthcare systems during a natural or civil disaster. We describe the catastrophic disruption of essential services and the point-by-point response to the crisis in a major medical center. Case report, review of the literature, and discussion. A 28-bed intensive care unit in a level I trauma center in the largest medical center in the world. In June 2001, tropical storm Allison caused >3 feet of rainfall and catastrophic flooding in Houston, TX. Memorial Hermann Hospital, one of only two level I trauma centers in the community, lost electrical power, communications systems, running water, and internal transportation. All essential hospital services were rendered nonfunctional. Life-saving equipment such as ventilators, infusion pumps, and monitors became useless. Patients were triaged to other medical facilities based on acuity using ground and air ambulances. No patients died as result of the internal disaster. Adequate training, teamwork, communication, coordination with other healthcare professionals, and strong leadership are essential during a crisis. Electricity is vital when delivering care in today's healthcare system, which depends on advanced technology. It is imperative that hospitals take the necessary measures to preserve electrical power at all times. Hospitals should have battery-operated internal and external communication systems readily available in the event of a widespread disaster and communication outage. Critical services such as pharmacy, laboratories, blood bank, and central supply rooms should be located at sites more secure than the ground floors, and these services should be prepared for more extensive performances. Contingency plans to maintain protected water supplies and available emergency kits with batteries, flashlights, two-way radios, and a nonelectronic emergency system for patient identification are also very important. Rapid adaptation to unexpected adverse conditions is critical to the successful implementation of any disaster plan.
Air Monitoring of Emissions from the Fukushima Daiichi Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.
2012-06-12
In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132,more » and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.« less
Earth Observation Data Quality Monitoring and Control: A Case Study of STAR Central Data Repository
NASA Astrophysics Data System (ADS)
Han, W.; Jochum, M.
2017-12-01
Earth observation data quality is very important for researchers and decision makers involved in weather forecasting, severe weather warning, disaster and emergency response, environmental monitoring, etc. Monitoring and control earth observation data quality, especially accuracy, completeness, and timeliness, is very useful in data management and governance to optimize data flow, discover potential transmission issues, and better connect data providers and users. Taking a centralized near real-time satellite data repository, STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR), as an example, this paper describes how to develop new mechanism to verify data integrity, check data completeness, and monitor data latency in an operational data management system. Such quality monitoring and control of large volume satellite data help data providers and managers improve data transmission of near real-time satellite data, enhance its acquisition and management, and overcome performance and management issues to better serve research and development activities.
Bulgarian Seismological and GPS/GNSS networks-current status and practical implementation
NASA Astrophysics Data System (ADS)
Solakov, Dimcho; Simeonova, Stela; Georgiev, Ivan; Dimitrova, Lilia; Slavcheva, Krasimira; Raykova, Plamena
2016-04-01
The scientific information is the latest and one of the best bedrock on which effective policy to combat and cope with natural disasters have to be built. Understanding, monitoring and information for future natural disasters are the way to assist the government and society. Different types of networks provide reliable information on various natural disasters. For example, one of the main priorities of the networks are directed to study seismicity of the Earth, its physical phenomena and fields - with an emphasis on tectonic movements and related risk processes, global changes, rotation and position of the Earth in space. Therefore seismological network using advanced electronic systems and digital seismographs transmission of signals from seismic stations to the centres and the registration, processing and archiving of information is carried out by a specialized computer system. Thus improve the monitoring and analysis of seismicity in the whole plan. Another type networks as permanent GPS/GNSS networks are associated with processing and data analysis, as well as monitoring of recent movements of the earth crust. In this study we focus on Seismological and GPS/GNSS networks on the territory in Bulgaria. At present NIGGG-BAS runs both Bulgarian seismological and GPS/GNSS networks. The Bulgarian seismological network - NOTSSI (National Operative Telemetric System for Seismological Information) was founded at the end of 1980. The network comprises today 15 permanent seismic stations spanning the entire territory of the country and two local net works that are deployed around the town of Provadia and Kozloduy Nuclear Power Plant in Bulgaria. Since 2005-2006, real-time data exchange between Bulgaria and Greece, Romania, Serbia, Macedonia, Slovakia, Slovenia, Austria and other regional and national seismological data centers was implemented. NIGGG, respectively NOTSSI, is responsible for rapid earthquake determination, public information trough media, and information of responsible governmental authorities if necessary urgent activities to be undertaken. The available infrastructure - permanent GNSS stations, spread all over the country allow performing permanent monitoring of the Earth's crust movements on the basis of the obtained velocities of the permanent stations and the time series with their coordinates. Additional information for the current movements is obtained by the processing and analysis of the regular GNSS measurements of geodynamic network. In the GNSS Analysis Center are acquired, processed and analyzed data from more than 70 permanent stations on Bulgarian territory. In the analysis are included also data from permanent stations on the Balkan Peninsula and from the European Permanent Network. Along with the seismological and geological information, the quantitative assessment of the movements of the Earth's crust is of the substantial importance for monitoring of the active tectonic structures and is the base for the seismic hazard assessment.
NASA Astrophysics Data System (ADS)
Pergola, N.; Grimaldi, S. C.; Coviello, I.; Faruolo, M.; Lacava, T.; Tramutoli, V.
2010-12-01
Marine oil spill disasters may have devastating effects on the marine and coastal environment. For monitoring and mitigation purposes, timely detection and continuously updated information on polluted areas are required. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/all-weather capability of the present operational sensors. Anyway, the present SARs revisiting time does not allow for a rapid detection and a near real-time monitoring of these phenomena at global scale. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques, based on optical satellite data, have been proposed for “a posteriori” mapping of already known oil spill discharges. On the other hand, reliable satellite methods for an automatic and timely detection of oil spills, for surveillance and warning purposes, are still currently missing. Recently, an innovative technique for automatic and near real time oil spill detection and monitoring has been proposed. The technique is based on the general RST (Robust Satellite Technique) approach which exploits multi-temporal satellite records in order to obtain a former characterization of the measured signal, in terms of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change detection step. Results obtained by using AVHRR (Advanced Very High Resolution Radiometer) Thermal Infrared data, in different geographic areas and observational conditions, demonstrated excellent detection capabilities both in term of sensitivity (to the presence even of thin/old oil films) and reliability (up to zero occurrence of false alarms), mainly due to the RST invariance regardless of local and environmental conditions. Exploiting its complete independence on the specific satellite platform, RST approach has been successfully exported to the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. In this paper, results obtained applying the proposed methodology to the recent oil spill disaster of Deepwater Horizon Platform in the gulf of Mexico, that discharged over 5 million barrels (550 million litres) in the ocean, will be shown. A dense temporal series of RST-based oil spill maps, obtained by using MODIS TIR records, are commented, emphasizing and discussing main peculiarities and specific characteristics of this event. Preliminary findings, possible residual limits and future perspectives will be also presented and discussed.
Preparing for Disaster: Taking the Lead
ERIC Educational Resources Information Center
Colber, Judith
2008-01-01
In this article, Irwin Redlener, director of the National Center for Disaster Preparedness describes disasters in relation to five phases that may serve as a helpful framework for planning disaster response: (1) before the disaster (pre-disaster); (2) during the disaster (intra-disaster); (3) immediately after the disaster (immediate…
The Performance Analysis of a Uav Based Mobile Mapping System Platform
NASA Astrophysics Data System (ADS)
Tsai, M. L.; Chiang, K. W.; Lo, C. F.; Ch, C. H.
2013-08-01
To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real-time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. This study develops a Direct Georeferencing (DG) based fixed-wing Unmanned Aerial Vehicle (UAV) photogrammetric platform where an Inertial Navigation System (INS)/Global Positioning System (GPS) integrated Positioning and Orientation System (POS) system is implemented to provide the DG capability of the platform. The performance verification indicates that the proposed platform can capture aerial images successfully. A flight test is performed to verify the positioning accuracy in DG mode without using Ground Control Points (GCP). The preliminary results illustrate that horizontal DG positioning accuracies in the x and y axes are around 5 m with 300 m flight height. The positioning accuracy in the z axis is less than 10 m. Such accuracy is good for near real-time disaster relief. The DG ready function of proposed platform guarantees mapping and positioning capability even in GCP free environments, which is very important for rapid urgent response for disaster relief. Generally speaking, the data processing time for the DG module, including POS solution generalization, interpolation, Exterior Orientation Parameters (EOP) generation, and feature point measurements, is less than one hour.
CDC's Emergency Management Program activities - worldwide, 2003-2012.
2013-09-06
In 2003, recognizing the increasing frequency and complexity of disease outbreaks and disasters and a greater risk for terrorism, CDC established the Emergency Operations Center (EOC), bringing together CDC staff members who respond to public health emergencies to enhance communication and coordination. To complement the physical EOC environment, CDC implemented the Incident Management System (IMS), a staffing structure and set of standard operational protocols and services to support and monitor CDC program-led responses to complex public health emergencies. The EOC and IMS are key components of CDC's Emergency Management Program (EMP), which applies emergency management principles to public health practice. To enumerate activities conducted by the EMP during 2003-2012, CDC analyzed data from daily reports and activity logs. The results of this analysis determined that, during 2003-2012, the EMP fully activated the EOC and IMS on 55 occasions to support responses to infectious disease outbreaks, natural disasters, national security events (e.g., conventions, presidential addresses, and international summits), mass gatherings (e.g., large sports and social events), and man-made disasters. On 109 other occasions, the EMP was used to support emergency responses that did not require full EOC activation, and the EMP also conducted 30 exercises and drills. This report provides an overview of those 194 EMP activities.
Verification and Enhancement of VIIRS Day-Night Band Power Outage Detection Product
NASA Astrophysics Data System (ADS)
Burke, A.; Schultz, L. A.; Omitaomu, O.; Molthan, A.; Cole, T.; Griffin, R.
2017-12-01
The NASA SPoRT (Short-term Prediction Research and Transition) Center has collaborated with scientists at NASA Goddard Space Flight Center to create a power outage detection product from radiance data obtained by the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor aboard the Suomi-NPP satellite. This product uses a composite of pre-event radiance values from the VIIRS Day-Night Band to establish a baseline of "normal" nighttime lights for a study area. Then, after a severe weather event or other disaster, post-event images are compared to the composite to generate a percent-of-normal radiance product to identify areas that are experiencing outages and to aid in disaster response and monitor recovery. This project will use ground-truth county-level outage data provided by Oak Ridge National Laboratory (ORNL) in order validate the product and to establish a percent-of-normal threshold for identifying power outages. Once a threshold is found, ORNL's LandScan Global population data will be combined with the product to estimate how many electrical customers are being affected by power outages after a disaster. Two case studies will be explored to examine power outage recovery after severe weather events, including Hurricane Matthew from 2016 and the Washington D.C. Derecho event of 2012.
Lauper, Ursula; Chen, Jian-Hua; Lin, Shao
2017-04-01
Studies have documented the impact that hurricanes have on mental health and injury rates before, during, and after the event. Since timely tracking of these disease patterns is crucial to disaster planning, response, and recovery, syndromic surveillance keyword filters were developed by the New York State Department of Health to study the short- and long-term impacts of Hurricane Sandy. Emergency department syndromic surveillance is recognized as a valuable tool for informing public health activities during and immediately following a disaster. Data typically consist of daily visit reports from hospital emergency departments (EDs) of basic patient data and free-text chief complaints. To develop keyword lists, comparisons were made with existing CDC categories and then integrated with lists from the New York City and New Jersey health departments in a collaborative effort. Two comprehensive lists were developed, each containing multiple subcategories and over 100 keywords for both mental health and injury. The data classifiers using these keywords were used to assess impacts of Sandy on mental health and injuries in New York State. The lists will be validated by comparing the ED chief complaint keyword with the final ICD diagnosis code. (Disaster Med Public Health Preparedness. 2017;11:173-178).
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Webley, P. W.; Dehn, J.; Arko, S. A.; McAlpin, D. B.; Gong, W.
2016-12-01
Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing has become established in operational volcano monitoring. Centers like the Alaska Volcano Observatory rely heavily on remote sensing data from optical and thermal sensors to provide time-critical hazard information. Despite this high use of remote sensing data, the presence of clouds and a dependence on solar illumination often limit their impact on decision making. Synthetic Aperture Radar (SAR) systems are widely considered superior to optical sensors in operational monitoring situations, due to their weather and illumination independence. Still, the contribution of SAR to operational volcano monitoring has been limited in the past due to high data costs, long processing times, and low temporal sampling rates of most SAR systems. In this study, we introduce the automatic SAR processing system SARVIEWS, whose advanced data analysis and data integration techniques allow, for the first time, a meaningful integration of SAR into operational monitoring systems. We will introduce the SARVIEWS database interface that allows for automatic, rapid, and seamless access to the data holdings of the Alaska Satellite Facility. We will also present a set of processing techniques designed to automatically generate a set of SAR-based hazard products (e.g. change detection maps, interferograms, geocoded images). The techniques take advantage of modern signal processing and radiometric normalization schemes, enabling the combination of data from different geometries. Finally, we will show how SAR-based hazard information is integrated in existing multi-sensor decision support tools to enable joint hazard analysis with data from optical and thermal sensors. We will showcase the SAR processing system using a set of recent natural disasters (both earthquakes and volcanic eruptions) to demonstrate its robustness. We will also show the benefit of integrating SAR with data from other sensors to support volcano monitoring. For historic eruptions at Okmok and Augustine volcano, both located in the North Pacific, we will demonstrate that the addition of SAR can lead to a significant improvement in activity detection and eruption forecasting.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Bock, Y.; Saunders, J. K.; Goldberg, D.; Restrepo, J. I.
2016-12-01
As part of an effort to promote the use of NASA-sponsored Earth science information for disaster risk reduction, real-time high-rate seismogeodetic data are being incorporated into early warning and structural monitoring systems. Seismogeodesy combines seismic acceleration and GPS displacement measurements using a tightly-coupled Kalman filter to provide absolute estimates of seismic acceleration, velocity and displacement. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. Real-time seismogeodetic observations at subduction zones allow for more robust and rapid magnitude and slip estimation that increase warning time in the near-source region. A NASA-funded effort to utilize GPS and seismogeodesy in NOAA's Tsunami Warning Centers in Alaska and Hawaii integrates new modules for picking, locating, and estimating magnitudes and moment tensors for earthquakes into the USGS earthworm environment at the TWCs. In a related project, NASA supports the transition of this research to seismogeodetic tools for disaster preparedness, specifically by implementing GPS and low-cost MEMS accelerometers for structural monitoring in partnership with earthquake engineers. Real-time high-rate seismogeodetic structural monitoring has been implemented on two structures. The first is a parking garage at the Autonomous University of Baja California Faculty of Medicine in Mexicali, not far from the rupture of the 2011 Mw 7.2 El Mayor Cucapah earthquake enabled through a UCMexus collaboration. The second is the 8-story Geisel Library at University of California, San Diego (UCSD). The system has also been installed for several proof-of-concept experiments at the UCSD Network for Earthquake Engineering Simulation (NEES) Large High Performance Outdoor Shake Table. We present MEMS-based seismogeodetic observations from the 10 June 2016 Mw 5.2 Borrego Springs earthquake of strong ground motions in near field close to the San Jacinto fault, as well as observations that show the response of the 3 story parking garage. The occurrence of this recent earthquake provided a useful demonstration of structural monitoring applications with seismogeodesy.
Education and Raising Awareness of Seismic Risk in the Black Sea Basin
NASA Astrophysics Data System (ADS)
Florin Balan, Stefan; Alcaz, Vasile; Trifonova, Petya; Uker, Nalan; Tataru, Dragos
2014-05-01
The Project "Black Sea Earthquake Safety Net(work)" ESNET has the intention to educate and raise awareness of seismic risk in the Black Sea Basin in four countries: Moldova, Romania, Bulgaria and Turkey. The project is financed through "The Black Sea Basin Joint Operational Programme", an EU operational programmes under European Neighborhood & Partnership Instrument (ENPI). The programme is financed by ENPI. The participation of Turkey is financed by Instrument for Pre-accession Assistance. It is implemented during the period 2007 - 2013. The project wants to contribute to the prevention of natural disasters generated by earthquakes in Black Sea Basin by developing a joint monitoring and intervention concept. All the countries involved in the project have their own studies, strategies, prevention and intervention systems in case of earthquakes, but until now there has not been an integrated approach so far in the Black Sea Basin. Given the cross-border character of seismic activity, it is necessary to have a cross-border approach on prevention, monitoring and intervention in case of earthquakes. Main objectives : 1. The assessment of the disaster potential, with accent on the seismic risk degree and the earthquakes effects in the intervention area. For achieving the main objective is to have an accurate and up-to-date assessment of the potential of disasters provoked by earthquakes in the project area/regions. This assessment will be carried out at national level and will be used in designing the common concept/approach for dealing with earthquakes at regional level, thus ensuring the cross-border character of the objective. 2.To develop an integrated seismic monitoring and intervention concept. This integrated concept, built on the basis of the previous objective, will have a cross-border relevance and is at the core of the action. The monitoring and intervention in case of earthquakes will be coordinated among the participating countries based on this, thus a more effective and efficient approach being ensured. 3. To increase the capacity of local institutions emergency intervention units for joint response activities in case of disasters. By involving the local emergency units and public administration in the project activities, especially in trainings, conferences and consultations, a better cooperation at cross-border level will be achieved. Step by step, the respective bodies will increase the cooperation and will benefit from each others expertise. Target groups : Research institutions and universities; Emergency intervention units; Local public authorities; NGOs. Final beneficiaries of the project: the population in the regions of the project. The project has a high educational perspective through its: a)training activities and b)training tools applied in the process. A) the training of 20 people from the emergency units from each country (80 in total) by experts in risk management. B) The Seismic Safety Web Portal of the project presenting all activities, maps and materials posted by members of the network agreement and not only. Also for changing expertise, opinions and long distance conferences is available a special software communication tool. An educational book is printed in 3 languages to be distributed in partner countries with main results.
Construction and Application of Enhanced Remote Sensing Ecological Index
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, C.; Fu, Q.; Yin, B.
2018-04-01
In order to monitor the change of regional ecological environment quality, this paper use MODIS and DMSP / OLS remote sensing data, from the production capacity, external disturbance changes and human socio-economic development of the three main factors affecting the quality of ecosystems, select the net primary productivity, vegetation index and light index, using the principal component analysis method to automatically determine the weight coefficient, construction of the formation of enhanced remote sensing ecological index, and the ecological environment quality of Hainan Island from 2001 to 2013 was monitored and analyzed. The enhanced remote sensing ecological index combines the effects of the natural environment and human activities on ecosystems, and according to the contribution of each principal component automatically determine the weight coefficient, avoid the design of the weight of the parameters caused by the calculation of the human error, which provides a new method for the operational operation of regional macro ecological environment quality monitoring. During the period from 2001 to 2013, the ecological environment quality of Hainan Island showed the characteristics of decend first and then rise, the ecological environment in 2005 was affected by severe natural disasters, and the quality of ecological environment dropped sharply. Compared with 2001, in 2013 about 20000 square kilometers regional ecological environmental quality has improved, about 8760 square kilometers regional ecological environment quality is relatively stable, about 5272 square kilometers regional ecological environment quality has decreased. On the whole, the quality of ecological environment in the study area is good, the frequent occurrence of natural disasters, on the quality of the ecological environment to a certain extent.
Multi-scale monitoring of landscape change after the 2011 tsunami
NASA Astrophysics Data System (ADS)
Hara, K.; Zhao, Y.; Harada, I.; Tomita, M.; Park, J.; Jung, E.; Kamagata, N.; Hirabuki, Y.
2015-04-01
The Great East Japan Earthquake (magnitude 9.0; occurred on 11th March 2011) and subsequent huge tsunami caused widespread damage along the Pacific Ocean coast of eastern Honshu, Japan. This research utilizes multi-resolution remote sensing images to clarify the impact on landscapes caused by this disaster, and also to monitor the subsequent survival and recovery process in the Sendai Bay region. The coastal landscape in the target area features a narrow strip of coastal sand barrier, historically stabilized by planted pine groves; backed by a low-lying plain that has traditionally been diked and converted to irrigated rice paddies. Farmsteads on the flat alluvial plain are surrounded by groves called "Igune", consisting primarily of conifers. MODIS data (250 m resolution) were employed to map the overall extent of inundation and damage on the regional landscape scale. The major damage caused by the tsunami, destruction of coastal pine forests and inundation or rice paddies on the plain, was identified at this level. Progressively finer scale analysis were then implemented using SPOT/HRG-2 (10 m resolution) data; GeoEye-1 fine resolution data (0.5 m) and very fine resolution aerial photographs (10 cm) and LiDAR. These results demonstrated the minute details of the damage and recovery process. Some patches of pine forest, for example, were seen to have survived, and some coastal plant communities were already recovering only a year after the disaster. Continuous monitoring using field work and remote sensing is required for balanced regional strategies that provide for economic and social recovery and as well as restoration of vegetation, biodiversity and vital ecosystem services.
Electronic Field Data Collection in Support of Satellite-Based Food Security Monitoring in Tanzania
NASA Astrophysics Data System (ADS)
Nakalembe, C. L.; Dempewolf, J.; Justice, C. J.; Becker-Reshef, I.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ibrahim, K.; Materu, S.
2016-12-01
In Tanzania agricultural extension agents traditionally collect field data on agriculture and food security on paper, covering most villages throughout the country. The process is expensive, slow and cumbersome and prone to data transcription errors when the data get entered at the district offices into electronic spreadsheets. Field data on the status and condition of agricultural crops, the population's nutritional status, food storage levels and other parameters are needed in near realtime for early warning to make critical but most importantly timely and appropriate decisions that are informed with verified data from the ground. With the ubiquitous distribution of cell phones, which are now used by the vast majority of the population in Tanzania including most farmers, new, efficient and cost-effective methods for field data collection have become available. Using smartphones and tablets data on crop conditions, pest and diseases, natural disasters and livelihoods can be collected and made available and easily accessible in near realtime. In this project we implemented a process for obtaining high quality electronic field data using the GeoODK application with a large network of field extension agents in Tanzania and Uganda. These efforts contribute to work being done on developing an advanced agriculture monitoring system for Tanzania, incorporating traditional data collection with satellite information and field data. The outcomes feed directly into the National Food Security Bulletin for Tanzania produced by the Ministry of Agriculture as well as a form a firm evidence base and field scale monitoring of the disaster risk financing in Uganda.
Study of flash floods over some parts of Brazil using precipitation index
NASA Astrophysics Data System (ADS)
Souza, D.; de Souza, R. L. M.; Araujo, R.
2016-12-01
In Brazil, the main phenomena related to natural disasters are derived from the Earth's external dynamics such as floods and flash floods, landslides and storms, where the flash flood phenomenon causes the second highest number of victims, totaling more than 32% of deaths. Floods and flash floods are natural events often triggered by storms or long period of rains, usually associated with rising volume of rainfall on the watershed, leading the river to exceed its maximum. Whereas the occurrence of natural disasters in Brazil is increasing in recent years, the use of more accurate tools to aid in the monitoring of extreme hydrological events it becomes necessary, aiming to decrease the number of human and material losses. In this context, this paper aims to implement an early warning and monitoring system related to extreme precipitation values and hydrological processes. So, initially was studied flood events in the states of São Paulo and Paraná, aimed de determination of the characteristics of rainfall and atmosphere. Later it was used an indicator of precipitation based on the climatology, which indicates warning points on the drainage network related to extreme precipitation, which are obtained by remote sensing sources, for example, radar and satellite, and numerical weather prediction data of short and very short term. The results indicated that most of the flood events over the study area was related to rainfall of deep convection. The use of precipitation indicators also helped the monitoring and the early warning, showing this to be an excellent tool for applications related to flash floods.
Funk, Christopher C.; Verdin, James; Adams Chavula,; Gregory J. Husak,; Harikishan Jayanthi,; Tamuka Magadzire,
2013-01-01
During 1990s, disaster risk reduction emerged as a novel, proactive approach to managing risks from natural hazards. The World Bank, USAID, and other international donor agencies began making efforts to mainstream disaster risk reduction in countries whose population and economies were heavily dependent on rain-fed agriculture. This approach has more significance in light of the increasing climatic hazard patterns and the climate scenarios projected for different hazard prone countries in the world. The Famine Early Warning System Network (FEWS NET) has been monitoring the food security issues in the sub-Saharan Africa, Asia and in Haiti. FEWS NET monitors the rainfall and moisture availability conditions with the help of NOAA RFE2 data for deriving food security status in Africa. This paper highlights the efforts in using satellite estimated rainfall inputs to develop drought vulnerability models in the drought prone areas in Malawi. The satellite RFE2 based SPI corresponding to the critical tasseling and silking phases (in the months of January, February, and March) were statistically regressed with drought-induced yield losses at the district level. The analysis has shown that the drought conditions in February and early March lead to most damage to maize yields in this region. The district-wise vulnerabilities to drought were upscaled to obtain a regional maize vulnerability model for southern Malawi. The results would help in establishing an early monitoring mechanism for drought impact assessment, give the decision makers additional time to assess seasonal outcomes, and identify potential food-related hazards in Malawi.
Long term observation of low altitude atmosphere by high precision polarization lidar
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo
2011-11-01
Prediction of weather disaster such as heavy rain and light strike is an earnest desire. Successive monitoring of the low altitude atmosphere is important to predict it. The weather disaster often befalls with a steep change in a local area. It is hard for usual meteorological equipments to capture and alert it speedily. We have been developed the near range lidar to capture and analyze the low altitude atmosphere. In this study, high precision polarization lidar was developed to observe the low altitude atmosphere. This lidar has the high extinction ratio of polarization of >30dB to detect the small polarization change of the atmosphere. The change of the polarization in the atmosphere leads to the detection of the depolarization effect and the Faraday effect, which are caused by ice-crystals and lightning discharge, respectively. As the lidar optics is "inline" type, which means common use of optics for transmitter and receiver, it can observe the near range echo with the narrow field of view. The long-term observation was accomplished at low elevation angle. It aims to monitor the low altitude atmosphere under the cloud base and capture its spatial distribution and convection process. In the viewpoint of polarization, the ice-crystals' flow and concentration change of the aerosols are monitored. The observation has been continued in the cloudy and rainy days. The thunder cloud is also a target. In this report, the system specification is explained to clear the potential and the aims. The several observation data including the long-term observation will be shown with the consideration of polarization analysis.
NASA Technical Reports Server (NTRS)
Ambrose, Stephen; Habib, Shahid
2007-01-01
NASA's spaceborne Earth and Heliospheric Observatories and airborne sensors provide a plethora of measurements. These measurements are used in science research to understand the climatology of our home planet and the solar fluxes and cycle of the only star in our solar system 'Sun' which is critical driver for the retention of life on Earth. Specifically, these measurements help us to understand the water and energy cycle, the carbon cycle, weather and climate, atmospheric chemistry, solar variability, and solid Earth and interior to feed into sophisticated mathematical models to analyze and predict the Earth's behavior as an integrated system. The main thrust of this research is on improving the prediction capability in the areas of weather, long term climate and solid Earth processes, and further help the humanity and future generations in terms of societal benefits in managing natural disasters, sustainability issues and many more. This work is further linked with our contributions in the Global Earth Observing System of Systems (GEOSS) Specifically, the data and knowledge resulting from the Earth observing systems and analytical models of the Earth can be made available for assimilation into decision support systems to serve society for disaster management. Through partnerships with national and international agencies and organizations, NASA's Science Mission Directorate's, Applied Sciences Program contributes to benchmarking practical uses of observations and predictions from Earth science remote sensing systems research. The objective is to establish innovative solutions using Earth observations and science information to provide decision support that can be adapted in applications of national and international priority. We along with the international community will continue this critical field of investigation by using our existing and future sensors from space, airborne and insitue environment. In our quest to expanding our knowledge, there will be a need for deploying additional sensors to obtain high spatial, temporal and spectral resolution measurements. These sensors operate in multiple spectral band ranging from UV, visible, infrared, microwave and radio frequency ranges. Of a particular concern is the microwave frequency bands which play a key role in land, ocean, moisture sensing. This is because of a growing commercial demand in the area of high speed broadband communication all over the world, the electronic manufacturers are looking into high frequency microwave spectral bands. This may present a risk to the remote sensing sensors because of additional sources of noise that can impair the highly sensitive passive remote sensing instruments.
NASA Astrophysics Data System (ADS)
Hong, Y.; Adler, R.; Huffman, G.
2007-12-01
Many governmental emergency management agencies or non-governmental organizations need real-time information on emerging disasters for preparedness and response. However, progress in warnings for hydrologic disasters has been constrained by the difficulty of measuring spatiotemporal variability of rainfall fluxes continuously over space and time, due largely to insufficient ground monitoring networks, long delay in data transmission and absence of data sharing protocols among many geopolitically trans-boundary basins. In addition, in-situ gauging stations are often washed away by the very floods they are designed to monitor, making reconstruction of gauges a common post-flood activity around the world. In reality, remote sensing precipitation estimates may be the only source of rainfall information available over much of the globe, particularly for vulnerable countries in the tropics where abundant extreme rain storms and severe flooding events repeat every year. Building on progress in remote sensing technology, researchers have improved the accuracy, coverage, and resolution of rainfall estimates by combining imagery from infrared, passive microwave, and weather radar sensors. Today, remote sensing imagery acquired and processed in real time can provide near-real-time rainfall fluxes at relatively fine spatiotemporal scales (kilometers to tens of kilometers and 30-minute to 3-hour). These new suites of rainfall products have the potential to support daily decision-making in analysis of hydrologic hazards. This talk will address several key issues, including remote sensing rainfall retrieval and data assimilation, for hydrologists to develop alternative satellite-based flood warning systems that may supplement in-situ infrastructure when conventional data sources are denied due to natural or administrative causes. This talk will also assess a module-structure global flood prediction system that has been running at real-time by integrating remote sensing forcing data with simplified hydrological models, in an effort to offer a practical solution to the challenge of building cost-effective flood warning systems for the data-spares regions of the world. The real-time outlook of hazardous floods will quickly disseminate through an open-access web-interface to many agencies and organizations for their daily decision-making, with the potential to save human life and reduce economic impacts. The interactive Web interface will also show close-up maps of the disaster risks overlaid on population or integrated with the Google-Earth visualization tool.
Development of sea ice monitoring with aerial remote sensing technology
NASA Astrophysics Data System (ADS)
Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei
2014-11-01
In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.
Some insights on grassland health assessment based on remote sensing.
Xu, Dandan; Guo, Xulin
2015-01-29
Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.
Some Insights on Grassland Health Assessment Based on Remote Sensing
Xu, Dandan; Guo, Xulin
2015-01-01
Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment. PMID:25643060
Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.
Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita
2014-01-29
This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.
Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging
Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita
2014-01-01
This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231
Optimization of monitoring and inspections in the life-cycle of wind turbines
NASA Astrophysics Data System (ADS)
Hanish Nithin, Anu; Omenzetter, Piotr
2016-04-01
The past decade has witnessed a surge in the offshore wind farm developments across the world. Although this form of cleaner and greener energy is beneficial and eco-friendly, the production of wind energy entails high life-cycle costs. The costs associated with inspections, monitoring and repairs of wind turbines are primary contributors to the high costs of electricity produced in this way and are disadvantageous in today's competitive economic environment. There is limited research being done in the probabilistic optimization of life-cycle costs of offshore wind turbines structures and their components. This paper proposes a framework for assessing the life cycle cost of wind turbine structures subject to damage and deterioration. The objective of the paper is to develop a mathematical probabilistic cost assessment framework which considers deterioration, inspection, monitoring, repair and maintenance models and their uncertainties. The uncertainties are etched in the accuracy and precision of the monitoring and inspection methods and can be considered through the probability of damage detection of each method. Schedules for inspection, monitoring and repair actions are demonstrated using a decision tree. Examples of a generalised deterioration process integrated with the cost analysis using a decision tree are shown for a wind turbine foundation structure.
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki
2017-04-01
A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.
[Disaster nursing and primary school teachers' disaster-related healthcare knowledge and skills].
Lai, Fu-Chih; Lei, Hsin-Min; Fang, Chao-Ming; Chen, Jiun-Jung; Chen, Bor-An
2012-06-01
The World Bank has ranked Taiwan as the 5th highest risk country in the world in terms of full-spectrum disaster risk. With volatile social, economic, and geologic environments and the real threat of typhoons, earthquakes, and nuclear disasters, the government has made a public appeal to raise awareness and reduce the impact of disasters. Disasters not only devastate property and the ecology, but also cause striking and long-lasting impacts on life and health. Thus, healthcare preparation and capabilities are critical to reducing their impact. Relevant disaster studies indicate children as a particularly vulnerable group during a disaster due to elevated risks of physical injury, infectious disease, malnutrition, and post-traumatic stress disorder. Primary school teachers are frontline educators, responders, and rehabilitators, respectively, prior to, during, and after disasters. The disaster prevention project implemented by the Taiwan Ministry of Education provides national guidelines for disaster prevention and education. However, within these guidelines, the focus of elementary school disaster prevention education is on disaster prevention and mitigation. Little guidance or focus has been given to disaster nursing response protocols necessary to handle issues such as post-disaster infectious diseases, chronic disease management, and psychological health and rehabilitation. Disaster nursing can strengthen the disaster healthcare response capabilities of school teachers, school nurses, and children as well as facilitate effective cooperation among communities, disaster relief institutes, and schools. Disaster nursing can also provide healthcare knowledge essential to increase disaster awareness, preparation, response, and rehabilitation. Implementing proper disaster nursing response protocols in Taiwan's education system is critical to enhancing disaster preparedness in Taiwan.
The History of the Coal Mining Industry and Mining Accidents in the World and Turkey
Atalay, Figen
2015-01-01
Three per thousand of the world’s coal reserves and 2% of lignite reserves exist in Turkey. Coal mining is the highest ranking industry for accidents and deaths per capita. For this reason, continuous monitoring and more attention should be gıven to the mining industry. In this review, the basic statistical data related to Turkey’s mining and mining disasters are summarized. PMID:29404107
2014-03-01
Humanitarian Assistance and Disaster Relief HTML HyperText Markup Language IA Information Assurance IAI Israel Aerospace Industries IASA Information ...decision maker at the Command and Control “mini cloud” was of upmost interest . This discussion not only confirmed the need to have information ...2) monitoring for specific cyber attacks on a specified system, (3) alerting information of interest to an operator, and finally (4) allowing the
2009-10-01
Local health departments and communities must be prepared to address gaps where the capacity of healthcare systems is exceeded. 6 The...team to identify and understand gaps in available assets. Resources evaluated included regional hospitals, plans for patient care surge capacity...Tracking certain prescription purchases can yield clues to a new disease outbreak in the community. Software to evaluate for trends can monitor
7 CFR 760.1001 - Eligible counties, disaster events, and disaster periods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Eligible counties, disaster events, and disaster..., disaster events, and disaster periods. (a) Except as provided in this subpart, FSA will provide assistance... eligible disaster events in eligible disaster counties provided in paragraph (c) of this section. (b) The...
7 CFR 760.1001 - Eligible counties, disaster events, and disaster periods.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Eligible counties, disaster events, and disaster..., disaster events, and disaster periods. (a) Except as provided in this subpart, FSA will provide assistance... eligible disaster events in eligible disaster counties provided in paragraph (c) of this section. (b) The...
7 CFR 760.1001 - Eligible counties, disaster events, and disaster periods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Eligible counties, disaster events, and disaster..., disaster events, and disaster periods. (a) Except as provided in this subpart, FSA will provide assistance... eligible disaster events in eligible disaster counties provided in paragraph (c) of this section. (b) The...
7 CFR 760.1001 - Eligible counties, disaster events, and disaster periods.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Eligible counties, disaster events, and disaster..., disaster events, and disaster periods. (a) Except as provided in this subpart, FSA will provide assistance... eligible disaster events in eligible disaster counties provided in paragraph (c) of this section. (b) The...
7 CFR 760.1001 - Eligible counties, disaster events, and disaster periods.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Eligible counties, disaster events, and disaster..., disaster events, and disaster periods. (a) Except as provided in this subpart, FSA will provide assistance... eligible disaster events in eligible disaster counties provided in paragraph (c) of this section. (b) The...
NASA Astrophysics Data System (ADS)
Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling
2018-05-01
Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.
HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.
Jeong, In Cheol; Finkelstein, Joseph
2014-01-01
Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.
Remote sensing monitoring of green tide in the Yellow Sea in 2015 based on GF-1 WFV data
NASA Astrophysics Data System (ADS)
Zheng, Xiangyu; Gao, Zhiqiang; Ning, Jicai; Xu, Fuxiang; Liu, Chaoshun; Sun, Zhibin
2016-09-01
In this paper, the green tide (Large green algae-Ulva prolifera) in the Yellow Sea in 2015 is monitored which is based on remote sensing and geographic information system technology, using GF-1 WFV data, combined with the virtual baseline floating algae height index (VB-FAH) and manual assisted interpretation method. The results show that GF-1 data with high spatial resolution can accurately monitoring the Yellow Sea Ulva prolifera disaster, the Ulva prolifera was first discovered in the eastern waters of Yancheng in May 12th, afterwards drifted from the south to the north and affected the neighboring waters of Shandong Peninsula. In early July, the Ulva prolifera began to enter into a recession, the coverage area began to decrease, by the end of August 6th, the Ulva prolifera all died.
Monitoring Of Landslide Hazard In Selected Areas Of Uzbekistan
NASA Astrophysics Data System (ADS)
Lazecky, Milan; Balaha, Pavel; Khasankhanova, Gulchekhra; Minchenko, Venscelas
2013-12-01
Republic of Uzbekistan is situated in the heart of Central Asia. Dangerous phenomena such as drought, flooding, mud flows, landslides and others, that are becoming frequent in conditions of climate changes, increase instability of an agricultural production, and threaten rural livelihoods. In connection with weather and climate natural disasters, these phenomena become reasons of declining food production, water contamination, and economical damages. Within the Project granted by NATO: Science for Peace and Security programme, modern advanced remote sensing technologies will be applied to perform large scale monitoring of (early) slope deformations, including Satellite SAR Interferometry (InSAR) techniques, Ground Laser Scanning for in-situ refinement of detected movements or Multibeam Echosounding for monitoring slope deformation advancement into water objects. First results involving InSAR processing of selected sites in Uzbekistan are presented within this contribution.
Houston, J Brian; Hawthorne, Joshua; Perreault, Mildred F; Park, Eun Hae; Goldstein Hode, Marlo; Halliwell, Michael R; Turner McGowen, Sarah E; Davis, Rachel; Vaid, Shivani; McElderry, Jonathan A; Griffith, Stanford A
2015-01-01
A comprehensive review of online, official, and scientific literature was carried out in 2012-13 to develop a framework of disaster social media. This framework can be used to facilitate the creation of disaster social media tools, the formulation of disaster social media implementation processes, and the scientific study of disaster social media effects. Disaster social media users in the framework include communities, government, individuals, organisations, and media outlets. Fifteen distinct disaster social media uses were identified, ranging from preparing and receiving disaster preparedness information and warnings and signalling and detecting disasters prior to an event to (re)connecting community members following a disaster. The framework illustrates that a variety of entities may utilise and produce disaster social media content. Consequently, disaster social media use can be conceptualised as occurring at a number of levels, even within the same disaster. Suggestions are provided on how the proposed framework can inform future disaster social media development and research. © 2014 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
[Embryo selection in IVF/ICSI cycles using time-lapse microscopy and the clinical outcomes].
Chen, Minghao; Huang, Jun; Zhong, Ying; Quan, Song
2015-12-01
To compare the clinical outcomes of embryos selected using time-lapse microscopy and traditional morphological method in IVF/ICSI cycles and evaluate the clinical value of time-lapse microscopy in early embryo monitoring and selection. e retrospectively analyzed the clinical data of 139 IVF/ICSI cycles with embryo selection based on time-lapse monitoring (TLM group, n=68) and traditional morphological method (control group, n=71). The βHCG-positive rate, clinical pregnancy rate and embryo implantation rate were compared between the 2 groups. Subgroup analysis was performed in view of female patients age and the fertilization type. The βHCG-positive rate, clinical pregnancy rate and implantation rate were 66.2%, 61.8% and 47.1% in TLM group, significantly higher than those in the control group (47.9%, 43.7% and 30.3%, respectively; P<0.05). Compared with patients below 30 years of age, patients aged between 31 and 35 years benefited more from time-lapse monitoring with improved clinical outcomes. time-lapse monitoring significantly increased the βHCG-positive rate, clinical pregnancy rate and implantation rate for patients undergoing IVF cycles, but not for those undergoing ICSI or TESA cycles. Compared with those selected using traditional morphological method, the embryos selected with time-lapse microscopy have better clinical outcomes, especially in older patients (31-35 years of age) and in IVF cycles.
USA Science and Engineering Festival 2014
2014-04-25
A NASA staff member describes the Global Precipitation Measurement Mission. The GPM Core Observatory satellite was launched into space on February 27, 2014 and will measure rain and snow worldwide every three hours. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
Monitoring Volcanoes by Use of Air-Dropped Sensor Packages
NASA Technical Reports Server (NTRS)
Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken
2003-01-01
Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is already in use in the Volcano Disaster Assistance Program (VDAP), which was developed by the U.S. Geological Survey and the U.S. Office of Foreign Disaster Assistance to respond to volcanic crises around the world. The VMSs would add a greatly needed capability that would enable VDAP response teams to deploy their volcano-monitoring equipment in a more timely manner with less risk to personnel in the field.
The CEOS Recovery Observatory Pilot
NASA Astrophysics Data System (ADS)
Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.
2015-04-01
Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.
Razaque, Abdul; Elleithy, Khaled
2015-01-01
Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes. PMID:26153768
Razaque, Abdul; Elleithy, Khaled
2015-07-06
Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.
Technical improvements for the dynamic measurement of general scour and landslides
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Su, Chih Chiang
2017-04-01
Disasters occurring near riverbeds, such as landslides, earth slides, debris flow, and general scour, are easily caused by flooding from typhoons. The occurrence of each type of disaster involves a process, so if a disaster event can be monitored in real time, hazards can be predicted, thereby enabling early warnings that could reduce the degree of loss engendered by the disaster. The study of technical improvements for the dynamic measurement of general scour and landslides could help to release these early warnings. In this study, improved wireless tracers were set up on site to ensure the feasibility of the improved measurement technology. A wireless tracer signal transmission system was simultaneously set up to avoid danger to surveyors caused by them having to be on site to take measurements. In order to understand the real-time dynamic riverbed scouring situation, after the flow path of the river was confirmed, the sites for riverbed scouring observation were established at the P30 pier of the Dajia River Bridge of National Highway No. 3, and approximately 100 m both upstream and downstream (for a total of three sites). A rainy event that caused riverbed erosion occurred in May 2015, and subsequently, Typhoons Soudelor, Goni, and Dujuan caused further erosion in the observed area. The results of the observations of several flood events revealed that wireless tracers can reflect the change in riverbed scour depth caused by typhoons and flooding in real time. The wireless tracer technique can be applied to real-time dynamic scouring observation of rivers, and these improvements in measurement technology could be helpful in preventing landslides in the future.