Sample records for discharge cathode assembly

  1. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.

  2. Hollow - cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, Jim J.; Alger, Terry W.

    1995-01-01

    Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.

  3. Hollow-cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  4. Testing and Analysis of NEXT Ion Engine Discharge Cathode Assembly Wear

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Foster, John E.; Soulas, George C.; Nakles, Michael

    2003-01-01

    Experimental and analytical investigations were conducted to predict the wear of the discharge cathode keeper in the NASA Evolutionary Xenon Thruster. The ion current to the keeper was found to be highly dependent upon the beam current, and the average beam current density was nearly identical to that of the NSTAR thruster for comparable beam current density. The ion current distribution was highly peaked toward the keeper orifice. A deterministic wear assessment predicted keeper orifice erosion to the same diameter as the cathode tube after processing 375 kg of xenon. A rough estimate of discharge cathode assembly life limit due to sputtering indicated that the current design exceeds the qualification goal of 405 kg. Probabilistic wear analysis showed that the plasma potential and the sputter yield contributed most to the uncertainty in the wear assessment. It was recommended that fundamental experimental and modeling efforts focus on accurately describing the plasma potential and the sputtering yield.

  5. Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates.

    PubMed

    Mo, Runwei; Tung, Siu On; Lei, Zhengyu; Zhao, Guangyu; Sun, Kening; Kotov, Nicholas A

    2015-05-26

    Deficiencies of cathode materials severely limit cycling performance and discharge rates of Li batteries. The key problem is that cathode materials must combine multiple properties: high lithium ion intercalation capacity, electrical/ionic conductivity, porosity, and mechanical toughness. Some materials revealed promising characteristics in a subset of these properties, but attaining the entire set of often contrarian characteristics requires new methods of materials engineering. In this paper, we report high surface area 3D composite from reduced graphene oxide loaded with LiFePO4 (LFP) nanoparticles made by layer-by-layer assembly (LBL). High electrical conductivity of the LBL composite is combined with high ionic conductivity, toughness, and low impedance. As a result of such materials properties, reversible lithium storage capacity and Coulombic efficiency were as high as 148 mA h g(-1) and 99%, respectively, after 100 cycles at 1 C. Moreover, these composites enabled unusually high reversible charge-discharge rates up to 160 C with a storage capacity of 56 mA h g(-1), exceeding those of known LFP-based cathodes, some of them by several times while retaining high content of active cathode material. The study demonstrates that LBL-assembled composites enable resolution of difficult materials engineering tasks.

  6. Process for Ignition of Gaseous Electrical Discharge Between Electrodes of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2000-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  7. Destructive physical analysis of hollow cathodes from the Deep Space 1 Flight spare ion engine 30,000 hr life test

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita

    2005-01-01

    Destructive physical analysis of the discharge and neutralizer hollow cathode assemblies from the Deep Space 1 Flight Spare 30,000 Hr life test was performed to characterize physical and chemical evidence of operationally induced effects after 30,372 hours of operation with beam extraction. Post-test inspection of the discharge-cathode assembly was subdivided into detailed analyses at the subcomponent level. Detailed materials analysis and optical inspection of the insert, orifice plate, cathode tube, heater, keeper assembly, insulator, and low-voltage propellant isolator were performed. Energy dispersive X-ray (EDX) and scanning electron microscopy (SEW analyses were used to determine the extent and composition of regions of net deposition and erosion of both the discharge and neutralizer inserts. A comparative approach with an un-operated 4:1:1 insert was used to determine the extent of impregnate material depletion as a function of depth from the ID surface and axial position from the orifice plate. Analysis results are compared and contrasted with those obtained from similar analyses on components from shorter term tests, and provide insight regarding the prospect for successful longer-term operation consistent with SOA ion engine program life objectives at NASA.

  8. Ion source design for industrial applications

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The design of broad-beam industrial ion sources is described. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, cathodes, and magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. There are other ways of designing most ion source components, but the designs presented are representative of current technology and adaptable to a wide range of configurations.

  9. Ion source design for industrial applications

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  10. System and method for mass production of graphene platelets in arc plasma

    DOEpatents

    Keidar, Michael; Shashurin, Alexey

    2017-12-12

    A system and method for producing graphene includes a discharge assembly and a substrate assembly. The discharge assembly includes a cathode and an anode, which in one embodiment are offset from each other. The anode produces a flux stream that is deposited onto a substrate. A collection device removes the deposited material from the rotating substrate. The flux stream can be a carbon vapor, with the deposited flux being graphene.

  11. Thermal Conductivity Changes Due to Degradation of Cathode Film Subjected to Charge-Discharge Cycles in a Li Ion Battery

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2018-05-01

    A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.

  12. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  13. Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR Type Ion Engine During Beam Extraction

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure downstream of the DCA, which has been proposed as a possible erosion mechanism. The data are comparable in magnitude to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts, roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a free-standing plasma double layer.

  14. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  15. Assembly of LiMnPO4 Nanoplates into Microclusters as a High-Performance Cathode in Lithium-Ion Batteries.

    PubMed

    Wang, Chao; Li, Shiheng; Han, Yuyao; Lu, Zhenda

    2017-08-23

    A novel structure of a carbon-coated LiMnPO 4 microcluster through emulsion-based self-assembly has been fabricated to yield a high-performance battery cathode. In this rational design, nanosized LiMnPO 4 plates are assembled into microclusters to achieve a dense packing and robust interparticle contact. In addition, the conductive carbon framework wrapping around these clusters functions as a fast electron highway, ensuring the high utilization of the active materials. The designed structure demonstrates enhanced specific capacity and cycling stability in lithium-ion batteries, delivering a discharge capacity of 120 mAh g -1 after 200 cycles at 0.2 C. It also shows a superior rate capability with discharge capacities of 139.7 mAh g -1 at 0.05 C, 131.7 mAh g -1 at 0.1 C, and 99.2 mAh g -1 at 1 C at room temperature.

  16. Process for testing a xenon gas feed system of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  17. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  18. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  19. Effect of cathode thickness on the performance of planar Na-NiCl 2 battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Chang, Hee Jung; Bonnett, Jeff F.

    Na-beta alumina batteries (NBBs) are one of the most promising technologies for renewable energy storage and grid applications. Commercial NBBs are typically constructed in tubular designs, primarily because of their ease of sealing. However, planar designs are considered superior to tubular designs in terms of power output, cell packing, ease of assembly, and thermal management. In this paper, the performance of planar NBBs has been evaluated at an intermediate temperature. In particular, planar Na-NiCl2 cells with different cathode loadings and thicknesses have been studied at 190oC. The effects of the cathode thickness, charging current, and discharging power output on themore » cell capacity and resistance have been investigated. More than 60% of theoretical cell capacity could be retained with constant discharging power levels of 600, 525, and 300 mW for 1x, 2x, and 3x cathode loadings, respectively. The cell resistance with 1x and 2x cathode loadings was dominated by ohmic resistance with discharging currents up to 105 mA/cm2, while for 3x cathode loading, it was primarily dominated by ohmic resistance with currents less than 66.7 mA/cm2 and by polarization resistance above 66.7 mA/cm2.« less

  20. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    PubMed

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  1. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less

  2. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    NASA Astrophysics Data System (ADS)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  3. A 20000-hour endurance test of a structurally and thermally integrated 5-cm diameter ion thruster main cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1975-01-01

    A 5-cm diameter mercury ion thruster main cathode has completed over 20,000 hours of operation in an ongoing lifetime endurance test. The cathode operating parameters remained at acceptable performance levels throughout the test, the first 9175 hours of which were part of a thruster endurance test. After 20,000 hours, the cathode discharge was easily restarted, the tip orifice indicated negligible erosion and the tip heater showed no degradation. The cathode-isolator- vaporizer assembly, a major thruster subsystem, has thus successfully demonstrated an operational lifetime capability of 20,000 hours, which is the lifetime goal of the 8-cm diameter auxiliary propulsion ion thruster.

  4. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Zhao, Yue; Ning, Xiao-Hui; Lakshmi Narayan, R.; Li, Ju; Shan, Zhi-wei

    2018-03-01

    Li-Bi based liquid metal batteries (LMBs) have attracted interest due to their potential for solving grid scale energy storage problems. In this study, the feasibility of replacing the bismuth cathode with a bismuth-antimony alloy cathode in lithium based LMBs is investigated. The influence of the Bi:Sb ratio on voltage characteristics is evaluated via the constant current discharge method and electrochemical titration. On observing the cross section of the electrode at various stages of discharge, it is determined that both Sb and Bi form solid intermetallics with Li on the cathode. Additionally, the addition of Bi not only reduces the melting temperature of the Bi:Sb intermetallic but also actively contributes to the electrode capacity. Thereafter, a Li|LiCl-LiF|Sb-Bi liquid metal battery with 3 A h nameplate capacity, assembled and cycled at 1 C rate, is found to possess a stable capacity for over 160 cycles. The overall performance of this battery is discussed in the context of cost effectiveness, energy and coulombic efficiencies.

  5. Influence of TiN coating and hydrogen glow discharge treatments on the conditioning of a direct current separator made of aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, T.; Ishimaru, H.

    1986-03-01

    The effects of hydrogen glow discharges and TiN coatings on the condit ng of a dc separator for the TRISTAN electron-positron collider were studi ed. In order to determine if high-voltage operation is possible, we teste d whether the conditioning time could be shortened if the TiN coating was applied to the separator cathode or if the entire assembly were treated in a hydrogen glow discharge. (AIP)

  6. Effect of cathode thickness on the performance of planar Na-NiCl 2 battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Chang, Hee Jung; Bonnett, Jeff F.

    Na-beta alumina batteries (NBBs) are one of the most promising technologies for renewable energy storage and grid applications. Commercial NBBs are typically constructed in tubular designs, primarily because of their ease of sealing. But, planar designs are considered superior to tubular counterparts in terms of power output, cell packing, ease of assembly, and thermal management. In this paper, the performance of planar NBBs has been evaluated at an intermediate temperature. In particular, planar Na-NiCl 2 cells with different cathode loadings and thicknesses have been studied at 190 °C. We investigated the effects of the cathode thickness, charging current, and dischargingmore » power output on the cell capacity and resistance. More than 60% of theoretical cell capacity was retained with constant discharging power levels of 200, 175, and 100 mW/cm 2 for 1x, 2x, and 3x cathode loadings, respectively. The cell resistance with 1x and 2x cathode loadings was dominated by ohmic resistance with discharging currents up to 105 mA/cm 2, while for 3x cathode loading, it was primarily dominated by ohmic resistance with currents less than 66.67 mA/cm 2 and by polarization resistance above 66.67 mA/cm 2.« less

  7. Effect of cathode thickness on the performance of planar Na-NiCl 2 battery

    DOE PAGES

    Lu, Xiaochuan; Chang, Hee Jung; Bonnett, Jeff F.; ...

    2017-10-18

    Na-beta alumina batteries (NBBs) are one of the most promising technologies for renewable energy storage and grid applications. Commercial NBBs are typically constructed in tubular designs, primarily because of their ease of sealing. But, planar designs are considered superior to tubular counterparts in terms of power output, cell packing, ease of assembly, and thermal management. In this paper, the performance of planar NBBs has been evaluated at an intermediate temperature. In particular, planar Na-NiCl 2 cells with different cathode loadings and thicknesses have been studied at 190 °C. We investigated the effects of the cathode thickness, charging current, and dischargingmore » power output on the cell capacity and resistance. More than 60% of theoretical cell capacity was retained with constant discharging power levels of 200, 175, and 100 mW/cm 2 for 1x, 2x, and 3x cathode loadings, respectively. The cell resistance with 1x and 2x cathode loadings was dominated by ohmic resistance with discharging currents up to 105 mA/cm 2, while for 3x cathode loading, it was primarily dominated by ohmic resistance with currents less than 66.67 mA/cm 2 and by polarization resistance above 66.67 mA/cm 2.« less

  8. Preparation of Layered-Spinel Microsphere/Reduced Graphene Oxide Cathode Materials for Ultrafast Charge-Discharge Lithium-Ion Batteries.

    PubMed

    Luo, Dong; Fang, Shaohua; Yang, Li; Hirano, Shin-Ichi

    2017-12-22

    Although Li-rich layered oxides (LLOs) have the highest capacity of any cathodes used, the rate capability of LLOs falls short of meeting the requirements of electric vehicles and smart grids. Herein, a layered-spinel microsphere/reduced graphene oxide heterostructured cathode (LS@rGO) is prepared in situ. This cathode is composed of a spinel phase, two layered structures, and a small amount of reduced graphene oxide (1.08 wt % of carbon). The assembly delivers a considerable charge capacity (145 mA h g -1 ) at an ultrahigh charge- discharge rate of 60 C (12 A g -1 ). The rate capability of LS@rGO is influenced by the introduced spinel phase and rGO. X-ray absorption and X-ray photoelectron spectroscopy data indicate that Cr ions move from octahedral lattice sites to tetrahedral lattice sites, and that Mn ions do not participate in the oxidation reaction during the initial charge process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium-ion battery cathode.

    PubMed

    Compton, Owen C; Abouimrane, Ali; An, Zhi; Palmeri, Marc J; Brinson, L Catherine; Amine, Khalil; Nguyen, SonBinh T

    2012-04-10

    An exfoliation-reassembly-activation (ERA) approach to lithium-ion battery cathode fabrication is introduced, demonstrating that inactive HCoO(2) powder can be converted into a reversible Li(1-x) H(x) CoO(2) thin-film cathode. This strategy circumvents the inherent difficulties often associated with the powder processing of the layered solids typically employed as cathode materials. The delamination of HCoO(2) via a combination of chemical and mechanical exfoliation generates a highly processable aqueous dispersion of [CoO(2) ](-) nanosheets that is critical to the ERA approach. Following vacuum-assisted self-assembly to yield a thin-film cathode and ion exchange to activate this material, the generated cathodes exhibit excellent cyclability and discharge capacities approaching that of low-temperature-prepared LiCoO(2) (~83 mAh g(-1) ), with this good electrochemical performance attributable to the high degree of order in the reassembled cathode. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Co-Flow Hollow Cathode Technology

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  11. Electrolytic oxide reduction system

    DOEpatents

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  12. Cathode power distribution system and method of using the same for power distribution

    DOEpatents

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  13. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ryu, Won-Hee; Lim, Sung-Jin; Kim, Won-Keun; Kwon, HyukSang

    2014-07-01

    Dumbbell-like microsphere carbonate precursors including multi-transition metal components (Ni1/3Mn1/3Co1/3CO3) assembled with nano-building blocks were synthesized by urea-assisted solvo/hydrothermal method, and layered cathode materials (LiNi1/3Mn1/3Co1/3O2) were subsequently prepared using the similarly shaped carbonate precursors for Li-ion batteries. For the synthesis of hierarchical microsphere structures, the partial addition of viscous organic solvent (e.g. ethylene glycol) in aqueous solution played a crucial role, not only in suppressing the sudden particle growth but also in regulating the directional crystallization of carbonate particles on the surface. The dumbbell-like LiNi1/3Mn1/3Co1/3O2 assembled with nanocubes prepared via the urea-assisted solvo/hydrothermal method exhibited better electrochemical characteristics, such as initial discharge capacity, cyclic performance, and rate-capability as a cathode material of Li-ion batteries, compared with the LiNi1/3Mn1/3Co1/3O2 materials prepared via the conventional co-precipitation method.

  14. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOEpatents

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  15. Surface modifications for carbon lithium intercalation anodes

    DOEpatents

    Tran, Tri D.; Kinoshita, Kimio

    2000-01-01

    A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

  16. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  17. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  18. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less

  19. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOEpatents

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2014-12-02

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  20. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE PAGES

    Zhang, Linjing; Li, Ning; Wu, Borong; ...

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li 1.2Ni 0.13Mn 0.54Co 0.13O 2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability,more » and high discharge capacities, achieving around 70% (175 mAh g–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less

  1. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries.

    PubMed

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li(1.2)Ni(0.13)Mn(0.54)Co(0.13)O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li(+) intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAh g(-1)) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  2. Results of a XIPS(copyrighted) 25-cm Thruster Discharge Cathode Wear Test

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2009-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS (c) discharge cathode assembly was subjected to a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 16079 hours were accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe, an intermediate power point at 2.76 kWe and the minimum power point at 0.49 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate and minimum power points.

  3. Ongoing Wear Test of a XIPS(c) 25-Centimeter Thruster Discharge Cathode

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2008-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS(c) discharge cathode assembly is currently undergoing a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 11080 hours have been accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe and an intermediate power point at 2.76 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate power point.

  4. A High-Performance and Recyclable Al-Air Coin Cell Based on Eco-Friendly Chitosan Hydrogel Membranes.

    PubMed

    Liu, Yisi; Sun, Qian; Yang, Xiaofei; Liang, Jianneng; Wang, Biqiong; Koo, Alicia; Li, Ruying; Li, Jie; Sun, Xueliang

    2018-05-18

    Aluminum-air batteries are a promising power supply for electronics due to its low cost and high energy density. However, portable coin-type Al-air batteries operating under ambient air condition for small electronic appliances have rarely been reported. Herein, coin cell-type Al-air batteries using cost-effective and eco-friendly chitosan hydrogel membranes modified by SiO2, SnO2, and ZnO have been prepared and assembled. The Al-air coin cell employing chitosan hydrogel membrane containing 10 wt.% SiO2 as a separator exhibits better discharge performance with a higher flat voltage plateau, longer discharge duration, and higher power density than the cells using a chitosan hydrogel membrane containing SnO2 or ZnO. Moreover, we also demonstrate that the presented Al-air coin cell can be recycled by a series of eco-friendly procedures using food grade ingredients, resulting in recycled products that are environmentally safe and ready for reuse. The Al-air coin cell adopting a recycled cathode from a fully discharged Al-air coin cell using the above-mentioned procedure has shown comparable performance to cells assembled with a new cathode. With these merits of enhanced electrochemical performance and recyclability, this new Al-air coin cell with modified chitosan hydrogel membrane can find wide applications for powering portable and small-size electronics.

  5. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  6. Investigation Of The High-Voltage Discharge On The Surface Of Gas-Liquid System

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Morgunov, Aleksandr; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    This paper describes an experimental setup for study of physical processes in the high-voltage discharge on the surface of gas-liquid system at atmospheric pressure. Measurements of electrical and optical characteristics of the high-voltage discharge in gas, at the surface of the gas-liquid system and in the electrolyte are obtained. The parameters of the high-voltage discharge and the conditions for its stable operation are presented. Investigations with various electrolytes and cathode assemblies of various materials and sizes were carried out. The installation can be used for the processing and recycling of industrial and chemical liquid waste. Professor of Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str.14, 111250, Moscow, Russia.

  7. Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2001-01-01

    The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.

  8. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  9. Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.

    2014-09-01

    In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.

  10. Novel nanodisperse composite cathode for rechargeable lithium/polymer batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Striebel, K.A.; Wen, S.J.; Ghantous, D.I.

    1997-05-01

    A novel approach to the design of a composite positive electrode for lithium/polymer cells based on a polyethylene oxide (PEO) polymer, manganese (II), and lithium hydroxide has been discovered. A chemical reaction leading to a stable suspension occurs when the precursor salts are added directly to a polymer solution. The electrode film is cast directly and then vacuum-dried with no calcination step. The film is amorphous as-prepared and has been named the nanodisperse composite cathode, or NCC. Film characterization with x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy indicates that the Mn (II) has been oxidized to Mn (IV), whichmore » forms a complex with the PEO. This leads to highly disperse Mn sites within the polymer matrix and highly mobile Li ions within the PEO. Cells have been assembled with NCC films, PEO-LiN(SO{sub 2}CF{sub 3}){sub 2} electrolyte and lithium metal, and cycled at 85 to 105 C at current densities of 0.2 mA/cm{sup 2} between the voltage limits of 3.5 and 2.0 V. Discharge capacities as high as 340 mAh/g-cathode film have been achieved on the first half-cycle. The discharge capacity declines consistently during a formation process to steady values as high as 50 mAh/g-cathode. This cathode capacity is equivalent to an active material capacity of 150 mAh/g in a composite cathode at a loading of 30 weight percent. The synthesis process for the NCC is simple, should be relatively easy to scale up, and should lead to an extremely useful composite cathode for a lithium polymer battery.« less

  11. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    PubMed

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  12. Cathode fall measurement in a dielectric barrier discharge in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2013-11-15

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  13. Evaluation of externally heated pulsed MPD thruster cathodes

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.

    1993-12-01

    Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.

  14. Evaluation of externally heated pulsed MPD thruster cathodes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.

    1993-01-01

    Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.

  15. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling

    NASA Astrophysics Data System (ADS)

    Carter, Rachel; Huhman, Brett; Love, Corey T.; Zenyuk, Iryna V.

    2018-03-01

    X-ray computed tomography (X-ray CT) across multiple length scales is utilized for the first time to investigate the physical abuse of high C-rate pulsed discharge on cells wired individually and in parallel.. Manufactured lithium iron phosphate cells boasting high rate capability were pulse power tested in both wiring conditions with high discharge currents of 10C for a high number of cycles (up to 1200) until end of life (<80% of initial discharge capacity retained). The parallel assembly reached end of life more rapidly for reasons unknown prior to CT investigations. The investigation revealed evidence of overdischarge in the most degraded cell from the parallel assembly, compared to more traditional failure in the individual cell. The parallel-wired cell exhibited dissolution of copper from the anode current collector and subsequent deposition throughout the separator near the cathode of the cell. This overdischarge-induced copper deposition, notably impossible to confirm with other state of health (SOH) monitoring methods, is diagnosed using CT by rendering the interior current collector without harm or alteration to the active materials. Correlation of CT observations to the electrochemical pulse data from the parallel-wired cells reveals the risk of parallel wiring during high C-rate pulse discharge.

  16. Extended performance technology study 30-cm thruster

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.

    1983-01-01

    The extended performance technology study was an investigation of advanced discharge chambers and thruster components that were designed to operate under conditions which result in an increase in the thrust and thrust to power ratio of the state of the art J-series thruster. The high level of performance was achieved by a discharge chamber that employs a ring cusp magnetic confinement arrangement and a three grid ion extraction assembly. It is shown that the ring cusp magnetic field geometry confines the plasma to the volume immediately adjacent to the ion extraction assembly. A high emission current hollow cathode that demonstrated operation at an emission current as high as J sub E = 40 A, and measurements which show the breakdown voltage of individual sections of the J-series propellant flow electrical isolator is about 340 V per section are investigated.

  17. Note: Measurement of the cathode layer thickness in glow discharges with a Langmuir probe

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Hou, Xinyu; Zou, Xiaobing; Luo, Haiyun; Wang, Xinxin

    2018-06-01

    A method using a Langmuir probe to determine the thickness of the cathode layer for a glow discharge is developed. The method is based on the phenomenon that the curve of the voltage-current characteristics changes in shape as the Langmuir probe moves from the positive column into the cathode layer. The method was used to measure the thicknesses of the cathode layer in the normal glow discharges of argon and air with the cathodes made from stainless steel and aluminum. The results are in good agreement with those given in a book of gas discharge.

  18. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  19. Feedback model of secondary electron emission in DC gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Saravanan, ARUMUGAM; Prince, ALEX; Suraj, Kumar SINHA

    2018-01-01

    Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input. Similarly, in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge. The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons (SEs) from the cathode surface in DC gas discharges. The average number of SEs emitted per incident ion and non ionic species (energetic neutrals, metastables and photons) which results from ion is defined as effective secondary electron emission coefficient (ESEEC,{γ }{{E}}). In this study, we derive an analytic expression that corroborates the relation between {γ }{{E}} and power influx by ion to the cathode based on the feedback theory of an amplifier. In addition, experimentally, we confirmed the typical positive feedback nature of SEE from the cathode in argon DC glow discharges. The experiment is done for three different cathode material of same dimension (tungsten (W), copper (Cu) and brass) under identical discharge conditions (pressure: 0.45 mbar, cathode bias: -600 V, discharge gab: 15 cm and operating gas: argon). Further, we found that the {γ }{{E}} value of these cathode material controls the amount of feedback power given by ions. The difference in feedback leads different final output i.e the power carried by ion at cathode ({P}{{i}}{\\prime }{| }{{C}}). The experimentally obtained value of {P}{{i}}{\\prime }{| }{{C}} is 4.28 W, 6.87 W and 9.26 W respectively for W, Cu and brass. In addition, the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.

  20. Theoretical and experimental investigation into high current hollow cathode arc attachment

    NASA Astrophysics Data System (ADS)

    Downey, Ryan T.

    This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new understanding of the mechanisms of the plasma attachment phenomena of a single-channel-hollow-cathode were extrapolated to the multi-channel-hollow-cathode environment, to explain performance characteristics of these devices seen in previous research.

  1. Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.

    PubMed

    Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen

    2018-06-07

    Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A multiple-cathode, high-power, rectangular ion thruster discharge chamber of increasing thruster lifetime

    NASA Astrophysics Data System (ADS)

    Rovey, Joshua Lucas

    Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ˜30,000 hours (˜3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years. Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55. One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime. Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects is developed to explain active DCA erosion. The near-DCA electric field pulls ions into the DCA such that they bombard and erode the keeper. Charge-exchange collisions between bombarding ions and DCA-expelled neutral atoms reduce erosion. The theory explains ion thruster long-duration wear-test results and suggests increasing propellant flow rate may eliminate or reduce DCA erosion.

  3. An experimental investigation of a hollow cathode discharge

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1971-01-01

    An experimental study of the effects of various modifications to the hollow cathode discharge region of a 20 cm electron bombardment ion thruster is presented. The introduction of electrical insulation between the main and cathode discharge regions is shown to have no significant effect on thruster performance. Adjustment of both the diameter and length of the cathode discharge region from the design condition are examined and the reduced sizes are shown to effect large improvements in propellant utilization when the thruster is operating at about 30% of the design thrust level. Performance improvements are shown to be less significant at higher thrust levels. The feasibility of using a high voltage tickler electrode to initiate the cathode-keeper discharge is considered and results obtained suggest this mode of startup is unsatisfactory.

  4. Aluminum reduction cell electrode

    DOEpatents

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  5. Aluminum reduction cell electrode

    DOEpatents

    Payne, John R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.

  6. Method of making a unitized electrode assembly

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Solomon, Frank; Niksa, Andrew J.; Schue, Thomas J.; Genodman, Yury; Turk, Thomas R.; Hagel, Daniel P.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  7. Method of making a unitized electrode assembly

    DOEpatents

    Niksa, M.J.; Pohto, G.R.; Lakatos, L.K.; Wheeler, D.J.; Solomon, F.; Niksa, A.J.; Schue, T.J.; Genodman, Y.; Turk, T.R.; Hagel, D.P.

    1988-12-06

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom. 6 figs.

  8. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  9. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  10. Binding mechanism and electrochemical properties of M13 phage-sulfur composite.

    PubMed

    Dong, Dexian; Zhang, Yongguang; Sutaria, Sanjana; Konarov, Aishuak; Chen, Pu

    2013-01-01

    Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles. Fourier transform infrared and X-ray photoelectron spectroscopy measurements indicated that the strong sulfur-binding ability of M13 phage derives from newly generated S-O and C-S bonds. Using this phage assembled sulfur composite in a lithium battery, the first discharge capacity reached 1117 mAh g(-1), which is more than twice that of the sulfur only cathode. Besides, the negative polysulfide shuttle effect in a lithium-sulfur battery was significantly suppressed.

  11. Binding Mechanism and Electrochemical Properties of M13 Phage-Sulfur Composite

    PubMed Central

    Dong, Dexian; Zhang, Yongguang; Sutaria, Sanjana; Konarov, Aishuak; Chen, Pu

    2013-01-01

    Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles. Fourier transform infrared and X-ray photoelectron spectroscopy measurements indicated that the strong sulfur-binding ability of M13 phage derives from newly generated S-O and C-S bonds. Using this phage assembled sulfur composite in a lithium battery, the first discharge capacity reached 1117 mAh g-1, which is more than twice that of the sulfur only cathode. Besides, the negative polysulfide shuttle effect in a lithium-sulfur battery was significantly suppressed. PMID:24324560

  12. Hollow cathode startup using a microplasma discharge

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    Attention is given to a microplasma discharge to initiate a hollow cathode discharge for such applications as plasma flow experiments, the electric propulsion of space vehicles, and as a replacement for filament cathodes in neutral beam injector ion sources. The technique results in a cathode that is easy to start, simple in design, and which does not require external RF exciters, inserts or heating elements. Future applications may include ion beam milling and ion implantation.

  13. Foundations of DC plasma sources

    NASA Astrophysics Data System (ADS)

    Tomas Gudmundsson, Jon; Hecimovic, Ante

    2017-12-01

    A typical dc discharge is configured with the negative cathode at one end and a positive anode at the other end, separated by a gas filled gap, placed inside a long glass cylinder. A few hundred volts between the cathode and anode is required to maintain the discharge. The type of discharge that is formed between the two electrodes depends upon the pressure of the working gas, the nature of the working gas, the applied voltage and the geometry of the discharge. We discuss the current-voltage characteristics of the discharge as well as the distinct structure that develops in the glow discharge region. The dc glow discharge appears in the discharge current range from μA to mA at 0.5-300 Pa pressure. We discuss the various phenomena observed in the dc glow discharge, including the cathode region, the positive column, and striations. The dc glow discharge is maintained by the emission of secondary electrons from the cathode target due to the bombardment of ions. For decades, the dc glow discharge has been used as a sputter source. Then it is often operated as an obstructed abnormal glow discharge and the required applied voltage is in the range 2-5 kV. Typically, the cathode target (the material to be deposited) is connected to a negative voltage supply (dc or rf) and the substrate holder faces the target. The relatively high operating pressure, in the range from 2 to 4 Pa, high applied voltages, and the necessity to have a conductive target limit the application of dc glow discharge as a sputter source. In order to lower the discharge voltage and expand the operation pressure range, the lifetime of the electrons in target vicinity is increased through applying magnetic field, by adding permanent magnets behind the cathode target. This arrangement is coined the magnetron sputtering discharge. The various configurations of the magnetron sputtering discharge and its applications are described. Furthermore, the use of dc discharges for chemical analysis, the Penning discharge and the hollow cathode discharges and some of its applications are briefly discussed.

  14. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081; Xie, Kan, E-mail: xiekan@bit.edu.cn

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation ofmore » positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.« less

  15. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    NASA Astrophysics Data System (ADS)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  16. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  17. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.

    1995-01-01

    A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.

  18. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors.

    PubMed

    Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong

    2013-08-28

    This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.

  19. MULTI-ELECTRODE TUBE PULSE MEMORY CIRCUIT

    DOEpatents

    Gundlach, J.C.; Reeves, J.B.

    1958-05-20

    Control circuits are described for pulse memory devices for scalers and the like, and more particularly to a driving or energizing circuit for a polycathode gaseous discharge tube having an elongated anode and a successive series of cathodes spaced opposite the anode along its length. The circuit is so arranged as to utilize an arc discharge between the anode and a cathode to count a series of pulses. Upon application of an input pulse the discharge is made to occur between the anode and the next successive cathode, and an output pulse is produced when a particular subsequent cathode is reached. The circuit means for transfering the discharge by altering the anode potential and potential of the cathodes and interconnecting the cathodes constitutes the novel aspects of the invention. A low response time and reduced number of circuit components are the practical advantages of the described circuit.

  20. Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huali; Bai, Ying; Chen, Shi

    This letter reports on the investigation of a binder-free cathode material to be used in rechargeable aluminum batteries. This cathode is synthesized by directly depositing V2O5 on a Ni foam current collector. Rechargeable aluminum coin cells fabricated using the as-synthesized binder-free cathode delivered an initial discharge capacity of 239 mAh/g, which is much higher than that of batteries fabricated using a cathode composed of V2O5 nanowires and binder. An obvious discharge voltage plateau appeared at 0.6 V in the discharge curves of the Ni–V2O5 cathode, which is slightly higher than that of the V2O5 nanowire cathodes with common binders. Thismore » improvement is attributed to reduced electrochemical polarization.« less

  1. Functional Testing of the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-01-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  2. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    PubMed

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  3. Study of a DC gas discharge with a copper cathode in a water flow

    NASA Astrophysics Data System (ADS)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  4. Note: Arc discharge plasma source with plane segmented LaB{sub 6} cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmetov, T. D., E-mail: t.d.akhmetov@inp.nsk.su; Davydenko, V. I.; Ivanov, A. A.

    2016-05-15

    A plane cathode composed of close-packed hexagonal LaB{sub 6} (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.

  5. Chalcogen catalysts for polymer electrolyte fuel cell

    DOEpatents

    Alonso-Vante, Nicolas [Buxerolles, FR; Zelenay, Piotr [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Wieckowski, Andrzej [Champaign, IL; Cao, Dianxue [Urbana, IL

    2009-09-15

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  6. Chalcogen catalysts for polymer electrolyte fuel cell

    DOEpatents

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  7. High rate lithium/thionyl chloride bipolar battery development

    NASA Technical Reports Server (NTRS)

    Russell, Philip G.; Goebel, F.

    1994-01-01

    Presented in viewgraph format are results and accomplishments on the development of lithium/thionyl chloride bipolar batteries. Results include the development of manufacturing capability for producing large quantities of uniform cathodes and bipolar plates; the development of assembly, sealing, and activation procedures for fabrication of battery modules containing up to 150 cells in bipolar configuration; and the successful demonstration of a 10.7 kW 150-cell module with constant power pulse discharge, 20 second pulse, and 10 percent duty cycle.

  8. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can bemore » assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.« less

  9. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE PAGES

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; ...

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (L i2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li 2S is synthesized by reacting hydrogen sulfide (H 2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H 2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li 2Smore » nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li 2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li 2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, Yu. D.; Landl, N. V., E-mail: landl@lnp.hcei.tsc.ru; Geyman, V. G.

    Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode dischargemore » is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current−voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.« less

  11. Experimental study of the electric field in a hollow cathode discharge in hydrogen: influence of sputtering

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, V.; Grützmacher, K.; Pérez, C.; de la Rosa, M. I.

    2017-11-01

    Doppler-free two photon optogalvanic spectroscopy was employed in extensive studies to measure the electric field strength in the cathode fall region of a hollow cathode discharge (HCD), operated in pure hydrogen, via the Stark splitting of the 2S level of atomic hydrogen. The high quality measurements, based on an improved cathode design and laser spectroscopic set-up, reveal clear differences in the recorded spectra obtained for different cathode material (stainless steel and tungsten) at otherwise identical discharge conditions. It is well known, that the sputtering rate of tungsten is about four orders of magnitude less compared to stainless steel; hence the hydrogen plasma in front of the stainless steel cathode is much more contaminated by iron compared to tungsten. This study is focussed on analyzing the distortion of the spectra, i.e. the corresponding local electric field strength, depending on cathode material and laser power. We refer the more pronounced distortion of the spectra in case of a stainless steel cathode to the related large contamination of the hydrogen plasma due to atomic iron which is also expanding into the central discharge. Spectra recorded for different laser power, i.e. different spectral irradiance, allow verifying spectroscopic conditions, where the distortion of the spectra becomes quite negligible even for stainless steel cathode.

  12. Plasmatic ion source

    NASA Astrophysics Data System (ADS)

    Semenov, A. P.

    1986-02-01

    A plasmatic ion source was built in which the hollow cathode above the two discharge chamber cathodes is readily replaced upon depletion after 250 to 300 h. The emission outlet hole is restored to original size by replacement of the cathode insert, while gas is continuously admitted by means of a spring mechanism. The source operates in the Penning discharge mode, with argon as the working gas. The hollow cathode is 36 mm long and has an inside diameter of 4 mm. The other two cathodes serve as pole shoes of a toroidal ferrite magnet which produces a longitudinal magnet field of 0.1 T induction in the discharge chamber. All three cathodes are made of magnetic steel and are insulated from cylindrical copper anode by teflon spacers. Heat is dissipated by oil, which carries it away to a water cooled housing compartment. The source generates an ion emission current of 20 mA with a discharge current of 200 mA at a pull voltage of 20kV.

  13. Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Johnson, Lee K.; Goebel, Dan M.; Fitzgerald, Dennis J.

    2006-01-01

    The effects of cathode position on the plume properties of an 8 kW BHT-8000 Busek Hall thruster are discussed. Experiments were conducted at the Jet Propulsion Laboratory (JPL) in a vacuum chamber suitable for the development and qualification of high-power Hall thrusters. Multi-mode Hall thruster operation was demonstrated at operating conditions ranging from 200-500 V discharge voltage, 10-40 A discharge current, and 2-8 kW discharge power. Reductions in plume divergence and increased near-field plume symmetries were found to result from the use of an internally-mounted cathode instead of the traditional externally-mounted configuration. High-current hollow cathodes developed at JPL utilizing lanthanum hexaboride (LaB6) emitters were also demonstrated. Discharge currents up to 100 A were achieved with the cathode operating alone and up to 40 A during operation with the Hall thruster. LaB6 cathodes were investigated because of their potential to reduce overall system cost and risk due to less stringent xenon purity and handling requirements.

  14. Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yanglin; Wang, Yaping; Zhang, Yifang; Liang, Shuquan; Pan, Anqiang

    2016-12-01

    Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvothermal solution. As cathode materials for lithium-ion batteries, the nanosheet-assembled V2O5/graphene composite exhibits better rate capability and long-term cycling stability. The V2O5/graphene composites can deliver discharge capacities of 133, 131, and 122 mAh g-1 at 16 C, 32 C, and 64 C, respectively, in the voltage range of 2.5-4.0 V vs. Li/Li+. Moreover, the electrodes can retain 85% of their original capacity at 1C rate after 500 cycles. The superior electrochemical performances are attributed to the porous structures created by the connected V2O5 nanosheets and the electron conductivity improvement by graphene.

  15. A Penning discharge source for extreme ultraviolet calibration

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    A Penning discharge lamp for use in the calibration of instruments and components for the extreme ultraviolet has been developed. This source is sufficiently light and compact to make it suitable for mounting on the movable slit assembly of a grazing incidence Rowland circle monochromator. Because this is a continuous discharge source, it is suitable for use with photon counting detectors. Line radiation is provided both by the gas and by atoms sputtered off the interchangeable metal cathodes. Usable lines are produced by species as highly ionized as Ne IV and Al V. The wavelength coverage provided is such that a good density of emission lines is available down to wavelengths as short as 100A. This source fills the gap between 100 and 300A, which is inadequately covered by the other available compact continuous radiation sources.

  16. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.20 Cold-cathode gas... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... cathode. Exit beam means that portion of the radiation which passes through the aperture resulting from...

  17. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    PubMed

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  18. Atmospheric pressure arc discharge with ablating graphite anode

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  19. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOEpatents

    Scarpetti, R.D. Jr.; Parkison, C.D.; Switzer, V.A.; Lee, Y.J.; Sawyer, W.C.

    1995-05-16

    A compact, high power electron gun is disclosed having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the ``triple point`` where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques. 12 Figs.

  20. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  1. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Onufriyev, Valery. V.

    2001-02-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient-γi with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure pcs) and cathode temperature Tk is constant too (Ub=constant with Tk=constant and pcs=constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-pcs and cathode temperature-Tk and is independent on IEG length-Δieg. On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly-the region of excited atoms-``Aston glow.'' .

  2. Applicability of the Child-Langmuir laws versions for describing the glow discharge cathode sheath in CO2

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Krol, Hennadii; Osmayev, Ruslan; Yegorenkov, Vladimir

    2016-09-01

    This work is devoted to the determination of the law that may be applicable to the description of the cathode sheath in CO2. To this end three versions of the Child-Langmuir law have been considered - a collision free one (for the ions moving through a cathode sheath without collisions with gas molecules) as well as two collision- related versions- one for a constant mean free path of positive ions and one for a constant mobility of positive ions. The current-voltage characteristics and the cathode sheath thickness of the glow discharge in carbon oxide have been simultaneously measured in the pressure range from 0.05 to 1 Torr and with the discharge current values up to 80 mA. The inter-electrode distance has been chosen such that the discharge consists only of the cathode sheath and a small portion of the negative glow, i.e. the experiments have been performed in short tubes. In this case the voltage drop across the cathode sheath is equal approximately to the voltage drop across the electrodes. In the whole range of the discharge conditions we have studied the cathode sheath characteristics are found to obey correctly only to the Child-Langmuir law version with a constant ion mobility. The reason for this phenomenon may be related with a significant conversion of carbon dioxide molecules.

  3. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  4. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, Joseph D.

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  5. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  6. Cluster generator

    DOEpatents

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  7. Efficiency of lithium pacemaker batteries as a function of discharge rate and iodine:P2VP cathode composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helgeson, W.D.; Fester, K.E.

    1980-01-01

    Electrochemical discharge data for Li/I/sub 2/-P2VP pacemaker batteries at various discharge currents show the efficiency of the battery to be a function of discharge current. Depending on the iodine:P2VP cathode composition, the optimum current drain occurs between discharge currents of 100 to 200 /mu/a. As current drain is reduced to pacemaker application drains, 15-25 /mu/a, the efficiency of the Li/I/sub 2/-P2VP battery decreases. The loss in efficiency at pacemaker rates is attributed primarily to self-discharge. The efficiency of Li/I/sub 2/-P2VP batteries is improved by increasing the percent of iodine in the cathode. I/sub 2/:P2VP weight ratios of 10:1, 15:1 andmore » 20:1 have been discharged at various currents and the data indicate that there is significant improvement in efficiency at pacemaker rate in going from 10:1 to 20:1 cathode weight ratio. 2 refs.« less

  8. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  9. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  10. Quantitative Analysis of Electrochemical and Electrode Stability with Low Self-Discharge Lithium-Sulfur Batteries

    DOE PAGES

    Chung, Sheng-Heng; Han, Pauline; Manthiram, Arumugam

    2017-06-07

    The viability of employing high-capacity sulfur cathodes in building high-energy-density lithium-sulfur batteries is limited by rapid self-discharge, short shelf life, and severe structural degradation during cell resting (static instability). Unfortunately, the static instability has largely been ignored in the literature. We present in this letter a longterm self-discharge study by quantitatively analyzing the control lithium-sulfur batteries with a conventional cathode configuration, which provides meaningful insights into the cathode failure mechanisms during resting. Lastly, utilizing the understanding obtained with the control cells, we design and present low self-discharge (LSD) lithium-sulfur batteries for investigating the long-term self-discharge effect and electrode stability.

  11. Quantitative Analysis of Electrochemical and Electrode Stability with Low Self-Discharge Lithium-Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sheng-Heng; Han, Pauline; Manthiram, Arumugam

    The viability of employing high-capacity sulfur cathodes in building high-energy-density lithium-sulfur batteries is limited by rapid self-discharge, short shelf life, and severe structural degradation during cell resting (static instability). Unfortunately, the static instability has largely been ignored in the literature. We present in this letter a longterm self-discharge study by quantitatively analyzing the control lithium-sulfur batteries with a conventional cathode configuration, which provides meaningful insights into the cathode failure mechanisms during resting. Lastly, utilizing the understanding obtained with the control cells, we design and present low self-discharge (LSD) lithium-sulfur batteries for investigating the long-term self-discharge effect and electrode stability.

  12. Ion and neutral energy flux distributions to the cathode in glow discharges in Ar/Ne and Xe/Ne mixtures

    NASA Astrophysics Data System (ADS)

    Capdeville, H.; Pédoussat, C.; Pitchford, L. C.

    2002-02-01

    The work presented in the article is a study of the heavy particle (ion and neutral) energy flux distributions to the cathode in conditions typical of discharges used for luminous signs for advertising ("neon" signs). The purpose of this work is to evaluate the effect of the gas mixture on the sputtering of the cathode. We have combined two models for this study: a hybrid model of the electrical properties of the cathode region of a glow discharge and a Monte Carlo simulation of the heavy particle trajectories. Using known sputtering yields for Ne, Ar, and Xe on iron cathodes, we estimate the sputtered atom flux for mixtures of Ar/Ne and Xe/Ne as a function of the percent neon in the mixture.

  13. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.

  14. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  15. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatin, I. V., E-mail: lopatin@opee.hcei.tsc.ru; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. Whenmore » the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)« less

  16. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  17. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP).

    PubMed

    Forney, Michael W; Ganter, Matthew J; Staub, Jason W; Ridgley, Richard D; Landi, Brian J

    2013-09-11

    Stabilized lithium metal powder (SLMP) has been applied during battery assembly to effectively prelithiate high capacity (1500-2500 mAh/g) silicon-carbon nanotube (Si-CNT) anodes, eliminating the 20-40% first cycle irreversible capacity loss. Pressure-activation of SLMP is shown to enhance prelithiation and enable capacity matching between Si-CNT anodes and lithium nickel cobalt aluminum oxide (NCA) cathodes in full batteries with minimal added mass. The prelithiation approach enables high energy density NCA/Si-CNT batteries achieving >1000 cycles at 20% depth-of-discharge.

  18. Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.

  19. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  20. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  1. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  2. Nanofiber membrane-electrode-assembly and method of fabricating same

    DOEpatents

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2016-02-02

    In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.

  3. Low resistance, low-inductance power connectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony

    An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less

  4. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  5. Gas ion laser construction for electrically isolating the pressure gauge thereof

    NASA Technical Reports Server (NTRS)

    Wood, C. E.; Witte, R. S. (Inventor)

    1975-01-01

    The valve and the pressure gauge of a gas ion laser were electrically insulated from the laser discharge path by connecting them in series with the cathode of the laser. The laser cathode can be grounded and preferably is a cold cathode although a hot cathode may be used instead. The cold cathode was provided with a central aperture to which was connected both the pressure gauge and the gas pressure reservoir through the valve. This will effectively prevent electric discharges from passing either to the pressure gauge or the valve which would otherwise destroy the pressure gauge.

  6. Al13-pillared anatase TiO2 as a cathode for a lithium battery

    NASA Astrophysics Data System (ADS)

    Sun, X. D.; Ma, C. L.; Wang, Y. D.; Li, H. D.

    2004-11-01

    Al13-pillared anatase TiO2 is used as a cathode of a lithium battery for the first time. First, a layered titanium dioxide with cationic surfactant ions of cetyltrimethylammonium (CTA+) in the interlayers is synthesized by self-assembly. Then, pillared TiO2 is obtained by exchange of polyoxo cations of aluminium, [Al13O4(OH)24(H2O)12]7+, with CTA+ and subsequent calcination at 300 °C for 1 h in the air. Powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and surface area (BET) methods are used to characterize the layered and pillared forms of titanium dioxide. A lithium battery with the Al13-pillared TiO2 as the cathode and Li metal foil as the anode is studied within the 1-2.2 V voltage range. The specific capacity of the closed button cell (size 2025) that is delivered on the initial discharge reached 191.4 mA h g-1 at the rate of 25 mA g-1. The cell shows good cycling performance over 50 cycles.

  7. Targeted partial surface modification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs

    NASA Astrophysics Data System (ADS)

    Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun

    2017-10-01

    Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.

  8. Advanced space propulsion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1981-01-01

    Experiments showed that stray magnetic fields can adversely affect the capacity of a hollow cathode neutralizer to couple to an ion beam. Magnetic field strength at the neutralizer cathode orifice is a crucial factor influencing the coupling voltage. The effects of electrostatic accelerator grid aperture diameters on the ion current extraction capabilities were examined experimentally to describe the divergence, deflection, and current extraction capabilities of grids with the screen and accelerator apertures displaced relative to one another. Experiments performed in orificed, mercury hollow cathodes support the model of field enhanced thermionic electron mission from cathode inserts. Tests supported the validity of a thermal model of the cathode insert. A theoretical justification of a Saha equation model relating cathode plasma properties is presented. Experiments suggest that ion loss rates to discharge chamber walls can be controlled. A series of new discharge chamber magnetic field configurations were generated in the flexible magnetic field thruster and their effect on performance was examined. A technique used in the thruster to measure ion currents to discharge chamber walls is described. Using these ion currents the fraction of ions produced that are extracted from the discharge chamber and the energy cost of plasma ions are computed.

  9. SPECTROSOCPIC STUDIES OF IONIZATION IN A HOLLOW-CATHODE DISCHARGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, K.B.

    1961-08-01

    The influence of carrier gas, carrier gas pressure, cathode geometry, and discharge current on the ionization of metal atoms in a hollow-cathode discharge was studied in some detail. Most of these studies were raade with an iron hollowcathode discharge. A measure of ionization was obtained from the intensity ratio of a line of the second to a line of the first spectrum. In general, this ratio was found to increase with carrier gas pressure and discharge current. This ratio also increased with increasing cathode bcre diameter but decreased with increasing bcre length. This ratio for iron was greatly affected bymore » the use of different inert carrier gases. Of the five common inert gases used, xenon produced the largest value for this ratio and argon produced the smallest. The results of these studies indicated this may be a new method for distinguishing between lines emitted by the neutral atom and lines of the singly ionized atom. (auth)« less

  10. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life.

    PubMed

    Braga, Maria Helena; M Subramaniyam, Chandrasekar; Murchison, Andrew J; Goodenough, John B

    2018-05-23

    A room-temperature all-solid-state rechargeable battery cell containing a tandem electrolyte consisting of a Li + -glass electrolyte in contact with a lithium anode and a plasticizer in contact with a conventional, low cost oxide host cathode was charged to 5 V versus lithium with a charge/discharge cycle life of over 23,000 cycles at a rate of 153 mA·g -1 of active material. A larger positive electrode cell with 329 cycles had a capacity of 585 mAh·g -1 at a cutoff of 2.5 V and a current of 23 mA·g -1 of the active material; the capacity rose with cycle number over the 329 cycles tested during 13 consecutive months. Another cell had a discharge voltage from 4.5 to 3.7 V over 316 cycles at a rate of 46 mA·g -1 of active material. Both the Li + -glass electrolyte and the plasticizer contain electric dipoles that respond to the internal electric fields generated during charge by a redistribution of mobile cations in the glass and by extraction of Li + from the active cathode host particles. The electric dipoles remain oriented during discharge to retain an internal electric field after a discharge. The plasticizer accommodates to the volume changes in the active cathode particles during charge/discharge cycling and retains during charge the Li + extracted from the cathode particles at the plasticizer/cathode-particle interface; return of these Li + to the active cathode particles during discharge only involves a displacement back across the plasticizer/cathode interface and transport within the cathode particle. A slow motion at room temperature of the electric dipoles in the Li + -glass electrolyte increases with time the electric field across the EDLC of the anode/Li + -glass interface to where Li + from the glass electrolyte is plated on the anode without being replenished from the cathode, which charges the Li + -glass electrolyte negative and consequently the glass side of the Li + -glass/plasticizer EDLC. Stripping back the Li + to the Li + -glass during discharge is enhanced by the negative charge in the Li + -glass. Since the Li + -glass is not reduced on contact with metallic lithium, no passivating interface layer contributes to a capacity fade; instead, the discharge capacity increases with cycle number as a result of dipole polarization in the Li + -glass electrolyte leading to a capacity increase of the Li + -glass/plasticizer EDLC. The storage of electric power by both faradaic electrochemical extraction/insertion of Li + in the cathode and electrostatic stored energy in the EDLCs provides a safe and fast charge and discharge with a long cycle life and a greater capacity than can be provided by the cathode host extraction/insertion reaction. The cell can be charged to a high voltage versus a lithium anode because of the added charge of the EDLCs.

  11. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  12. Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration

    2016-09-01

    Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.

  13. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observedmore » that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.« less

  14. Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Layman, R. W.

    1977-01-01

    Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.

  15. Effects of discharge parameters on the micro-hollow cathode sustained glow discharge

    NASA Astrophysics Data System (ADS)

    Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI

    2018-05-01

    The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.

  16. Lithium thionyl chloride high rate discharge

    NASA Technical Reports Server (NTRS)

    Klinedinst, K. A.

    1980-01-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  17. Temporal response of a surface flashover on a velvet cathode in a relativistic diode

    DOE PAGES

    Coleman, J. E.; Moir, D. C.; Crawford, M. T.; ...

    2015-03-11

    Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. Our objective is to quantify the dynamics over the ~100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. We present a qualitative comparison of calculated and measured results, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. Additionally, initial visible spectroscopy measurements will also be presentedmore » confirming the ion species are dominated by hydrogen.« less

  18. The hollow cathode in the quasi-steady MPD discharge

    NASA Technical Reports Server (NTRS)

    Von Jaskowsky, W. F.; Jahn, R. G.; Clark, K. E.; Krishnan, M.

    1973-01-01

    A large hollow cathode has been operated in a quasi-steady MPD discharge over a range of current from 7 to 30 kA and argon mass flow from 0.04 to 6.0 g/sec. The 1.3-cm-i.d. cathode cavity attains steady emission characteristics in some tens of microseconds without the assistance of auxiliary heating, low work function inserts, or external keeper electrodes. Measured current and potential distributions within the cavity reveal that the current attaches in a zone 1 to 2 cm long with a surface current density greater than 1000 A/sq cm and a local axial electric field less than 10 V/cm. Electron densities within the cavity, estimated from spectroscopic records, are above 10 to the 17th power per cu cm, at least one order of magnitude greater than has been reported for either ion engine hollow cathodes or conventional solid cathodes in similar arc discharges.

  19. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  20. Macroparticle generation in DC arc discharge from a WC cathode

    NASA Astrophysics Data System (ADS)

    Zhirkov, Igor; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2017-03-01

    We have studied macroparticle generation from a tungsten carbide cathode used in a dc vacuum arc discharge. Despite a relatively high decomposition/melting point (˜3100 K), there is an intensive generation of visible particles with sizes in the range 20-35 μm. Visual observations during the discharge and scanning electron microscopy of the cathode surface and of collected macroparticles indicate a new mechanism for particle formation and acceleration. Based on the W-C phase diagram, there is an intensive sublimation of carbon from the melt resulting from the cathode spot. The sublimation supports the formation of a sphere, which is accelerated upon an explosion initiated by Joule heating at the critical contact area between the sphere and the cathode body. The explosive nature of the particle acceleration is confirmed by surface features resembling the remains of a splash on the droplet surface.

  1. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  2. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  3. Electrorefiner system for recovering purified metal from impure nuclear feed material

    DOEpatents

    Berger, John F.; Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.

    2015-10-06

    An electrorefiner system according to a non-limiting embodiment of the present invention may include a vessel configured to maintain a molten salt electrolyte and configured to receive a plurality of alternately arranged cathode and anode assemblies. The anode assemblies are configured to hold an impure nuclear feed material. Upon application of the power system, the impure nuclear feed material is anodically dissolved and a purified metal is deposited on the cathode rods of the cathode assemblies. A scraper is configured to dislodge the purified metal deposited on the cathode rods. A conveyor system is disposed at a bottom of the vessel and configured to remove the dislodged purified metal from the vessel.

  4. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    DOEpatents

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  5. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dixon, Sam; Charles, Christine; Dedrick, James; Gans, Timo; O'Connell, Deborah; Boswell, Rod

    2014-07-01

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer α emission from the discharge. The low emission mode is consistent with a typical γ discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H2 gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  6. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-01

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10-100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  7. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals. It was found that the solid electrolyte films became discolored within seconds after they were placed in contact with the cathodes - a result of facile diffusion of iodine through the solid electrolyte material (see figure).

  8. Investigation of the Discharge Characteristics of the T6 Hollow Cathode Operating on Several Inert Gases and a Kr/Xe Mixture

    NASA Astrophysics Data System (ADS)

    Ahmed Rudwan, M.; Gabriel, S. B.

    2002-01-01

    Investigation of the discharge characteristics of the T6 hollow cathode operating on several inert Xenon is currently the propellant of choice for gridded ion thrusters. But in order to make deep space missions feasible, an increase in the Specific Impulse (SI) that these thrusters can achieve is necessary. One method of achieving this is to use a propellant with a lower atomic mass (e.g. argon), as the propellant exhaust velocity is inversely proportional to the square root of the propellant mass. However, the feasibility of operating the hollow cathode using these alternative propellants has to be demonstrated. Moreover, interest in decreasing the propellant cost in missions and ground testing (especially life tests) have led to the comprehensive discharge characterisation of several gases that will be presented in this paper. A Kr/Xe mixture in the naturally occurring ratio, for example, could offer a 15 times cost saving when compared to pure xenon and 2-3 times cost saving when compared to pure krypton. The T6 hollow cathode discharge behaviour as well as its initiation characteristics have been studied. The tests were carried out in diode configuration using a T6 hollow cathode with an enclosed keeper design employing xenon, krypton, argon and a Kr/Xe mix. The discharge initiation tests were undertaken with a view to investigate some of the factors thought to influence the starting potential such as mass flow rate and tip temperature. It was found that, for mass flow rates ranging from 0.2-1.1 mg/s and cathode tip temperatures ranging from 900-1300oC, the breakdown potential was less than 50V for argon, less than 25V for krypton, less than 21V for xenon and less than 35V for the Kr/Xe mix. The discharge initiation results were then compared to those obtained by Fearn et al. with a T5 cathode operating on mercury and with a T6 cathode utilising an open keeper design using xenon propellant. The xenon breakdown potentials were found to be lower than those obtained with an open keeper design by as much as 4V. Steady state discharge behaviour was also investigated in a range of operating conditions. Spot to plume mode transitions were observed in argon, krypton and Kr/Xe discharges for the first time.

  9. Rate Dependency of Silver Vanadium Phosphorous Oxide Reduction

    NASA Astrophysics Data System (ADS)

    Cheng, Po-Jen

    2011-12-01

    The silver vanadium phosphorus oxide (Ag2VO2PO 4) is a high-capacity and good-compatibility material for the cathode in the battery. Due to their innovative properties, they are used as cathode in lithium batteries. Therefore, when the lithium batteries begin to discharge, the anodes of the cell perform an electrochemical oxidation and release electrons. In the mean time, the cathodes in the cells perform the electrochemical reduction and catch the electrons. For reduction of Ag2VO2PO 4, two silver ions (Ag+) catch two electrons to form silver particles, and the vanadium ions (V5+) catch two electrons to form V3+. It means that four electrons will be released by lithium anode. We call this four electrons discharge as 100% discharge. In my most of the projects, the Ag2VO2PO4 material is tested by differential scanning calorimetry (DSC) to check purity. My study is based on the discharge of batteries, and I focus on the morphology and the intensity of silver particles on the cathode after discharge. Depending on different adjustment of factors, such as discharge time, discharge rate, storage time, storage temperature, I try to investigate the silver intensity, conductivity as a function of DOD (Depth of Discharge). The silver particles could be examined by optical microscope, and scanning electron microscope (SEM). Moreover, I do some x-ray diffraction analysis to quantify the silver particles after discharge. Also, I perform magnetic susceptibility measurement to check the mechanism of the reduction of vanadium ions. Under the research on silver ions and vanadium ions, I will know a big frame of reduction process on silver vanadium phosphorous oxide and the time effect on this cathode material.

  10. Microanalysis of extended-test xenon hollow cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Patterson, Michael J.

    1991-01-01

    Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.

  11. Ecton processes in the generation of pulsed runaway electron beams in a gas discharge

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.

    2017-09-01

    As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

  12. Inert gas rejection device for zinc-halogen battery systems

    DOEpatents

    Hammond, Michael J.; Arendell, Mark W.

    1981-01-01

    An electrolytic cell for separating chlorine gas from other (foreign) gases, having an anode, a cathode assembly, an aqueous electrolyte, a housing, and a constant voltage power supply. The cathode assembly is generally comprised of a dense graphite electrode having a winding channel formed in the face opposing the anode, a gas impermeable (but liquid permeable) membrane sealed into the side of the cathode electrode over the channel, and a packing of graphite particles contained in the channel of the cathode electrode. The housing separates and parallelly aligns the anode and cathode assembly, and provides a hermetic seal for the cell. In operation, a stream of chlorine and foreign gases enters the cell at the beginning of the cathode electrode channel. The chlorine gas is dissolved into the electrolyte and electrochemically reduced into chloride ions. The chloride ions disfuse through the gas impermeable membrane, and are electrochemically oxidized at the anode into purified chlorine gas. The foreign gases do not participate in the above electrochemical reactions, and are vented from the cell at the end of the cathode electrode channel.

  13. Lithium-Polymer battery based on polybithiophene as cathode material

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wang, J.; Wang, C.; Too, C. O.; Wallace, G. G.

    Stainless-steel mesh electrodes coated with polybithiophene, obtained by electrochemical polymerization (constant potential and constant current), have been investigated as cathode materials in a lithium-polybithiophene rechargeable battery by cyclic voltammetry, electrochemical impedance spectroscopy and long-term charge-discharge cycling process. The effects of different growth methods on the surface morphology of the films and the charge-discharge capacity are discussed in detail. The results show that polybithiophene-hexafluorophosphate is a very promising cathode material for manufacturing lithium-polymer rechargeable batteries with a highly stable discharge capacity of 81.67 mAh g -1 after 50 cycles.

  14. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less

  15. Langmuir Probe Analysis of Maser-Driven Alfven Waves Using New LaB6 Cathode in LaPD

    NASA Astrophysics Data System (ADS)

    Clark, Mary; Dorfman, Seth; Zhu, Ziyan; Rossi, Giovanni; Carter, Troy

    2015-11-01

    Previous research in the Large Plasma Device shows that specific conditions on the magnetic field and cathode discharge voltage allow an Alfven wave to develop in the cathode-anode region. When the speed of bulk electrons (dependent on discharge voltage) entering the region exceeds the Alfven speed, the electrons can excite a wave. This phenomenon mimics one proposed to exist in the Earth's ionosphere. Previous experiments used a cathode coated with Barium Oxide, and this project uses a new cathode coated with Lanthanum Hexaboride (LaB6). The experiment seeks to characterize the behavior of plasmas generated with the LaB6 source, as well as understand properties of the driven wave when using the new cathode. Langmuir probes are used to find electron temperature, ion saturation current, and plasma density. These parameters determine characteristics of the wave. Preliminary analysis implies that density increases with LaB6 discharge voltage until 170 V, where it levels off. A linear increase in density is expected; the plateau implies cathode power does not ionize the plasma after 170 V. It is possible the power is carried out by the generated Alfven wave, or heats the plasma or cathode. This ``missing'' power is currently under investigation. Work funded by DOE and NSF.

  16. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    NASA Astrophysics Data System (ADS)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.

  17. Temporal response of a surface flashover on a velvet cathode in a relativistic diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J. E.; Moir, D. C.; Crawford, M. T.

    2015-03-15

    Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the ∼100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements willmore » also be presented confirming the ion species are dominated by hydrogen.« less

  18. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry.

    PubMed

    Shen, ShouYu; Hong, YuHao; Zhu, FuChun; Cao, ZhenMing; Li, YuYang; Ke, FuSheng; Fan, JingJing; Zhou, LiLi; Wu, LiNa; Dai, Peng; Cai, MingZhi; Huang, Ling; Zhou, ZhiYou; Li, JunTao; Wu, QiHui; Sun, ShiGang

    2018-04-18

    Owing to high specific capacity of ∼250 mA h g -1 , lithium-rich layered oxide cathode materials (Li 1+ x Ni y Co z Mn (3- x-2 y-3 z)/4 O 2 ) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li 1.13 Ni 0.275 Mn 0.580 O 2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.

  19. Process for Testing Compaction of a Swaged Heater for an Anode Sub-Assembly of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2003-01-01

    A process for testing compaction of a swaged heater for an anode sub-assembly of a Hollow Cathode Assembly (HCA), in which a test sample is cleaned, its mass measured before and after immersion in kerosene for 24 hours, and a compaction percentage calculated. A swaged heater is rejected if the compaction percentage exceeds 84%, plus or minus 4%.

  20. Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Xing, Lidan; Zhang, Liping; Yu, Le; Fan, Weizhen; Xu, Mengqing; Li, Weishan

    2016-08-01

    Self-discharge behavior of layered lithium-rich oxide as cathode of lithium ion battery in a carbonated-based electrolyte is understood, and a simple boron-containing compound, trimethyl borate (TMB), is used as an electrolyte additive to suppress this self-discharge. It is found that layered lithium-rich oxide charged under 4.8 V in additive-free electrolyte suffers severe self-discharge and TMB is an effective electrolyte additive for self-discharge suppression. Physical characterizations from XRD, SEM, TEM, XPS and ICP-MS demonstrate that the crystal structure of the layered lithium-rich oxide collapses due to the chemical interaction between the charged oxide and electrolyte. When TMB is applied, the structural integrity of the oxide is maintained due to the protective cathode film generated from the preferential oxidation of TMB.

  1. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  2. Observation of Quartz Cathode-Luminescence in a Low Pressure Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Intense, steady-state cathode-luminescence has been observed from exposure of quartz powder to a low pressure rf-excited argon plasma discharge. The emission spectra (400 to 850 nm) associated with the powder luminescence were documented as a function of bias voltage using a spectrometer. The emission was broad-band, essentially washing out the line spectra features of the argon plasma discharge.

  3. Non-Aqueous Primary Li-Air Flow Battery and Optimization of its Cathode through Experiment and Modeling.

    PubMed

    Kim, Byoungsu; Takechi, Kensuke; Ma, Sichao; Verma, Sumit; Fu, Shiqi; Desai, Amit; Pawate, Ashtamurthy S; Mizuno, Fuminori; Kenis, Paul J A

    2017-09-22

    A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electricity generation of microbial fuel cell with waterproof breathable membrane cathode

    NASA Astrophysics Data System (ADS)

    Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng

    2015-12-01

    Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.

  5. Short Haul Civil Tiltrotor Contingency Power System Preliminary Design

    NASA Technical Reports Server (NTRS)

    Eames, David J. H.

    2006-01-01

    Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.

  6. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  7. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  8. Polyelectrolyte Binder for Sulfur Cathode To Improve the Cycle Performance and Discharge Property of Lithium-Sulfur Battery.

    PubMed

    Yang, Zhixiong; Li, Rengui; Deng, ZhengHua

    2018-04-25

    To achieve the higher capacity and the better cycle performance of the lithium-sulfur (L-S) batteries, a copolymer electrolyte prepared via emulsifier-free emulsion polymerization was used as the binder for the sulfur cathode in this study. This polyelectrolyte binder has uniform dispersion and good Li + conductivity in the cathode that can improve the kinetics of sulfur electrochemical reactions. As a result, the capacity and cycle performance of the battery are improved evidently when the cell is discharged to 1.8 V. Moreover, when the cell is discharged to 1.5 V, the difficult deposition of Li 2 S 2 will take place easily at 1.75 V, and the difficult transformation from solid Li 2 S 2 to solid Li 2 S will progress smoothly and completely during the voltage range of 1.55-1.75 V, too. The capacity of this L-S battery discharged to 1.5 V is as much as 1700 mAh g -1 , which is very close to the theoretical value of sulfur cathode. The knowledge acquired in this study is valuable not only for the design of an efficient new polyelectrolyte binder for sulfur cathode but also the discovery that the discharge degree is the main fact that limits the capacity to reach its theoretical value.

  9. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  10. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  11. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  12. Life test of a xenon hollow cathode for a space plasma contractor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    A plasma contacting device using a hollow cathode for plasma production has been baselined for use on the Space Station. This application will require reliable, continuous operation of the cathode at electron emission currents of between 0.75 and 10 A for two years (17,500 hours). In order to validate life-time capability, a hollow cathode, operated in a diode configuration, has been tested for more than 8600 hours of stable discharge operation as of March 30, 1994. This cathode is operated at a steady-state emission current of 12.0 and a fixed xenon flow rate of 4.5 sccm. Discharge voltage and cathode temperature have remained relatively stable at approximately 12.9 V and 1260 C during the test. The test has experienced 7 shutdowns to date. In all instances, the cathode was reignited at about 42 V and resumed stable operation. This test represents the longest demonstration of stable operation of high current (greater than 1A) xenon hollow cathodes reported to date.

  13. Optogalvanic effect and laser-induced current oscillations in hollow-cathode lamps

    NASA Astrophysics Data System (ADS)

    Eldakli, Mohsan S. A.; Ivković, Saša S.; Obradović, Bratislav M.

    2017-03-01

    This paper presents a study of two commercial hollow-cathode lamps (HCLs) with the intention of demonstrating different phenomena in gas discharges. The optogalvanic effect in both HCLs is produced by a laser diode radiated at the wavelength that corresponds to neon transition 1s2-2p2 at 659.89 nm. The voltage-current characteristics of the lamps are explained using a classical theory of hollow-cathode discharge, while the optogalvanic signal is treated as a small perturbation of the discharge current. For certain values of voltage self-sustained current oscillations are observed in one of the HCLs. In the same HCL laser-induced optogalvanic dumped oscillations are detected. A phenomenological model that includes the effective circuit parameters of the discharge is used to explain the oscillation characteristics.

  14. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    PubMed Central

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  15. Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhu, Tianjiao; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan

    2017-11-01

    Lithium-rich manganese-based layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, a great loss of irreversible capacity at the initial cycle, poor cycle stability, and rate performance severely restrict its application. Herein, we develop a new strategy to synthesize hierarchical hollow Li1.2Mn0.54Ni0.13Co0.13O2 microspheres using sucrose and cetyltrimethylammonium bromide as a soft template combined with hydrothermal assisted homogeneous precipitation method. The hollow microspheres are assembled by the primary particles with the size of 50 nm. As a result, the as-prepared material exhibits high reversible capacity, good cycling stability, and excellent rate property. It delivers a high initial discharge capacity of 305.9 mAh g-1 at 28 mA g-1 with coulombic efficiency of 80%. Even at high current density of 560 mA g-1, the sample also shows a stable discharge capacity of 215 mAh g-1. The enhanced electrochemical properties are attributed to the stable hierarchical hollow sphere structure and the appropriate contact area between electrode and electrolyte, thus effectively improve the lithium-ion intercalation and deintercalation kinetics. [Figure not available: see fulltext.

  16. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy.

    PubMed

    Cohn, Gil; Eichel, Rüdiger A; Ein-Eli, Yair

    2013-03-07

    The mechanism of discharge termination in silicon-air batteries, employing a silicon wafer anode, a room-temperature fluorohydrogenate ionic liquid electrolyte and an air cathode membrane, is investigated using a wide range of tools. EIS studies indicate that the interfacial impedance between the electrolyte and the silicon wafer increases upon continuous discharge. In addition, it is shown that the impedance of the air cathode-electrolyte interface is several orders of magnitude lower than that of the anode. Equivalent circuit fitting parameters indicate the difference in the anode-electrolyte interface characteristics for different types of silicon wafers. Evolution of porous silicon surfaces at the anode and their properties, by means of estimated circuit parameters, is also presented. Moreover, it is found that the silicon anode potential has the highest negative impact on the battery discharge voltage, while the air cathode potential is actually stable and invariable along the whole discharge period. The discharge capacity of the battery can be increased significantly by mechanically replacing the silicon anode.

  17. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulsesmore » such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.« less

  18. In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery

    DOE PAGES

    Wujcik, Kevin H.; Wang, Dunyang Rita; Pascal, Tod A.; ...

    2016-12-01

    Lithium sulfur (Li-S) batteries are well known for their high theoretical specific capacities, but are plagued with scientific obstacles that make practical implementation of the technology impossible. The success of Li-S batteries will likely necessitate the use of thick sulfur cathodes that enable high specific energy densities. However, little is known about the fundamental reaction mechanisms and chemical processes that take place in thick cathodes, as most research has focused on studying thinner cathodes that enable high performance. In this study, in situ X-ray absorption spectroscopy at the sulfur K-edge is used to examine the back of a 115 μmmore » thick Li-S cathode during discharge. Our results show that in such systems, where electrochemical reactions between sulfur and lithium are likely to proceed preferentially toward the front of the cathode, lithium polysulfide dianions formed in this region diffuse to the back of the cathode during discharge. We show that high conversion of elemental sulfur is achieved by chemical reactions between elemental sulfur and polysulfide dianions of intermediate chain length (Li 2S x, 4 ≤ x ≤ 6). Our work suggests that controlling the formation and diffusion of intermediate chain length polysulfide dianions is crucial for insuring full utilization of thick sulfur cathodes.« less

  19. Electron diffusion through the baffle aperture of a hollow cathode thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1979-01-01

    The use of a hollow cathode in place of an oxide cathode to increase thruster operating lifetimes requires, among other things, the addition of a baffle to restrict the flow of electrons from the hollow cathode. A theoretical model is developed which relates the baffle aperture area of a hollow-cathode thruster to the magnetic flux density and plasma properties in the aperture region, with the result that this model could be used as an aid in thruster design. Extensive Langmuir probing is undertaken to verify the validity of the model and demonstrate its capability. It is shown that the model can be used to calculate the aperture area required to effect discharge operation at a specified discharge voltage and arc current.

  20. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    DOEpatents

    Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT; Johnsen, Richard [New Fairfield, CT

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  1. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  2. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  3. Rate capability improvement of Co-Ni double hydroxides integrated in cathodically partially exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Cai, Xiang; Song, Yu; Sun, Zhen; Guo, Di; Liu, Xiao-Xia

    2017-10-01

    In-situ growing of energy storage materials on graphene-based substrates/current collectors with low defect is a good way to boost electron transport and so enhance rate capability for the obtained electrode. Herein, high-quality graphene-like nanopetals are partially exfoliated from graphite foil (GF) through a facile and fast cathodic process. Three-dimensional porous structure is established for the afforded cathodically-exfoliated graphite foil (CEG), with many graphene-like nanopetals vertically anchoring on the graphite substrate. A hierarchical structure is constructed by the following electrochemical growth of Co-Ni double hydroxide nanopetals on the graphene atop CEG. The double hydroxide in the obtained electrode with the optimized Co2+/Ni2+ molar ratio, Co0.75Ni0.25(OH)2-CEG, displays much improved rate capability and so can deliver a high specific capacitance of 1460 F g-1 at an ultra-high current density of 100 A g-1. An asymmetric device is assembled by using Co0.75Ni0.25(OH)2-CEG as cathode, which demonstrates a high energy density of 31.6 Wh kg-1 at an ultra-high power density of 21.5 kW kg-1, showing the potential of the hierarchical composite electrode for high power application. The device also displays good stability, it can retain more than 90% of its capacitance after 10000 galvanostatic charge-discharge cycles.

  4. Device for providing high-intensity ion or electron beam

    DOEpatents

    McClanahan, Edwin D.; Moss, Ronald W.

    1977-01-01

    A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

  5. Bifurcations in the theory of current transfer to cathodes of DC discharges and observations of transitions between different modes

    NASA Astrophysics Data System (ADS)

    Bieniek, M. S.; Santos, D. F. N.; Almeida, P. G. C.; Benilov, M. S.

    2018-04-01

    General scenarios of transitions between different spot patterns on electrodes of DC gas discharges and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of arc discharges, it is shown that any transition between different modes of current transfer is related to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes on axially symmetric cathodes, frequently observed in the experiment, represent an indication of the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations of transitions on cathodes of DC glow microdischarges are analyzed and those potentially related to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated numerically and the computed patterns are found to conform to those observed in the course of the corresponding transitions in the experiment.

  6. APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS

    DOEpatents

    Starr, C.

    1957-11-19

    This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.

  7. High energy density primary batteries

    NASA Technical Reports Server (NTRS)

    Horning, R. J.; Beck, W. R.

    1972-01-01

    By the use of fractional factorials, paths of steepest ascent and direct comparison experimentation, performance characteristics of the CuF2/LiAsF6-MF/Li electrochemical system were optimized under conditions of temperature environment, discharge rate, active stand, and use of anhydrous cathodes. Two hundred ampere-hours/lb of CuF2 and 600 watt-hours/lb of CuF2 were achieved in anhydrous cells at plus 40 C and at a discharge rate of 10 ma sq cm. Electrical performance is primarily altered by temperature and discharge rate; however, other factors such as cathode water content, cathode conductor content, separator thickness, and the use of SO2 gas also have significant effects.

  8. The Use of Laser-Induced Fluorescence to Characterize Discharge Cathode Erosion in a 30 cm Ring-Cusp Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sovey, James S. (Technical Monitor); Williams, George J., Jr.

    2004-01-01

    Relative erosion rates and impingement ion production mechanisms have been identified for the discharge cathode of a 30 cm ion engine using laser-induced fluorescence (LIF). Mo and W erosion products as well as neutral and singly ionized xenon were interrogated. The erosion increased with both discharge current and voltage and spatially resolved measurements agreed with observed erosion patters. Ion velocity mapping identified back-flowing ions near the regions of erosion with energies potentially sufficient to generate the level of observed erosion. Ion production regions downstream of the cathode were indicated and were suggested as possible sources of the erosion causing ions.

  9. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications.

    PubMed

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-06-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  10. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications

    PubMed Central

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-01-01

    12CaO·7Al2O3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al2O3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al2O3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al2O3 were constructed and exhibited reasonable durability. PMID:27877401

  11. Design and development of a 40 kV pierce electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D., E-mail: dhruva.bhattacharjee@gmail.com

    A 40 kV electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of more than 500 mA at 40 kV with a beam size of less than 5 mm. The cathode assembly consists of cups and heat shields made out of Tantalum and Rhenium sheets. The cathode assembly and the electron gun was fabricated, assembled and tested on test bench for cathode conditioning,more » HV conditioning and beam characterization. This paper presents the gun design, particle simulations study, testing of the gun on test bench. (author)« less

  12. Controllable Electrochemical Fabrication of KO2-Decorated Binder-Free Cathodes for Rechargeable Lithium-Oxygen Batteries.

    PubMed

    Yu, Wei; Wang, Huwei; Qin, Lei; Hu, Junyang; Liu, Liang; Li, Baohua; Zhai, Dengyun; Kang, Feiyu

    2018-05-23

    Understanding the electrochemical property of superoxides in alkali metal oxygen batteries is critical for the design of a stable oxygen battery with high capacity and long cycle performance. In this work, a KO 2 -decorated binder-free cathode is fabricated by a simple and efficient electrochemical strategy. KO 2 nanoparticles are uniformly coated on the carbon nanotube film (CNT-f) through a controllable discharge process in the K-O 2 battery, and the KO 2 -decorated CNT-f is innovatively introduced into the Li-O 2 battery as the O 2 diffusion electrode. The Li-O 2 battery based on the KO 2 -decorated CNT-f cathode can deliver enhanced discharge capacity, reduced charge overpotential, and more stable cycle performance compared with the battery in the absence of KO 2 . In situ formed KO 2 particles on the surface of CNT-f cathode assist to form Li 2 O 2 nanosheets in the Li-O 2 battery, which contributes to the improvement of discharge capacity and cycle life. Interestingly, the analysis of KO 2 -decorated CNT-f cathodes, after discharge and cycle tests, reveals that the electrochemically synthesized KO 2 seems not a conventional electrocatalyst but a partially dissolvable and decomposable promoter in Li-O 2 batteries.

  13. Extended-testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungsten was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  14. Characterization of Hollow Cathode Performance and Thermal Behavior

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren

    2006-01-01

    Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.

  15. Thermal activated ("thermal") battery technology. Part IIIa: FeS 2 cathode material

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Guidotti, Ronald A.

    This article presents an overview of the pyrite FeS 2 used as cathode material in thermally activated ("thermal") batteries. A large emphasis was placed on the physicochemical properties and electrochemical performance of the pyrite FeS 2, including the discharge mechanisms, self-discharge phenomena, and recent developments.

  16. A High-Pressure Hollow Cathode Discharge Source for Ion Mobility Spectrometers for In-Situ Detection of Organic Molecules on Mars

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Noren, C.; Kanik, I.

    2000-01-01

    We have designed, constructed and begun testing of a new high-pressure (5-10 Torr) hollow cathode discharge source (HCDS) that can be utilized as an ionizer for ion mobility spectrometers as well as in a wide variety of mass analyzers.

  17. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.

    PubMed

    Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei

    2018-02-16

    Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.

  18. High-Energy-Density, Low-Temperature Li/CFx Primary Cells

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid

    2007-01-01

    High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x < 1) in conjunction with electrolytes formulated for use at low temperatures. The reason for choosing sub-fluorinated CFx cathode materials is that their electronic conductivities are high, relative to those for which x > 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.

  19. Investigating the reversibility of structural modifications of Li xNi yMn zCo 1-y-zO₂ cathode materials during initial charge/discharge, at multiple length scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of Li xNi yMn zCo 1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors,more » which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.« less

  20. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOEpatents

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  1. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  2. The effect of cathode felt geometries on electrochemical characteristics of sodium sulfur (NaS) cells: Planar vs. tubular

    NASA Astrophysics Data System (ADS)

    Kim, Goun; Park, Yoon-Cheol; Lee, Younki; Cho, Namung; Kim, Chang-Soo; Jung, Keeyoung

    2016-09-01

    Two sodium sulfur (NaS) cells, one with a planar design and the other with a tubular design, were subject to discharge-charge cycles in order to investigate the effect of cathode felt geometries on electrochemical characteristics of NaS cells. Their discharge-charge behaviors over 200 cycles were evaluated at the operation temperature of 350 °C with the current densities of 100 mA cm-2 for discharge and 80 mA cm-2 for charge. The results showed that the deviation from theoretical open circuit voltage changes of a planar cell was smaller than those of a tubular cell resulting in potential specific power loss reduction during operation. In order to understand the effect, a three dimensional statistically representative matrix for a cathode felt has been generated using experimentally measured data. It turns out that the area specific fiber number density in the outer side area of a tubular cathode felt is smaller than that of a planar felt resulting in occurrence of larger voltage drops via retarded convection of cathode melts during cell operation.

  3. Study of the ionization rate of the released deuterium in vacuum arc discharges with metal deuteride cathodes

    NASA Astrophysics Data System (ADS)

    Liu, Fei-Xiang; Long, Ji-Dong; Zheng, Le; Dong, Pan; Li, Chen; Chen, Wei

    2018-02-01

    The ionization rate of the released deuterium from a metal deuteride cathode in vacuum arc discharges is investigated by both experiments and modeling analysis. Experimental results show that the deuterium ionization rate increases from 2% to 30% with the increasing arc current in the range of 2-100 A. Thus the full ionization assumption, as is widely used in arc plasma simulations, is not satisfied for the released deuterium at low discharge current. According to the modeling results, the neutral-to-ion conversion efficiency for the deuterium traveling across the cathodic spot region can be significantly less than one, due to the fast plasma expansion and rarefaction in the vacuum. In addition, the model also reveals that, unlike the metal atoms which are mainly ionized in the sheath region and flow back to the cathode, the deuterium ionization primarily occurs in the quasi-neutral region and moves towards the anode. Consequently, the cathodic sheath layer acts like a filter that increases the deuterium fraction beyond the sheath region.

  4. High pressure working mode of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, H.; Popovici, C.

    1985-01-01

    The behavior of high pressure cathotrons is discussed. Methods of preheating either the gas or the cathode itself are detailed together with various geometries for the hollow cathode. Three special configurations were tested, and the results are analyzed.

  5. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Yahong; Hu Chundong; Liu Sheng

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  6. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Jiang, Caichao; Li, Jun; Liang, Lizhen

    2012-01-01

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  7. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been demonstrated to mitigate the effects of crossover and decrease the airflow required.

  8. Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O 2 Batteries: A Consideration for the Characterization of Lithium Superoxide

    DOE PAGES

    Papp, Joseph K.; Forster, Jason D.; Burke, Colin M.; ...

    2017-02-27

    We show that a common Li–O 2 battery cathode binder, poly(vinylidene fluoride) (PVDF), degrades in the presence of reduced oxygen species during Li–O 2 discharge when adventitious impurities are present. This degradation process forms products that exhibit Raman shifts (~1133 and 1525 cm –1) nearly identical to those reported to belong to lithium superoxide (LiO 2), complicating the identification of LiO 2 in Li–O 2 batteries. We show that these peaks are not observed when characterizing extracted discharged cathodes that employ poly(tetrafluoroethylene) (PTFE) as a binder, even when used to bind iridium-decorated reduced graphene oxide (Ir-rGO)-based cathodes similar to thosemore » that reportedly stabilize bulk LiO 2 formation. We confirm that for all extracted discharged cathodes on which the 1133 and 1525 cm –1 Raman shifts are observed, only a 2.0 e –/O 2 process is identified during the discharge, and lithium peroxide (Li 2O 2) is predominantly formed (along with typical parasitic side product formation). In conclusion, our results strongly suggest that bulk, stable LiO 2 formation via the 1 e –/O 2 process is not an active discharge reaction in Li–O 2 batteries.« less

  9. Effect of secondary electron emission on subnanosecond breakdown in high-voltage pulse discharge

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Gugin, P.; Lavrukhin, M.; Bokhan, P. A.; Zakrevsky, Dm E.

    2017-11-01

    The subnanosecond breakdown in open discharge may be applied for producing superfast high power switches. Such fast breakdown in high-voltage pulse discharge in helium was explored both in experiment and in kinetic simulations. The kinetic model of electron avalanche development was developed using PIC-MCC technique. The model simulates motion of electrons, ions and fast helium atoms, appearing due to ions scattering. It was shown that the mechanism responsible for ultra-fast breakdown development is the electron emission from cathode. The photoemission and emission by ions or fast atoms impact is the main reason of current growth at the early stage of breakdown, but at the final stage, when the voltage on discharge gap drops, the secondary electron emission (SEE) is responsible for subnanosecond time scale of current growth. It was also found that the characteristic time of the current growth τS depends on the SEE yield of the cathode material. Three types of cathode material (titanium, SiC, and CuAlMg-alloy) were tested. It is shown that in discharge with SiC and CuAlMg-alloy cathodes (which have enhanced SEE) the current can increase with a subnanosecond characteristic time as small as τS = 0.4 ns, for the pulse voltage amplitude of 5- 12 kV..

  10. Child-Langmuir law applicability for a cathode sheath description of glow discharge in hydrogen

    NASA Astrophysics Data System (ADS)

    Lisovskiy, V. A.; Artushenko, K. P.; Yegorenkov, V. D.

    2016-08-01

    The present paper reveals that the Child-Langmuir law version with the constant ion mobility has to be applied for the cathode sheath description of the glow discharge in hydrogen. Using the analytical model we demonstrate that even in a high electric field the constant mobility law version rather than that for the constant ion mean free path has to hold in the case of impeded charge exchange and the dominant effect of polarization forces on the ion motion through the cathode sheath.

  11. Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, M. H.

    1984-01-01

    A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.

  12. Self-induced optogalvanic effect in a segmented hollow-cathode discharge

    NASA Astrophysics Data System (ADS)

    Steflekova, V.; Zhechev, D.

    2018-03-01

    Optogalvanic (OG) interaction is simulated and studied in a segmented hollow-cathode discharge (SHCD). HCD-lamps are used to induce an OG signal by their own emission or by that of another lamp. The efficiency of the OG of a Ne/Cu HCD lamp in the range 320-380 nm is estimated theoretically. An irregular galvanic peak arising near the inflection point in the i-V curve (∂V/∂i<0) is detected. Its origin is related to Penning ionization of the sputtered cathode material.

  13. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular cathode/electron gun assembly consists of four subassemblies the cathode, the focus electrode, the header (including the electrical feedthroughs), and the gun envelope (including the anode) a diagram of which is shown. The modular construction offers a number of significant advantages, including flexibility of design, interchangeability of parts, and a drop-in final assembly procedure for quick and accurate alignment. The gun can accommodate cathodes ranging in size from 0.050 to 0.250-in. in diameter and is applicable to TWT's over a broad range of sizes and operating parameters, requiring the substitution of only a few parts: that is, the cathode, focus electrode, and anode. The die-pressed cathode pellets can be made with either flat or concave (Pierce gun design) emitting surfaces. The gun can be either gridded (pulse operation) or ungridded (continuous operation). Important factors contributing to low cost are the greater use of CRT materials and parts, the standardization of processes (welding and mechanical capture), and tooling amenable to automated production. Examples are the use of simple shapes, drawn or stamped metal parts, and parts joined by welding or mechanical capture. Feasibility was successfully demonstrated in the retrofit and testing of a commercial Kaband (22-GHz) TWT. The modular cathode/electron gun assembly was computer modeled to replicate the performance of the original electron gun and fabricated largely from existing CRT parts. Significant test results included demonstration of low heater power (1.5-W, 1010 C brightness temperature for a 0.085-in.-diameter cathode), mechanical ruggedness (100g shock and vibration tests in accordance with military specifications (MIL specs)), and a very fast warmup. The results of these tests indicate that the low-cost CRT manufacturing approach can be used without sacrificing performance and reliability.

  14. Correlation of Hollow Cathode Assembly and Plasma Contactor Data from Ground Testing and In-Space Operation on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.

    2001-01-01

    Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.

  15. Pulsed electromagnetic gas accelleration. [incorporation of hollow cathode in plasma discharge and suitability determination of MPD discharge as plasmadynamic laser source

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.

    1973-01-01

    Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.

  16. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    NASA Astrophysics Data System (ADS)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  17. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less

  18. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  19. Structural and Electrochemical Study of Hierarchical LiNi(1/3)Co(1/3)Mn(1/3)O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xie, Man; Wu, Feng; Chen, Renjie

    2015-10-07

    In this study, a facile nanoetching-template route is developed to synthesize porous nanomicrohierarchical LiNi1/3Co1/3Mn1/3O2 microspheres with diameters below 1.5 μm, using porous CoMnO3 binary oxide microspheres as the template. The unique morphology of CoMnO3 template originates from the contraction effect during the oxidative decomposition of Ca0.2Mn0.4Co0.4CO3 precursors and is further improved by selectively removing calcium carbonate with a nanoetching process after calcination. The as-synthesized LiNi1/3Co1/3Mn1/3O2 microsphere, composed of numerous primary particles and pores with size of dozens of nanometers, illustrates a well-assembled porous nanomicrohierarchical structure. When used as the cathode material for lithium-ion batteries, the as-synthesized microspheres exhibit remarkably enhanced electrochemical performances with higher capacity, excellent cycling stability, and better rate capability, compared with the bulk counterpart. Specifically, hierarchical LiNi1/3Co1/3Mn1/3O2 achieves a high discharge capacity of 159.6 mA h g(-1) at 0.2 C with 98.7% capacity retention after 75 cycles and 133.2 mA h g(-1) at 1 C with 90% capacity retention after 100 cycles. A high discharge capacity of 135.5 mA h g(-1) even at a high current of 750 mA g(-1) (5 C) is also achieved. The nanoetching-template method can provide a general approach to improve cycling stability and rate capability of high capacity cathode materials for lithium-ion batteries.

  20. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The Jet Propulsion Laboratory is involved in a Research and Development program sponsored by NASA/OAST on the development of ambient temperature secondary lithium cells for future space applications. Some of the projected applications are planetary spacecraft, planetary rovers, and astronaut equipment. The main objective is to develop secondary lithium cells with greater than 100 Wh/kg specific energy while delivering 1000 cycles at 50 percent Depth of Discharge (DOD). To realize these ambitious goals, the work was initially focused on several important basic issues related to the cell chemistry, selection of cathode materials and electrolytes, and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of realizable specific energy and cycle life. Some of the major advancements made so far in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. Methods were developed for the fabrication of large size high performance TiS2 cathodes. Among the various electrolytes examined, 1.5M LiAsF6/EC + 2-MeTHF mixed solvent electrolyte was found to be more stable towards lithium. Experimental cells activated with this electrolyte exhibited more than 300 cycles at 100 percent Depth of Discharge. Work is in progress in other areas such as selection of lithium alloys as candidate anode materials, optimization of cell design, and development of 5 Ah cells. The advances made at the Jet Propulsion Laboratory on the development of secondary lithium cells are summarized.

  1. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  2. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  3. Exposing the {010} Planes by Oriented Self-Assembly with Nanosheets To Improve the Electrochemical Performances of Ni-Rich Li[Ni0.8Co0.1Mn0.1]O2 Microspheres.

    PubMed

    Su, Yuefeng; Chen, Gang; Chen, Lai; Li, Weikang; Zhang, Qiyu; Yang, Zhiru; Lu, Yun; Bao, Liying; Tan, Jing; Chen, Renjie; Chen, Shi; Wu, Feng

    2018-02-21

    A modified Ni-rich Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 cathode material with exposed {010} planes is successfully synthesized for lithium-ion batteries. The scanning electron microscopy images have demonstrated that by tuning the ammonia concentration during the synthesis of precursors, the primary nanosheets could be successfully stacked along the [001] crystal axis predominantly, self-assembling like multilayers. According to the high-resolution transmission electron microscopy results, such a morphology benefits the growth of the {010} active planes of final layered cathodes during calcination treatment, resulting in the increased area of the exposed {010} active planes, a well-ordered layer structure, and a lower cation mixing disorder. The Li-ion diffusion coefficient has also been improved after the modification based on the results of potentiostatic intermittent titration technique. As a consequence, the modified Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 material exhibits superior initial discharges of 201.6 mA h g -1 at 0.2 C and 185.7 mA h g -1 at 1 C within 2.8-4.3 V (vs Li + /Li), and their capacity retentions after 100 cycles reach 90 and 90.6%, respectively. The capacity at 10 C also increases from 98.3 to 146.5 mA h g -1 after the modification. Our work proposes a novel approach for exposing high-energy {010} active planes of the layered cathode material and again confirms its validity in improving electrochemical properties.

  4. Experimental investigation of a throttlable 15 cm hollow cathode ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1972-01-01

    The use of dished high perveance grids on a 15 cm modified SERT 2 thruster is shown to facilitate throttled operation over a beam current range from 60 to 600 mA. Effects of increasing the radial component of the magnetic field in the main discharge chamber and decreasing the dimensions of the cathode discharge region are examined and found to degrade performance to the extent that primary electrons are forced in toward the center-line of the thruster. Studies of the baffle aperture region of two thrusters indicate that the electric potential gradient vector is perpendicular to the local magnetic field lines when the thruster is operating properly. The correlation between the shape of the ion beam current density and that of the ion density at the screen grid within the thruster is shown to be 94%. Additional experimental studies on maximum propellant utilization, plasma ion production cost, neutral density in the cathode discharge region, double ion production in hollow cathode thrusters and thermal flow meter performance are discussed.

  5. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.

    PubMed

    Wu, Baoshan; Zhang, Hongzhang; Zhou, Wei; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-21

    Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries.

  6. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    PubMed

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  7. In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery.

    PubMed

    Hong, Qingshui; Lu, Huimin

    2017-06-13

    Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is used to further determine the cathodes performance under real operation condition and during the test, the Ag/CFP electrodes show outstanding catalytic activity for ORR in concentrated alkaline electrolyte, and no obvious activity degradation is observed after long-time discharge. The electrochemical test results display the dependence of coverage of the electro-active Ag on the catalytic performance of the air cathodes. The resulting primary Al-air battery made from the best-performing cathode shows an impressive discharge peak power density, outperforming that of using commercial nano-manganese catalyst air electrodes.

  8. L-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery

    NASA Astrophysics Data System (ADS)

    Liao, Qishu; Hou, Hongying; Liu, Xianxi; Yao, Yuan; Dai, Zhipeng; Yu, Chengyi; Li, Dongdong

    2018-04-01

    In this work, polypyrrole (PPy) was co-doped with L-lactic acid (LA) and sodium p-toluenesulfonate (TsONa) for high performance cathode in sodium ion battery (SIB) via facile one-step electropolymerization on Fe foil. The as-synthesized LA/TsONa co-doped PPy cathode was investigated in terms of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), galvanostatic charge/discharge and cyclic voltammetry (CV). The results suggested that some oval-bud-like LA/TsONa co-doped PPy particles did form and tightly combine with the surface of Fe foil; furthermore, LA/TsONa co-doped PPy cathode also delivered higher electrochemical performances than TsONa mono-doped PPy cathode. For example, the initial specific discharge capacity was as high as about 124 mAh/g, and the reversible specific capacity still maintained at about 110 mAh/g even after 50 cycles, higher than those of TsONa mono-doped PPy cathode. The synergy effect of multi components of LA/TsONa co-doped PPy cathode should be responsible for high electrochemical performances.

  9. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.

    PubMed

    Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe

    2013-09-21

    A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.

  10. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  11. Advanced electric propulsion research, 1989

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1990-01-01

    Results of an experimental study of the characteristics of ion thruster hollow cathodes operating at high discharge currents (up to 60 A) are presented in a companion report. This work shows that ions produced near the cathode orifice can acquire sufficient energy to induce the high sputter erosion rates on cathode potential surfaces that have been observed in ion thrusters. A mechanism by which these ions could be produced is also described. A second, brief study showing how a discharge chamber model developed previously can be applied to determine optimal values for one or more discharge chamber design parameters is presented. The experimental approach being used to study the plasma potential field and charge-exchange ion production rate downstream of the accelerator grid of an ion thruster is discussed and preliminary results are presented.

  12. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with long cathodes in a high power, quasi-steady MPD discharge show that the critical current for the onset of voltage fluctuations, which was previously shown to be a function of cathode area, approaches an asymptote for cathodes of very large surface area. Floating potential measurements and photographs of the discharge luminosity indicate that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance. Photoelectric measurements of particular argon neutral and ion transitions show that the higher electronic states are populated more heavily than would be calculated on the basis of Saha-Boltzmann equilibrium at the local electron temperature and number density. Preliminary optical depth measurements show that for a current of 4 kA and an argon mass flow of 12 g/sec, a population inversion exists between the upper and lower states of the 4880 A argon ion transition.

  13. Verification of high efficient broad beam cold cathode ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less

  14. Application of a demountable water-cooled hollow-cathode lamp to atomic-fluorescence spectrometry.

    PubMed

    Rossi, G; Omenetto, N

    1969-02-01

    A demountable water-cooled hollow-cathode lamp has been investigated as a primary source in atomic fluorescence spectrometry. The discharge current ranged from 300 to 500 mA, and the flowing argon pressure between 0.4 and 4 mbar. Sensitivities ranging from 0.03 to 2 mug ml were obtained for 12 elements. The performances of the hollow-cathode lamp and those of the customary metal vapour discharge lamps for thallium, indium and gallium are compared. The role of the narrowness of the exciting lines in increasing the signal-to-scattering ratios is stressed.

  15. Hollow-Cathode Source Generates Plasma

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  16. Heaterless ignition of inert gas ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Schatz, M. F.

    1985-01-01

    Heaterless inert gas ion thruster hollow cathodes were investigated with the aim of reducing ion thruster complexity and increasing ion thruster reliability. Cathodes heated by glow discharges are evaluated for power requirements, flowrate requirements, and life limiting mechanisms. An accelerated cyclic life test is presented.

  17. Thermal activated ("thermal") battery technology. Part IIIb. Sulfur and oxide-based cathode materials

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Guidotti, Ronald A.

    This article presents an overview of cathode materials (except the pyrite FeS 2) used or envisaged in thermally activated ("thermal") batteries. The physicochemical properties and electrochemical performance of different cathode families (oxides, sulfides) are reviewed, including discharge mechanisms, when known.

  18. Long-Life/Low-Power Ion-Gun Cathode

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1982-01-01

    New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.

  19. Experimental Investigation of Pseudospark generated electron beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.; Pal, U. N.

    2012-11-01

    The pseudospark (PS) discharge is, however, more recently recognized as a different type of discharge which is capable of generating electron beams with the highest combined current density and brightness of any known type of electron source. PS discharge is a specific type of gas discharge, which operates on the left-hand side of the hollow cathode analogy to the Paschen curve with axially symmetric parallel electrodes and central holes on the electrodes. The PS discharge generated electron beam has tremendous applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been carried out experimentally for different applied voltages. The investigation has been done at different axial and radial location inside the drift tube in argon atmosphere. This paper represents experimentally derived axial and radial variation of the beam current inside the plasma filled drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed. It has been further confirmed the successful propagation of electron beam in confined manner without any assistance of external magnetic field.

  20. In Situ Chelating Synthesis of Hierarchical LiNi1/3 Co1/3 Mn1/3 O2 Polyhedron Assemblies with Ultralong Cycle Life for Li-Ion Batteries.

    PubMed

    Zhang, Yue; Jia, Dianzeng; Tang, Yakun; Huang, Yudai; Pang, Weikong; Guo, Zaiping; Zhou, Zhen

    2018-06-03

    Layered lithium transition-metal oxides, with large capacity and high discharge platform, are promising cathode materials for Li-ion batteries. However, their high-rate cycling stability still remains a large challenge. Herein, hierarchical LiNi 1/3 Co 1/3 Mn 1/3 O 2 polyhedron assemblies are obtained through in situ chelation of transition metal ions (Ni 2+ , Co 2+ , and Mn 2+ ) with amide groups uniformly distributed along the backbone of modified polyacrylonitrile chains to achieve intimate mixing at the atomic level. The assemblies exhibit outstanding electrochemical performances: superior rate capability, high volumetric energy density, and especially ultralong high-rate cyclability, due to the superiority of unique hierarchical structures. The polyhedrons with exposed active crystal facets provide more channels for Li + diffusion, and meso/macropores serve as access shortcuts for fast migration of electrolytes, Li + and electrons. The strategy proposed in this work can be extended to fabricate other mixed transition metal-based materials for advanced batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical Performance of a V2O5 Cathode for a Sodium Ion Battery

    NASA Astrophysics Data System (ADS)

    Van Nghia, Nguyen; Long, Pham Duy; Tan, Ta Anh; Jafian, Samuel; Hung, I.-Ming

    2017-06-01

    In this paper, layered vanadium pentoxide (V2O5) is employed as a cathode material for a sodium ion battery. The V2O5 particle sizes range from 200 nm to 500 nm and the shapes of the aggregated V2O5 particles are non-homogeneous and irregular. The material exhibits a first discharge capacity of approximately 208.1 mAh g-1. The structure of V2O5 changes to a NaxV2O5 structure after Na+ insertion at the first discharge; the structure of NaxV2O5 remains stable␣during cycling. After 40 cycles, the discharge capacity retains 61.2% of the capacity of the second cycle. The capacity of V2O5 at a high charge/discharge current rate of 1.0 C is 49.1% of capacity at 0.1 C. Furthermore, the capacity returns to the initial value as the discharge rate returns to 0.1 C. The results of electrochemical performance tests indicate that V2O5 is a potential cathode material for sodium ion batteries.

  2. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOEpatents

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  3. Micro hollow cathode discharge jets utilizing solid fuel

    NASA Astrophysics Data System (ADS)

    Nikic, Dejan

    2017-10-01

    Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.

  4. On transition from diffuse mode to the constricted one with high-current cathode spot in overvoltage open discharge in D2

    NASA Astrophysics Data System (ADS)

    Akishev, Yu S.; Karalnik, V. B.; Medvedev, M. A.; Petryakov, A. V.; Trushkin, N. I.; Shafikov, A. G.

    2017-11-01

    So called “open discharges” in a narrow gap between the solid cathode and grid anode are widely used for generation of the pulsed high-current electron beams with energy up to 100 keV. The need to get high-energy e-beams leads to the necessity in using of strong overvoltage of the short gas gap with the reduced electric field of the order of 105 Td or higher. The discharge under strong overvoltage is unstable and tends to transit into high-current regime with low voltage. In the case of the open discharge in D2 at low pressure (about 0.5-2 Torr) and powered by stepwise voltage with amplitude up to 25 kV we revealed that this discharge exhibits two diffuse regimes which follow one by one and finally transits into the constricted mode with formation of high-current spots on the cathode. The physical properties of these gas discharge regimes have been explored in detail with the usage of the fast multi-frame camera synchronized with the current and voltage of discharge. Our findings promote more insight into physics of the overvoltage open discharge generating the e-beams with energy up to 25 keV.

  5. Advances in electrometer vacuum tube design

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Single-ended, miniature-cathode tube with a relatively low grid current level is constructed. Adequate cathode temperature at relatively low heater power drain is provided by designing the supporting spacers to provide a square cathode hole. Method of assembling the mount and bonding the elements is discussed.

  6. Direct current microhollow cathode discharges on silicon devices operating in argon and helium

    NASA Astrophysics Data System (ADS)

    Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.

    2018-02-01

    Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.

  7. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  8. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Rubio-Roy, M.; Bertran, E.; Portal, S.; Pascual, E.; Polo, M. C.; Andújar, J. L.

    2011-02-01

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH4) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  9. Note: Triggering behavior of a vacuum arc plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, C. H., E-mail: lanchaohui@163.com; Long, J. D.; Zheng, L.

    2016-08-15

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found thatmore » the triggering process is highly correlated to the behavior of emitted electrons.« less

  10. Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Long-Life Lithium-Sulfur Battery Cathodes.

    PubMed

    Zubair, Usman; Amici, Julia; Francia, Carlotta; McNulty, David; Bodoardo, Silvia; O'Dwyer, Colm

    2018-06-11

    In Li-S batteries, it is important to ensure efficient reversible conversion of sulfur to lithium polysulfide (LiPS). Shuttling effects caused by LiPS dissolution can lead to reduced performance and cycle life. Although carbon materials rely on physical trapping of polysulfides, polar oxide surfaces can chemically bind LiPS to improve the stability of sulfur cathodes. We show a simple synthetic method that allows high sulfur loading into mesoporous carbon preloaded with spatially localized nanoparticles of several Magnéli-phase titanium oxide (Ti n O 2n-1 ). This material simultaneously suppresses polysulfide shuttling phenomena by chemically binding Li polysulfides onto several Magnéli-phase surfaces in a single cathode and ensures physical confinement of sulfur and LiPS. The synergy between chemical immobilization of significant quantities of LiPS at the surface of several Ti n O 2n-1 phases and physical entrapment results in coulombically efficient high-rate cathodes with long cycle life and high capacity. These cathodes function efficiently at low electrolyte-to-sulfur ratios to provide high gravimetric and volumetric capacities in comparison with their highly porous carbon counterparts. Assembled coin cells have an initial discharge capacity of 1100 mAh g -1 at 0.1C and maintain a reversible capacity of 520 mAh g -1 at 0.2C for more than 500 cycles. Even at 1C, the cell loses only 0.06 % per cycle for 1000 cycles with a coulombic efficiency close to 99 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Powerful glow discharge excilamp

    DOEpatents

    Tarasenko, Victor F.; Panchenko, Aleksey N.; Skakun, Victor S.; Sosnin, Edward A.; Wang, Francis T.; Myers, Booth R.; Adamson, Martyn G.

    2002-01-01

    A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

  12. Investigation of the Li–S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dong; Liu, Dan; Harris, Joshua B.

    The mechanism of the sulfur cathode in Li-S batteries has been proposed. It was revealed by the real-time quantitative determination of polysulfide species and elemental sulfur by means of the high performance liquid chromatography in the course of the discharge and recharge of a Li-S battery. A three-step reduction mechanism including two chemical equilibrium reactions was proposed for the sulfur cathode discharge. The typical two-plateau discharge curve for sulfur cathode can be explained. A two-step oxidation mechanism for the Li 2S and Li 2S 2 with a single chemical equilibrium among soluble polysulfide ions was proposed. In conclusion, the chemicalmore » equilibrium among S 5 2-, S 6 2-, S 7 2- and S 8 2- throughout the entire oxidation process resulted for the single flat recharge curve in Li-S batteries.« less

  13. Investigation of the Li–S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge

    DOE PAGES

    Zheng, Dong; Liu, Dan; Harris, Joshua B.; ...

    2016-09-09

    The mechanism of the sulfur cathode in Li-S batteries has been proposed. It was revealed by the real-time quantitative determination of polysulfide species and elemental sulfur by means of the high performance liquid chromatography in the course of the discharge and recharge of a Li-S battery. A three-step reduction mechanism including two chemical equilibrium reactions was proposed for the sulfur cathode discharge. The typical two-plateau discharge curve for sulfur cathode can be explained. A two-step oxidation mechanism for the Li 2S and Li 2S 2 with a single chemical equilibrium among soluble polysulfide ions was proposed. In conclusion, the chemicalmore » equilibrium among S 5 2-, S 6 2-, S 7 2- and S 8 2- throughout the entire oxidation process resulted for the single flat recharge curve in Li-S batteries.« less

  14. Experimental Study of Heating of a Liquid Cathode and Transfer of Its Components into the Gas Phase under the Action of a DC Discharge

    NASA Astrophysics Data System (ADS)

    Sirotkin, N. A.; Titov, V. A.

    2018-04-01

    An atmospheric-pressure dc discharge in air ( i = 10-50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2( C 3Π u → B 3Π g , 0-2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.

  15. Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries.

    PubMed

    Ma, Jing; Zhou, En; Fan, Cong; Wu, Bo; Li, Chao; Lu, Zheng-Hong; Li, Jingze

    2018-05-29

    Herein, copper-tetracyanoquinodimethane (CuTCNQ) with phase-I kinetics character has been proposed as an effective cathode for potassium-ion batteries. In a voltage range of 2-4.1 V (vs. K+/K), both cuprous cations (Cu+) and organic anions (TCNQ-) are electrochemically active, and they render a three-electron redox mechanism, thereby enabling CuTCNQ to yield a high specific discharge capacity of 244 mA h g-1. Even after 50 cycles, the discharge capacity of 170 mA h g-1 is retained at 50 mA g-1. In addition, when the current density is elevated to 1000 mA g-1, the discharge capacity is still maintained at 125 mA h g-1. These test data are among the best results reported for high-potential cathodes of potassium-ion batteries.

  16. Excitation mechanism in a hollow cathode He-Kr ion laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazama, J.; Arai, T.; Goto, M.

    1995-12-31

    Pulsed laser operation in the afterglow of a positive column He-Kr discharge on the 469.4 nm (6s{sup 4}P{sub 5/2} {yields} 5p{sup 4}P{sub 5/2}) transition of Kr(II) was observed for the first time by Dana and Laure`s. It appears that the upper level of Kr(II) laser line is populated by the second kind collisions between He 2{sup 3}S metastable atoms and ground state Kr ions. CW oscillations on Kr(II) transitions have been obtained in a hollow cathode discharge. In this work, we have estimated the excitation mechanism for the upper state of 469.4 nm laser line from the measurements of themore » decay of endlight intensity in the hollow cathode He-Kr discharge.« less

  17. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  18. Investigation of nanosecond pulsed dielectric barrier discharge using plate-to-plate electrode with asymmetric dielectric arrangement in airflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Haicheng; School of Physics Science and Technology, Anshan Normal University, Anshan 114005; Fan, Zhihui

    Atmospheric pressure dielectric barrier discharge plasma is produced in airflow by applying nanosecond high voltage pulses with peak voltage about 35 kV and rising time about 40 ns on a plate-to-plate electrode arrangement. The effects of airflow rate (0–50 m/s) on the discharge characteristics are investigated under different barrier conditions (the bare anode case and the bare cathode case). For both cases, the breakdown voltage and the time lag increase distinctly and the discharge intensity decreases sharply when the airflow rate increases from 0 to 30 m/s, and then keep almost constant until the airflow rate is further increased to 50 m/s. For the baremore » anode case (the cathode is covered by dielectric plate), the discharge mode transforms gradually from filamentary to diffuse discharge with the increasing airflow rate. While for the bare cathode case, some micro-discharge channels are still excited, though the discharge becomes more diffuse when the airflow rate is higher than 30 m/s. By acquiring the time-resolved images of the discharge, it is proved that it is the primary discharge which becomes diffuse when airflow is introduced and the following two discharges of the same voltage pulse occur principally at the positions where the primary discharge is more intense. And in both cases, the plasma temperatures are reduced, but the degree is different. All the phenomena can be explained mainly by the variation of the space charge distribution when the airflow is introduced into the discharge gap. And it is indicated that the bare anode case has an advantage in obtaining diffuse discharge.« less

  19. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  20. Stable "superoxide" opens the door to a new class of batteries | Argonne

    Science.gov Websites

    between LiO2 and Ir3Li may be responsible for the LiO2 discharge product found for the Ir-rGO cathode material. The lattice match between LiO2 and Ir3Li may be responsible for the LiO2 discharge product found for the Ir-rGO cathode material

  1. Internal erosion rates of a 10-kW xenon ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1988-01-01

    A 30 cm diameter divergent magnetic field ion thruster, developed for mercury operation at 2.7 kW, was modified and operated with xenon propellant at a power level of 10 kW for 567 h to evaluate thruster performance and lifetime. The major differences between this thruster and its baseline configuration were elimination of the three mercury vaporizers, use of a main discharge cathode with a larger orifice, reduction in discharge baffle diameter, and use of an ion accelerating system with larger acceleration grid holes. Grid thickness measurement uncertainties, combined with estimates of the effects of reactive residual facility background gases gave a minimum screen grid lifetime of 7000 h. Discharge cathode orifice erosion rates were measured with three different cathodes with different initial orifice diameters. Three potential problems were identified during the wear test: the upstream side of the discharge baffle eroded at an unacceptable rate; two of the main cathode tubes experienced oxidation, deformation, and failure; and the accelerator grid impingement current was more than an order of magnitude higher than that of the baseline mercury thruster. The charge exchange ion erosion was not quantified in this test. There were no measurable changes in the accelerator grid thickness or the accelerator grid hole diameters.

  2. Rapid temperature increase near the anode and cathode in the afterglow of a pulsed positive streamer discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo

    2018-06-01

    The spatiotemporal evolution of the temperature in the afterglow of point-to-plane, pulsed positive streamer discharge was measured near the anode tip and cathode surface using laser-induced predissociation fluorescence of OH radicals. The temperature exhibited a rapid increase and displayed a steep spatial gradient after a discharge pulse. The rate of temperature rise reached 84 K μs‑1 at mm, where z represents the distance from the anode tip. The temperature rise was much faster than in the middle of the gap; it was only 2.8 K μs‑1 at mm. The temperature reached 1700 K near the anode tip at s and 1500 K near the cathode surface at s, where t represents the postdischarge time. The spatial gradient reached 1280 K mm‑1 near the anode tip at s. The mechanism responsible for the rapid temperature increase was discussed, including rapid heating of the gas in the early postdischarge phase (s), and vibration-to-translation energy transfer in the later postdischarge phase (s). The high temperatures near the anode tip and cathode surface are particularly important for the ignition of combustible mixtures and for surface treatments, including solid-surface treatments, water treatments, and plasma medicine using pulsed streamer discharges.

  3. Multi-cathode metal vapor arc ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.

    1988-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  4. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictatedmore » by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.« less

  5. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wujcik, Kevin H.; Wang, Dunyang Rita; Pascal, Tod A.

    Lithium sulfur (Li-S) batteries are well known for their high theoretical specific capacities, but are plagued with scientific obstacles that make practical implementation of the technology impossible. The success of Li-S batteries will likely necessitate the use of thick sulfur cathodes that enable high specific energy densities. However, little is known about the fundamental reaction mechanisms and chemical processes that take place in thick cathodes, as most research has focused on studying thinner cathodes that enable high performance. In this study, in situ X-ray absorption spectroscopy at the sulfur K-edge is used to examine the back of a 115 μmmore » thick Li-S cathode during discharge. Our results show that in such systems, where electrochemical reactions between sulfur and lithium are likely to proceed preferentially toward the front of the cathode, lithium polysulfide dianions formed in this region diffuse to the back of the cathode during discharge. We show that high conversion of elemental sulfur is achieved by chemical reactions between elemental sulfur and polysulfide dianions of intermediate chain length (Li 2S x, 4 ≤ x ≤ 6). Our work suggests that controlling the formation and diffusion of intermediate chain length polysulfide dianions is crucial for insuring full utilization of thick sulfur cathodes.« less

  7. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    PubMed

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  8. Ultra High Energy Density Cathodes with Carbon Nanotubes

    DTIC Science & Technology

    2013-12-10

    a) Carbon nanotube paper coated with NCA cathode composite for testing as positive electrode in Li-ion battery (b) Comparison of NCA specific...received and purified CNT electrodes coated with NCA cathode composite. (b) Discharge capacities as a function of rate and cycle for NCA on Al and...thickness increases. The first approach was to cast SOA NCA cathode composites onto CNT current collectors using an adjustable blade coater. The

  9. Rate Dependent Multi-Mechanism Discharge of Ag 0.50VOP 4·1.8H 2O: Insights from In Situ Energy Dispersive X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huie, Matthew M.; Bock, David C.; Zhong, Zhong

    Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less

  10. Rate Dependent Multi-Mechanism Discharge of Ag 0.50VOP 4·1.8H 2O: Insights from In Situ Energy Dispersive X-ray Diffraction

    DOE PAGES

    Huie, Matthew M.; Bock, David C.; Zhong, Zhong; ...

    2016-09-01

    Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less

  11. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Putt, Ronald A. (Inventor); Woodruff, Glenn (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  12. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge–Discharge Cycling and Heating

    DOE PAGES

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; ...

    2018-01-19

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  13. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  14. Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown

    NASA Astrophysics Data System (ADS)

    Trusov, K. K.

    2017-08-01

    Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.

  15. Evolution of strategies for modern rechargeable batteries.

    PubMed

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred without dendrite formation. The SONY corporation used the LiCoO2/carbon battery to power their initial cellular telephone and launched the wireless revolution. As researchers developed 3D transition-metal hosts, manufacturers introduced spinel and olivine hosts in the Lix[Mn2]O4 and LiFe(PO4) cathodes. However, current Li-ion batteries fall short of the desired specifications for electric-powered automobiles and the storage of electrical energy generated by wind and solar power. These demands are stimulating new strategies for electrochemical cells that can safely and affordably meet those challenges.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  17. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  18. Study on a negative hydrogen ion source with hot cathode arc discharge.

    PubMed

    Lin, S H; Fang, X; Zhang, H J; Qian, C; Ma, B H; Wang, H; Li, X X; Zhang, X Z; Sun, L T; Zhang, Z M; Yuan, P; Zhao, H W

    2014-02-01

    A negative hydrogen (H(-)) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H(-) beam with ɛ N, RMS = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I(e(-))/I(H(-)) were experimentally studied. The discussion on the result, and opinions to improve the source were given.

  19. Glow discharge plasma deposition of thin films

    DOEpatents

    Weakliem, Herbert A.; Vossen, Jr., John L.

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  20. Effect of energetic electrons on dust charging in hot cathode filament discharge

    NASA Astrophysics Data System (ADS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  1. An impressive approach to solving the ongoing stability problems of LiCoPO4 cathode: Nickel oxide surface modification with excellent core-shell principle

    NASA Astrophysics Data System (ADS)

    Örnek, Ahmet

    2017-07-01

    Nanoscale and NiO-coated LiCoPO4 cathode materials were prepared for the first time by a newly designed three-step synthesis route, which is a combined technique including advantages of the Stöber, hydrothermal and microwave synthesis methods. Using this extraordinary technique, LiCoPO4 particles are coated with a thin NiO layer with a perfect core-shell morphology and the technique's positive contribution to electrochemistry is elucidated in detail. The samples are interpreted using opto-analytical techniques and galvanostatic charge-discharge tests. The high-resolution transmission electron microscopy analysis proves that this well-elaborated technique makes it possible to achieve a continuous NiO surface coverage of 8-10 nm, a result that contributes towards solving the chronic electrochemical problems of 4.8 V cathode material. Our data reveal that NiO-coated LiCoPO4 cathode demonstrates superior cycle stability and specific capacity at relatively low rates. The 2.5% wt. NiO-coated cathode exhibits the best electrochemical property, which reaches a discharge capacity of 159 mAh g-1 at 0.l C current rate and shows almost 85% capacity retention after 80 charge-discharge cycles. It therefore achieves partial success in improving the electrochemical properties of the LiCoPO4 cathode material, which is especially crucial for energy storage to be applied in electric vehicles and plug-in hybrid electric applications.

  2. Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl thiophene)/carbon nanotube composite cathode

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Sivakkumar, S. R.; MacFarlane, Douglas R.; Forsyth, Maria; Sun, Yang-Kook

    A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) and LiBF 4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF 4. A porous poly(vinylidene fluoride- co-hexafluoropropylene) (P(VdF- co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety.

  3. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    NASA Astrophysics Data System (ADS)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  4. The study of lead vapor ionization in discharge with a hot cathode and efficiency of its deposition on the substrates applied for plasma separation method

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Samokhin, A. A.; Zhabin, S. N.; Gavrikov, A. V.; Smirnov, V. P.

    2016-11-01

    Spent nuclear fuel plasma separation method approbation implies the use of model substances. Thus it is necessary to solve the problem of material conversion into a cold plasma flow, as well as the problem of deposition on collectors. For this purpose, we carried out a kinetic and hydrodynamic simulation of the discharge with hot cathode in the lead vapor (lead vapor was injected into the interelectrode gap). Dependencies of the ionization efficiency, electrostatic potential distribution, density distribution of ions and electrons in the discharge gap on the discharge current density and the model substance vapor concentration were obtained. The simulation results show that at discharge current density of about 3.5 A/cm2 and the lead vapor concentration of 2 × 1012 cm-3, the ionization efficiency is close to 60%. Experimental research of the discharge with a hot cathode in the lead vapor was carried out. We also carried out the research of the Pb condensation coefficients on various substrates. For experimental data analysis the numerical model based on Monte Carlo method was used. The research results show that deposition coefficients at medium temperatures of substrates near 70 °C do not drop lower than 75%.

  5. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  6. Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors

    NASA Technical Reports Server (NTRS)

    Lauver, M. R.

    1978-01-01

    Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.

  7. Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries

    PubMed Central

    Sathiya, Mariyappan; Prakash, Annigere S.; Ramesha, Kannadka; Shukla, Ashok K.

    2009-01-01

    An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2) is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2 cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron microscopy, and galvanostatic charge-discharge cycling. Cathodes comprising HT-LiCoO2 exhibit a specific capacity of 140 mAhg-1 with good capacity-retention over several charge-discharge cycles in the voltage range between 3.5 V and 4.2 V, and can sustain improved rate capability in contrast to a cathode constituting LiCoO2 prepared by conventional ceramic method. The nitrate-melt-decomposition method is also found effective for synthesizing Mg-/Al- doped HT-LiCoO2; these also are investigated as cathode materials for Li-ion batteries.

  8. All-Ceramic Thin Film Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYLE, TIMOTHY J.; INGERSOLL, DAVID; CYGAN, RANDALL T.

    2002-11-01

    We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films weremore » generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting. Alternative approaches for preparing non-shorted devices (e.g. inverted and side-by-side) are under study.« less

  9. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  10. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    NASA Technical Reports Server (NTRS)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  11. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-12-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  12. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  13. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-01-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  14. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  15. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  16. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minotti, F.; Giuliani, L.; Xaubet, M.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium betweenmore » electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.« less

  17. First-principles study of the electronic properties and discharge profile of AgNa(VO2F2)2

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.

    2014-03-01

    Implantable cardiac defibrillators (ICDs) require batteries with high capacities and high discharge rates to ensure the optimal operation of the device over several years. Ag2V4O11 has been a cathode material of choice for the ICDs owing to its high capacity and fast rate of electronic discharge. To reduce ICD size and improve ICD performance, a new cathode material would need to display a higher volumetric capacity and redox potential. Recently, the new cathode compound AgNa(VO2F2)2 (SSVOF) was synthesized and displayed favorable voltage for sodium-ion batteries. However, the discharge reaction has been unclear. In this presentation, we study the discharge reaction of SSVOF through DFT calculations. All calculations are performed within the PAW method using the GGA and GGA + U functionals. Among several possible reactions, we focus on the reaction Ag X + A --> AX + Ag, where X is Na(VO2F2)2 and A is Li or Na. In this reaction, the discharge occurs by replacing Ag with A. The calculated discharge potential for Li is 3.3 V in GGA and 2.9 V in GGA + U and that for Na is 3.1 V in GGA and 2.8 V in GGA + U . These values are consistent with the experimental ones. Supported by the DOE ER46536 Program.

  18. A survey of Kaufman thruster cathodes

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Nakanishi, S.

    1971-01-01

    A survey is presented of the various cathodes which were developed and used in the Kaufman ion thruster. The electron bombardment type ion source is briefly described. The general design, operating characteristics, and power requirements are shown for each type of cathode from the refractory metals used in 1960 to the plasma discharge hollow cathodes of today. A detailed discussion of the hollow cathode is given, including starting and cyclic operating characteristics as well as more fundamental design parameters. Tests to date show that the plasma hollow cathode is an efficient electron source with demonstrated durability over 10,000 hours.

  19. Rechargeable LiNiO2/carbon cells

    NASA Astrophysics Data System (ADS)

    Dahn, J. R.; von Sacken, U.; Juzkow, M. W.; Al-Janaby, H.

    1991-08-01

    Rechargeable cells can be made using two different intercalation compounds, in which the chemical potential of the intercalant differs by several eV, for the electrodes. The factors that play a role in the selection of appropriate lithium intercalation compounds for such cells are discussed. For the ease of cell assembly, the cathode should be stable in air when it is fully intercalated, like LiNiO2. For the anode, the chemical potential of the intercalated Li should be close to that of Li metal, like it is in Li(x)C6. The intercalation of Li in LiNiO2 is discussed, and then in petroleum coke. Then, it is shown that LiNiO2/coke cells have high energy density, long cycle life, excellent high-temperature performance, low self-discharge rates, can be repeatedly discharged to zero volts without damage, and are easily fabricated. It is considered that this type of cell shows far more promise for widespread applications than traditional secondary Li cells using metallic Li anodes.

  20. Effect of transition metal composition on electrochemical performance of nickel-manganese-based lithium-rich layer-structured cathode materials in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konishi, Hiroaki, E-mail: hiroaki.konishi.yj@hitachi.com; Gunji, Akira; Feng, Xiaoliang

    2017-05-15

    To evaluate the effect of transition metal composition on the electrochemical properties of Li-rich layer-structured cathode materials, Li{sub 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2, 0.25, 0.3, and 0.4) were synthesized, and their electrochemical properties were investigated. As nickel content x increased in Li{sub 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2, 0.25, 0.3, and 0.4), charge-discharge capacities at a low C-rate (0.05 C) decreased. The results obtained by dQ/dV curves indicate that, as the nickel content increased, the discharge capacity below 3.6 V greatly decreased, but that above 3.6 V increased. As the C-rate of the discharge process increased, the discharge reaction of Li{submore » 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2) below 3.6 V greatly decreased. In contrast, that above 3.6 V slightly decreased. This indicates that the discharge reaction above 3.6 V exhibits higher rate performance than that below 3.6 V. For the high-nickel-content cathodes, the ratio of the discharge capacity above 3.6 V to the total discharge capacity was high. Therefore, they exhibited high rate performance. - Graphical abstract: Figure shows the discharge curves of Li{sub 1.2}Ni{sub x}Mn{sub 0.8−x}O{sub 2} (x=0.2 and 0.3) within potential range of 2.5−4.6 V (vs. Li/Li{sup +}) at 0.05 and 3 C. At low C-rate (0.05 C), the discharge capacity of high-nickel-content cathode (Li{sub 1.2}Ni{sub 0.3}Mn{sub 0.5}O{sub 2}) was less than that of low-nickel-content cathode (Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.6}O{sub 2}); however, the discharge potential and capacity of Li{sub 1.2}Ni{sub 0.3}Mn{sub 0.5}O{sub 2} was higher than those of Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.6}O{sub 2} at high C-rate (3 C). This means that the increase in Ni/Mn ratio was effective in improving rate-performance.« less

  1. In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Xue, Hairong; Wang, Tao; He, Jianping

    2016-06-01

    The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (∼100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 μm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g-1 and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of ∼60 mAh g-1, exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 1.3 g cm-3. What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance.

  2. New Cathode Material for High Energy-Density Batteries,

    DTIC Science & Technology

    Semiconductive metal halides are under investigation as cathode materials for ambient-temperature lithium cells. N-type cadmium fluoride and zinc...fluoride were further characterized as electrodes limited by cathodic passivation in a lithium perchlorate-propylene carbonate electrolyte. The...discharge of cadmium fluoride occurred without passivation, however, in a tetramethylammonium hexafluorophosphate solution in the same solvent. The result

  3. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  4. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  5. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-20

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  6. Charge state distribution and emission characteristics in a table top reflex discharge - Effect of ion confinement and electrons accelerated across the sheath

    DOE PAGES

    Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...

    2015-11-05

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~10 18mmore » –3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less

  7. Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Lina; Zhai, Wei; Chen, Long; Li, Deping; Ma, Xiaoxin; Ai, Qing; Xu, Xiaoyan; Hou, Guangmei; Zhang, Lin; Feng, Jinkui; Si, Pengchao; Ci, Lijie

    2018-07-01

    Nanostructured spinel LiMn2O4 and super P composite with much enhanced electrochemical performance especially ultrahigh rate capability as the cathode for aqueous hybrid supercapacitors is synthesized by ball milling commercial LiMn2O4 particles together with super P. The as-prepared composite delivers a high capacitance of 306 F g-1 at the current density of 1 A g-1 and superb rate ability of 228.6 F g-1 at 40 A g-1 in 1 M Li2SO4 aqueous electrolyte. The capacitance of the nanostructured composite is 3.5 times higher than that of pristine LiMn2O4 even being charged and discharged 80 times faster. The excellent performances are ascribed to the nanosized LiMn2O4 well dispersed into the conductive carbon matrix. LiMn2O4 and super P composite//active carbon hybrid supercapacitor is assembled and the energy density can reach up to 21.58 Wh kg-1 at 293.16 W kg-1 and 13 Wh kg-1 at 5200 W kg-1. The hybrid device also shows an excellent cycling performance, which retains 85% of the initial capacitance after 4500 cycles. This work provides an effectively facile way to produce high performance LiMn2O4-based cathodes for hybrid suercapacitors in practical applications.

  8. Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.

    PubMed

    Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra

    2012-01-01

    The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society

  9. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  10. Improving the Capacity of Sodium Ion Battery Using a Virus-Templated Nanostructured Composite Cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, M; Li, Z; Qi, JF

    In this work we investigated an energy-efficient biotemplated route to synthesize nanostructured FePO4 for sodium-based batteries. Self-assembled M13 viruses and single wall carbon nanotubes (SWCNTs) have been used as a template to grow amorphous FePO4 nanoparticles at room temperature (the active composite is denoted as Bio-FePO4-CNT) to enhance the electronic conductivity of the active material. Preliminary tests demonstrate a discharge capacity as high as 166 mAh/g at C/10 rate, corresponding to composition Na0.9FePO4, which along with higher C-rate tests show this material to have the highest capacity and power performance reported for amorphous FePO4 electrodes to date.

  11. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  12. Catheterized plasma X-ray source

    DOEpatents

    Derzon, Mark S.; Robinson, Alex; Galambos, Paul C.

    2017-06-20

    A radiation generator useful for medical applications, among others, is provided. The radiation generator includes a catheter; a plasma discharge chamber situated within a terminal portion of the catheter, a cathode and an anode positioned within the plasma discharge chamber and separated by a gap, and a high-voltage transmission line extensive through the interior of the catheter and terminating on the cathode and anode so as to deliver, in operation, one or more voltage pulses across the gap.

  13. Development of a laser ablation-hollow cathode glow discharge emission source and the application to the analysis of steel samples.

    PubMed

    Naeem, Tariq M; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-12-01

    A novel atomic emission spectrometry comprising laser ablation as a sampling source and hollow cathode plasma for the excitation of ablated sample atoms is proposed. In this arrangement, a conventional Grimm-type discharge lamp is employed, but the polarity of the power supply is reversed so that the cylindrical hollow tube acts as a cathode and the glow discharge plasma is produced within this tube. A laser is irradiated to introduce sample atoms into the discharge plasma. Ablated atoms are excited by collisions with electrons and gas species, and emit characteristic radiation upon de-excitation. The experiments were conducted only in an atmosphere of helium gas so as to avoid a rapid erosion of the cathode hollow tube. Phase-sensitive detection with a lock-in amplifier was utilized to reject the continuous background emission of the plasma gas and emissions of sputtered atoms from the tube material. The unique feature of this technique is that the sampling and excitation processes can be controlled independently. The proposed technique was employed for the determination of Cr, Mn, and Ni in low-alloyed steel samples. The obtained concentrations are in good agreement with the reported values. The relative standard deviation (RSD), a measure of the analytical precision, was estimated to be 2-9% for Cr, 3-4% for Mn, and 4-11% for Ni determination.

  14. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries

    PubMed Central

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-01-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4−δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4−δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn3+ from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF. PMID:27553901

  15. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  16. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-09-05

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  17. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  18. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  19. 1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode

    NASA Astrophysics Data System (ADS)

    Wang, Long; Ma, Yulin; Li, Qin; Zhou, Zhenxin; Cheng, Xinqun; Zuo, Pengjian; Du, Chunyu; Gao, Yunzhi; Yin, Geping

    2017-09-01

    1,3,6-Hexanetricarbonitrile (HTN) has been investigated as an electrolyte additive to improve the electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode at high operating voltage (4.8 V). Linear sweep voltammetry (LSV) results indicate that HTN can improve the oxidation potential of the electrolyte. The influences of HTN on the electrochemical behaviors and surface properties of the cathode at high voltage have been investigated by galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS), and ex-situ physical characterizations. Charge-discharge results demonstrate that the capacity retention of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode in 1% HTN-containing electrolyte after 150 cycles at 0.5 C is improved to 92.3%, which is much higher than that in the standard electrolyte (ED). Combined with the theoretical calculation, ICP tests, XRD and XPS analysis, more stable and homogeneous interface film is confirmed to form on the cathode surface with incorporation of HTN, meanwhile, the electrolyte decomposition and the cathode structural destruction are restrained effectively upon cycling at high voltage, leading to improved electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode.

  20. Cathode degradation and erosion in high pressure arc discharges

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Nakanishi, S.

    1984-01-01

    The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.

  1. Discharge formation in a XеCl laser pumped by high specific power

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Losev, V. F.

    2013-02-01

    Stable glow of the discharge of various types in the gas mixture of a XeCl laser is investigated for specific pumping power in the range 1.2-4.6 MW/cm3 and pulse duration of 40 ns. It is demonstrated that formation of partially homogeneous plasma with many intensive cathode spots on the electrode allows the maximum energy and duration of the lasing pulse to be obtained with laser efficiency of 2.4%. It is revealed that for the specific pumping powers up to 1.5 MW/cm3, a very homogeneous volume discharge with a small number of lowintensive cathode spots is formed in the discharge gap. With further increase in the specific pumping power exceeding 4.5 MW/cm3, current microinhomogeneities are formed in the volume discharge of this type leading to lasing breakdown.

  2. Extended test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 4700 hours with small changes in operating parameters. The discharge experienced 4 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was reignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1A) xenon hollow cathode reported to date.

  3. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  4. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  5. Investigation of a Mercury-Argon Hot Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  6. Integral edge seals for phosphoric acid fuel cells

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  7. Improved electrochemical properties of a coin cell using LiMn 1.5Ni 0.5O 4 as cathode in the 5 V range

    NASA Astrophysics Data System (ADS)

    Singhal, Rahul; Das, Suprem R.; Oviedo, Osbert; Tomar, Maharaj S.; Katiyar, Ram S.

    Phase pure LiMn 1.5Ni 0.5O 4 powders were synthesized by a chemical synthesis route and were subsequently characterized as cathode materials in a Li-ion coin cell comprising a Li anode and lithium hexafluorophosphate (LiPF 6), dissolved in dimethyl carbonate (DMC) + ethylene carbonate (EC) [1:1, v/v ratio] as electrolyte. The spinel structure and phase purity of the powders were characterized using X-ray diffraction and micro-Raman spectroscopy. The presence of both oxidation and reduction peaks in the cyclic voltammogram revealed Li + extraction and insertion from the spinel structure. The charge-discharge characteristics of the coin cell were performed in the 3.0-4.8 V range. An initial discharge capacity of ∼140 mAh g -1 was obtained with 94% initial discharge capacity retention after 50 repeated cycles. The microstructures and compositions of the cathode before and after electrochemistry were investigated using scanning electron microscopy and energy-dispersive analysis by X-ray analysis, respectively. Using X-ray diffraction, Raman spectroscopy and electrochemical analysis, we correlated the structural stability and the electrochemical performance of this cathode.

  8. Microstructure and corrosion resistance of nitrogen-rich surface layers on AISI 304 stainless steel by rapid nitriding in a hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Li, Yang; He, Yongyong; Zhang, Shangzhou; Wang, Wei; Zhu, Yijie

    2018-01-01

    Nitriding treatments have been successfully applied to austenitic stainless steels to improve their hardness and tribological properties. However, at temperatures above 450 °C, conventional plasma nitriding processes decrease the corrosion resistance due to the formation of CrN phases within the modified layer. In this work, AISI 304 austenitic stainless steels were efficiently treated by rapid plasma nitriding at a high temperature of 530 °C in a hollow cathode discharge. The enhanced ionization obtained in the hollow cathode configuration provided a high current density and, consequently, a high temperature could be attained in a short time. The nitrided layers were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicated that the dual-layer structure of the nitrided layer consists of a high-N face-centered cubic structure with a free CrN precipitate outer (top) layer and a nitrogen-expanded austenite S-phase bottom layer. The rapid nitriding-assisted hollow cathode discharge technique permits the use of high temperatures, as high as 530 °C, without promoting degradation in the corrosion resistance of stainless steel.

  9. High-current electron gun with a planar magnetron integrated with an explosive-emission cathode

    NASA Astrophysics Data System (ADS)

    Kiziridi, P. P.; Ozur, G. E.

    2017-05-01

    A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.

  10. Is overprotection of the sulfur cathode good for Li-S batteries?

    PubMed

    Gao, Tian; Shao, Jie; Li, Xingxing; Zhu, Guobin; Lu, Qiujian; Han, Yuyao; Qu, Qunting; Zheng, Honghe

    2015-08-11

    How to restrain the dissolution of polysulfides from the sulfur cathode is the current research focus of Li-S batteries. Here, we find that moderate dissolution of polysulfides is of great importance for high-efficiency and stable discharge/charge cycling. Both overprotection and inadequate protection of the sulfur cathode are unfavorable for the cycling of Li-S batteries.

  11. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  12. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  13. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  14. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  15. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  16. A survey of Kaufman thruster cathodes.

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Nakanishi, S.

    1971-01-01

    A survey is presented of various cathodes which have been developed and used in the Kaufman ion thruster. The electron-bombardment type ion source used in the thruster is briefly described. The general design, operating characteristics, and power requirements are shown for each type of cathode from the refractory metals used in 1960 to the plasma discharge hollow cathodes of today. A detailed discussion of the hollow cathode is given describing starting and cyclic operating characteristics as well as more fundamental design parameters. Tests to date show that the plasma hollow cathode is an efficient electron source with demonstrated durability over 10,000 hours and should offer further performance and life improvements.

  17. Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Jameson, Kristina K.; Watkins, Ron M.; Katz, Ira

    2004-01-01

    In order to support the development of comprehensive performance and life models for future deep space missions that will utilize ion thrusters, we have undertaken a study of the plasma structure in hollow cathodes using an new pneumatic scanning probe diagnostic. This device is designed to insert a miniature probe directly into the hollow cathode orifice from either the upstream insert region in the interior of the hollow cathode, or from the downstream keeper-plasma region at the exit of the hollow cathode, to provide complete axial profiles of the discharge plasma parameters. Previous attempts to diagnose this region with probes was Limited by the melting of small probes in the intense discharge near the orifice, or caused significant perturbation of the plasma by probes large enough to survive. Our new probe is extremely compact, and when configured as a single Langmuir probe, the ceramic tube insulator is only 0.5mm in diameter and the current collecting conductor has a total area of 0.002 cm2. A series of current-voltage characteristics are obtained by applying a rapid sawtooth voltage waveform to the probe as it is scanned by the pneumatic actuator into and out of the plasma region, The bellow-sealed pneumatic drive scans the probe 4 cm in the cathode insert region and 10 cm in the anode/keeper plasmas region at average speeds of about 1 mm/msec, and the residence time at the end of the insertion stroke in the densest part of the plasma near the orifice is measured to be only 10 msec. Since the voltage sweep time is fast compared to the motion of the probe, axial profiles of the plasma density, temperature and potential with reasonable spatial resolution are obtained. Measurements of the internal cathode pressures and the axial plasma-parameter profiles for a hollow cathode operating at discharge currents of up to 35 A in xenon will be presented.

  18. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    NASA Astrophysics Data System (ADS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

  19. Electrochemical performance of Li[Ni0.7Co0.1Mn0.2]O2 cathode materials using a co-precipitation method.

    PubMed

    Kim, Jeong-Min; Jin, Bong-Soo; Koo, Hoe-Jin; Choi, Jae-Man; Kim, Hyun-Soo

    2013-05-01

    The Li[Ni0.7Co0.1Mn0.2]O2 cathode material synthesized using a co-precipitation method was investigated as a function of various pH level in terms of its microstructure and electrochemical properties. From the XRD pattern analysis, the Li[Ni0.7Co0.1Mn0.2]O2 cathode material prepared in this study are found to well coincide with typically hexagonal alpha-NaFeO2 structure. The primary particle size was about 100-300 nm at all compositions while secondary particle size increased as pH level increased from 10.34 microm (pH 10.3) to 14 microm (pH 12.5). The initial discharge capacity increased up to 165 mAh/g (0.1 C) at pH 11, and then decreased down to 144 mAh/g with further increasing pH level. The capacity retention of the cathode (pH 11) showed 90% at 0.2 C and 15% at 5 C respectively compared with the discharge capacity at 0.1 C. The capacity retention of the cathode (pH 10.3) performed 94% of the initial capacity after 22 cycles at 0.5 C charge/discharge test. Therefore, it is thought to be that pH 10.3 is optimized condition of the Li[Ni0.7Co0.1Mn0.2]O2 cathode material in this study because pH 10.3 shows better cycle performance than other conditions.

  20. Broad-beam high-current dc ion source based on a two-stage glow discharge plasma.

    PubMed

    Vizir, A V; Oks, E M; Yushkov, G Yu

    2010-02-01

    We have designed, made, and demonstrated a broad-beam, dc, ion source based on a two-stage, hollow-cathode, and glow discharges plasma. The first-stage discharge (auxiliary discharge) produces electrons that are injected into the cathode cavity of a second-stage discharge (main discharge). The electron injection causes a decrease in the required operating pressure of the main discharge down to 0.05 mTorr and a decrease in required operating voltage down to about 50 V. The decrease in operating voltage of the main discharge leads to a decrease in the fraction of impurity ions in the ion beam extracted from the main gas discharge plasma to less than 0.2%. Another feature of the source is a single-grid accelerating system in which the ion accelerating voltage is applied between the plasma itself and the grid electrode. The source has produced steady-state Ar, O, and N ion beams of about 14 cm diameter and current of more than 2 A at an accelerating voltage of up to 2 kV.

  1. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.

    PubMed

    Zhang, Yu; Huang, Yanshan; Yang, Guanhui; Bu, Fanxing; Li, Ke; Shakir, Imran; Xu, Yuxi

    2017-05-10

    Polymer cathode materials are promising alternatives to inorganic counterparts for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high theoretical capacity, adjustable molecular structure, and strong adaptability to different counterions in batteries, etc. However, they suffer from poor practical capacity and low rate capability because of their intrinsically poor conductivity. Herein, we report the synthesis of self-assembled graphene/poly(anthraquinonyl sufide) (PAQS) composite aerogel (GPA) with efficient integration of a three-dimensional (3D) graphene framework with electroactive PAQS particles via a novel dispersion-assembly strategy which can be used as a free-standing flexible cathode upon mechanical pressing. The entire GPA cathode can deliver the highest capacity of 156 mAh g -1 at 0.1 C (1 C = 225 mAh g -1 ) with an ultrahigh utilization (94.9%) of PAQS and exhibits an excellent rate performance with 102 mAh g -1 at 20 C in LIBs. Furthermore, the flexible GPA film was also tested as cathode for SIBs and demonstrated a high-rate capability with 72 mAh g -1 at 5 C and an ultralong cycling stability (71.4% capacity retention after 1000 cycles at 0.5 C) which has rarely been achieved before. Such excellent electrochemical performance of GPA as cathode for both LIBs and SIBs could be ascribed to the fast redox kinetics and electron transportation within GPA, resulting from the interconnected conductive framework of graphene and the intimate interaction between graphene and PAQS through an efficient wrapping structure. This approach opens a universal way to develop cathode materials for powerful batteries with different metal-based counter electrodes.

  2. Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion

    NASA Astrophysics Data System (ADS)

    Xie, Kan; Martinez, Rafael A.; Williams, John D.

    2014-04-01

    This paper focuses on the net electron-emission current as a function of bias voltage of a plasma source that is being used as the cathodic element in a bare electrodynamic tether system. An analysis is made that enables an understanding of the basic issues determining the current-voltage (C-V) behaviour. This is important for the efficiency of the electrodynamic tether and for low impedance performance without relying on the properties of space plasma for varying orbital altitudes, inclinations, day-night cycles or the position of the plasma contactor relative to the wake of the spacecraft. The cathodic plasma contactor considered has a cylindrical discharge chamber (10 cm in diameter and ˜11 cm in length) and is driven by a hollow cathode. Experiments and a 1D spherical model are both used to study the contactor's C-V curves. The experiments demonstrate how the cathodic contactor would emit electrons into space for anode voltages in the range of 25-40 V, discharge currents in the range of 1-2.5 A, and low xenon gas flows of 2-4 sccm. Plasma properties are measured and compared with (3 A) and without net electron emission. A study of the dependence of relevant parameters found that the C-V behaviour strongly depends on electron temperature, initial ion energy and ion emission current at the contactor exit. However, it depended only weakly on ambient plasma density. The error in the developed model compared with the experimental C-V curves is within 5% at low electron-emission currents (0-2 A). The external ionization processes and high ion production rate caused by the discharge chamber, which dominate the C-V behaviour at electron-emission currents over 2 A, are further highlighted and discussed.

  3. Palladium nanoparticles functionalized graphene nanosheets for Li-O2 batteries: enhanced performance by tailoring the morphology of discharge product

    NASA Astrophysics Data System (ADS)

    Wang, Liangjun; Chen, Wei; SSL Team

    Lithium oxygen (Li-O2) batteries represent a promising candidate for the next generation electric vehicle.1-3 Despite the attractive prospect, some issues including large overpotentials, poor recyclability and unstable electrolyte4-6 limit the wide applications of Li-O2 batteries. Due to the insoluble and non-conductive nature of discharge product Li2O2, it has been widely accepted that the performance of oxygen evolution reaction (OER) process is not only determined by the catalyst itself but also close linked to morphology and electronic conductivity of Li2O2 formed during oxygen reduction reaction (ORR) process. Herein, we report a strategy to improve the battery performance by tailoring the morphology of discharge product. By using graphene nanosheets (GNSs) functionalized with Pd nanoparticles (NPs) as cathode catalyst, the growth and morphology of the discharge products of Li2O2 can be effectively tailored, thereby leading to the improved Li-O2 battery performance. Surprisingly, on bare GNSs cathode, the discharge product showed widely observed large-sized toroidal morphology. While for Pd NPs functionalized GNSs, the discharge product was homogenously distributed on the cathode in the form of small nanoparticles with an average diameter of 25 nm. As a result, Pd NPs functionalized GNSs exhibited a high discharge capacity of 7690 mAh g-1. Meanwhile, the battery with tailored morphology exhibits lower charge overpotential.

  4. 28,000 Hour Xenon Hollow Cathode LifeTest Results

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1997-01-01

    The International Space Station Plasma Contactor System requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. Critical components of the HCA include the hollow cathode and electron emitter. A series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify the hollow cathode design and contamination control protocols. The life test accumulated 27,800 hours of operation before failing to ignite. The hollow cathode exhibited relatively small changes in operating parameters over the course of the test. This life test is the longest duration test of a high current xenon hollow cathode reported to date.

  5. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.

    PubMed

    Oh, Soo Jung; Lee, Jun Kyu; Yoon, Woo Young

    2014-09-01

    The principal drawback of lithium-sulfur batteries is the dissolution of long-chain lithium polysulfides into the electrolyte, which limits cycling performance. To overcome this problem, we focused on the development of a novel cathode as well as anode material and designed Nafion-coated NiCrAl/S as a cathode and lithium powder as an anode. Nafion-coated NiCrAl/S cathode was synthesized using a two-step dip-coating technique. The lithium-powder anode was used instead of a lithium-foil anode to prohibit dendrite growth and to improve on the electrochemical behaviors. The cells showed an initial discharge capacity of about 900 mA g(-1) and a final discharge capacity of 772 mA g(-1) after 100 cycles at 0.1 C-rate. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrate that using the Nafion-coated NiCrAl/S cathode can suppress the dissolution of long-chain lithium polysulfides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyi; Lu, Jun; Sohm, Evan

    The present study aims to explore a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. In this study, highly ionized Fe plasma produced by arc discharge uniformly deposit on porous carbon substrate and form atomic clusters by the Pulsed Arc Plasma Deposition technique. The as-prepared FeOx/C material was tested as a cathode material in rechargeable Li-O2 battery under different current rates. The results show a significantly improvement of the battery performance in both cycle life and reaction rate. Furthermore, XRD and SEM results show that the as-prepared cathode material has the ability to stabilizemore » cathode and reduce side reactions, and current rate is a critical factor of the nucleation of the discharge products.« less

  8. Overcharge and overdischarge protection of ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    A cathode additive is provided for protecting an ambient temperature secondary lithium cell from overcharging or overdischarging. The cathode additive is chosen to create an upper voltage plateau which is slightly higher than a characteristic charge cutoff voltage of the cathode of the cell. The cathode additive additionally creates a lower voltage plateau which is slightly lower than the characteristic discharge cutoff voltage of the cell. Preferably, the cathode additive is a transition metal oxide or a sulfide and may, for example, include a mixture of Li2Mn2O4 and Li(0.1)MoO2.

  9. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Yu, Mingpeng; Wang, Aiji; Tian, Fuyang; Song, Hongquan; Wang, Yinshu; Li, Chun; Hong, Jong-Dal; Shi, Gaoquan

    2015-03-01

    A reduced graphene oxide (rGO)-sulfur composite aerogel with a compact self-assembled rGO skin was further modified by an atomic layer deposition (ALD) of ZnO or MgO layer, and used as a free-standing electrode material of a lithium-sulfur (Li-S) battery. The rGO skin and ALD-oxide coating worked as natural and artificial barriers to constrain the polysulfides within the cathode region. As a result, the Li-S battery based on this electrode material exhibited superior cycling stability, good rate capability and high coulombic efficiency. Furthermore, ALD-ZnO coating was tested for performance improvement and found to be more effective than ALD-MgO coating. The ZnO modified G-S electrode with 55 wt% sulfur loading delivered a maximum discharge capacity of 998 mA h g-1 at a current density of 0.2 C. A high capacity of 846 mA h g-1 was achieved after charging/discharging for 100 cycles with a coulombic efficiency of over 92%. In the case of using LiNO3 as a shuttle inhibitor, this electrode showed an initial discharge capacity of 796 mA h g-1 and a capacity retention of 81% after 250 cycles at a current density of 1 C with an average coulombic efficiency higher than 99.7%.A reduced graphene oxide (rGO)-sulfur composite aerogel with a compact self-assembled rGO skin was further modified by an atomic layer deposition (ALD) of ZnO or MgO layer, and used as a free-standing electrode material of a lithium-sulfur (Li-S) battery. The rGO skin and ALD-oxide coating worked as natural and artificial barriers to constrain the polysulfides within the cathode region. As a result, the Li-S battery based on this electrode material exhibited superior cycling stability, good rate capability and high coulombic efficiency. Furthermore, ALD-ZnO coating was tested for performance improvement and found to be more effective than ALD-MgO coating. The ZnO modified G-S electrode with 55 wt% sulfur loading delivered a maximum discharge capacity of 998 mA h g-1 at a current density of 0.2 C. A high capacity of 846 mA h g-1 was achieved after charging/discharging for 100 cycles with a coulombic efficiency of over 92%. In the case of using LiNO3 as a shuttle inhibitor, this electrode showed an initial discharge capacity of 796 mA h g-1 and a capacity retention of 81% after 250 cycles at a current density of 1 C with an average coulombic efficiency higher than 99.7%. Electronic supplementary information (ESI) available: Procedures of ALD operation, supplementary figures and details of theoretical simulations. See DOI: 10.1039/c5nr00166h

  10. Study of a plate-electrode XeCl laser with a pulse repetition rate up to 5 kHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voevodin, Denis D; Vysotskii, Andrei V; Lazhintsev, Boris V

    2012-11-30

    The results of the study of a repetitively pulsed XeCl laser with a high rate of pulse repetition and the electrode assembly based on a multi-section discharge gap with inductance-capacitance stabilisation of the discharge are presented. The multi-section discharge gap is formed by 25 pairs of anode - cathode plates. The discharge formed in the interelectrode gap had the dimensions 250 Multiplication-Sign 12 Multiplication-Sign 2 mm. The studies were performed using the HCl - Xe - Ne laser mixture at the total pressure up to 3.5 atm. The limit value of the radiation pulse repetition rate was equal to 5more » kHz. The meansquare deviation of the pulse energy increased from 0.8 % to 1.6 % in the range of repetition rates from 1 to 4.5 kHz and did not exceed 2.4 % at the frequency 5 kHz. The maximal energy of the laser pulse and the efficiency coefficient were equal to 7.9 mJ and 1.6 %, respectively. The maximal power of laser radiation (31 W) was obtained at the repetition rate 5 kHz. A new technique of measuring the gas flow velocity in the interelectrode gap is proposed. The velocity of gas circulation at the maximal pressure of the mixture did not exceed 18 m s{sup -1}. Optical inhomogeneities were observed, caused by a high concentration of electrons in the discharge plasma, by the acoustic wave, arising in the discharge gap, and by the heating of the gas in the discharge. (lasers)« less

  11. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  12. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.

    1999-01-01

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  13. Ion beam generating apparatus

    DOEpatents

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  14. Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids

    DOEpatents

    Kong, Peter C.; Lessing, Paul A.

    2006-04-25

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  15. Method for direct conversion of gaseous hydrocarbons to liquids

    DOEpatents

    Kong, Peter C.; Lessing, Paul A.

    2006-03-07

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  16. Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge

    PubMed Central

    Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen

    2016-01-01

    Abstract The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure. PMID:27877854

  17. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  18. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    NASA Astrophysics Data System (ADS)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  19. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, Michael D.; Umansky, M. V.

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  20. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-11-22

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  1. RELATIONS BETWEEN LIGHTNING DISCHARGES AND DIFFERENT TYPES OF MUSICAL ATMOSPHERICS,

    DTIC Science & Technology

    Recording cathode-ray oscillographs were used for the analysis of the lightning discharges whose relations to musical atmospherics were investigated...of the lightning discharges investigated. Through comparative harmonic analyses it was shown that lightning discharges producing musical atmospherics...followed by multiple whistlers. An investigation was made of correlations between lightning discharges and musical atmospherics of unusual and irregular

  2. Improved understanding of the hot cathode current modes and mode transitions

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2017-12-01

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry, this ‘new plasma’ containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.

  3. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    NASA Astrophysics Data System (ADS)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  4. On nuclear DD synthesis at the initial stage of nanosecond vacuum discharge with deuterium-loaded Pd anode

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Gus'kov, S. Yu; Karpukhin, V. T.; Oginov, A. V.; Samoylov, I. S.

    2018-01-01

    Earlier, there was demonstrated generation of DD neutrons in an interelectrode medium of a low-energy (˜ 1 J) nanosecond vacuum discharge with a hollow cathode and a deuterium-loaded Pd anode. There was revealed essential role of formation of a virtual cathode and a potential well corresponding thereto in the processes of collisional DD synthesis in the interelectrode space. In this work, we have obtained as a result of an experiment and discussed the neutron yield at the very initial stage of the discharge, when the beam of auto-electrons just starts to irradiate the non-ideal surface of the deuterium-loaded Pd anode.

  5. Study on a negative hydrogen ion source with hot cathode arc discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S. H., E-mail: linshh@impcas.ac.cn; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039

    2014-02-15

    A negative hydrogen (H{sup −}) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H{sup −} beam with ε {sub N,} {sub RMS} = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I{sub e{sup −}}/I{sub H{sup −}} were experimentally studied. The discussion on the result, and opinions to improve the source were given.

  6. Operational and theoretical temperature considerations in a Penning surface plasma source

    NASA Astrophysics Data System (ADS)

    Faircloth, D. C.; Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.

    2015-04-01

    A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.

  7. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{supmore » 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.« less

  8. Numerical simulation of Trichel pulses of negative DC corona discharge based on a plasma chemical model

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyue; Lan, Lei; Lu, Hailiang; Wang, Yu; Wen, Xishan; Du, Xinyu; He, Wangling

    2017-10-01

    A numerical simulation method of negative direct current (DC) corona discharge based on a plasma chemical model is presented, and a coaxial cylindrical gap is adopted. There were 15 particle species and 61 kinds of collision reactions electrons involved, and 22 kinds of reactions between ions are considered in plasma chemical reactions. Based on this method, continuous Trichel pulses are calculated on about a 100 us timescale, and microcosmic physicochemical process of negative DC corona discharge in three different periods is discussed. The obtained results show that the amplitude of Trichel pulses is between 1-2 mA, and that pulse interval is in the order of 10-5 s. The positive ions produced by avalanche ionization enhanced the electric field near the cathode at the beginning of the pulse, then disappeared from the surface of cathode. The electric field decreases and the pulse ceases to develop. The negative ions produced by attachment slowly move away from the cathode, and the electric field increases gradually until the next pulse begins to develop. The positive and negative ions with the highest density during the corona discharge process are O4+ and O3- , respectively.

  9. In Situ X-ray Diffraction Studies of Li(sub x)Mn(sub 2)O(sub 4) Cathode Materials by Synchrotron X-ray Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. Q.; Sun, X.; Lee, S. J.

    In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample andmore » also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.« less

  10. A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Wang, Senlin; Zhang, Xiao; He, Taobin; Lu, Fengxia; Li, Huichang; Ye, Junhui

    2018-01-01

    A facile method of preparing LiMnPO4/reduced graphene oxide aerogel (LMP/rGO) as cathodic material was reported here. LiMnPO4 nano-particles were prepared using a facile polyvinyl pyrrolidone-assisted solvothermal route. Then LMP/rGO aerogel was prepared using the accessible restacking method. The influence of the cathodic electrode composition (ratio of rGO to LiMnPO4) on the performance of the LMP/rGO was evaluated by constant-current discharge tests. When compared with 217C g-1 for the pristine LMP, the best LMP/rGO (the content of rGO is 27.3 wt%) exhibits a higher capacity of 464.5C g-1 (at 0.5 A g-1), which presenting the capacity enhance of 114%. Moreover, a lithium-ion hybrid supercapacitor (LIHS) was successfully assembled by using LMP/rGO aerogel as the cathodic electrode and rGO aerogel as the anodic electrode. The LMP/rGO//rGO device achieves excellent specific energy of 16.46 W h kg-1 at a power density of 0.38 kW kg-1, even under the higher specific power of 4.52 kW kg-1, there still holds the specific energy of 11.79 W h kg-1. The LMP/rGO//rGO device maintains 91.2% of the initial capacity after 10,000 cycles (at 2 A g-1), which displays high rate performance and long cycle life. The 3D LMP/rGO aerogel could be a promising candidate material for the lithium-ion hybrid supercapacitors.

  11. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y2 O3 -ZrO2 Electrolyte of Solid Oxide Fuel Cells.

    PubMed

    Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping

    2017-03-09

    Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    NASA Astrophysics Data System (ADS)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  13. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  14. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.

    PubMed

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

  15. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE PAGES

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.; ...

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  16. Dust trap formation in a non-self-sustained discharge with external gas ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. Themore » interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.« less

  17. Performance of MnO2 Crystallographic Phases in Rechargeable Lithium-Air Oxygen Cathode

    NASA Astrophysics Data System (ADS)

    Oloniyo, Olubukun; Kumar, Senthil; Scott, Keith

    2012-05-01

    Manganese dioxide (MnO2) has been shown to be effective for improving the efficiency of cathodes in lithium-air cells. Different crystallographic phases including α-, β-, and γ-MnO2 nanowires, α-MnO2 nanospheres, and α-MnO2 nanowires on carbon ( α-MnO2/C) were synthesized using the hydrothermal method. Their physical properties were examined using x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurements, and scanning electron microscopy (SEM) and found to be in agreement with the literature. Electrochemical properties of the synthesized catalyst particles were investigated by fabricating cathodes and testing them in a lithium-air cell with lithium hexafluorophosphate in propylene carbonate (LiPF6/PC) and tetra(ethylene glycol)dimethyl ether (LiTFSi/TEGDME) electrolytes. α-MnO2 had the highest discharge capacity in the LiTFSi/TEGDME electrolyte (2500 mAh/g), whilst α-MnO2/C in LiPF6/PC showed a significantly higher discharge capacity of 11,000 mAh/g based on total mass of the catalytic cathode. However, the latter showed poor capacity retention compared with γ-MnO2 nanowires, which was stable for up to 30 cycles. The reported discharge capacity is higher than recorded in previous studies on lithium-air cells.

  18. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  19. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  20. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C.-K.; Halpert, G.

    1990-01-01

    The goal of the NASA/OAST sponsored program on the development of ambient-temperature secondary lithium cells for future space applications is to develop cells with a 100 W h/kg specific energy and capable of 1000 cycles at 50-percent depth of discharge. This paper examines the performance potentials of Li-TiS2, Li-MoS3, Li-V6O13, and Li-NbSe3 electrochemical systems at ambient temperature, together with cycle life and safety characteristics. Of these four, the Li-TiS2 system was found to be the most promising in terms of achievable specific energy and cycle life. Major advances made on the development of secondary lithium cells, which are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly, are summarized.

  1. The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes

    DTIC Science & Technology

    1980-07-01

    titrated mulating cathodes, along with their BET surface potentiometrically with standardized silver nitrate areas. Shawinigan black possesses the...assembly steps when individually dissolved can be titrated through were accomplished in the glove box. iodimetry or iodometry, respectively (7). If

  2. High-performing LiMgxCuyCo₁-x-yO₂ cathode material for lithium rechargeable batteries.

    PubMed

    Nithya, Chandrasekaran; Thirunakaran, Ramasamy; Sivashanmugam, Arumugam; Gopukumar, Sukumaran

    2012-08-01

    Sustainable power requirements of multifarious portable electronic applications demand the development of high energy and high power density cathode materials for lithium ion batteries. This paper reports a method for rapid synthesis of a cobalt based layered cathode material doped with mixed dopants Cu and Mg. The cathode material exhibits ordered layered structure and delivers discharge capacity of ∼200 mA h g(-1) at 0.2C rate with high capacity retention of 88% over the investigated 100 cycles.

  3. Photoregenerative I⁻/I₃⁻ couple as a liquid cathode for proton exchange membrane fuel cell.

    PubMed

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-10-28

    A photoassisted oxygen reduction reaction (ORR) through I(-)/I3(-) redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I(-)/I3(-)-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I(-) was regenerated to I3(-) by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells.

  4. Structural Evolution of Li xNi yMn zCo 1-y-zO 2 Cathode Materials during High-Rate Charge and Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon

    Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less

  5. Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

    NASA Astrophysics Data System (ADS)

    Grübl, Daniel; Bessler, Wolfgang G.

    2015-11-01

    Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).

  6. Structural Evolution of Li xNi yMn zCo 1-y-zO 2 Cathode Materials during High-Rate Charge and Discharge

    DOE PAGES

    Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon; ...

    2017-11-08

    Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less

  7. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  8. Moderate temperature rechargeable sodium batteries

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Rupich, M. W.; Pitts, L.; Elliott, J. E.

    1983-01-01

    Cells utilizing the organic electrolyte, NaI in triglyme, operated at approx. 130 C with Na(+) - intercalating cathodes. However, their rate and stability were inadequate. NaAlCl4 was found to be a highly useful electrolyte for cell operation at 165-190 C. Na(+) intercalating chalcogenides reacted with NaAlCl4 during cycling to form stable phases. Thus, VS2 became essentially VS2Cl, with reversible capacity of approx 2.8 e(-)/V, and a mid-discharge voltage of approx 2.5V and 100 deep discharge cycles were readily achieved. A positive electrode consisting of VCl3 and S plus NaAlCl4 was subjected to deep-discharge cycles 300 times and it demonstrated identity with the in-situ-formed BSxCly cathode. NiS2 and NiS which are not Na(+)-intercalating structures formed highly reversible electrodes in NaAlCl4. The indicated discharge mechanism implies a theoretical capacity 4e(-)/Ni for NiS2 and 2e(-)/Ni for NiS. The mid-discharge potentials are, respectively, 2.4V and 2.1V. A Na/NiS2 cell cycling at a C/5 rate has exceeded 500 deep discharge cycles with 2.5e(-)/Ni average utilization. A 4 A-hr nominal capacity prototype Na/NiS2 cell was tested at 190 C. It was voluntarily terminated after 80 cycles. Further development, particularly of cathode structure and hardware should produce a battery capable of at least 50-W-hr/lb and more than 1000 cycles.

  9. Hollow cathode restartable 15 cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.

  10. High voltage coaxial switch

    DOEpatents

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  11. High voltage coaxial switch

    DOEpatents

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  12. Numerical modeling of materials processing applications of a pulsed cold cathode electron gun

    NASA Astrophysics Data System (ADS)

    Etcheverry, J. I.; Martínez, O. E.; Mingolo, N.

    1998-04-01

    A numerical study of the application of a pulsed cold cathode electron gun to materials processing is performed. A simple semiempirical model of the discharge is used, together with backscattering and energy deposition profiles obtained by a Monte Carlo technique, in order to evaluate the energy source term inside the material. The numerical computation of the heat equation with the calculated source term is performed in order to obtain useful information on melting and vaporization thresholds, melted radius and depth, and on the dependence of these variables on processing parameters such as operating pressure, initial voltage of the discharge and cathode-sample distance. Numerical results for stainless steel are presented, which demonstrate the need for several modifications of the experimental design in order to achieve a better efficiency.

  13. Effect of boric acid on the properties of Li{sub 2}MnO{sub 3}·LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders prepared by large-scale spray pyrolysis with droplet classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Young Jun; Choi, Seung Ho; Sim, Chul Min

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Spherical shape Li{sub 2}MnO{sub 3}·LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders are prepared by large-scale spray pyrolysis with droplet classifier. ► Boric acid improves the morphological and electrochemical properties of the composite cathode powders. ► The discharge capacity of the composite cathode powders decreases from 217 to 196 mAh g{sup −1} by the 30th cycle. -- Abstract: Spherically shaped 0.3Li{sub 2}MnO{sub 3}·0.7LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders with filled morphology and narrow size distribution are prepared by large-scale spray pyrolysis. A droplet classification reduces the standard deviation of the size distribution of themore » composite cathode powders. Addition of boric acid improves the morphological properties of the product powders by forming a lithium borate glass material with low melting temperature. The optimum amount of boric acid dissolved in the spray solution is 0.8 wt% of the composite powders. The powders prepared from the spray solution with 0.8 wt% boric acid have a mixed layered crystal structure comprising Li{sub 2}MnO{sub 3} and LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} phases, thus forming a composite compound. The initial charge and discharge capacities of the composite cathode powders prepared from the 0.8 wt% boric acid spray solution are 297 and 217 mAh g{sup −1}, respectively. The discharge capacity of the powders decreases from 217 to 196 mAh g{sup −1} by the 30th cycle, in which the capacity retention is 90%.« less

  14. The crystalline phases present in carbon cathodes of discharged Li/SOCl/sub 2/-LiAlCl/sub 4/ cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.M.; Surampudi, S.; Bankston, C.P.

    1989-05-01

    The authors describe the x-ray diffraction patterns of 100% discharged Schawinigan black cathodes from Li/SOCl/sub 2-/LiAlCl/sub 4/ cells obtained using a high resolution Guinier camera. The previous assignments of the diffraction lines to Li/sub 2/O/sub 2/ and rhombohedral sulfur are all found to be incorrect; all sharp Bragg diffraction lines not assignable to anhydrous LiCl can be assigned to LiCl1 . H/sub 2/O.

  15. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    PubMed

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. Battery designs with high capacity anode materials and cathode materials

    DOEpatents

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  17. Studies on niobium triselenide cathode material for lithium rechargeable cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.

    1988-01-01

    NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.

  18. Continuous discharge Penning source with emission lines between 50 A and 300 A. [for astronomy

    NASA Technical Reports Server (NTRS)

    Finley, D. S.; Bowyer, S.; Paresce, F.; Malina, R. F.

    1979-01-01

    The present paper deals with a modified Penning discharge lamp developed specially to cover the soft X-ray and extreme UV spectral regions. The source produces a total of nearly 40 intense lines in the 50 to 300 A range. The lamp is quiet, continuous, and stable over most of the cathode lifetime (which is sufficient for long calibration runs). When the cathodes become exhausted, the refurbishment procedure is so simple that the source can be back on line in an hour or less

  19. Performance Test Results of the NASA-457M v2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  20. Evaluation of analytical performance for the simultaneous detection of trace Cu, Co and Ni by using liquid cathode glow discharge-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Zhang, Xiaomin; Lu, Quanfang; Sun, Duixiong; Wang, Xing; Zhu, Shuwen; Zhang, Zhichao; Yang, Wu

    2018-07-01

    In this paper, a novel liquid cathode glow discharge (LCGD) was established as a micro-plasma excitation source of atomic emission spectrometry (AES) for simultaneous detection of trace Cu, Co and Ni in aqueous solution. In order to evaluate the analytical performance, the operating parameters such as discharge voltage, supporting electrolyte, solution pH and flow rate were thoroughly investigated. The results showed that the optimal conditions are 640 V discharge voltage, pH = 1 HNO3 as supporting electrolyte and 4.5 mL min-1 flow rate. The R2 of Cu, Co and Ni are 0.9977, 0.9991 and 0.9977, respectively. The relative standard deviation (RSD) is 1.4% for Cu, 3.2% for Co and 0.8% for Ni. Under this condition, the power of LCGD is below 55 W and the plasma is quite stable. The limits of detections (LODs) for Cu, Co and Ni are 0.380, 0.080, and 0.740 mg L-1, respectively, which are basically consistent with the closed-type electrolyte cathode atmospheric glow discharge (ELCAD). Compared with ICP-AES, the LCGD-AES has small size, low power consumption, no inert gas requirement and low cost in set-up. It may be developed as a portable instrument for in-site and real-time monitoring of metals in solution samples with further improvement.

  1. Two discharge modes of a repetitive nanosecond pulsed helium glow discharge under sub-atmospheric pressure in the repetition frequency range of 20 to 600 kHz

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu

    2018-05-01

    Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.

  2. Effective Trapping of Lithium Polysulfides Using a Functionalized Carbon Nanotube-Coated Separator for Lithium-Sulfur Cells with Enhanced Cycling Stability.

    PubMed

    Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Lee, Jae Hee; Kang, Joonhee; Han, Byungchan; Kim, Dong-Won

    2017-11-08

    The critical issues that hinder the practical applications of lithium-sulfur batteries, such as dissolution and migration of lithium polysulfides, poor electronic conductivity of sulfur and its discharge products, and low loading of sulfur, have been addressed by designing a functional separator modified using hydroxyl-functionalized carbon nanotubes (CNTOH). Density functional theory calculations and experimental results demonstrate that the hydroxyl groups in the CNTOH provoked strong interaction with lithium polysulfides and resulted in effective trapping of lithium polysulfides within the sulfur cathode side. The reduction in migration of lithium polysulfides to the lithium anode resulted in enhanced stability of the lithium electrode. The conductive nature of CNTOH also aided to efficiently reutilize the adsorbed reaction intermediates for subsequent cycling. As a result, the lithium-sulfur cell assembled with a functional separator exhibited a high initial discharge capacity of 1056 mAh g -1 (corresponding to an areal capacity of 3.2 mAh cm -2 ) with a capacity fading rate of 0.11% per cycle over 400 cycles at 0.5 C rate.

  3. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  4. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E.; Polk, James E.

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungstenmore » species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.« less

  5. Physical model and experimental results of cathode erosion related to power supply ripple

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.

    1992-01-01

    This paper discusses the physical effects of power supply ripple on cathode erosion and cathode arc attachment in a water-cooled, 30 kW nitrogen arcjet. Experimental results are presented for 2 percent thoriated tungsten, which show that the long-term cathode erosion rate is a decreasing function of current ripple over the range 1-13 percent. Above this range, the cathode discharge becomes unstable, and the erosion rate rapidly increases. A qualitative model of this effect is given in terms of a magnetically induced radial motion of the arc column, and an overall increase in the cathode spot radius due to the higher peak current associated with higher ripple. The most important effect of power supply ripple is therefore shown to be its ability to collectively drive the cathode attachment away from the cathode center. This leads to an increase in the cathode attachment area, and a subsequent decrease in the cathode erosion rate.

  6. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  7. Evaluation of advanced high rate Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.

    1986-01-01

    Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.

  8. Modeling carbonaceous particle formation in an argon graphite cathode dc discharge

    NASA Astrophysics Data System (ADS)

    Michau, A.; Lombardi, G.; Colina Delacqua, L.; Redolfi, M.; Arnas, C.; Bonnin, X.; Hassouni, K.

    2010-12-01

    We develop a model for the nucleation, growth and transport of carbonaceous dust particles in a non-reactive gas dc discharge where the carbon source is provided by cathode sputtering. We consider only the initial phase of the discharge when the dust charge density remains small with respect to the electron density. We find that an electric field reversal at the entrance of the negative glow region promotes trapping of negatively charged clusters and dust particles, confining them for long times in the plasma and favoring molecular growth. An essential ingredient for this process is electron attachment, which negatively charges the initially neutral clusters. We perform sensitivity studies on several number parameters: size of the largest molecular edifice, sticking coefficient, etc.

  9. Experimental Analysis of Pseudospark Sourced Electron Beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.

    2011-12-01

    The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.

  10. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  11. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  12. Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin

    2018-04-01

    The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 (x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.

  13. Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin

    2018-07-01

    The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 ( x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.

  14. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, Frank A.; Townsend, Carl W.

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  15. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  16. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  17. Electric field in a plasma channel in a high-pressure nanosecond discharge in hydrogen: a coherent anti-stokes Raman scattering study.

    PubMed

    Yatom, S; Tskhai, S; Krasik, Ya E

    2013-12-20

    Experimental results of a study of the electric field in a plasma channel produced during nanosecond discharge at a H2 gas pressure of (2-3)×10(5)  Pa by the coherent anti-Stokes scattering method are reported. The discharge was ignited by applying a voltage pulse with an amplitude of ∼100  kV and a duration of ∼5  ns to a blade cathode placed at a distance of 10 and 20 mm from the anode. It was shown that this type of gas discharge is characterized by the presence of an electric field in the plasma channel with root-mean-square intensities of up to 30  kV/cm. Using polarization measurements, it was found that the direction of the electric field is along the cathode-anode axis.

  18. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  19. Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rakebrandt, J.-H.; Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.

    2017-02-01

    Lithium-ion batteries became the most promising types of mobile energy storage devices due to their high gravimetric and volumetric capacity, high cycle life-time, and low self-discharge. Nowadays, the cathode material lithium nickel manganese cobalt oxide (NMC) is one of the most widely used cathode material in commercial lithium-ion batteries due to many advantages such as high energy density (>150 Wh kg-1) on cell level, high power density (650 W kg-1 @ 25 °C and 50 % Depth of Discharge) [1], high specific capacity (163 mAh g-1) [2], high rate capability and good thermal stability in the fully charged state. However, in order to meet the requirements for the increasing demand for rechargeable high energy batteries, nickel-rich NMC electrodes with specific capacities up to 210 mAh g-1 seem to be the next generation cathodes which can reach on cell level desired energy densities higher than 250 Wh kg-1 [3]. Laser-structuring now enables to combine both concepts, high power and high energy lithium-ion batteries. For this purpose, lithium nickel manganese cobalt oxide cathodes were produced via tape casting containing 85-90 wt% of active material with a film thickness of 50-260 μm. The specific capacities were measured using galvanostatic measurements for different types of NMC with varying nickel, manganese and cobalt content at different charging/discharging currents ("C-rates"). An improved lithium-ion diffusion kinetics due to an increased active surface area could be achieved by laser-assisted generating of three dimensional architectures. Cells with unstructured and structured cathodes were compared. Ultrafast laser ablation was used in order to avoid a thermal impact to the material. It was shown that laser structuring of electrode materials leads to a significant improvement in electrochemical performance, especially at high charging and discharging C-rates.

  20. The Effect of Cathode Composition on the Thermal Characteristics of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    1999-01-01

    The specific thermal capacity and heat dissipation rate for lithium ion cells containing LiNiO2 and mixed oxide (75%LiCoO2+ 25%LiNiO2) as cathode materials are compared. The experimental measurements were made using a radiative calorimeter consisting of a copper chamber maintained at -168 C by circulating liquid nitrogen and enclosed in a vacuum bell jar. The specific thermal capacity was determined based on warm-up and cool-down transients. The heat dissipation rate was calculated from the values measured for heat radiated and stored, and the resulting values were corrected for conductive heat dissipation through the leads. The specific heat was 1.117 J/ C-g for the LiNiO2 cell and 0.946 J/ C-g for the 75%LiCoO2,25%LiNiO2 cell. Endothermic cooling at the beginning of charge was very apparent for the cell containing 75%LiCoO2,25%LiNiO2 as the cathode. Exothermic heating began at a higher state of charge for the cell with the 75%LiCoO2,25%LiNiO2 cathode compared to the LiNiO2 cathode cell. During discharge, the rate of heat dissipation increased with increase in the discharge current for both types of cells. The maximum heat dissipated at C/5 discharge was 0.065 W and 0.04 W for the LiNiO2 and 75%LiCoO2,25%LiNiO2 cells, respectively, The thermoneutral potential showed variability toward the end of discharge. The plateau region of the curves was used to calculate average thermoneutral potentials of 3.698 V and 3.837 V for the LiNiO2 cell and the 75%LiCoO2,25%LiNiO2 cell, respectively.

  1. Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network

    NASA Astrophysics Data System (ADS)

    Fedorková, A.; Oriňáková, R.; Oriňák, A.; Kupková, M.; Wiemhöfer, H.-D.; Audinot, J. N.; Guillot, J.

    2012-08-01

    High performance PPy/PEG-LiFePO4 nanocomposites as cathode materials were synthesized by solvothermal method and simple chemical oxidative polymerization of pyrrole (Py) monomer on the surface of LiFePO4 particles. The samples were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and charge-discharge tests. PPyPEG hybrid layers decrease particle to particle contact resistance while the impedance measurements confirmed that the coating of PPy-PEG significantly decreases the charge transfer resistance of the electrode material. The initial discharge capacities of this sample at C/5 and 1C are 150 and 128 mAh/g, respectively. The results show that PPy/PEGLiFePO4 composites are more effective than bare LiFePO4 as cathode material.

  2. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  3. Ion acoustic turbulence in a 100-A LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Mikellides, Ioannis G.; Goebel, Dan M.

    2014-12-01

    The temporal fluctuations in the near plume of a 100-A LaB6 hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude.

  4. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are sputtered away. For stable pumping of inert gases, one side of the cathode is made of Ta. Impaction on Ta produces energetic, neutral atoms that pump the inert gases on the anode structure at the peripheral areas of the cathodes (between anode rings). For inert gases stability, a post design has been implemented. Here, posts of cathode material (Ti) are mounted on the cathode. These protrude into the initial part of the anode elements. Materials sputtered from the posts condense on the anode assembly and on the cathode plane at higher rates than in the normal diodes due to enhanced sputtering at glancing angles from geometrical considerations. This increases pumping by burial. This post design has enhanced pumping rates for both active and inert gases, compared with conventional designs.

  5. Robust Low-Cost Cathode for Commercial Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    2007-01-01

    Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.

  6. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals

    PubMed Central

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-01-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp2 nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g. PMID:27149405

  7. Investigation of a Gallium MPD Thruster with an Ablating Cathode

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.

    2010-01-01

    Arc impedance, exhaust velocity, and plasma probe measurements are presented. The thruster is driven by a 50 microsecond pulse from a 6.2 milliohm pulse forming network, and gallium is supplied to the discharge by evaporation of the cathode. The arc voltage is found to vary linearly with the discharge current with an arc impedance of 6.5 milliohms. Electrostatic probes yield an exhaust velocity that is invariant with the discharge current and has a peak value of 20 kilometers per second, which is in reasonable agreement with the value (16 plus or minus 1 kilometer per second) calculated from the mass bit and discharge current data. Triple probe measurements yield on axis electron temperatures in the range of 0.8-3.8 eV, electron densities in the range of 1.6 x 10(exp 21) to 2.1 x 10(exp 22) per cubic meter, and a divergence half angle of 16 degrees. Measurements within the interelectrode region yield a peak magnetic field of 0.8 T, and the observed radial trends are consistent with an azimuthally symmetric current distribution. A cathode power balance model is coupled with an ablative heat conduction model predicting mass bit values that are within 20% of the experimental values.

  8. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Rand, Lauren P. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  9. 12CaO-7Al2O3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Williams, John D. (Inventor); Rand, Lauren P. (Inventor); Martinez, Rafael A. (Inventor)

    2017-01-01

    The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  10. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  11. Photoregenerative I−/I3− couple as a liquid cathode for proton exchange membrane fuel cell

    PubMed Central

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-01-01

    A photoassisted oxygen reduction reaction (ORR) through I−/I3− redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I−/I3−-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I− was regenerated to I3− by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells. PMID:25348812

  12. Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling

    NASA Astrophysics Data System (ADS)

    Nemschokmichal, Sebastian; Tschiersch, Robert; Höft, Hans; Wild, Robert; Bogaczyk, Marc; Becker, Markus M.; Loffhagen, Detlef; Stollenwerk, Lars; Kettlitz, Manfred; Brandenburg, Ronny; Meichsner, Jürgen

    2018-05-01

    The phenomenology and breakdown mechanism of dielectric barrier discharges are strongly determined by volume and surface memory effects. In particular, the pre-ionization provided by residual species in the volume or surface charges on the dielectrics influences the breakdown behavior of filamentary and diffuse discharges. This was investigated by advanced diagnostics such as streak camera imaging, laser photodetachment of negative ions and laser photodesorption of electrons from dielectric surfaces in correlation with 1D fluid modeling. The streak camera images show that an increasing number of residual charges in the volume changes the microdischarge breakdown in air-like gas mixtures from a cathode-directed streamer to a simultaneous propagation of cathode- and anode-directed streamers. In contrast, seed electrons are important for the pre-ionization if the density of residual charges in the volume is low. One source of seed electrons are negative ions, whose density exceeds the electron density during the pre-phase of diffuse helium-oxygen barrier discharges as indicated by the laser photodetachment experiments. Electrons desorbed from the cathodic dielectric have an even larger influence. They induce a transition from the glow-like to the Townsend-like discharge mode in nominally pure helium. Apart from analyzing the importance of the pre-ionization for the breakdown mechanism, the opportunities for manipulating the lateral structure and discharge modes are discussed. For this purpose, the intensity and diameter of a diffuse discharge in helium are controlled by an illuminated semiconducting barrier. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  13. Sensitivity Testing of the NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Anderson, John; Brophy, John

    2007-01-01

    During the Extended Life Test of the DS1 flight spare ion thruster, the engine was subjected to sensitvity testing in order to characterize the macroscopic dependence of discharge chamber sensitivity to a +\\-3% vatiation in main flow, cathode flow and beam current, and to +\\5% variation in beam and accelerator voltage, was determined for the minimum- (THO), half- (TH8) and full power (TH15) throttle levels. For each power level investigared, 16 high/low operating conditions were chosen to vary the flows, beam current, and grid voltages in in a matrix that mapped out the entire parameter space. The matrix of data generated was used to determine the partial derivative or senitivity of the dependent parameters--discharge voltage, discharge current, discharge loss, double-to-single-ion current ratio, and neutralizer-keeper voltage--to the variation in the independent parameters--main flow, cathode flow, beam current, and beam voltage. The sensititivities of each dependent parameter with respect to each independent parameter were determined using a least-square fit routine. Variation in these sensitivities with thruster runtime was recorded over the duration of the ELT, to detemine if discharge performance changed with thruster wear. Several key findings have been ascertained from the sensitivity testing. Discharge operation is most sensitve to changes in cathode flow and to a lesser degree main flow. The data also confirms that for the NSTAR configuration plasma production is limited by primary electron input due to the fixed neutral population. Key sensitivities along with their change with thruster wear (operating time) will be presented. In addition double ion content measurements with an ExB probe will also be presented to illustrate beam ion production and content sensitivity to the discharge chamber operating parameteres.

  14. Physical Processes in Hollow Cathode Discharge

    DTIC Science & Technology

    1989-12-01

    State University. Finally, many thanks to my wife, Kyoung -Sook and my son, Frederick Teut, for their love and being supportive for two and half years...recommended for all electron emission purposes. 46 REFERENCES 1. Kim Gunther, "Hollow Cathode Plasma Source" ( Spectra-Mat Hollow Cathode Manual...59 Dong 401 Ho Seoul, Republic of Korea 8. Maj. Kim , Jong-Ryul 1 Postal Code 500-00 Book-Gu, Du-Am Dong, 874-14 Kwang-Ju, Republic of Korea 9. Maj

  15. Synthesis of lithium nickel cobalt manganese oxide cathode materials by infrared induction heating

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Chen, Yu-Fu; Pai, Chun-Ting; Mo, Chung-Yu

    2014-12-01

    This study adopts an in-situ infrared (IR) sintering incorporated with carbonization technique to synthesize carbon-coated LiNi1/3Co1/3Mn1/3O2 (LNCM) cathode materials for Li-ion batteries. Compared with electric resistance heating, the in-situ IR sintering is capable of rapidly producing highly-crystalline LNCM powders at 900 °C within a short period, i.e., 3 h in this case. Glucose additive is employed to serve a carbon precursor, which is carbonized and coated over the surface of LNCM crystals during the IR sintering process. The electrochemical performance of LNCM cathodes is well examined by charge-discharge cycling at 0.1-5C. An appropriate carbon coating is capable of raising discharge capacity (i.e., 181.5 mAh g-1 at 0.1C), rate capability (i.e., 75.0 mAh g-1 at 5C), and cycling stability (i.e., capacity retention: 94.2% at 1C after 50 cycles) of LNCM cathodes. This enhanced performance can be ascribed to the carbon coating onto the external surface of LNCM powders, creating an outer circuit of charge-transfer pathway and preventing cathode corrosion from direct contact to the electrolyte. Accordingly, the in-situ IR sintering technique offers a potential feasibility for synthesizing cathode materials commercially in large scale.

  16. Low temperature sulfur and sodium metal battery for grid-scale energy storage application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gao; Wang, Dongdong

    A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.

  17. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  18. Structural and electrochemical properties of iron- and nickel-substituted Li2MnO3 cathodes in charged and discharged states

    NASA Astrophysics Data System (ADS)

    Yuge, Ryota; Kuroshima, Sadanori; Toda, Akio; Miyazaki, Takashi; Tabuchi, Mitsuharu; Doumae, Kyosuke; Shibuya, Hideka; Tamura, Noriyuki

    2017-10-01

    Structural change and the charge compensation mechanism of lithium-rich layered cathode (Li1.23Fe0.15Ni0.15Mn0.46O2) in charged and discharged states were investigated. Selected area electron diffraction analysis revealed that in discharged state, an initial structure composed of a single phase of monoclinic layered rock-salt changed to a mixture of hexagonal layered rock-salt and spinel-like structures. In charged state, the spinel-like phase became dominant as transition-metal ions migrate. 57Fe Mössbauer spectroscopy, X-ray absorption spectroscopy (XAS), and Soft-XAS showed that the valence of Fe and Ni ions approximately changed from Fe3+ to Fe3.2+ and Ni2+ to Ni3.5+ during charge-discharge, although Mn ions remained as Mn4+. Various oxidation states of oxide ions such as superoxide, peroxide, and hole states have also been detected in charged state. Considering that actual discharge capacity was 255 mAh/g, the contribution to charge compensation from the valence change of Fe and Ni ions was extremely small, and it only contributed to about one-third of total capacity. Therefore, the mechanism to yield high capacity of the Li1.23Fe0.15Ni0.15Mn0.46O2 cathode relates strongly to the redox reaction of oxide ions. Moreover, the decrease in capacity during charge-discharge cycling was mainly due to the irreversible redox reaction of Mn, Fe, and oxide ions.

  19. Cold cathodes for sealed off CO2 lasers

    NASA Technical Reports Server (NTRS)

    Hochuli, U. E.; Sciacca, T. P.; Hurt, C. R.

    1973-01-01

    Experimental results of a group of theoretically selected cold cathode materials are presented. These tests indicate Ag-CuO, Cu, and Pt-Cu as three new cold cathode materials for sealed-off CO2 lasers. The power output of a test laser with an Ag-CuO cathode and a gas volume of only 50 cu cm varied from 0.72 W to 1.1 W at 3000 hours and still yields 0.88 W after 8000 hours. Gas discharge tubes with Cu cathodes and a volume of 25 cu cm yield lifetimes in excess of 10,000 hours. Gas analysis results, obtained from a similar tube over a period of 3000 hours, look most promising. A Pt-Cu alloy cathode shows an extremely promising V-I characteristic over a period of 2800 hours.

  20. A phenomenological model for orificed hollow cathodes. Ph.D. Thesis, 1 Dec. 1981 - 1 Dec. 1982; [electrostatic thruster

    NASA Technical Reports Server (NTRS)

    Siegfried, D. E.

    1982-01-01

    A quartz hollow tube cathode was used to determine the operating conditions within a mercury orificed hollow cathode. Insert temperature profiles, cathode current distributions, plasma properties profile, and internal pressure-mass flow rate results are summarized and used in a phenomenological model which qualitatively describes electron emission and plasma production processes taking place within the cathode. By defining an idealized ion production region within which most of the plasma processes are concentrated, this model is expressed analytically as a simple set of equations which relate cathode dimensions and specifiable operating conditions, such as mass flow rate and discharge current, to such important parameters as emission surface temperature and internal plasma properties. Key aspects of the model are examined.

  1. Gas temperature measurements in deuterium hollow cathode glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majstorović, Gordana, E-mail: gordana.majstorovic@va.mod.gov.rs; Šišović, Nikola, E-mail: nikolas@ff.bg.ac.rs

    2016-03-25

    We report results of optical emission spectroscopy measurements of rotational T{sub rot} and translational (gas) temperature of deuterium molecules in a hollow cathode (HC) glow discharge. The rotational temperature of excited electronic state of D{sub 2} was determined from the intensity distribution in the rotational structure of Q branch of the two Fulcher-α diagonal bands: (ν’=ν”=2) and (ν’=ν”=3). The population of excited energy levels, determined from relative line intensities, was used to derive radial rotational temperature distributions as well as gas temperature distribution of deuterium molecule.

  2. The Structure and Infrastructure of Chinese Science and Technology

    DTIC Science & Technology

    2006-01-01

    materi 2.4%, charg.discharg 2.2%, mah 2.0%, lifepo4 2.0%, charg 1.7%, composit 1.3%, oxid 1.2%, discharg.capac 1.1%, licoo2 1.1...charg.discharg 2.2%, mah 2.0%, lifepo4 2.0%, charg 1.7%, composit 1.3%, oxid 1.2%, discharg.capac 1.1%, licoo2 1.1%, cathod.materi 1.0%, electrod

  3. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. This work was supported by the FZP and SPbGU

  4. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  5. Investigation of atmospheric pressure glow microdischarge between flat cathode and needle anode in helium and argon

    NASA Astrophysics Data System (ADS)

    Astafiev, Alexander; Belyaev, Vladimir; Zamchii, Roman; Kudryavtsev, Anatoly; Stepanova, Olga; Chen, Zhaoquan

    2016-09-01

    DC atmospheric-pressure glow microdischarge was generated between a flat cathode and needle anode with a diameter of 100 μm in a special chamber with helium or argon. Dependences of discharge parameters on an interelectrode gap was investigated with an original experimental setup based on a movable arm on the hinge joint which allowed changing the gap with a step of 5 μm. The gap was varied from 5 to 700 μm. Discharge current was 1-21 mA. Such discharge cell has a very low interelectrode capacitance and provides increasing the stability of the discharge against arc formation (transition to RC oscillations mode) at low currents of 1 mA. A weak dependence of discharge voltage across the gap was revealed in helium at 100-250 μm between the electrodes (normal discharge). In contrast to this, glow microdischarge in argon has a descending current-voltage characteristic and unstable nature. The discharge voltage depending on the gap changes significantly slower than in helium. According to our estimations, the strength of electrical field of positive glow in argon is 5 times lower than in helium. Saint Petersburg State University (Grant No. 0.37.218.2016).

  6. Experimental visualization of the cathode layer in AC surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Kim, Sang-You; Lho, Taihyeop; Chung, Kyu-Sun

    2018-06-01

    A narrow etched polyimide line at the bottom edge of a biased electrode (BE) and a non-etched dielectric surface near the biased electrode were observed in an atmospheric AC flexible surface dielectric barrier discharge of polyimide dielectric. These findings are attributed to the bombardment of positive oxygen ions on the bottom edge of the BE and the electron breakdown trajectory not contacting the polyimide surface following the electric field lines formed between the BE edge and the surface charge layer on the dielectric. The length of the non-etched dielectric surface during the first micro-discharge was observed as 22 μm. This occurred, regardless of three different operating durations, which is in good agreement with the length of the cathode layer according to Paschen's law.

  7. Size-dependent capacitance of NiO nanoparticles synthesized with cathodic contact glow discharge electrolysis

    NASA Astrophysics Data System (ADS)

    Allagui, Anis; Alami, Abdul Hai; Baranova, Elena A.; Wüthrich, Rolf

    2014-09-01

    NiO nanoparticles of 70, 91 and 107 nm average diameter are synthesized by cathodic contact glow discharge electrolysis at 30, 36 and 42 VDC respectively, in 2 M H2SO4 + 0.5 M ethanol + 2.5 mg ml-1 of PVP, and are investigated for electrochemical energy storage. From the cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M KOH, it was found that a maximum specific capacitance of 218 F g-1 is achieved with the 70 nm NiO nanoparticles at 2.7 A g-1. Larger nanoparticles of 91 and 107 nm diameter exhibit specific capacitances of 106 and 63 F g-1, respectively, suggesting a size-dependent capacitive performance enhanced with decreasing particles size.

  8. Multi-fluid modelling of pulsed discharges for flow control applications

    NASA Astrophysics Data System (ADS)

    Poggie, J.

    2015-02-01

    Experimental evidence suggests that short-pulse dielectric barrier discharge actuators are effective for speeds corresponding to take-off and approach of large aircraft, and thus are a fruitful direction for flow control technology development. Large-eddy simulations have reproduced some of the main fluid dynamic effects. The plasma models used in such simulations are semi-empirical, however, and need to be tuned for each flowfield under consideration. In this paper, the discharge physics is examined in more detail with multi-fluid modelling, comparing a five-moment model (continuity, momentum, and energy equations) to a two-moment model (continuity and energy equations). A steady-state, one-dimensional discharge was considered first, and the five-moment model was found to predict significantly lower ionisation rates and number densities than the two-moment model. A two-dimensional, transient discharge problem with an elliptical cathode was studied next. Relative to the two-moment model, the five-moment model predicted a slower response to the activation of the cathode, and lower electron velocities and temperatures as the simulation approached steady-state. The primary reason for the differences in the predictions of the two models can be attributed to the effects of particle inertia, particularly electron inertia in the cathode layer. The computational cost of the five-moment model is only about twice that of the simpler variant, suggesting that it may be feasible to use the more sophisticated model in practical calculations for flow control actuator design.

  9. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  10. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  11. A high pressure hollow cathode ionization source for in-situ detection of organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kanik, Isik

    2001-01-01

    We have designed, constructed and characterized a new high-pressure (1-5 Torr) hollow cathode discharge source (HCDSj that can be utilized as an ionizer in a wide variety of mass analyzers. It is able to function under ambient Martian atmospheric conditions without modification.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  13. High performance electrode material for supercapacitors based on α-Co(OH)2 nano-sheets prepared through pulse current cathodic electro-deposition (PC-CED)

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mustafa; Rashidi, Amir; Ganjali, Mohammad Reza

    2018-01-01

    In this paper, the well-defined nano-sheets of α-Co(OH)2 were prepared through the cathodic electrosynthesis from an additive-free aqueous cobalt nitrate bath. The pulse current cathodic electro-deposition (PC-CED) was used as the means for the controlling the OH- electrogeneration on the cathode surface. The characteristics and electrochemical behavior of the prepared cobalt hydroxide were also assessed through SEM, TEM, XRD, BET, and IR. The results proved the product to be composed of crystalline pure α phase of cobalt hydroxide with sheet-like morphology at nanoscale. Evaluations of the electrochemical behaviour of the α-Co(OH)2 nano-sheets revealed that they are capable to delivering the specific capacitance of 1122 F g-1 at a discharge load of 3 A g-1 and SC retention of 84% after 4000 continues discharging cycles, suggesting the nano-sheets as promising candidates for use in electrochemical supercapacitors. Further, the method used for the preparation of the compounds enjoys the capability of being scaled up. [Figure not available: see fulltext.

  14. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    PubMed

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  15. Advanced electric propulsion research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    Results are presented which show that hollow cathodes can be operated on ammonia but that sustained operation in the high pressures where arcjet thrusters operate (of the order of 1000 Torr) is difficult to achieve. The concept of using contoured, fine wire meshes attached across the screen grid apertures in an ion thruster to effect control of the ion beam divergence is introduced. The concept is compared to conventional (free sheath) ion extraction and is shown to be potentially attractive. The performance related effects of changing the anode and cathode locations and of interchanging hollow cathode and refractory filament electron sources within an 8-cm diameter, argon, ring cusp ion thruster discharge chamber are examined. The effects induced in discharge chamber performance by changes in magnetic field strength and configuration and in propellant flow distribution are also measured. Results are presented in terms of changes in the parameters that describe the effectiveness of primary electron utilization and ion extraction into the beam. The apparatus and instrumentation used to study hollow cathode operation at high electron emission levels (of the order of 100 A) is described.

  16. Gas permeable electrode for electrochemical system

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  17. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    DOEpatents

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  18. Apparatuses for making cathodes for high-temperature, rechargeable batteries

    DOEpatents

    Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.

    2016-09-13

    The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  19. Separator plate for a fuel cell

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1996-04-02

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  20. Separator plate for a fuel cell

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1996-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  1. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  2. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  3. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  4. Destructive Evaluation of a Xenon Hollow Cathode after a 28,000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1998-01-01

    International Space Station (ISS) plasma contactor system requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. In order to demonstrate the lifetime capability of the HCA, a series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify hollow cathode lifetime capability and contamination control protocols. This hollow cathode accumulated 27,800 hours of operation before it failed during a restart attempt. The cathode was subsequently destructively analyzed in order to determine the failure mechanism. Microscopic examination of the cathode interior determined that relatively small changes in the cathode physical geometry had occurred and barium tungstates, which are known to limit the emission process, had formed over a majority of the electron emitter surface. Because the final state of the insert was consistent with expected impregnate chemistry, the hollow cathode was believed to have reached the end of its usable life under the test conditions.

  5. Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes.

  6. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-02-03

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  7. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, D.J.

    1984-05-30

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.

  8. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-01-01

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  9. Separator electrode assembly (SEA) with 3-dimensional bioanode and removable air-cathode boosts microbial fuel cell performance

    NASA Astrophysics Data System (ADS)

    Oliot, M.; Etcheverry, L.; Mosdale, A.; Basseguy, R.; Délia, M.-L.; Bergel, A.

    2017-07-01

    Separator electrode assemblies (SEAs) were designed by associating a microbial anode with an air-cathode on each side of three different kinds of separator: plastic grid, J-cloth and baking paper. The SEA was designed to allow the air-cathode be removed and replaced without disturbing the bioanode. Power densities up to 6.4 W m-2 were produced by the Grid-SEAs (on average 5.9 ± 0.5 W m-2) while JCloth-SEAs and Paper-SEAs produced 4.8 ± 0.3 and 1.8 ± 0.1 W m-2, respectively. Power densities decreased with time mainly because of fast deterioration of the cathode kinetics. They always increased again when the air-cathodes were replaced by new ones; the Grid-SEAs were thus boosted above 4 W m-2 after 7 weeks of operation. The theoretical analysis of SEA functioning suggested that the high performance of the Grid-SEAs was due to the combination of several virtuous phenomena: the efficient pH balance thanks to free diffusion through the large-mesh grid, the likely mitigation of oxygen crossover thanks to the 3-dimensional structure of the bioanode and the possibility of overcoming cathode fouling by replacing it during MFC operation. Finally, the microbial community of all bioanodes showed stringent selection of Proteiniphilum acetatigenes in proportion with the performance.

  10. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode

    NASA Astrophysics Data System (ADS)

    Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.

    2017-12-01

    A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.

  11. Subnanosecond breakdown development in high-voltage pulse discharge: Effect of secondary electron emission

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. L.; Schweigert, I. V.; Zakrevskiy, Dm. E.; Bokhan, P. A.; Gugin, P.; Lavrukhin, M.

    2017-10-01

    A subnanosecond breakdown in high-voltage pulse discharge may be a key tool for superfast commutation of high power devices. The breakdown in high-voltage open discharge at mid-high pressure in helium was studied in experiment and in kinetic simulations. The kinetic model of electron avalanche development was constructed, based on PIC-MCC simulations, including dynamics of electrons, ions and fast helium atoms, produced by ions scattering. Special attention was paid to electron emission processes from cathode, such as: photoemission by Doppler-shifted resonant photons, produced in excitation processes involving fast atoms; electron emission by ions and fast atoms bombardment of cathode; the secondary electron emission (SEE) by hot electrons from bulk plasma. The simulations show that the fast atoms accumulation is the main reason of emission growth at the early stage of breakdown, but at the final stage, when the voltage on plasma gap diminishes, namely the SEE is responsible for subnanosecond rate of current growth. It was shown that the characteristic time of the current growth can be controlled by the SEE yield. The influence of SEE yield for three types of cathode material (titanium, SiC, and CuAlMg-alloy) was tested. By changing the pulse voltage amplitude and gas pressure, the area of existence of subnanosecond breakdown is identified. It is shown that in discharge with SiC and CuAlMg-alloy cathodes (which have enhanced SEE) the current can increase with a subnanosecond characteristic time value as small as τs = 0.4 ns, for the pulse voltage amplitude of 5÷12 kV. An increase of gas pressure from 15 Torr to 30 Torr essentially decreases the time of of current front growth, whereas the pulse voltage variation weakly affects the results.

  12. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  13. Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Capece, Angela M.

    2015-05-01

    Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.

  14. Pseudo ribbon metal ion beam source.

    PubMed

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  15. New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials.

    PubMed

    Baloch, Marya; Ben Youcef, Hicham; Li, Chunmei; Garcia-Calvo, Oihane; Rodriguez, Lide M; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2016-11-23

    Two new cathode materials based on redox organosulfur polymers were synthesized and investigated for rechargeable lithium batteries as a proof-of-concept study. These cathodes offered good cycling performance owing to the absence of polysulfide solubility, which plagues Li/S systems. Herein, an aliphatic polyamine or a conjugated polyazomethine was used as the base to tether the redox-active species. The activity comes from the cleavage and formation of S-S or N-S bonds, which is made possible by the rigid conjugated backbone. The synthesized polymers were characterized through FTIR spectroscopy and thermogravimetric analysis (TGA). Galvanostatic measurements were performed to evaluate the discharge/charge cycles and characterize the performance of the lithium-based cells, which displayed initial discharge capacities of approximately 300 mA h g -1 at C/5 over 100 cycles with approximately 98 % Coulombic efficiency. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries.

    PubMed

    Song, Jongchan; Choo, Min-Ju; Noh, Hyungjun; Park, Jung-Ki; Kim, Hee-Tak

    2014-12-01

    Nafion is known to suppress the polysulfide (PS) shuttle effect, a major obstacle to achieving high capacity and long cycle life for lithium-sulfur batteries. However, elaborate control of the layer's configuration is required for high performance. In this regard, we designed a Nafion-enveloped sulfur cathode, where the Nafion layer is formed on the skin of the cathode, covering its surface and edge while not restricting the porosity. Discharge capacity and efficiency were enhanced with the enveloping configuration, demonstrating suppression of shuttle. The edge protection exhibited better cycling stability than an edge-open configuration. In the absence of the Nafion envelope, charged sulfur concentrated on the top region of the cathode because of the relatively lower PS concentration at the cathode surface. Surprisingly, for the Nafion-enveloped cathode, sulfur was evenly distributed along the cathode, indicating that the configuration imparts a uniform PS concentration within the cathode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigation of Keeper Erosion in the NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Foster, John E.; Patterson, Michael J.; Williams, George J., Jr.

    2001-01-01

    The goal of the present investigation was to determine the cause for the difference in the observed discharge keeper erosion between the 8200 hr wear test of a NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) engineering model thruster and the ongoing extended life test (ELT) of the NSTAR flight spare thruster. During the ELT, the NSTAR flight spare ion thruster experienced unanticipated erosion of the discharge cathode keeper. Photographs of the discharge keeper show that the orifice has enlarged to slightly more than twice the original diameter. Several differences between the ELT and the 8200 hr wear test were initially identified to determine any effects which could lead to the erosion in the ELT. In order to identify the cause of the ELT erosion, emission spectra from an engineering model thruster were collected to assess the dependence of keeper erosion on operating conditions. Keeper ion current was measured to estimate wear. Additionally, post-test inspection of both a copper keeper-cap was conducted, and the results are presented. The analysis indicated that the bulk of the ion current was collected within 2-mm radially of the orifice. The estimated volumetric wear in the ELT was comparable to previous wear tests. Redistribution of the ion current on the discharge keeper was determined to be the most likely cause of the ELT erosion. The change in ion current distribution was hypothesized to caused by the modified magnetic field of the flight assemblies.

  18. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei

    2015-09-01

    A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02983j

  19. Facile Synthesis of Platelike Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries.

    PubMed

    Zeng, Jiong; Cui, Yanhui; Qu, Deyang; Zhang, Qian; Wu, Junwei; Zhu, Xiaomeng; Li, Zuohua; Zhang, Xinhe

    2016-10-05

    Lithium-rich layered oxides are promising cathode candidates for the production of high-energy and high-power electronic devices with high specific capacity and high discharge voltage. However, unstable cycling performance, especially at high charge-recharge rate, is the most challenge issue which needs to be solved to foster the diffusion of these materials. In this paper, hierarchical platelike Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode materials were synthesized by a facile solvothermal method followed by calcination. Calcination time was found to be a key parameter to obtain pure layered oxide phase and tailor its hierarchical morphology. The Li-rich material consists of primary nanoparticles with exposed {010} planes assembled to form platelike layers which exhibit low resistance to Li + diffusion. In detail, the product by calcination at 900 °C for 12 h exhibits specific capacity of 228, 218, and 204 mA h g -1 at 200, 400, and 1000 mA g -1 , respectively, whereas after 100 cycles at 1000 mA g -1 rate of charge and recharge the specific capacity was retained by about 91%.

  20. Exfoliated, Nitrogen-Doped Graphene Nanosheet Cathode for Lithium-Oxygen Batteries

    DTIC Science & Technology

    2014-06-01

    scanning electron microscopy; oxygen reduction reaction; cyclic voltammetry ; lithium-oxygen battery. Introduction The continuous...77 K (Micromeritics ASAP 2020). The porosity of cathode material was characterized by a gas pycnometer (Micromeritis, Accu Pyc II 1340). Cyclic ... voltammetry (CV) and galvanostatic charge-discharge measurements of the specimens were conducted using a computer controlled VersaSTAT 4 (Princeton

  1. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Cornish, S.; Khachan, J.

    2016-02-01

    A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic confinement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.

  2. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  3. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  4. Breakdown in helium in high-voltage open discharge with subnanosecond current front rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweigert, I. V., E-mail: ischweig@itam.nsc.ru; Alexandrov, A. L.; Bokhan, P. A.

    Investigations of high-voltage open discharge in helium have shown a possibility of generation of current pulses with subnanosecond front rise, due to ultra-fast breakdown development. The open discharge is ignited between two planar cathodes with mesh anode in the middle between them. For gas pressure 6 Torr and 20 kV applied voltage, the rate of current rise reaches 500 A/(cm{sup 2} ns) for current density 200 A/cm{sup 2} and more. The time of breakdown development was measured for different helium pressures and a kinetic model of breakdown in open discharge is presented, based on elementary reactions for electrons, ions andmore » fast atoms. The model also includes various cathode emission processes due to cathode bombardment by ions, fast atoms, electrons and photons of resonant radiation with Doppler shift of frequency. It is shown, that the dominating emission processes depend on the evolution of the discharge voltage during the breakdown. In the simulations, two cases of voltage behavior were considered: (i) the voltage is kept constant during the breakdown; (ii) the voltage is reduced with the growth of current. For the first case, the exponentially growing current is maintained due to photoemission by the resonant photons with Doppler-shifted frequency. For the second case, the dominating factor of current growth is the secondary electron emission. In both cases, the subnanosecond rise of discharge current was obtained. Also the effect of gas pressure on breakdown development was considered. It was found that for 20 Torr gas pressure the time of current rise decreases to 0.1 ns, which is in agreement with experimental data.« less

  5. Fabrication Of Metal Chloride Cathodes By Sintering

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Di Stefano, Salvador; Bankston, C. Perry

    1992-01-01

    Transition-metal chloride cathodes for use in high-temperature rechargeable sodium batteries prepared by sintering transition-metal powders mixed with sodium chloride. Need for difficult and dangerous chlorination process eliminated. Proportions of transition metal and sodium chloride in mixture adjusted to suit specific requirements. Cathodes integral to sodium/metal-chloride batteries, which have advantages over sodium/sulfur batteries including energy densities, increased safety, reduced material and thermal-management problems, and ease of operation and assembly. Being evaluated for supplying electrical power during peak demand and electric vehicles.

  6. Oxyphosphorus-containing polymers as binders for battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Russell Clayton; Mullin, Scott Allen; Eitouni, Hany Basam

    A class of polymeric phosphorous esters can be used as binders for battery cathodes. Metal salts can be added to the polymers to provide ionic conductivity. The polymeric phosphorous esters can be formulated with other polymers either as mixtures or as copolymers to provide additional desirable properties. Examples of such properties include even higher ionic conductivity and improved mechanical properties. Furthermore, cathodes that include the polymeric phosphorous esters can be assembled with a polymeric electrolyte separator and an anode to form a complete battery.

  7. Collimated electron beam accelerated at 12 kV from a Penning discharge.

    PubMed

    Toader, D; Oane, M; Ticoş, C M

    2015-01-01

    A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.

  8. Surface Charge at the Oxide/Electrolyte Interface: Toward Optimization of Electrolyte Composition for Treatment of Aluminum and Magnesium by Plasma Electrolytic Oxidation.

    PubMed

    Nominé, Alexandre; Martin, Julien; Noël, Cédric; Henrion, Gérard; Belmonte, Thierry; Bardin, Ilya V; Lukeš, Petr

    2016-02-09

    Controlling microdischarges in plasma electrolytic oxidation is of great importance in order to optimize coating quality. The present study highlights the relationship between the polarity at which breakdown occurs and the electrolyte pH as compared with the isoelectric point (IEP). It is found that working at a pH higher than the IEP of the grown oxide prevents the buildup of detrimental cathodic discharges. The addition of phosphates results in a shift in the IEP to a lower value and therefore promotes anodic discharges at the expense of cathodic ones.

  9. Aqueous lithium air batteries

    DOEpatents

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  10. Ion density evolution in a high-power sputtering discharge with bipolar pulsing

    NASA Astrophysics Data System (ADS)

    Britun, N.; Michiels, M.; Godfroid, T.; Snyders, R.

    2018-06-01

    Time evolution of sputtered metal ions in high power impulse magnetron sputtering (HiPIMS) discharge with a positive voltage pulse applied after a negative one (regime called "bipolar pulse HiPIMS"—BPH) is studied using 2-D density mapping. It is demonstrated that the ion propagation dynamics is mainly affected by the amplitude and duration of the positive pulse. Such effects as ion repulsion from the cathode and the ionization zone shrinkage due to electron drift towards the cathode are clearly observed during the positive pulse. The BPH mode also alters the film crystallographic structure, as observed from X-ray diffraction analysis.

  11. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  12. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    PubMed

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  13. Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries.

    PubMed

    Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian

    2018-03-20

    One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.

  14. Stark effect of Ar I lines for electric field strength diagnostics in the cathode sheath of glow discharge

    NASA Astrophysics Data System (ADS)

    Vasiljević, Milica M.; Spasojević, Djordje; Šišović, Nikola M.; Konjević, Nikola

    2017-09-01

    We present a study of argon glow discharge which shows that measured wavenumber DC Stark shifts Δ ν of two neutral argon lines, Ar I 518.75 nm and Ar I 522.127 nm, can be used for reliable determination of the electric field strength F distribution in the cathode sheath region of the discharge. In order to experimentally determine the coefficient c in quadratic correlation Δ ν =cF2 , manifested in a low field range (up to 15 kV/cm), the discharge is seeded with a small admixture of hydrogen, and the values of F are measured via Stark polarization spectroscopy of the hydrogen Balmer beta line. Once known, this can be used for the determination of F by a simple and inexpensive spectroscopic Stark shift measurement in discharges with other argon admixtures or pure argon. Reported shift results are in good agreement with data extrapolated from measurements performed at high electric fields (over 100 kV/cm) by Windholz (Phys. Scr., 21 (1980) 67).

  15. High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong

    2017-06-01

    In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm-2) than conventional PEMFC (699.30 mW cm-2). Electrochemically active surface area (ECSA) and charge transfer impedance (Rct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future.

  16. METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES

    DOEpatents

    Bell, P.R.; Luce, J.S.

    1960-01-01

    A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

  17. Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, N.; Xue, Z.; Rago, N. D.

    The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with themore » fluorinated electrolyte showed prolonged shelf life at fully charged state.« less

  18. Modification of W surfaces by exposure to hollow cathode plasmas

    NASA Astrophysics Data System (ADS)

    Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.

    2017-10-01

    In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.

  19. Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, JF; Luo, C; Gao, T

    2015-01-01

    Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less

  20. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    DOE R&D Accomplishments Database

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

Top