Evaluation of solar electric propulsion technologies for discovery class missions
NASA Technical Reports Server (NTRS)
Oh, David Y.
2005-01-01
A detailed study examines the potential benefits that advanced electric propulsion (EP) technologies offer to the cost-capped missions in NASA's Discovery program. The study looks at potential cost and performance benefits provided by three EP technologies that are currently in development: NASA's Evolutionary Xenon Thruster (NEXT), an Enhanced NSTAR system, and a Low Power Hall effect thruster. These systems are analyzed on three straw man Discovery class missions and their performance is compared to a state of the art system using the NSTAR ion thruster. An electric propulsion subsystem cost model is used to conduct a cost-benefit analysis for each option. The results show that each proposed technology offers a different degree of performance and/or cost benefit for Discovery class missions.
ExSPO: A Discovery Class Apodized Square Aperture (ASA) Expo-Planet Imaging Space Telescope Concept
NASA Technical Reports Server (NTRS)
Gezari, D.; Harwit, M.; Lyon, R.; Melnick, G.; Papaliolos, G.; Ridgeway, S.; Woodruff, R.; Nisenson, P.; Oegerle, William (Technical Monitor)
2002-01-01
ExSPO is a Discovery Class (approx. 4 meter) apodized square aperture (ASA) space telescope mission designed for direct imaging of extrasolar Earth-like planets, as a precursor to TPF. The ASA telescope concept, instrument design, capabilities, mission plan and science goals are described.
Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions
NASA Technical Reports Server (NTRS)
Oh, David Y.; Goebel, Dan M.
2006-01-01
This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.
Cost efficient operations for Discovery class missions
NASA Technical Reports Server (NTRS)
Cameron, G. E.; Landshof, J. A.; Whitworth, G. W.
1994-01-01
The Near Earth Asteroid Rendezvous (NEAR) program at The Johns Hopkins University Applied Physics Laboratory is scheduled to launch the first spacecraft in NASA's Discovery program. The Discovery program is to promote low cost spacecraft design, development, and mission operations for planetary space missions. The authors describe the NEAR mission and discuss the design and development of the NEAR Mission Operations System and the NEAR Ground System with an emphasis on those aspects of the design that are conducive to low-cost operations.
Future Mission Proposal Opportunities: Discovery, New Frontiers, and Project Prometheus
NASA Technical Reports Server (NTRS)
Niebur, S. M.; Morgan, T. H.; Niebur, C. S.
2003-01-01
The NASA Office of Space Science is expanding opportunities to propose missions to comets, asteroids, and other solar system targets. The Discovery Program continues to be popular, with two sample return missions, Stardust and Genesis, currently in operation. The New Frontiers Program, a new proposal opportunity modeled on the successful Discovery Program, begins this year with the release of its first Announcement of Opportunity. Project Prometheus, a program to develop nuclear electric power and propulsion technology intended to enable a new class of high-power, high-capability investigations, is a third opportunity to propose solar system exploration. All three classes of mission include a commitment to provide data to the Planetary Data System, any samples to the NASA Curatorial Facility at Johnson Space Center, and programs for education and public outreach.
NASA Astrophysics Data System (ADS)
Kerber, L.; Nesnas, I.; Keszthelyi, L.; Head, J. W.; Denevi, B.; Hayne, P. O.; Mitchell, K.; Ashley, J. W.; Whitten, J. L.; Stickle, A. M.; Parness, A.; McGarey, P.; Paton, M.; Donaldson-Hanna, K.; Anderson, R. C.; Needham, D.; Isaacson, P.; Jozwiak, L.; Bleacher, J.; Parcheta, C.
2018-04-01
Moon Diver is a Discovery-class mission concept designed to explore a lunar mare pit. It would be the first mission to examine an in-place bedrock stratigraphy on the Moon, and the first to venture into the subsurface of another planetary body.
Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster
NASA Technical Reports Server (NTRS)
Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael
2004-01-01
NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.
Exobiology opportunities from Discovery-class missions. [Abstract only
NASA Technical Reports Server (NTRS)
Meyer, Michael A.; Rummel, John D.
1994-01-01
Discovery-class missions that are now planned, and those in the concept stage, have the potential to expand our knowledge of the origins and evolution of biogenic compounds, and ultimately, of the origins of life in the solar system. This class of missions, recently developed within NASA's Solar System Exploration Program, is designed to meet important scientific objectives within stringent guidelines--$150 million cap on development cost and a 3-year cap on the development schedule. The Discovery Program will effectively enable "faster, cheaper" missions to explore the inner solar system. The first two missions are Mars Environmental Survey (MESUR) Pathfinder and Near Earth Asteroid Rendezvous (NEAR). MESUR Pathfinder will be the first Discovery mission, with launch planned for November/December 1996. It will be primarily a technical demonstration and validation of the MESUR Program--a network of automated landers to study the internal structure, meteorology, and surface properties of Mars. Besides providing engineering data, Pathfinder will carry atmospheric instrumentation and imaging capabilities, and may deploy a microrover equipped with an alpha proton X-ray spectrometer to determine elemental composition, particularly the lighter elements of exobiological interest. NEAR is expected to be launched in 1998 and to rendezvous with a near-Earth asteroid for up to 1 year. During this time, the spacecraft will assess the asteroid's mass, size, density, map its surface topography and composition, determine its internal properties, and study its interaction with the interplanetary environment. A gamma ray or X-ray spectrometer will be used to determine elemental composition. An imaging spectrograph, with 0.35 to 2.5 micron spectral range, will be used to determine the asteroid's compositional disbribution. Of the 11 Discovery mission concepts that have been designated as warranting further study, several are promising in terms of determining the composition and chemical evolution of organic matter on small planetary bodies. The following mission concepts are of particular interest to the Exobiology Program: Cometary coma chemical composition, comet nucleus tour, near earth asteroid returned sample, small missions to asteroids and comets, and solar wind sample return. The following three Discovery mission concepts that have been targeted for further consideration are relevant to the study of the evolution of biogenic compounds: Comet nucleus penetrator, mainbelt asteroid rendezvous explorer, and the Mars polar Pathfinder.
The Europa Ocean Discovery mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, B.C.; Chyba, C.F.; Abshire, J.B.
1997-06-01
Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`smore » surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.« less
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.
2011-01-01
The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Cataldo, Robert L.
2015-01-01
This study looks at the applicability of utilizing the Segmented Thermoelectric Modular Radioisotope Thermoelectric Generator (STEM-RTG) or a high-power radioisotope generator to replace the Advanced Stirling Radioisotope Generator (ASRG), which had been identified as the baseline power system for a number of planetary exploration mission studies. Nine different Discovery-Class missions were examined to determine the applicability of either the STEM-RTG or the high-power SRG power systems in replacing the ASRG. The nine missions covered exploration across the solar system and included orbiting spacecraft, landers and rovers. Based on the evaluation a ranking of the applicability of each alternate power system to the proposed missions was made.
Discovery: Near-Earth Asteroid Rendezvous (NEAR)
NASA Technical Reports Server (NTRS)
Veverka, Joseph
1992-01-01
The work carried out under this grant consisted of two parallel studies aimed at defining candidate missions for the initiation of the Discovery Program being considered by NASA's Solar System Exploration Division. The main study considered a Discover-class mission to a Near Earth Asteroid (NEA); the companion study considered a small telescope in Earth-orbit dedicated to ultra violet studies of solar system bodies. The results of these studies are summarized in two reports which are attached (Appendix 1 and Appendix 2).
NASA Astrophysics Data System (ADS)
Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus
1992-12-01
With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.
NASA Technical Reports Server (NTRS)
Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus
1992-01-01
With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.
NASA Radioisotope Power System Program - Technology and Flight Systems
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.; Dudzinski, Leonard A.
2009-01-01
NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.
NASA Technical Reports Server (NTRS)
Oleson, Steven R.
2018-01-01
The COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive (power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission.
Predicting Mission Success in Small Satellite Missions
NASA Technical Reports Server (NTRS)
Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene
1992-01-01
In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.
Predicting Mission Success in Small Satellite Missions
NASA Technical Reports Server (NTRS)
Saunders, Mark; Richie, R. Wayne; Moore, Arlene; Rogers, John
1999-01-01
In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA's) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.
Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster
NASA Technical Reports Server (NTRS)
Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon
2002-01-01
With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.
Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program
NASA Astrophysics Data System (ADS)
Crisp, D.
The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on the Venus surface. Each lander will carry aseismometer for studies of the interior structure, as well as in situ instruments forcharacterizing the surface mineralogy and elemental composition. This missionrequires significant technology development. - A Sample Return mission will eventually be needed to conduct investigations ofthe Venus surface and atmosphere that cannot be conducted by instruments onremote sensing platforms or on entry probes. This will probably require a largemission and significant technology development. This series of missions will complement and expand on the science objectives of the proposed ESA Venus Express Mission and the ISAS Venus Climate Orbiter.
NASA's RPS Design Reference Mission Set for Solar System Exploration
NASA Technical Reports Server (NTRS)
Balint, Tibor S.
2007-01-01
NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could support NASA's RPS technology development planning, and provide an understanding of fuel need trades over the next three decades.
Workshops without Walls: Sharing Scientific Research through Educator Professional Development
NASA Astrophysics Data System (ADS)
Weir, H. M.; Edmonds, J. P.; Hallau, K.; Asplund, S. E.; Cobb, W. H.; Nittler, L. R.; Solomon, S. C.
2013-12-01
Scientific discoveries, large and small, are constantly being made. Whether it is the discovery of a new species or a new comet, it is a challenge to keep up. The media provide some assistance in getting the word out about the discoveries, but not the details or the challenges of the discovery. Professional development is essential for science educators to keep them abreast of the fascinating discoveries that are occurring. The problem is that not every educator has the opportunity to attend a workshop on the most recent findings. NASA's Discovery and New Frontiers Education and Public Outreach program has offered a series of multi-site professional development workshops that have taken place at four physical locations sites: The Johns Hopkins University Applied Physics Laboratory, the Jet Propulsion Laboratory, NASA Johnson Space Center, and the University of Arizona, as well as over the internet. All sites were linked via the Digital Learning Network, on which scientists and educator specialists shared information about their missions and activities. Participants interacted with speakers across the country to learn about Discovery and New Frontiers class missions. The third such annual workshop without walls, 'Challenge of Discovery,' was held on 9 April 2013. Educators from across the country delved into the stories behind some amazing NASA missions, from conception to science results. They learned how scientists, engineers, and mission operators collaborate to meet the challenges of complex missions to assure that science goals are met. As an example of science and engineering coming together, an Instrument Scientist and a Payload Operations Manager from the MESSENGER mission discussed the steps needed to observe Mercury's north polar region, gather data, and finally come to the conclusion that water ice is present in permanently shadowed areas inside polar impact craters. The participating educators were able to work with actual data and experience how the conclusion was reached. This example and others highlight the potential of such workshops to inform and engage educators.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Wercinski, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.
NASA Astrophysics Data System (ADS)
Baggett, R.
2004-11-01
Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg throughput of Xenon propellant. The test was intentionally terminated in 2003 after accumulating 233 kg throughput. The thruster has been completely disassembled and the conditions of all components documented. Because most of the NSTAR design features have been used in the NEXT thruster, the success of the ELT goes a long way toward qualifying NEXT by similarity Recent mission analyses for Discovery and New Frontiers class missions have also identified potential benefits of low-power, high thrust Hall Effect thrusters. Estimated to be ready for mission implementation by 2008, low-power Hall systems could increase mission capture for electric propulsion by greatly reducing propulsion cost, mass and complexity.
Hall Thruster Technology for NASA Science Missions
NASA Technical Reports Server (NTRS)
Manzella, David; Oh, David; Aadland, Randall
2005-01-01
The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.
2011-10-01
enable more extensive cost-capped, Discovery class NASA missions such as robotic missions to Mars and near- Earth asteroids to perform round trip sample...could be facilitated with higher performance propulsion systems include robotic missions to the Moon, Mars, and near- Earth asteroids to perform round...discharge in the case with nitrogen gas mixing. This is not due to the common misconception that molecular gases would have a higher ionization energy
Enabling drug discovery project decisions with integrated computational chemistry and informatics
NASA Astrophysics Data System (ADS)
Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.
2017-03-01
Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.
Autonomy enables new science missions
NASA Astrophysics Data System (ADS)
Doyle, Richard J.; Gor, Victoria; Man, Guy K.; Stolorz, Paul E.; Chapman, Clark; Merline, William J.; Stern, Alan
1997-01-01
The challenge of space flight in NASA's future is to enable smaller, more frequent and intensive space exploration at much lower total cost without substantially decreasing mission reliability, capability, or the scientific return on investment. The most effective way to achieve this goal is to build intelligent capabilities into the spacecraft themselves. Our technological vision for meeting the challenge of returning quality science through limited communication bandwidth will actually put scientists in a more direct link with the spacecraft than they have enjoyed to date. Technologies such as pattern recognition and machine learning can place a part of the scientist's awareness onboard the spacecraft to prioritize downlink or to autonomously trigger time-critical follow-up observations-particularly important in flyby missions-without ground interaction. Onboard knowledge discovery methods can be used to include candidate discoveries in each downlink for scientists' scrutiny. Such capabilities will allow scientists to quickly reprioritize missions in a much more intimate and efficient manner than is possible today. Ultimately, new classes of exploration missions will be enabled.
NASA Discovery Program Workshop
NASA Technical Reports Server (NTRS)
1992-01-01
The purpose of the workshop was to review concepts for Discover-class missions that would follow the first two missions (MESUR-Pathfinder and NEAR) of this new program. The concepts had been generated by scientists involved in NASA's Solar System Exploration Program to carry out scientifically important investigations within strict guidelines -- $150 million cap on development cost and 3 year cap on development schedule. Like the Astrophysics Small Explorers (SMEX), such 'faster and cheaper' missions could provide vitality to solar system exploration research by returning high quality data more frequently and regularly and by involving many more young researchers than normally participate directly in larger missions. An announcement of opportunity (AO) to propose a Discovery mission to NASA is expected to be released in about two years time. One purpose of the workshop was to assist Code SL in deciding how to allocate its advanced programs resources. A second, complimentary purpose was to provide the concept proposers with feedback to allow them to better prepare for the AO.
Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data
NASA Technical Reports Server (NTRS)
Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.;
2015-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).
Astronauts Newman, Walz and Bursch change out lithium hydroxide canister
1993-09-20
STS051-08-037 (12-22 Sept 1993) --- Three members of the astronaut class of 1990 change out a lithium hydroxide canister beneath Discovery's middeck. Left to right are astronauts James H. Newman, Carl E. Walz and Daniel W. Bursch, all mission specialists.
Sustaining PICA for Future NASA Robotic Science Missions Including NF-4 and Discovery
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Venkatapathy, Ethiraj; Violette, Steve
2018-01-01
Phenolic Impregnated Carbon Ablator (PICA), invented in the mid 1990's, is a low-density ablative thermal protection material proven capable of meeting sample return mission needs from the moon, asteroids, comets and other unrestricted class V destinations as well as for Mars. Its low density and efficient performance characteristics have proven effective for use from Discovery to Flag-ship class missions. It is important that NASA maintain this thermal protection material capability and ensure its availability for future NASA use. The rayon based carbon precursor raw material used in PICA preform manufacturing has experienced multiple supply chain issues and required replacement and requalification at least twice in the past 25 years and a third substitution is now needed. The carbon precursor replacement challenge is twofold - the first involves finding a long-term replacement for the current rayon and the second is to assess its future availability periodically to ensure it is sustainable and be alerted if additional replacement efforts need to be initiated. This paper reviews current PICA sustainability activities to identify a rayon replacement and to establish that the capability of the new PICA derived from an alternative precursor is in family with previous versions.
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; Lechniak, Jason
2015-01-01
Objective: Scope out a low-cost instrumentation effort for Discovery and/or New Frontiers-class missions, including acquisition strategy, for FY17-19 (TBR). This is intended to be a new Game-Changing project. MEDLI and MEDLI2 cost $25-$30M each. These costs are not sustainable. Solutions are too massive and large for small planetary missions. Share various perspectives and previous experiences; discuss costs. Establish the future mission needs and measurement/sensor priorities. Determine the best acquisition and phasing approach.
Single String Integration Test of the High Voltage Hall Accelerator System
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas W.; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Shastry, Rohit
2013-01-01
HiVHAc Task Objectives:-Develop and demonstrate low-power, long-life Hall thruster technology to enable cost effective EP for Discovery-class missions-Advance the TRL level of potential power processing units and xenon feed systems to integrate with the HiVHAc thruster.
Orbit selection and its impact on radiation warning architecture for a human mission to Mars.
Turner, R E; Levine, J M
1998-01-01
With the recent announcement of the discovery of the possibility of life on Mars, there is renewed interest in Mars missions, perhaps eventually in human missions. Astronauts on such missions are at risk to occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. These events can pose a substantial risk to the health of the astronauts and to the on-board electronics. Effective forecast and warning of these events could provide time to take steps to minimize the risk (retreating to a safe haven, shutting down sensitive equipment, etc.) Providing that forecast capability, will require additional monitoring capability. The extent of this architecture is sensitive to the orbit selected for the transfer to and from Mars. This paper looks at the major classes of Mars missions (Conjunction and Opposition) and sub-categories of these classes and draws conclusions on the number of monitoring satellites needed for each, with a goal to reducing total system cost through optimum orbit selection.
Journey to a metal world: Concept for a Discovery mission to Psyche
NASA Astrophysics Data System (ADS)
Wenkert, D.; Elkins-Tanton, L. T.; Asphaug, E. I.; Bairstow, S.; Bell, J. F.; Bercovici, D. A.; Bills, B. G.; Binzel, R. P.; Bottke, W. F.; Jun, I.; Landau, D.; Marchi, S.; Oh, D.; Weiss, B. P.; Zuber, M. T.
2013-12-01
Psyche is one of the most singular asteroids in the main belt. It is thought to be the core of a Vesta-sized planetesimal, exposed through collisions. Based on spectra, radar surface properties, and bulk density estimates, it appears to be a world not of ice or silicate rock, but of iron. By understanding its nature, we can glean insights into the differentiation of planetesimals, the growth of planets, the composition and structure of a planetary core, and the geology of a metallic body. For all of these reasons, and its relative accessibility to low cost rendezvous and orbit, Psyche is a superb target for a Discovery-class mission that would measure its geology and geomorphology, shape, composition, magnetic field, and mass distribution.
COMPASS Final Report: Advanced Long-Life Lander Investigating the Venus Environment (ALIVE)
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Paul, Michael
2016-01-01
The COncurrent Multi-disciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive(power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission. Historic Soviet Venus landers have only lasted on the order of 2 hours in the extreme Venus environment: temperatures of 460 C and pressures of 93 bar. Longer duration missions have been studied using plutonium powered systems to operate and cool landers for up to a year. However, the plutonium load is very large. This NIAC study sought to still provide power and cooling but without the plutonium.
(abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby
NASA Technical Reports Server (NTRS)
Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.
1994-01-01
The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180
Mission options for rendezvous with the most accessible Near-Earth Asteroid - 1989 ML
NASA Technical Reports Server (NTRS)
Mcadams, Jim V.
1992-01-01
The recent discovery of the Amor-class 1989 ML, the most accessible known asteroid for minimum-energy rendezvous missions, has expedited the search for frequent, low-cost Near-Earth Asteroid rendezvous and round-trip missions. This paper identifies trajectory characteristics and assesses mass performance for low Delta V ballistic rendezvous opportunities to 1989 ML during the period 1996-2010. This asteroid also offers occasional unique extended mission opportunities, such as the lowest known Delta V requirement for any asteroid sample return mission as well as pre-rendezvous asteroid flyby and post-rendezvous comet flyby opportunities requiring less than 5.25 km/sec total Delta V. This paper also briefly comments concerning mission opportunities for asteroid 1991 JW, which recently replaced other known asteroids as the most accessible Near-Earth Asteroid for fast rendezvous and round-trip missions.
Engaging Scientists in Meaningful E/PO: The Universe Discovery Guides
NASA Astrophysics Data System (ADS)
Meinke, B. K.; Lawton, B.; Gurton, S.; Smith, D. A.; Manning, J. G.
2014-12-01
For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly "Discovery Guides" for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today's NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into "evergreen" educational resources suitable for a variety of audiences. The Guides focus on "deep sky" objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive "big picture" approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences. Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov. We will share the Forum-led Collaborative's experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.
The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science
NASA Astrophysics Data System (ADS)
Manning, Jim; Lawton, Brandon; Berendsen, Marni; Gurton, Suzanne; Smith, Denise A.; NASA SMD Astrophysics E/PO Community, The
2014-06-01
For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov.The presenter will share the Forum-led Collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.
Technology perspectives in the future exploration of extreme environments
NASA Astrophysics Data System (ADS)
Cutts, J.; Balint, T.; Kolawa, El.; Peterson, C.
2007-08-01
Solar System exploration is driven by high priority science goals and objectives at diverse destinations, as described in the NRC Decadal Survey and in NASA's 2006 Solar System Exploration (SSE) Roadmap. Proposed missions to these targets encounter extreme environments, including high or low temperatures, high pressure, corrosion, high heat flux, radiation and thermal cycling. These conditions are often coupled, such as low temperature and high radiation at Europa; and high temperature and high pressure near the surface of Venus. Mitigation of these environmental conditions frequently reaches beyond technologies developed for terrestrial applications, for example, by the automotive and oil industries. Therefore, space agencies require dedicated technology developments to enable these future missions. Within NASA, proposed missions are divided into three categories. Competed small (Discovery class) and medium (New Frontiers class) missions are cost capped, thus limiting significant technology developments. Therefore, large (Flagship class) missions are required not only to tackle key science questions which can't be addressed by smaller missions, but also to develop mission enabling technologies that can feed forward to smaller missions as well. In a newly completed extreme environment technology assessment at NASA, we evaluated technologies from the current State of Practice (SoP) to advanced concepts for proposed missions over the next decades. Highlights of this report are discussed here, including systems architectures, such as hybrid systems; protection systems; high temperature electronics; power generation and storage; mobility technologies; sample acquisition and mechanisms; and the need to test these technologies in relevant environments. It is expected that the findings - documented in detail in NASA's Extreme Environments Technologies report - would help identifying future technology investment areas, and in turn enable or enhance planned SSE missions, while reducing mission cost and risk.
John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege
2016-12-09
A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, along with his mission insignias for Friendship 7 and STS-95, the two flights he made into space. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
DAVINCI: Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Garvin, James B.; Robertson, Brent; Johnson, Natasha M.; Amato, Michael J.; Thompson, Jessica; Goodloe, Colby; Everette, Dave
2017-01-01
DAVINCI is one of five Discovery-class missions selected by NASA in October 2015 for Phase A studies. Launching in November 2021 and arriving at Venus in June of 2023, DAVINCI would be the first U.S. entry probe to target Venus atmosphere in 45 years. DAVINCI is designed to study the chemical and isotopic composition of a complete cross-section of Venus atmosphere at a level of detail that has not been possible on earlier missions and to image the surface at optical wavelengths and process-relevant scales.
Crater Morphology in the Phoenix Landing Ellipse: Insights Into Net Erosion and Ice Table Depth
NASA Technical Reports Server (NTRS)
Noe Dobrea, E. Z.; Stoker, C. R.; McKay, C. P.; Davila, A. F.; Krco, M.
2015-01-01
Icebreaker [1] is a Discovery class mission being developed for future flight opportunities. Under this mission concept, the Icebreaker payload is carried on a stationary lander, and lands in the same landing ellipse as Phoenix. Samples are acquired from the subsurface using a drilling system that penetrates into materials which may include loose or cemented soil, icy soil, pure ice, rocks, or mixtures of these. To avoid the complexity of mating additional strings, the drill is single-string, limiting it to a total length of 1 m.
Exploration Strategy for the Ice Dwarf Planets 2013-2022
NASA Astrophysics Data System (ADS)
Grundy, W. M.; McKinnon, W. B.
2009-12-01
The past decade saw the discovery of many ice dwarf planets, a new category distinct from terrestrial and giant planets. Future ice dwarf missions depend on increasing our knowledge of these objects as a class. Competing needs to broaden the sample and to explore individual objects in greater detail must be balanced so that neither is excluded. A balance also needs to be struck between development of enabling technologies and making use of those available today. We propose this strategy for dwarf planet investigation during 2013-2022: 1. NASA should encourage and support ground- and space-based observations along with associated theoretical and laboratory work to investigate the ice dwarfs as a population, to motivate missions to individual objects and to provide context for mission results. Access to a range of telescope capabilities is essential to complete the inventory of ice dwarfs, determine their gross characteristics, and monitor their seasonal behavior. NASA's best course of action is to ensure adequate community access to facilities such as HST, Keck, VLT, Herschel, etc., to work for access to and ensure moving target tracking capabilities in future projects such as JWST, ALMA, SIM, and future large aperture ground-based telescopes still on the drawing board, and to support improvements to the IRTF. Funding support is needed for observational, laboratory, and theoretical studies to ensure availability of researchers to undertake needed work and to inform mission development activities, independent of whether or not there is a new mission start for ice dwarfs. Additional increments are also needed for thorough analysis of New Horizons and Dawn data. 2. A New Frontiers class mission using existing, proven technology to an unexplored ice dwarf should be a candidate for NASA AOs during the next decade. The Haumea system could be a particularly compelling target, as it could significantly advance understanding of the diversity and the role of collisions in ice dwarf formation and evolution. 3. New technologies need to be developed to enable more ambitious spacecraft exploration. NASA should flight-qualify ASRG power systems, secure an adequate supply of 238Pu, and develop the long-lived, low-mass, low-power instruments and flight systems necessary to enable new missions to the edge of the solar system. These developments are given a higher priority during the next decade than consideration of Flagship or Discovery class missions.
Thesis: A Combined-light Mission For Exoplanet Molecular Spectroscopy
NASA Astrophysics Data System (ADS)
Deroo, Pieter; Swain, M. R.; Tinetti, G.; Griffith, C.; Vasisht, G.; Deming, D.; Henning, T.; Beaulieu, J.
2010-01-01
THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a MIDEX/Discovery class exoplanet mission. Building on the recent Spitzer and Hubble successes in exoplanet characterization and molecular spectroscopy, THESIS would extend these types of measurements to a large population of planets including non-transiting planets and super-Earths. The ability to acquire high-stability, spectroscopic data from the near-visible to the mid-infrared is a unique aspect of THESIS. A strength of the THESIS concept is simplicity low technical risk, and modest cost. By enabling molecular spectroscopy of exoplanet atmospheres, THESIS mission has the potential to dramatically advance our understanding of conditions on extrasolar worlds while serving as a stepping stone to more ambitious future missions.
Titan Mare Explorer (TiME): A Discovery Mission to Titan’s Hydrocarbon Lakes
NASA Astrophysics Data System (ADS)
Lorenz, R. D.; Stofan, E. R.; Lunine, J. I.; Kirk, R. L.; Mahaffy, P. R.; Bierhaus, B.; Aharonson, O.; Clark, B. C.; Kantsiper, B.; Ravine, M. A.; Waite, J. H.; Harri, A.; Griffith, C. A.; Trainer, M. G.
2009-12-01
The discovery of lakes in Titan’s high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan’s methane cycle, along with the prebiotic chemistry and implications for habitability of Titan’s lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan’s methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.
Implementing planetary protection requirements for sample return missions.
Rummel, J D
2000-01-01
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.
SLS launched missions concept studies for LUVOIR mission
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; Hopkins, Randall C.
2015-09-01
NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.
SLS Launched Missions Concept Studies for LUVOIR Mission
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Hopkins, Randall C.
2015-01-01
NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-meter Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-meter class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-meter class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.
The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science
NASA Astrophysics Data System (ADS)
Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA
2015-08-01
For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, instructors, students and the public.
Discovery Planetary Mission Operations Concepts
NASA Technical Reports Server (NTRS)
Coffin, R.
1994-01-01
The NASA Discovery Program of small planetary missions will provide opportunities to continue scientific exploration of the solar system in today's cost-constrained environment. Using a multidisciplinary team, JPL has developed plans to provide mission operations within the financial parameters established by the Discovery Program. This paper describes experiences and methods that show promise of allowing the Discovery Missions to operate within the program cost constraints while maintaining low mission risk, high data quality, and reponsive operations.
Shared mission operations concept
NASA Technical Reports Server (NTRS)
Spradlin, Gary L.; Rudd, Richard P.; Linick, Susan H.
1994-01-01
Historically, new JPL flight projects have developed a Mission Operations System (MOS) as unique as their spacecraft, and have utilized a mission-dedicated staff to monitor and control the spacecraft through the MOS. NASA budgetary pressures to reduce mission operations costs have led to the development and reliance on multimission ground system capabilities. The use of these multimission capabilities has not eliminated an ongoing requirement for a nucleus of personnel familiar with a given spacecraft and its mission to perform mission-dedicated operations. The high cost of skilled personnel required to support projects with diverse mission objectives has the potential for significant reduction through shared mission operations among mission-compatible projects. Shared mission operations are feasible if: (1) the missions do not conflict with one another in terms of peak activity periods, (2) a unique MOS is not required, and (3) there is sufficient similarity in the mission profiles so that greatly different skills would not be required to support each mission. This paper will further develop this shared mission operations concept. We will illustrate how a Discovery-class mission would enter a 'partner' relationship with the Voyager Project, and can minimize MOS development and operations costs by early and careful consideration of mission operations requirements.
Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R
2014-05-01
The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.
High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex
2013-01-01
NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Stackpoole, M.; Violette, S.
2018-01-01
Phenolic Impregnated Carbon Ablator (PICA), invented in the mid 1990s, is a low-density ablative thermal protection material proven capable of meeting sample return mission needs from the moon, asteroids, comets and other unrestricted class V destinations as well as for Mars. Its low density and efficient performance characteristics have proven effective for use from Discovery to Flagship class missions. It is important that NASA maintain this TPS material capability and ensure its availability for future NASA use. The rayon based carbon precursor raw material used in PICA preform manufacturing required replacement and requalification at least twice in the past 25 years and a third substitution is now needed. The carbon precursor replacement challenge is twofold the first involves finding a long-term replacement for the current rayon and the second is to assess its future availability periodically to ensure it is sustainable and be alerted if additional replacement efforts need to be initiated. Rayon is no longer a viable process in the US and Europe due to environmental concerns. In the early 80s rayon producers began investigating a new method of producing a cellulosic fiber through a more environmentally responsible process. This cellulosic fiber, lyocell, is a viable replacement precursor for PICA fiberform. This presentation reviews current SMD-PSD funded PICA sustainability activities in ensuring a rayon replacement for the long term is identified and in establishing that the capability of the new PICA derived from an alternative precursor is in family with previous versions of the so called heritage PICA.
Sustaining PICA for Future NASA Robotic Science Missions Including NF-4 and Discovery
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Venkatapathy, Ethiraj; Violette, Steven
2018-01-01
Phenolic Impregnated Carbon Ablator (PICA), invented in the mid 1990's, is a low-density ablative thermal protection material proven capable of meeting sample return mission needs from the moon, asteroids, comets and other "unrestricted class V destinations" as well as for Mars. Its low density and efficient performance characteristics have proven effective for use from Discovery to Flagship class missions. It is important that NASA maintain this TPS material capability and ensure its availability for future NASA use. The rayon based carbon precursor raw material used in PICA preform manufacturing required replacement and requalification at least twice in the past 25 years and a third substitution is now needed. The carbon precursor replacement challenge is twofold - the first involves finding a long-term replacement for the current rayon and the second is to assess its future availability periodically to ensure it is sustainable and be alerted if additional replacement efforts need to be initiated. Rayon is no longer a viable process in the US and Europe due to environmental concerns. In the early 80's rayon producers began investigating a new method of producing a cellulosic fiber through a more environmentally responsible process. This cellulosic fiber, lyocell, is a viable replacement precursor for PICA fiberform. This presentation reviews current SMD-PSD funded PICA sustainability activities in ensuring a rayon replacement for the long term is identified and in establishing that the capability of the new PICA derived from an alternative precursor is in family with previous versions of the so called "heritage" PICA.
VERITAS: a Discovery-Class Venus Surface Geology and Geophysics Mission
NASA Technical Reports Server (NTRS)
Freeman, Anthony; Smrekar, Suzanne E.; Hensley, Scott; Wallace, Mark; Sotin, Christophe; Darrach, Murray; Xaypraseuth, Peter; Helbert, Joern; Mazarico, Erwan
2016-01-01
Our understanding of solar system evolution is limited by a great unanswered question: How Earthlike is Venus? We know that these "twin" planets formed with similar bulk composition and size. Yet the evolutionary path Venus followed has diverged from Earth's, in losing its surface water and becoming hotter than Mercury. What led to this? The answer has profound implications for how terrestrial planets become habitable and the potential for life in the universe.
Clementine: An inexpensive mission to the Moon and Geographos
NASA Astrophysics Data System (ADS)
Shoemaker, Eugene M.; Nozette, Stewart
1993-03-01
The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2006-01-01
The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.
A Wind-powered Rover for a Low-Cost Venus Mission
NASA Technical Reports Server (NTRS)
Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.
2013-01-01
Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.
Discovery STS-131 Mission Landing
2010-04-20
The space shuttle Discovery is seen as it lands at the Kennedy Space Center in Cape Canaveral, Florida, Tuesday, April 20, 2010. Discovery and the STS-131 mission crew, Commander Alan G. Poindexter, Pilot James P. Dutton Jr. and Mission Specialists Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki returned from their mission to the International Space Station. Photo credit: (NASA/Bill Ingalls)
Medical missionaries to China: the Jesuits.
Fu, Louis
2011-05-01
The 15th and 16th centuries saw a religious revival in Europe and an increased interest in church missions. With geographical discoveries supported by strong monarchies in Spain, Portugal and later France, Catholic missions and in particular the Society of Jesus resumed the spread of Christianity to China. Convinced that it was wise policy to address themselves to the most influential upper classes, the Jesuits under the leadership of Father Matteo Ricci became friendly with the aristocrats and the intelligentsia. The Jesuits introduced Western scientific ideas into China and even practised medicine. Between periods of adversity and persecutions, Chinese emperors who valued them for their scientific expertise generally tolerated their missionary activities. Any lasting influence on Chinese culture was limited.
The Kepler Mission: Search for Habitable Planets
NASA Technical Reports Server (NTRS)
Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)
1998-01-01
Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.
John H Glenn Jr. Wreath Laying Ceremony - Inside Hereos and Lege
2016-12-09
A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows the name of astronaut Sen. John Glenn. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
NASA's Discovery Program: Moving Toward the Edge (of the Solar System)
NASA Technical Reports Server (NTRS)
Johnson, Les; Gilbert, Paul
2007-01-01
NASA's Planetary Science , Division sponsors a competitive program of small spacecraft missions with the goal of performing focused science investigations that complement NASA's larger planetary science explorations at relatively low cost. The goal of the Discovery program is to launch many smaller missions with fast development times to increase our understanding of the solar system by exploring the planets, dwarf planets, their moons, and small bodies such as comets and asteroids. Discovery missions are solicited from the broad planetary science community approximately every 2 years. Active missions within the Discovery program include several with direct scientific or engineering connections to potential future missions to the edge of the solar system and beyond. In addition to those in the Discovery program are the missions of the New Frontiers program. The first New Frontiers mission. is the New Horizons mission to Pluto, which will explore this 38-AU distant dwarf planet and potentially some Kuiper Belt objects beyond. The Discovery program's Dawn mission, when launched in mid-2007, will use ion drive as its primary propulsion system. Ion propulsion is one of only two technologies that appear feasible for early interstellar precursor missions with practical flight times. The Kepler mission will explore the structure and diversity of extrasolar planetary systems, with an emphasis on the detection of Earth-size planets around other stars. Kepler will survey nearby solar systems searching for planets that may fall within the habitable zone,' a region surrounding a star within which liquid water may exist on a planet's surface - an essential ingredient for life as we know it. With its open and competitive approach to mission selections, the Discovery program affords scientists the opportunity to propose missions to virtually any solar system destination. With its emphasis on science and proven openness to the use of new technologies such as ion propulsion, missions flown as part of the program will test out technologies needed for future very deep-space exploration and potentially take us to these difficult and distant destinations.
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.
1997-01-01
The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)
1997-01-01
The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.
Nano-Satellite Secondary Spacecraft on Deep Space Missions
NASA Technical Reports Server (NTRS)
Klesh, Andrew T.; Castillo-Rogez, Julie C.
2012-01-01
NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.
Discovery STS-131 Mission Landing
2010-04-20
STS131-S-086 (20 April 2010) --- The space shuttle Discovery is seen as it lands at the Kennedy Space Center in Cape Canaveral, Florida, on April 20, 2010. Discovery and the STS-131 mission crew, NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their mission to the International Space Station. Photo credit: NASA/Bill Ingalls
Discovery STS-131 Mission Landing
2010-04-20
STS131-S-088 (20 April 2010) --- The space shuttle Discovery is seen as it lands at the Kennedy Space Center in Cape Canaveral, Florida, on April 20, 2010. Discovery and the STS-131 mission crew, NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their mission to the International Space Station. Photo credit: NASA/Bill Ingalls
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe
2004-01-01
This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe
2005-01-01
This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.
Cometary coma chemical composition (C4) mission. [Abstract only
NASA Technical Reports Server (NTRS)
Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.
1994-01-01
Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.
Kepler Mission: Current Status
NASA Astrophysics Data System (ADS)
Borucki, William J.; Koch, D. G.; Lissauer, J. J.; Bryson, S.; Natalie, B.; Caldwell, D. A.; DeVore, E.; Jenkins, J. M.; Christensen-Dalsgaard, J.; Cochran, W. D.; Dunham, E. W.; Gautier, T. N.; Geary, J. C.; Latham, D. W.; Sasselov, D.; Gilliland, R. L.; Gould, A.; Howell, S. B.; Monet, D. G.
2007-12-01
Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a high precision photometer with Schmidt-type optics and a focal plane containing 95 million pixels to monitor over 100,000 stars to search for patterns of transits generated by planets as small as Mars. The recent reduction in the mission duration is discussed with regard to the impact on the expected science product and null statistics. Both terrestrial and giant planets discoveries will be followed up with ground-based Doppler-velocity observations to determine mass and density. The first meeting of Kepler Asteroseismic Science Consortium was held in Paris to organize an international team to analyze the Kepler data to determine the characteristics of the brighter target stars including their size and age. Stellar size determinations accurate to a few percent are expected. These will allow very accurate planet sizes to be determined from the depth of the transit signals. NASA HQ received thirty six proposals for the Participating Scientist Program and chose several new members to join the Science Team. Both the 0.95 m Schmidt corrector and 1.4 m aperture primary mirror have been completed and delivered for integration into the photometer. The focal plane with forty-two science CCD detectors and their processing electronics has been assembled and tested. The spacecraft assembly has begun with the mounting of the reaction control system, reaction wheels, attitude determination & control system, and power systems. Both the photometer and spacecraft are nearing final assembly with all subsystems having passed their environmental and performance testing. The photometer to spacecraft integration will begin this spring. The Mission is on schedule for a launch in February 2009. The Kepler Mission is funded by the NASA Astrophysics Division, Science Mission Directorate.
A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths
NASA Technical Reports Server (NTRS)
Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)
1998-01-01
The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.
Neutral Mass Spectrometry for Venus Atmosphere and Surface
NASA Technical Reports Server (NTRS)
Mahaffy, Paul
2004-01-01
The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.
Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission
NASA Astrophysics Data System (ADS)
Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.
2017-12-01
A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.
Spitzer observatory operations: increasing efficiency in mission operations
NASA Astrophysics Data System (ADS)
Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.
2006-06-01
This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.
Planetary missions as lab experiments in the introductory classroom
NASA Astrophysics Data System (ADS)
Collins, G. C.
2011-12-01
As is the case at many liberal arts colleges, at Wheaton we require all of our students to take a class in the natural sciences. Our introductory classes must include some type of experimental or laboratory component that allows students to directly experience the scientific cycle of asking a question, collecting data, and analyzing the data to either answer the question or to ask new ones. We want them to use their creativity and deal with ambiguity, so they can break out of the idea that science is something that is already written down in a book. This can be a challenge in planetary science, which draws on so many different disciplines and has so many targets of interest that one could spend the entire semester on background material without getting to the experiment cycle. For the past several years, I have been developing a structure for integrating experimentation into the introductory planetary science classroom, alongside some of the more traditional background material. We spend the first half of the semester getting used to asking questions about planets, and then finding and using simple types of data that have already been collected by spacecraft to answer those questions. Along the way, we track a current planetary mission to examine the questions it was designed to investigate, and how its instruments work together to address those questions. By the second half of the semester, the students are ready for two more challenging group projects. In the first project, the class (36 students) is divided in half, and each group must write a plan for the first day of operations of a robotic rover. The opposite group then goes out to an undisclosed field location and collects the data according to the first group's operations plan. After the field trips, the groups receive the data back from their rovers, still without knowing exactly where they landed, and have to hold a press conference discussing the important scientific discoveries at their landing site. Often, they discover that they are missing some crucial piece of data that they had thought to be unimportant. This prepares them to think more seriously about the second project, which is designed around a NASA Discovery mission proposal competition. Based on preliminary proposals for the most important unanswered question in planetary science that could be answered in a single mission, students are divided in teams of three to further develop mission proposals. I have been refining a semi-realistic virtual "kit" of mission components (instruments, power sources, propulsion, etc.) that the students have to put together to answer their science goals. Along the way, they must balance mass, power, data volume, and launch vehicle considerations to build their mission beneath a strict cost cap. By the end of this class experience, students say that they understand at a much deeper level why there are so many questions left to answer in our solar system, and many have tasted the excitement of exploring and answering these questions.
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.
2007-01-01
The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.
Technologies for Outer Planet Missions: A Companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, P. M.; McKinnon, W. B.
2009-12-01
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions — large distances, long flight times, and stringent limitations on mass, power, and data rate — mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions.
NASA's Discovery Mission to (16) Psyche: Visiting a Metal World
NASA Astrophysics Data System (ADS)
Elkins-Tanton, L. T.; Bell, J. F., III
2017-09-01
The Psyche mission is one of NASA's most recent Discovery mission selections. It is designed to explore the large metallic Main Belt asteroid (16) Psyche and test the hypothesis that it is the exposed core of an ancient differentiated planetesimal.
Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, Patricia; McKinnon, William
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long ight times, and stringent limitations on mass, power, and data rate—mean that all missions can signicantly benet from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus -active solar system satellites. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged
Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, Patricia; McKinnon, William
2010-05-01
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long flight times, and stringent limitations on mass, power, and data rate—mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strate¬gic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged
STS-114: Discovery Crew Arrival for Launch at Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
2005-01-01
Live Footage of Discovery's STS-114 Crew Arriving at the Shuttle Landing Facility at Kennedy Space Center is shown. George Diller is the narrator for this event. Commander, Eileen Collins, is seen introducing the STS-114 crew who consists of: Pilot, James Kelley, Mission Specialist, Charles Camarda, Mission Specialist, Wendy Lawrence, Mission Specialist, Soichi Noguchi, Mission Specialist, Steve Robinson, and Mission Specialist Andy Thomas. Each crewmember addresses the news media about their role on this mission.
NASA Astrophysics Data System (ADS)
Kicza, Mary; Bruegge, Richard Vorder
1995-01-01
NASA's Discovery Program represents an new era in planetary exploration. Discovery's primary goal: to maintain U.S. scientific leadership in planetary research by conducting a series of highly focused, cost effective missions to answer critical questions in solar system science. The Program will stimulate the development of innovative management approaches by encouraging new teaming arrangements among industry, universities and the government. The program encourages the prudent use of new technologies to enable/enhance science return and to reduce life cycle cost, and it supports the transfer of these technologies to the private sector for secondary applications. The Near-Earth Asteroid Rendezvous and Mars Pathfinder missions have been selected as the first two Discovery missions. Both will be launched in 1996. Subsequent, competitively selected missions will be conceived and proposed to NASA by teams of scientists and engineers from industry, academia, and government organizations. This paper summarizes the status of Discovery Program planning.
Kepler Mission: A Search for Habitable Planets
NASA Technical Reports Server (NTRS)
Koch, David; Fonda, Mark (Technical Monitor)
2002-01-01
The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.
John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege
2016-12-09
A life-size photo inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, center, with fellow Mercury Seven astronauts Gordon Cooper, left, and Gus Grissom. Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2013-01-01
The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Mission Specialist Scott Parazynski is helped by the closeout crew to put on a parachute and get ready to enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. Behind him, near Discovery's hatch opening, is Pilot George Zamka. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
2010-11-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights illuminate space shuttle Discovery on Launch Pad 39A following the retraction of the rotating service structure. The structure provides weather protection and access to the shuttle while it awaits lift off on the pad. Launch of Discovery on the STS-133 mission to the International Space Station is set for 3:29 p.m. on Nov. 4. During the 11-day mission, Discovery and its six crew members will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Troy Cryder
On-Board Propulsion System Analysis of High Density Propellants
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1998-01-01
The impact of the performance and density of on-board propellants on science payload mass of Discovery Program class missions is evaluated. A propulsion system dry mass model, anchored on flight-weight system data from the Near Earth Asteroid Rendezvous mission is used. This model is used to evaluate the performance of liquid oxygen, hydrogen peroxide, hydroxylammonium nitrate, and oxygen difluoride oxidizers with hydrocarbon and metal hydride fuels. Results for the propellants evaluated indicate that the state-of-art, Earth Storable propellants with high performance rhenium engine technology in both the axial and attitude control systems has performance capabilities that can only be exceeded by liquid oxygen/hydrazine, liquid oxygen/diborane and oxygen difluoride/diborane propellant combinations. Potentially lower ground operations costs is the incentive for working with nontoxic propellant combinations.
Enceladus Life Finder: the Search for Life in a Habitable Moon
NASA Technical Reports Server (NTRS)
Cable, Morgan L.; Clark, Karla; Lunine, Jonathan I.; Postberg, Frank; Reh, Kim; Spilker, Linda; Waite, J. Hunter
2016-01-01
Enceladus is one of the most intriguing bodies in the solar system. In addition to having one of the brightest and youngest surfaces, this small Saturnian moon was recently discovered to have a plume erupting from its south polar terrain and a global subsurface ocean. The Cassini Mission discovered organics and nitrogen-bearing molecules in the plume, as well as salts and silicates that strongly suggest ocean water in contact with a rocky core. However, Cassini's instruments lack sufficient resolution and mass range to determine if these organics are of biotic origin. The Enceladus Life Finder (ELF) is a Discovery-class mission that would use two state-of-the-art mass spectrometers to target the gas and grains of the plume and search for evidence of life in this alien ocean.
Venus Aerobot Surface Science Imaging System (VASSIS)
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
The VASSIS task was to design and develop an imaging system and container for operation above the surface of Venus in preparation for a Discovery-class mission involving a Venus aerobot balloon. The technical goals of the effort were to: a) evaluate the possible nadir-viewed surface image quality as a function of wavelength and altitude in the Venus lower atmosphere, b) design a pressure vessel to contain the imager and supporting electronics that will meet the environmental requirements of the VASSIS mission, c) design and build a prototype imaging system including an Active-Pixel Sensor camera head and VASSIS-like optics that will meet the science requirements. The VASSIS science team developed a set of science requirements for the imaging system upon which the development work of this task was based.
Design Study for a Mars Geyser Hopper
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Oleson, Steven J.; McGuire, Melissa
2012-01-01
The Mars Geyser Hopper is a design reference missions (DRMs) for a Discovery-class spacecraft using Advanced Stirling Radioisotope Generator (ASRG) power source. The Geyser Hopper is a mission concept that will investigate the springtime carbon-dioxide geysers found in regions around the south pole of Mars. The Geyser Hopper design uses Phoenix heritage systems and approach, but uses a single ASRG as the power source, rather than twin solar arrays, and is designed to last over a one-year stay on the South Pole. The spacecraft will land at a target landing area near the south pole of Mars, and have the ability to "hop" after a summertime landing to reposition itself close to a geyser site, and wait through the winter until the first sunlight of spring to witness first-hand the geyser phenomenon.
Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew is composed of Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Discovery prepares to land after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Landing of the Shuttle Discovery and end of STS 51-I mission
NASA Technical Reports Server (NTRS)
1985-01-01
Landing of the Shuttle Discovery and end of STS 51-I mission. Views include photo of Discovery's main landing gear just touching down, a cloud of dirt appearing behind it (225); Side view of the main landing gear touching down, the nose gear still above the runway (226); Aft-angle view of the Space Shuttle Discovery as it makes a successful landing (227).
Discovery STS-133 Mission Landing
2011-03-09
Space Shuttle Discovery (STS-133) lands, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji;
2002-01-01
The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.
2008-05-31
CAPE CANAVERAL, Fla. -- Brewster Shaw is a former astronaut from the first graduating class of astronauts after the Apollo program. He and others from the class were guests at NASA's Kennedy Space Center for the launch of space shuttle Discovery on its STS-124 mission. Shaw is Vice President and General Manager, Space Exploration, for Integrated Defense Systems, The Boeing Company. In 1978 a new group of 35 astronauts was selected after nine years without new astronauts. The pilots were Daniel Brandenstein, Michael Coats, Richard Covey, John Creighton, Robert Gibson, Frederick D. Gregory, Frederick Hauck, Jon McBride, Francis "Dick" Scobee, Brewster Shaw, Loren Shriver, David Walker and Donald Williams. The mission specialists were Guion Bluford, James Buchli, John Fabian, Anna Fisher, Dale Gardner, S. David Griggs, Terry Hart, Steven Hawley, Jeffrey Hoffman, Shannon Lucid, Ronald McNair, Richard Mullane, Steven Nagel, George Nelson, Ellison Onizuka, Judith Resnik, Sally Ride, Rhea Seddon, Robert Stewart, Kathryn D. Sullivan, Norman Thagard and James van Hoften. Since then, a new group has been selected roughly every two years. Photo credit: NASA/Jim Grossmann
2007-10-23
KENNEDY SPACE CENTER, FLA. -- A spider in the foreground appears to be dancing on the lightning mast near space shuttle Discovery as the shuttle roars toward space on mission STS-120 to the International Space Station. Liftoff of Discovery was on time at 11:38:19 a.m. EDT. The mission is the 23rd assembly flight to the space station and the 34th flight for Discovery. The STS-120 payload is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:50 a.m. EST on Nov. 6. Photo credit: NASA/Sandra Joseph, Tony Gray, Robert Murray
2010-07-29
CAPE CANAVERAL, Fla. -- This orbiter tribute of space shuttle Discovery, or OV-103, hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In 2011, the tribute was updated to reflect the crew member change on Discovery's final mission -- STS-133. Steve Bowen replaced Tim Kopra as a mission specialist on STS-133, after Kopra was injured in a bicycle accident that prevented him from flying into space. Discovery’s accomplishments include the first female shuttle pilot, Eileen Collins, on STS-63, John Glenn’s legendary return to space on STS-95, and the celebration of the 100th shuttle mission with STS-92. In addition, Discovery supported a number of Department of Defense programs, satellite deploy and repair missions and 13 International Space Station construction and operation flights. The tribute features Discovery demonstrating the rendezvous pitch maneuver on approach to the International Space Station during STS-114. Having accumulated the most space shuttle flights, Discovery’s 39 mission patches are shown circling the spacecraft. The background image was taken from the Hubble Space Telescope, which launched aboard Discovery on STS-31 and serviced by Discovery on STS-82 and STS-103. The American Flag and Bald Eagle represent Discovery’s two Return-to-Flight missions -- STS-26 and STS-114 -- and symbolize Discovery’s role in returning American astronauts to space. Five orbiter tributes are on display in the firing room, representing Atlantis, Challenger, Columbia, Endeavour and Discovery. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-164-KSC
2010-07-29
CAPE CANAVERAL, Fla. -- This is a version of space shuttle Discovery's orbiter tribute, or OV-103, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In 2011, the tribute was updated to reflect the crew member change on Discovery's final mission -- STS-133. Steve Bowen replaced Tim Kopra as a mission specialist on STS-133, after Kopra was injured in a bicycle accident that prevented him from flying into space. Discovery’s accomplishments include the first female shuttle pilot, Eileen Collins, on STS-63, John Glenn’s legendary return to space on STS-95, and the celebration of the 100th shuttle mission with STS-92. In addition, Discovery supported a number of Department of Defense programs, satellite deploy and repair missions and 13 International Space Station construction and operation flights. The tribute features Discovery demonstrating the rendezvous pitch maneuver on approach to the International Space Station during STS-114. Having accumulated the most space shuttle flights, Discovery’s 39 mission patches are shown circling the spacecraft. The background image was taken from the Hubble Space Telescope, which launched aboard Discovery on STS-31 and serviced by Discovery on STS-82 and STS-103. The American Flag and Bald Eagle represent Discovery’s two Return-to-Flight missions -- STS-26 and STS-114 -- and symbolize Discovery’s role in returning American astronauts to space. Five orbiter tributes are on display in the firing room, representing Atlantis, Challenger, Columbia, Endeavour and Discovery. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-164-KSC
2010-07-29
CAPE CANAVERAL, Fla. -- This is a printable version of space shuttle Discovery's orbiter tribute, or OV-103, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In 2011, the tribute was updated to reflect the crew member change on Discovery's final mission -- STS-133. Steve Bowen replaced Tim Kopra as a mission specialist on STS-133, after Kopra was injured in a bicycle accident that prevented him from flying into space. Discovery’s accomplishments include the first female shuttle pilot, Eileen Collins, on STS-63, John Glenn’s legendary return to space on STS-95, and the celebration of the 100th shuttle mission with STS-92. In addition, Discovery supported a number of Department of Defense programs, satellite deploy and repair missions and 13 International Space Station construction and operation flights. The tribute features Discovery demonstrating the rendezvous pitch maneuver on approach to the International Space Station during STS-114. Having accumulated the most space shuttle flights, Discovery’s 39 mission patches are shown circling the spacecraft. The background image was taken from the Hubble Space Telescope, which launched aboard Discovery on STS-31 and serviced by Discovery on STS-82 and STS-103. The American Flag and Bald Eagle represent Discovery’s two Return-to-Flight missions -- STS-26 and STS-114 -- and symbolize Discovery’s role in returning American astronauts to space. Five orbiter tributes are on display in the firing room, representing Atlantis, Challenger, Columbia, Endeavour and Discovery. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-164-KSC
Landing of STS-63 Discovery at KSC
1995-02-11
STS063-S-015 (11 Feb. 1995) --- The Space Shuttle Discovery deploys its drag chute on Runway 15 at the Kennedy Space Center's (KSC) Shuttle Landing Facility as it wraps up an eight-day mission. Touchdown occurred at 6:50:19 a.m. (EST), February 11, 1995. Onboard the Space Shuttle Discovery were astronauts James D. Wetherbee, mission commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; mission specialists C. Michael Foale, Janice E. Voss, and cosmonaut Vladimir G. Titov.
Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Orbiter Discovery smokes its tires as it touches down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after a successful mission STS-95 lasting nearly nine days and 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Orbiter Discovery startles a great white egret next to runway 33 as it touches down at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after a successful mission STS-95 lasting nearly nine days and 3.6 million miles. The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
STS-103 crew looks over Discovery after a night-time landing at the SLF
NASA Technical Reports Server (NTRS)
1999-01-01
After landing at the Shuttle Landing Facility, the STS-103 crew looks over the orbiter Discovery. In the foreground, from left, are Mission Specialist Jean-Francois Clervoy of France, Pilot Scott J. Kelly, Commander Curtis L. Brown Jr. and Mission Specialist C. Michael Foale (Ph.D.); behind them, from left, are Mission Specialists Steven L. Smith and Claude Nicollier of Switzerland. The remaining crew member (not shown) is Mission Specialist John M. Grunsfeld (Ph.D.). The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 EST and wheel stop at 7:01:34 EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.
Discovery STS-133 Mission Landing
2011-03-09
Space Shuttle Discovery (STS-133) is seen shortly after it landed, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Buxner, S.; Meinke, B. K.; Brain, D.; Schneider, N. M.; Schultz, G. R.; Smith, D. A.; Grier, J.; Shipp, S. S.
2014-12-01
The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms. The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach Forum is coordinating the development of a pilot series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The "Astro 101 slide sets" are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (discoveries not yet in their textbooks) into the broader context of the course. In a similar effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed the Discovery slide sets, which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the Discovery slides and connect them to NASA mission science.
Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.
2012-01-01
The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies
Big Data: Next-Generation Machines for Big Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, James J.; Papka, Michael E.
Addressing the scientific grand challenges identified by the US Department of Energy’s (DOE’s) Office of Science’s programs alone demands a total leadership-class computing capability of 150 to 400 Pflops by the end of this decade. The successors to three of the DOE’s most powerful leadership-class machines are set to arrive in 2017 and 2018—the products of the Collaboration Oak Ridge Argonne Livermore (CORAL) initiative, a national laboratory–industry design/build approach to engineering nextgeneration petascale computers for grand challenge science. These mission-critical machines will enable discoveries in key scientific fields such as energy, biotechnology, nanotechnology, materials science, and high-performance computing, and servemore » as a milestone on the path to deploying exascale computing capabilities.« less
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Mission Specialists Doug Wheelock and Stephanie Wilson are eager to start the mission, after being helped by the closeout crew, and enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Multiple Smaller Missions as a Direct Pathway to Mars Sample Return
NASA Technical Reports Server (NTRS)
Niles, P. B.; Draper, D. S.; Evans, C. A.; Gibson, E. K.; Graham, L. D.; Jones, J. H.; Lederer, S. M.; Ming, D.; Seaman, C. H.; Archer, P. D.;
2012-01-01
Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- finds shelter in the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- winds its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- awaits entry into the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
STS-33 DISCOVERY - ORBITER VEHICLE (OV)-103 - OFFICIAL CREW PORTRAIT
1989-09-26
S89-45737 (19 September 1989) --- Official STS-33 crew portrait. These five astronauts will be aboard the space shuttle Discovery for a scheduled November 1989 mission for the Department of Defense (DOD). Frederick D. Gregory (center, front) is mission commander. He is flanked by Kathryn C. Thornton and F. Story Musgrave, mission specialists. At rear are Manley L. Carter, Jr., mission specialist, and John E. Blaha, pilot.
2009-09-14
STS128-S-047 (11 Sept. 2009) --- Space Shuttle Discovery?s main landing gear touches down at NASA's Dryden Flight Research Center at Edwards Air Force Base in California, concluding a successful mission to the International Space Station. Onboard are NASA astronauts Rick Sturckow, commander; Kevin Ford, pilot; John ?Danny? Olivas, Patrick Forrester, Jose Hernandez and Tim Kopra, all mission specialists; along with European Space Agency astronaut Christer Fuglesang, mission specialist. Discovery landed at 5:53 p.m. (PDT) on Sept. 11, 2009 to end the STS-128 mission, completing its almost 14-day journey of more than 5.7 million miles in space. The landing was diverted to California due to marginal weather at the Kennedy Space Center. Discovery?s mission featured three spacewalks and the delivery of two refrigerator-sized science racks to the space station. One rack will be used to conduct experiments on materials such as metals, glasses and ceramics. The results from these experiments could lead to the development of better materials on Earth. The other rack will be used for fluid physics research. Understanding how fluids react in microgravity could lead to improved designs for fuel tanks, water systems and other fluid-based systems.
2009-09-11
STS128-S-045 (11 Sept. 2009) --- Space Shuttle Discovery?s main landing gear touches down at NASA's Dryden Flight Research Center at Edwards Air Force Base in California, concluding a successful mission to the International Space Station. Onboard are NASA astronauts Rick Sturckow, commander; Kevin Ford, pilot; John ?Danny? Olivas, Patrick Forrester, Jose Hernandez and Tim Kopra, all mission specialists; along with European Space Agency astronaut Christer Fuglesang, mission specialist. Discovery landed at 5:53 p.m. (PDT) on Sept. 11, 2009 to end the STS-128 mission, completing its almost 14-day journey of more than 5.7 million miles in space. The landing was diverted to California due to marginal weather at the Kennedy Space Center. Discovery?s mission featured three spacewalks and the delivery of two refrigerator-sized science racks to the space station. One rack will be used to conduct experiments on materials such as metals, glasses and ceramics. The results from these experiments could lead to the development of better materials on Earth. The other rack will be used for fluid physics research. Understanding how fluids react in microgravity could lead to improved designs for fuel tanks, water systems and other fluid-based systems.
2009-09-11
STS128-S-046 (11 Sept. 2009) --- Space Shuttle Discovery?s main landing gear touches down at NASA's Dryden Flight Research Center at Edwards Air Force Base in California, concluding a successful mission to the International Space Station. Onboard are NASA astronauts Rick Sturckow, commander; Kevin Ford, pilot; John ?Danny? Olivas, Patrick Forrester, Jose Hernandez and Tim Kopra, all mission specialists; along with European Space Agency astronaut Christer Fuglesang, mission specialist. Discovery landed at 5:53 p.m. (PDT) on Sept. 11, 2009 to end the STS-128 mission, completing its almost 14-day journey of more than 5.7 million miles in space. The landing was diverted to California due to marginal weather at the Kennedy Space Center. Discovery?s mission featured three spacewalks and the delivery of two refrigerator-sized science racks to the space station. One rack will be used to conduct experiments on materials such as metals, glasses and ceramics. The results from these experiments could lead to the development of better materials on Earth. The other rack will be used for fluid physics research. Understanding how fluids react in microgravity could lead to improved designs for fuel tanks, water systems and other fluid-based systems.
2007-10-23
KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A at NASA's Kennedy Space Center as space shuttle Discovery lifts off on mission STS-120 to the International Space Station. Liftoff was on time at 11:38:19 a.m. EDT. At far left behind the dead tree, a heron is startled by Discovery's roaring. Discovery carries the Italian-built U.S. Node 2, called Harmony. During the 14-day STS-120 mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Sandra Joseph, Tony Gray & Robert Murray
2009-03-15
CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Flow Director for space shuttle Discovery Stephanie Stilson (center) and Shuttle Launch Director Mike Leinbach applaud the mission management team for the successful launch of space shuttle Discovery on the STS-119 mission. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett
On a Formal Tool for Reasoning About Flight Software Cost Analysis
NASA Technical Reports Server (NTRS)
Spagnuolo, John N., Jr.; Stukes, Sherry A.
2013-01-01
A report focuses on the development of flight software (FSW) cost estimates for 16 Discovery-class missions at JPL. The techniques and procedures developed enabled streamlining of the FSW analysis process, and provided instantaneous confirmation that the data and processes used for these estimates were consistent across all missions. The research provides direction as to how to build a prototype rule-based system for FSW cost estimation that would provide (1) FSW cost estimates, (2) explanation of how the estimates were arrived at, (3) mapping of costs, (4) mathematical trend charts with explanations of why the trends are what they are, (5) tables with ancillary FSW data of interest to analysts, (6) a facility for expert modification/enhancement of the rules, and (7) a basis for conceptually convenient expansion into more complex, useful, and general rule-based systems.
Science Planning for the TROPIX Mission
NASA Technical Reports Server (NTRS)
Russell, C. T.
1998-01-01
The objective of the study grant was to undertake the planning needed to execute meaningful solar electric propulsion missions in the magnetosphere and beyond. The first mission examined was the Transfer Orbit Plasma Investigation Experiment (TROPIX) mission to spiral outward through the magnetosphere. The next mission examined was to the moon and an asteroid. Entitled Diana, it was proposed to NASA in October 1994. Two similar missions were conceived in 1996 entitled CNR for Comet Nucleus Rendezvous and MBAR for Main Belt Asteroid Rendezvous. The latter mission was again proposed in 1998. All four of these missions were unsuccessfully proposed to the NASA Discovery program. Nevertheless we were partially successful in that the Deep Space 1 (DS1) mission was eventually carried out nearly duplicating our CNR mission. Returning to the magnetosphere we studied and proposed to the Medium Class Explorer (MIDEX) program a MidEx mission called TEMPEST, in 1995. This mission included two solar electric spacecraft that spiraled outward in the magnetosphere: one at near 900 inclination and one in the equatorial plane. This mission was not selected for flight. Next we proposed a single SEP vehicle to carry Energetic Neutral Atom (ENA) imagers and inside observations to complement the IMAGE mission providing needed data to properly interpret the IMAGE data. This mission called SESAME was submitted unsuccessfully in 1997. One proposal was successful. A study grant was awarded to examine a four spacecraft solar electric mission, named Global Magnetospheric Dynamics. This study was completed and a report on this mission is attached but events overtook this design and a separate study team was selected to design a classical chemical mission as a Solar Terrestrial Probe. Competing proposals such as through the MIDEX opportunity were expressly forbidden. A bibliography is attached.
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Mission Specialist Doug Wheelock is helped by the closeout crew to put on a parachute and get ready to enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
2011-02-24
CAPE CANAVERAL, Fla. -- Swarms of people are at the Kennedy Space Center Visitor Complex in Florida to watch space shuttle Discovery lift off on its final scheduled mission from Launch Pad 39A. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- Swarms of people are at the Kennedy Space Center Visitor Complex in Florida to watch space shuttle Discovery lift off on its final scheduled mission from Launch Pad 39A. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- Swarms of people are at the Kennedy Space Center Visitor Complex in Florida to watch space shuttle Discovery lift off on its final scheduled mission from Launch Pad 39A. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- Swarms of people are at the Kennedy Space Center Visitor Complex in Florida to watch space shuttle Discovery lift off on its final scheduled mission from Launch Pad 39A. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- Swarms of people are at the Kennedy Space Center Visitor Complex in Florida to watch space shuttle Discovery lift off on its final scheduled mission from Launch Pad 39A. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- Space shuttle Discovery soars toward space after liftoff from Launch Pad 39A at NASA's Kennedy Space Center in Florida beginning its final flight, the STS-133 mission, to the International Space Station. Launch was at 4:53 p.m. EST. Discovery and its six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Linda Perry
Effectiveness of discovery learning model on mathematical problem solving
NASA Astrophysics Data System (ADS)
Herdiana, Yunita; Wahyudin, Sispiyati, Ririn
2017-08-01
This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Tree branches on the Space Coast frame Space Shuttle Discovery's liftoff from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
2007-10-23
KENNEDY SPACE CENTER, FLA. -- Space shuttle Discovery roars between the clouds into the blue Florida sky toward space on mission STS-120 to the International Space Station. Below the three main engines are the blue cones of light, known as shock or mach diamonds. They are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Liftoff of Discovery was on time at 11:38:19 a.m. EDT. The mission is the 23rd assembly flight to the space station and the 34th flight for Discovery. The STS-120 payload is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:50 a.m. EST on Nov. 6. Photo credit: NASA/Tom Farrar, Scott Haun, Raphael Hernandez
2010-07-29
CAPE CANAVERAL, Fla. -- This orbiter tribute of space shuttle Discovery, or OV-103, hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. Discovery’s accomplishments include the first female shuttle pilot, Eileen Collins, on STS-63, John Glenn’s legendary return to space on STS-95, and the celebration of the 100th shuttle mission with STS-92. In addition, Discovery supported a number of Department of Defense programs, satellite deploy and repair missions and 13 International Space Station construction and operation flights. The tribute features Discovery demonstrating the rendezvous pitch maneuver on approach to the International Space Station during STS-114. Having accumulated the most space shuttle flights, Discovery’s 39 mission patches are shown circling the spacecraft. The background image was taken from the Hubble Space Telescope, which launched aboard Discovery on STS-31 and serviced by Discovery on STS-82 and STS-103. The American Flag and Bald Eagle represent Discovery’s two Return-to-Flight missions -- STS-26 and STS-114 -- and symbolize Discovery’s role in returning American astronauts to space. Five orbiter tributes are on display in the firing room, representing Atlantis, Challenger, Columbia, Endeavour and Discovery. Graphic design credit: NASA/Amy Lombardo
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery ventures out in public seemingly "undressed" -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors. The shuttle is rolling from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2, in the background. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past Orbiter Processing Facility-3, or OPF-3, at right, on its way from OPF-2 to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery, as it is seldom seen in public -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its way to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- is welcomed into the Vehicle Assembly Building, or VAB, after its roll from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
2011-07-13
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its move to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Mission Specialist Daniel Tani is helped by the closeout crew to put on a parachute and get ready to enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. Behind him is Mission Specialist Doug Wheelock. At the end of the mission, Tani will remain behind on the International Space Station to join the Expedition 16 crew. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
STS-92 - Towing of Shuttle Discovery and Boeing 747 Shuttle Carrier Aircraft (SCA)
NASA Technical Reports Server (NTRS)
2000-01-01
The Space Shuttle Discovery sits atop one of NASA's modified Boeing 747 Shuttle Carrier Aircraft as the unusual piggyback duo is towed along a taxiway at NASA's Dryden Flight Research Center at Edwards, California. The Discovery was ferried from NASA Dryden to NASA's Kennedy Space Center in Florida on November 2, 2000, after extensive pre-ferry servicing and preparations. STS-92 was the 100th mission since the fleet of four Space Shuttles began flying in 1981. (Due to schedule changes, missions are not always launched in the order that was originally planned.) The almost 13-day mission, the 46th Shuttle mission to land at Edwards, was the last construction mission for the International Space Station prior to the first scientists taking up residency in the orbiting space laboratory the following month. The seven-member crew on STS-92 included mission specialists Koichi Wakata, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao, pilot Pam Melroy and mission commander Brian Duffy.
Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus
NASA Astrophysics Data System (ADS)
Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John
2010-05-01
The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission techniques and to describe risk reduction efforts and recent advances toward enabling such future missions. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851
A General Framework for Discovery and Classification in Astronomy
NASA Astrophysics Data System (ADS)
Dick, Steven J.
2012-09-01
An analysis of the discovery of 82 classes of astronomical objects reveals an extended structure of discovery, consisting of detection, interpretation and understanding, each with its own nuances and a microstructure including conceptual, technological and social roles. This is true with a remarkable degree of consistency over the last 400 years of telescopic astronomy, ranging from Galileo's discovery of satellites, planetary rings and star clusters, to the discovery of quasars and pulsars. Telescopes have served as ``engines of discovery'' in several ways, ranging from telescope size and sensitivity (planetary nebulae and spiral nebulae), to specialized detectors (TNOs) and the opening of the electromagnetic spectrum for astronomy (pulsars, pulsar planets, and most active galaxies). A few classes (radiation belts, the solar wind and cosmic rays) were initially discovered without the telescope. Classification also plays an important role in discovery. While it might seem that classification marks the end of discovery, or a post-discovery phase, in fact it often marks the beginning, even a pre-discovery phase. Nowhere is this more clearly seen than in the classification of stellar spectra, long before dwarfs, giants and supergiants were known, or their evolutionary sequence recognized. Classification may also be part of a post-discovery phase, as in the MK system of stellar classification, constructed after the discovery of stellar luminosity classes. Some classes are declared rather than detected, as in the case of gas and ice giant planets, and, infamously, Pluto as a dwarf planet. Others are inferred rather than detected, including most classes of stars.
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Gene Peavler works in the wheel area on the orbiter Discovery. The vehicle has undergone Orbiter Major Modifications in the past year. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroe, TalaWanda R.; Tumlinson, Jason; Prochaska, J. Xavier
2016-07-01
We present the first data release (DR1) from our UV-bright Quasar Survey for new z ∼ 1 active galactic nuclei (AGNs) across the sky. Using simple GALEX UV and WISE near-IR color selection criteria, we generated a list of 1450 primary candidates with FUV < 18.5 mag. We obtained discovery spectra, primarily on 3 m-class telescopes, for 1040 of these candidates and confirmed 86% as AGNs, with redshifts generally at z > 0.5. Including a small set of observed secondary candidates, we report the discovery of 217 AGNs with FUV < 18 mag that previously had no reported spectroscopic redshift. These are excellent potential targets formore » UV spectroscopy before the end of the Hubble Space Telescope mission. The main data products are publicly available through the Mikulski Archive for Space Telescopes.« less
An Exobiological Strategy for Mars Exploration
NASA Technical Reports Server (NTRS)
1995-01-01
The idea of searching for evidence of life on Mars may strike some as far-fetched, even fanciful. But there is a compelling logic to such a quest, as well as an equally compelling excitement. Early environments were apparently sufficiently similar on Mars and Earth, and life arose so rapidly on Earth once conditions became clement, that emergence of life on both planets at that time is scarcely less plausible than emergence on only one. Furthermore, although a fossil on Mars might seem at first like a proverbial needle in a haystack, experience on Earth tell us that if we know where to look, finding evidence of ancient life is not particularly difficult, especially when one considers that such evidence can be relatively widely disseminated in the form of chemical or isotopic signatures. The key is to recognize that the search for ancient life on Mars will involve a logically designed sequence of missions, each of which will focus on defining ever more closely where and how biosignatures may be found. Although one can never rule out a chance discovery, this quest should not be approached as one that will yield to a single, expeditious mission. (In fact, the proposed strategy lends itself particularly well to the use of a series of relatively small, inexpensive spacecraft, rather than a single flagship-class mission). The search for life on Mars will take time and commitment, but the reward could be a discovery of inestimable importance, not just to science, but to humanity as a whole.
An exobiological strategy for Mars exploration
NASA Astrophysics Data System (ADS)
1995-04-01
The idea of searching for evidence of life on Mars may strike some as far-fetched, even fanciful. But there is a compelling logic to such a quest, as well as an equally compelling excitement. Early environments were apparently sufficiently similar on Mars and Earth, and life arose so rapidly on Earth once conditions became clement, that emergence of life on both planets at that time is scarcely less plausible than emergence on only one. Furthermore, although a fossil on Mars might seem at first like a proverbial needle in a haystack, experience on Earth tell us that if we know where to look, finding evidence of ancient life is not particularly difficult, especially when one considers that such evidence can be relatively widely disseminated in the form of chemical or isotopic signatures. The key is to recognize that the search for ancient life on Mars will involve a logically designed sequence of missions, each of which will focus on defining ever more closely where and how biosignatures may be found. Although one can never rule out a chance discovery, this quest should not be approached as one that will yield to a single, expeditious mission. (In fact, the proposed strategy lends itself particularly well to the use of a series of relatively small, inexpensive spacecraft, rather than a single flagship-class mission). The search for life on Mars will take time and commitment, but the reward could be a discovery of inestimable importance, not just to science, but to humanity as a whole.
STS-42 Discovery, OV-103, official crew portrait
1999-11-24
STS042-S-002 (November 1991) --- Payload specialists representing Canada and the European Space Agency (CSA - ESA) join five NASA astronauts for the January 1992 scheduled STS-42 mission. Left to right are astronauts Stephen S. Oswald, pilot; Roberta L. Bondar, payload specialist; Norman E. Thagard, payload commander; Ronald J. Grabe, mission commander; David C. Hilmers, mission specialist; Ulf Merbold, payload specialist; and William F. Readdy, mission specialist. The STS-42 mission will utilize the Space Shuttle Discovery to carry out experiments for the International Microgravity Laboratory (IML-1).
2011-02-24
CAPE CANAVERAL, Fla. -- Cameras stationed near Launch Pad 39A capture space shuttle Discovery as it lifts off from NASA's Kennedy Space Center in Florida beginning its final flight, the STS-133, mission to the International Space Station. Launch was at 4:53 p.m. EST. Discovery and its six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Tony Gray and Tom Farrar
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Mission Specialist Paolo Nespoli is helped by the closeout crew to put on a parachute and get ready to enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. Nespoli represents the European Space Agency. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
78 FR 65239 - Proposed Establishment of Class E Airspace; Brevig Mission, AK
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
...-0078; Airspace Docket No. 12-AAL-1] Proposed Establishment of Class E Airspace; Brevig Mission, AK...: This action proposes to establish Class E airspace at Brevig Mission Airport, Brevig Mission, AK... at Brevig Mission Airport, Brevig Mission, AK. Controlled airspace extending 2 miles north, 6 miles...
2011-02-24
CAPE CANAVERAL, Fla. - In the White Room at Launch Pad 39A at NASA's Kennedy Space Center in Florida, United Space Alliance spacesuit technicians help STS-133 Commander Steve Lindsey put on the parachute for his launch-and-entry suit before he enters space shuttle Discovery through the crew hatch in the background. Lindsey will be making his fifth spaceflight and third aboard Discovery. Since his most recent mission -- STS-121 in 2006 -- Lindsey served as chief of the Astronaut Office at NASA's Johnson Space Center in Houston. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
STS-103 perfect night-time landing for Space Shuttle Discovery
NASA Technical Reports Server (NTRS)
1999-01-01
The orbiter Discovery looks like a blue ghost as it drops from the darkness onto lighted runway 33 at KSC's Shuttle Landing Facility. After traveling more than 3,267,000 miles on a successful eight-day mission to service the Hubble Space Telescope, the orbiter touches down at 7:00:47 p.m. EST. Aboard are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, who spent the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.
NASA Technical Reports Server (NTRS)
Matousek, S.
2001-01-01
The Mars program institutes the Mars Scout Missions in order to address science goals in the program not otherwise covered in the baseline Mars plan. Mars Scout Missions will be Principle-Investigator (PI) led science missions. Analogous to the Discovery Program, PI led investigations optimize the use of limited resources to accomplish the best focused science and allow the flexibility to quickly respond to discoveries at Mars. Scout missions also require unique investments in technology and reliance upon Mars-based infrastructure such as telecom relay orbiters.
NASA Technical Reports Server (NTRS)
1984-01-01
The official mission insignia for the 41-D Space Shuttle flight features the Discovery - NASA's third orbital vehicle - as it makes its maiden voyage. The ghost ship represents the orbiter's namesakes which have figured prominently in the history of exploration. The Space Shuttle Discovery heads for new horizons to extend that proud tradition. Surnames for the crewmembers of NASA's eleventh Space Shuttle mission encircle the red, white, and blue scene.
STS-33 crewmember pose on Discovery, OV-103, middeck for onboard portrait
1989-11-27
STS033-22-035 (22-27 Nov. 1989) --- STS-33 crewmembers, wearing mission polo shirts, pose on the middeck of the Space Shuttle Discovery for an in-flight crew portrait. Clockwise (starting at left) are astronauts Frederick D. Gregory, commander; Kathryn C. Thornton, mission specialist; John E. Blaha, pilot; Manley L. (Sonny) Carter Jr., and F. Story Musgrave, mission specialists.
Discovery STS-133 Mission Landing
2011-03-09
The runway of the Shuttle Landing Facility (SLF) is marked to show where the wheels stopped for the space shuttle Discovery (STS-133) shortly after it landed, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)
2010-07-29
CAPE CANAVERAL, Fla. -- This is a printable version of space shuttle Discovery's orbiter tribute, or OV-103, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. Discovery’s accomplishments include the first female shuttle pilot, Eileen Collins, on STS-63, John Glenn’s legendary return to space on STS-95, and the celebration of the 100th shuttle mission with STS-92. In addition, Discovery supported a number of Department of Defense programs, satellite deploy and repair missions and 13 International Space Station construction and operation flights. The tribute features Discovery demonstrating the rendezvous pitch maneuver on approach to the International Space Station during STS-114. Having accumulated the most space shuttle flights, Discovery’s 39 mission patches are shown circling the spacecraft. The background image was taken from the Hubble Space Telescope, which launched aboard Discovery on STS-31 and serviced by Discovery on STS-82 and STS-103. The American Flag and Bald Eagle represent Discovery’s two Return-to-Flight missions -- STS-26 and STS-114 -- and symbolize Discovery’s role in returning American astronauts to space. Five orbiter tributes are on display in the firing room, representing Atlantis, Challenger, Columbia, Endeavour and Discovery. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-164-KSC
2010-07-29
CAPE CANAVERAL, Fla. -- This is a version of space shuttle Discovery's orbiter tribute, or OV-103, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. Discovery’s accomplishments include the first female shuttle pilot, Eileen Collins, on STS-63, John Glenn’s legendary return to space on STS-95, and the celebration of the 100th shuttle mission with STS-92. In addition, Discovery supported a number of Department of Defense programs, satellite deploy and repair missions and 13 International Space Station construction and operation flights. The tribute features Discovery demonstrating the rendezvous pitch maneuver on approach to the International Space Station during STS-114. Having accumulated the most space shuttle flights, Discovery’s 39 mission patches are shown circling the spacecraft. The background image was taken from the Hubble Space Telescope, which launched aboard Discovery on STS-31 and serviced by Discovery on STS-82 and STS-103. The American Flag and Bald Eagle represent Discovery’s two Return-to-Flight missions -- STS-26 and STS-114 -- and symbolize Discovery’s role in returning American astronauts to space. Five orbiter tributes are on display in the firing room, representing Atlantis, Challenger, Columbia, Endeavour and Discovery. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-164-KSC
STS-103 MS Clervoy and Nicollier and Commander Brown look over Discovery after landing
NASA Technical Reports Server (NTRS)
1999-01-01
After landing at the Shuttle Landing Facility, STS-103 Mission Specialists Jean-Francois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency, listen to a comment by Commander Curtis L. Brown Jr. while looking over the orbiter Discovery. Other members of the crew are Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and John M. Grunsfeld (Ph.D.). The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 EST and wheel stop at 7:01:34 EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.
Discovery and Classification in Astronomy
NASA Astrophysics Data System (ADS)
Dick, Steven J.
2012-01-01
Three decades after Martin Harwit's pioneering Cosmic Discovery (1981), and following on the recent IAU Symposium "Accelerating the Rate of Astronomical Discovery,” we have revisited the problem of discovery in astronomy, emphasizing new classes of objects. 82 such classes have been identified and analyzed, including 22 in the realm of the planets, 36 in the realm of the stars, and 24 in the realm of the galaxies. We find an extended structure of discovery, consisting of detection, interpretation and understanding, each with its own nuances and a microstructure including conceptual, technological and social roles. This is true with a remarkable degree of consistency over the last 400 years of telescopic astronomy, ranging from Galileo's discovery of satellites, planetary rings and star clusters, to the discovery of quasars and pulsars. Telescopes have served as "engines of discovery” in several ways, ranging from telescope size and sensitivity (planetary nebulae and spiral galaxies), to specialized detectors (TNOs) and the opening of the electromagnetic spectrum for astronomy (pulsars, pulsar planets, and most active galaxies). A few classes (radiation belts, the solar wind and cosmic rays), were initially discovered without the telescope. Classification also plays an important role in discovery. While it might seem that classification marks the end of discovery, or a post-discovery phase, in fact it often marks the beginning, even a pre-discovery phase. Nowhere is this more clearly seen than in the classification of stellar spectra, long before dwarfs, giants and supergiants were known, or their evolutionary sequence recognized. Classification may also be part of a post-discovery phase, as in the MK system of stellar classification, constructed after the discovery of stellar luminosity classes. Some classes are declared rather than discovered, as in the case of gas and ice giant planets, and, infamously, Pluto as a dwarf planet.
2005-12-07
KENNEDY SPACE CENTER, FLA. - A Florida quarter is prepared for installation on the New Horizons spacecraft in Kennedy Space Center's Payload Hazardous Servicing Facility. The new quarter, engraved with the "Gateway to Discovery" design, will accompany New Horizons on its 3-billion-mile journey to the planet Pluto and its moon, Charon. Although appropriate for the mission to carry the coin from the state that symbolizes space exploration, it will also serve a practical purpose: scientists are using the quarter as a spin-balance weight. New Horizons comprises seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. Photo Credit: Applied Physics Laboratory/George W. Rogers III
Thermal emission measurements with FINESSE in the era of JWST
NASA Astrophysics Data System (ADS)
Bean, Jacob; FINESSE Science Team
2018-01-01
FINESSE (Fast INfrared Exoplanet Spectroscopy Survey Explorer) is a candidate Medium-Class Explorer (MIDEX) mission dedicated to performing a statistical census of transiting exoplanet atmospheres. The objectives of FINESSE are to test theories of planetary origins and climate, enable comparative planetology, and open up discovery space on atmospheric chemistry, planetary evolution, and other topics. The baseline design for FINESSE is a 75 cm telescope observing from L2. The FINESSE instrument is a high throughput spectrometer with continuous coverage from 0.5 to 5.0 microns in a single shot. FINESSE will survey on order of 1000 exoplanets with a combination of transmission, dayside emission, and phase-resolved emission spectroscopy during a two year mission. FINESSE is currently being developed as part of a Phase A concept study. I will present an overview of FINESSE with a particular emphasis on the thermal emission measurements and their importance in the era of JWST.
2008-05-31
CAPE CANAVERAL, Fla. -- A group from the first graduating class of astronauts after the Apollo program gathers at the Banana River viewing site at NASA's Kennedy Space Center before the launch of space shuttle Discovery on its STS-124 mission. In 1978 a new group of 35 astronauts was selected after nine years without new astronauts. The pilots were Daniel Brandenstein, Michael Coats, Richard Covey, John Creighton, Robert Gibson, Frederick D. Gregory, Frederick Hauck, Jon McBride, Francis "Dick" Scobee, Brewster Shaw, Loren Shriver, David Walker and Donald Williams. The mission specialists were Guion Bluford, James Buchli, John Fabian, Anna Fisher, Dale Gardner, S. David Griggs, Terry Hart, Steven Hawley, Jeffrey Hoffman, Shannon Lucid, Ronald McNair, Richard Mullane, Steven Nagel, George Nelson, Ellison Onizuka, Judith Resnik, Sally Ride, Rhea Seddon, Robert Stewart, Kathryn D. Sullivan, Norman Thagard and James van Hoften. Since then, a new group has been selected roughly every two years. Photo credit: NASA/Jim Grossmann
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Mission Specialist Stephanie Wilson waits her turn to enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. The closeout crew helped her to put on a parachute and prepare her launch and entry suit for the launch. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
STS-85 Mission Specialist Robinson prepares to enter Discovery
NASA Technical Reports Server (NTRS)
1997-01-01
STS-85 Mission Specialist Stephen K. Robinson prepares to enter the Space Shuttle orbiter Discovery at Launch Complex 39A just prior to launch, scheduled for 10:41 a.m. EDT. The primary payload on this mission is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.
2011-02-24
CAPE CANAVERAL, Fla. -- Folks from across the country camped out in communities surrounding NASA's Kennedy Space Center in Florida to witness space shuttle Discovery make history by lifting off on its final scheduled mission from Launch Pad 39A. Seen here, is State Road 406, also known as the A. Max Brewer Causeway, in Titusville, Fla. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- Folks from across the country camped out in communities surrounding NASA's Kennedy Space Center in Florida to witness space shuttle Discovery make history by lifting off on its final scheduled mission from Launch Pad 39A. Seen here, is State Road 406, also known as the A. Max Brewer Causeway, in Titusville, Fla. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- Folks from across the country camped out in communities surrounding NASA's Kennedy Space Center in Florida to witness space shuttle Discovery make history by lifting off on its final scheduled mission from Launch Pad 39A. Seen here, is State Road 406, also known as the A. Max Brewer Causeway, in Titusville, Fla. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- House Of Representatives Democratic Leader Nancy Pelosi, from California's 8th District, and other VIPs are at NASA's Kennedy Space Center in Florida to witness space shuttle Discovery make history as it lifts off on its final scheduled mission from Launch Pad 39A. While at the space center, they attended a presentation in the Operations Support Building II and toured Orbiter Processing Facilities 1 and 2 where shuttles Atlantis and Endeavour are being prepared for their final missions respectively. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery will make its 39th mission and is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions
NASA Technical Reports Server (NTRS)
Tran, Huy K.; Johnson, Christine E.; Rasky, Daniel J.; Hui, Frank C. L.; Hsu, Ming-Ta; Chen, Timothy; Chen, Y. K.; Paragas, Daniel; Kobayashi, Loreen
1997-01-01
This paper presents the development of the light weight Phenolic Impregnated Carbon Ablators (PICA) and its thermal performance in a simulated heating environment for planetary entry vehicles. The PICA material was developed as a member of the Light Weight Ceramic Ablators (LCA's), and the manufacturing process of this material has since been significantly improved. The density of PICA material ranges from 14 to 20 lbm/ft(exp 3), having uniform resin distribution with and without a densified top surface. The thermal performance of PICA was evaluated in the Ames arc-jet facility at cold wall heat fluxes from 375 to 2,960 BtU/ft(exp 2)-s and surface pressures of 0.1 to 0.43 atm. Heat loads used in these tests varied from 5,500 to 29,600 BtU/ft(exp 2) and are representative of the entry conditions of the proposed Discovery Class Missions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was also measured by using a template and a height gage. The ablation characteristics and efficiency of PICA are quantified by using the effective heat of ablation, and the thermal penetration response is evaluated from the thermal soak data. In addition, a comparison of thermal performance of standard and surface densified PICA is also discussed.
Space Shuttle Discovery DC Fly-Over
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA), flies over the Washington skyline as seen from a NASA T-38 aircraft, Tuesday, April 17, 2012. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Robert Markowitz)
Space Shuttle Discovery DC Fly-Over
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) flies near the U.S. Capitol, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Michael Porterfield)
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) flies over the Steven F. Udvar-Hazy Center, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Smithsonian Institution/Dane Penland)
Shuttle Discovery Is Demated From SCA
2012-04-19
Workers monitor the lift of the space shuttle Discovery from the the NASA 747 Shuttle Carrier Aircraft (SCA) at Washington Dulles International Airport, Thursday, April 19, 2012, in Sterling, VA. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
Space Shuttle Discovery DC Fly-Over
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) is seen as it flies near the U.S. Capitol, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Smithsonian Institution/Harold Dorwin)
Space Shuttle Discovery Landing
2012-04-17
Space Shuttle Discovery mounted atop a 747 Shuttle Carrier Aircraft (SCA) approaches the runway for landing at Washington Dulles International Airport, Tuesday April 17, 2012, in Sterling, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Paul E. Alers)
Space Shuttle Discovery DC Fly-Over
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) flies over the Steven F. Udvar-Hazy Center, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Robert Markowitz)
Space Shuttle Discovery Landing
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) taxis in front of the main terminal at Washington Dulles International Airport, Tuesday, April 17, 2012, in Sterling, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Smithsonian Institution/Eric Long)
Shuttle Discovery Reagan Airport Fly-Over
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) makes its way past Ronald Reagan Washington National Airport, Tuesday, April 17, 2012, in Arlington, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
Space Shuttle Discovery Landing
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) lands at Washington Dulles International Airport, Tuesday, April 17, 2012, in Sterling, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Smithsonian Institution/Eric Long)
Space Shuttle Discovery DC Fly-Over
2012-04-16
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) flies near the U.S. Capitol, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Rebecca Roth)
Space Shuttle Discovery Fly-By
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) flies over the Steven F. Udvar-Hazy Center, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Smithsonian Institution/Eric Long)
Space Shuttle Discovery DC Fly-Over
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) flies near the U.S. Capitol, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
2007-11-07
KENNEDY SPACE CENTER, FLA. -- STS-120 mission specialist Stephanie Wilson is happy to be back at NASA's Kennedy Space Center after the 15-day mission to the International Space Station aboard space shuttle Discovery. The Discovery crew completed mission STS-120 with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett
2008-05-28
CAPE CANAVERAL, Fla. -- After their arrival on the Shuttle Landing Facility at NASA's Kennedy Space Center, the crew members of space shuttle Discovery's STS-124 mission pose for a group photo. From left are Mission Specialists Gregory Chamitoff and Akihiko Hoshide, Pilot Ken Ham, Mission Specialists Karen Nyberg and Mike Fossum, Commander Mark Kelly and Mission Specialist Ron Garan. Launch of Discovery is scheduled for 5:02 p.m. May 31. On the STS-124 mission, the crew of seven will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett
STS-124 Space Shuttle Discovery Landing
2008-06-14
NASA Deputy Shuttle Program Manager LeRoy Cain points out a portion of the space shuttle Discovery to NASA Associate Administrator for Space Operations Bill Gerstenmaier, left, during a walk around shortly after Discovery touched down at 11:15 a.m., Saturday, June 14, 2008, at the Kennedy Space Center in Cape Canaveral, Florida. During the 14-day STS-124 mission Discovery's crew installed the Japan Aerospace Exploration Agency's large Kibo laboratory and its remote manipulator system leaving a larger space station and one with increased science capabilities. Discovery also brought home NASA astronaut Garrett Reisman after his 3 month mission onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Shuttle Discovery Arrives at Udvar-Hazy
2012-04-19
Space shuttle Discovery is rolled toward the transfer ceremony at the Steven F. Udvar-Hazy Center Thursday, April 19, 2012 in Chantilly, Va. Discovery will be permanently housed at the Udvar-Hazy Center, part of the Smithsonian Institution’s Air and Space Museum. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)
2007-10-23
KENNEDY SPACE CENTER, FLA. -- Spewing twin columns of fire from the solid rocket boosters, space shuttle Discovery roars into the blue Florida sky toward space on mission STS-120 to the International Space Station. Below the three main engines are the blue cones of light, known as shock or mach diamonds. They are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Liftoff of Discovery was on time at 11:38:19 a.m. EDT. The mission is the 23rd assembly flight to the space station and the 34th flight for Discovery. The STS-120 payload is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:50 a.m. EST on Nov. 6. Photo credit: NASA/Jerry Cannon, Mike Kerley, Don Kight
1999-12-27
After landing at the Shuttle Landing Facility, the STS-103 crew looks over the orbiter Discovery. In the foreground, from left, are Mission Specialist Jean-Francois Clervoy of France, Pilot Scott J. Kelly, Commander Curtis L. Brown Jr. and Mission Specialist C. Michael Foale (Ph.D.); behind them, from left, are Mission Specialists Steven L. Smith and Claude Nicollier of Switzerland. The remaining crew member (not shown) is Mission Specialist John M. Grunsfeld (Ph.D.). The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 p.m. EST and wheel stop at 7:01:34 p.m. EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history
Separate class true discovery rate degree of association sets for biomarker identification.
Crager, Michael R; Ahmed, Murat
2014-01-01
In 2008, Efron showed that biological features in a high-dimensional study can be divided into classes and a separate false discovery rate (FDR) analysis can be conducted in each class using information from the entire set of features to assess the FDR within each class. We apply this separate class approach to true discovery rate degree of association (TDRDA) set analysis, which is used in clinical-genomic studies to identify sets of biomarkers having strong association with clinical outcome or state while controlling the FDR. Careful choice of classes based on prior information can increase the identification power of the separate class analysis relative to the overall analysis.
2005-08-09
The crew of Space Shuttle mission STS-114 gathered in front of the shuttle Discovery following landing at Edwards Air Force Base, California, August 9, 2005. From left to right: Mission Specialist Stephen Robinson, Commander Eileen Collins, Mission Specialists Andrew Thomas, Wendy Lawrence, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.
STS-48 Discovery, Orbiter Vehicle (OV) 103, official crew portrait
1999-08-27
STS048-S-002 (August 1991) --- These five astronauts have been assigned to NASA's mission, scheduled for September. Astronaut John O. Creighton, center, is mission commander. Astronaut Kenneth S. Reightler Jr. (right front) will be pilot for the flight aboard the Space Shuttle Discovery. Mission specialists are Mark N. Brown (left, front row) and (left to right, back row) Charles D. (Sam) Gemar and James F. Buchli.
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Commander Pamela Melroy is helped by the closeout crew to put on a parachute and get ready to enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
2007-10-23
KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A at NASA's Kennedy Space Center, STS-120 Pilot George Zamka is helped by the closeout crew to put on a parachute and get ready to enter space shuttle Discovery for liftoff at 11:38 a.m. EDT. The STS-120 mission will be the 23rd assembly flight to the space station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Scott Haun, Tom Farrar, Rafael Hernandez
2011-02-24
CAPE CANAVERAL, Fla. -- This image of U. S. Highway 1 and surrounding roadways in Titusville, Florida, was taken from a traffic survey helicopter after the successful launch of space shuttle Discovery at 4:53 p.m. EST on its final flight to the International Space Station. Discovery's six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th and final mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- This image of U. S. Highway 1 and surrounding roadways in Titusville, Florida, was taken from a traffic survey helicopter after the successful launch of space shuttle Discovery at 4:53 p.m. EST on its final flight to the International Space Station. Discovery's six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th and final mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- This image of U. S. Highway 1 and surrounding roadways in Titusville, Florida, was taken from a traffic survey helicopter after the successful launch of space shuttle Discovery at 4:53 p.m. EST on its final flight to the International Space Station. Discovery's six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th and final mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- This image of U. S. Highway 1 and surrounding roadways in Titusville, Florida, was taken from a traffic survey helicopter after the successful launch of space shuttle Discovery at 4:53 p.m. EST on its final flight to the International Space Station. Discovery's six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th and final mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- This image of U. S. Highway 1 and surrounding roadways in Titusville, Florida, was taken from a traffic survey helicopter after the successful launch of space shuttle Discovery at 4:53 p.m. EST on its final flight to the International Space Station. Discovery's six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th and final mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- This image of U. S. Highway 1 and surrounding roadways in Titusville, Florida, was taken from a traffic survey helicopter after the successful launch of space shuttle Discovery at 4:53 p.m. EST on its final flight to the International Space Station. Discovery's six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th and final mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2011-02-24
CAPE CANAVERAL, Fla. -- This image of U. S. Highway 1 and surrounding roadways in Titusville, Florida, was taken from a traffic survey helicopter after the successful launch of space shuttle Discovery at 4:53 p.m. EST on its final flight to the International Space Station. Discovery's six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th and final mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2006-07-17
KENNEDY SPACE CENTER, FLA. - The STS-121 crew gets a close look at the underside of the orbiter Discovery after landing. Seen are (from left) Mission Specialist Stephanie Wilson, Commander Steven Lindsey and Mission Specialists Lisa Nowak and Michael Fossum. The post-flight walk-around is a tradition. Discovery's smooth and perfect landing was on time at 9:14 a.m. EDT on Runway 15 of NASA's Shuttle Landing Facility after traveling 5.3 million miles on 202 orbits. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. Photo credit: NASA/Kim Shiflett
2009-03-15
CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Center Director Bob Cabana (with microphone) congratulates the mission management team after the successful launch of space shuttle Discovery on the STS-119 mission. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Bart Pannullo, the vehicle processing engineer for space shuttle Discovery, sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone
NASA Technical Reports Server (NTRS)
Borucki, W. J.
2003-01-01
The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.
Red Dragon drill missions to Mars
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris
2017-12-01
We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).
NASA SMD and DPS Resources for Higher Education Faculty
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Grier, Jennifer; Meinke, Bonnie; Schneider, Nick; Low, Rusty; Schultz, Greg; Manning, James; Fraknoi, Andrew; Gross, Nicholas
2015-11-01
The NASA Education and Public Outreach Forums have developed and provided resources for higher education for the past six years through a cooperative agreement with NASA’s Science Mission Directorate. Collaborations with science organizations, including AAS’s Division of Planetary Sciences, have resulted in more tools, professional training opportunities, and dissemination of resources for teaching in the undergraduate classroom. Resources have been developed through needs assessments of the community and with input from scientists and undergraduate instructors. All resources are freely available.NASA Wavelength (nasawavelength.org) is a collection of digital peer reviewed Earth and space science resources for formal and informal educators of all levels. All resources were developed through funding of the NASA Science Mission Directorate and have undergone a peer-review process through which educators and scientists ensure the content is accurate and useful in an educational setting. Within NASA Wavelength are specific lists of activities and resources for higher education faculty. Additionally, several resources have been developed for introductory college classrooms. The DPS Discovery slide sets are 3-slide presentations that can be incorporated into college lectures to keep classes apprised of the fast moving field of planetary science (http://dps.aas.org/education/dpsdisc). The “Astro 101 slide sets”, developed by the Astro Forum, are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses of discoveries not yet in textbooks. Additional resources guides are available for Astro 101 courses and include cosmology and exoplanets. (https://www.astrosociety.org/education/resources-for-the-higher-education-audience/).Professional development opportunities are available to faculty to increase content knowledge and pedagogical tools. These include workshops at scientific meetings and online webinars that are archived for later viewing. For more information, visit the SMD E/PO community workspace at http://smdepo.org.
The Discovery of a Class of High-Temperature Superconductors.
ERIC Educational Resources Information Center
Muller, K. Alex; Bednorz, J. Georg
1987-01-01
Describes the new class of oxide superconductors, the importance of these materials, and the concepts that led to its discovery. Summarizes the discovery itself and its early confirmation. Discusses the observation of a superconductive glass state in percolative samples. (TW)
Concept for A Mission to Titan, Saturn System and Enceladus
NASA Astrophysics Data System (ADS)
Reh, K.; Beauchamp, P.; Elliott, J.
2008-09-01
A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its 1.5 year Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit. The next phase would utilize concurrent aerosampling and aerobraking (to a depth of 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit that initiates in the 10 AM orbit plane and would move ~ 40º towards the 8 AM orbit plane. At completion of the mission, a disposal phase would be initiated by simply letting the spacecraft decay under the influence of Saturn perturbations and Titan's atmospheric drag. The Titan Saturn System Mission is enabled by proven flight systems, launch capabilities, and wellunderstood trajectory options. The concept relies on traditional chemical propulsion (similar to Cassini and Galileo), a power source consisting of five Multi- Mission Radioisotope Thermoelectric Generators (MMRTGs) and a robust data downlink. The Titan Saturn System Mission maps well to NASA and ESA scientific objectives. This concept builds on a considerable basis of previous work and indicates that a flagship-class Titan mission is ready to enter Phase A and could be launched in the 2016-18 timeframe, requiring no new technologies. Furthermore, this mission includes accommodations to deliver and support ESA provided in situ elements (e.g., Montgolfiere balloon system and capable lander) should they be available. Alternative concepts (abiet higher cost) have been identified that provide benefits to the mission of reduced trip time to Saturn, higher delivered mass, enhanced resources for in situ accommodation and mission flexibility. These options, taken with the baseline described herein, provide NASA and ESA with a robust trade space for implementing a Titan Saturn System Mission.
Kepler Mission: A Technical Overview
NASA Technical Reports Server (NTRS)
Borucki, W. J.
2003-01-01
The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is also planned.
2009-09-11
STS128-S-048 (11 Sept. 2009) --- With its drag chute deployed, Space Shuttle Discovery slows to a stop after landing at NASA's Dryden Flight Research Center at Edwards Air Force Base in California, concluding a successful mission to the International Space Station. Onboard are NASA astronauts Rick Sturckow, commander; Kevin Ford, pilot; John ?Danny? Olivas, Patrick Forrester, Jose Hernandez and Tim Kopra, all mission specialists; along with European Space Agency astronaut Christer Fuglesang, mission specialist. Discovery landed at 5:53 p.m. (PDT) on Sept. 11, 2009 to end the STS-128 mission, completing its almost 14-day journey of more than 5.7 million miles in space. The landing was diverted to California due to marginal weather at the Kennedy Space Center. Discovery?s mission featured three spacewalks and the delivery of two refrigerator-sized science racks to the space station. One rack will be used to conduct experiments on materials such as metals, glasses and ceramics. The results from these experiments could lead to the development of better materials on Earth. The other rack will be used for fluid physics research. Understanding how fluids react in microgravity could lead to improved designs for fuel tanks, water systems and other fluid-based systems.
2011-02-24
CAPE CANAVERAL, Fla. - In the Operations and Checkout Building (O&C) at NASA's Kennedy Space Center in Florida, the astronauts of space shuttle Discovery's STS-133 crew put on their launch-and-entry suits and check the fit of their helmets and gloves before heading to the Astrovan for the ride to Launch Pad 39A. Commander Steve Lindsey, seen here, will be making his fifth spaceflight and third aboard Discovery. Since his most recent mission -- STS-121 in 2006 -- Lindsey served as chief of the Astronaut Office at NASA's Johnson Space Center in Houston. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
Mars Pathfinder Landing Site Workshop
NASA Technical Reports Server (NTRS)
Golombek, Matthew (Editor)
1994-01-01
The Mars Pathfinder Project is an approved Discovery-class mission that will place a lander and rover on the surface of the Red Planet in July 1997. The Mars Pathfinder Landing Site Workshop was designed to allow the Mars scientific community to provide input as to where to land Pathfinder on Mars. The workshop was attended by over 60 people from around the United States and from Europe. Over 20 landing sites were proposed at the workshop, and the scientific questions and problems concerning each were addressed. The workshop and the discussion that occured during and afterward have significantly improved the ability to select a scientifically exciting but safe landing site on Mars.
STS-91 Launch of Discovery from Launch Pad 39-A
NASA Technical Reports Server (NTRS)
1998-01-01
Some of Florida's natural foliage stands silent sentinel to the lift off of the Space Shuttle Discovery from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.
Landing of the Discovery at end of the STS 41-D mission
1984-09-08
41D-3299 (5 Sept 1984) --- The Space Shuttle Discovery was captured on film just prior to touchdown on Runway 17 at Edwards Air Force Base to successfully complete a six-day mission in space. Inside were Henry W. Hartsfield, Jr., Michael L., Coats, Richard M. (Mike) Mullane, Steven A. Hawley, Judith A. Resnik and Charles D. Walker. Mission duration time was six days, 56 minutes and four seconds.
Space Shuttle Discovery DC Fly-Over
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) is seen from Top of the Town in Arlington, Virginia as it flies near the U.S. Capitol, Tuesday, April 17, 2012, in Washington. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Chris Gunn)
Space Shuttle Discovery Fly-Over
2012-04-17
Spectators watch as space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) flies over the National Air and Space Museum’s Steven F. Udvar-Hazy Center, Tuesday, April 17, 2012, in Chantilly, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)
Shuttle Discovery Is Demated From SCA
2012-04-19
The space shuttle Discovery is suspended from a sling held by two cranes shortly after the NASA 747 Shuttle Carrier Aircraft (SCA) was pushed back from underneath at Washington Dulles International Airport, Thursday, April 19, 2012, in Sterling, VA. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
STS-120 Space shuttle Discovery launches from Pad 39A
2007-10-23
From the roof of the Vehicle Assembly Building at NASA's Kennedy Space Center, space shuttle Discovery rivals the sun as it soars through the clouds toward space. Liftoff was on time at 11:38:19 a.m. EDT. Discovery carries the Italian-built U.S. Node 2, called Harmony. During the 14-day STS-120 mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6.
STS-124 Space Shuttle Discovery Landing
2008-06-14
The aft end of the space shuttle Discovery is seen shortly after landing on runway 15 of the NASA Kennedy Space Center Shuttle Landing Facility at 11:15 a.m., Saturday, June 14, 2008 in Cape Canaveral, Florida. Onboard Discovery were NASA astronauts Mark Kelly, commander; Ken Ham, pilot; Mike Fossum, Ron Garan, Karen Nyberg, Garrett Reisman and Japan Aerospace Exploration Agency astronaut Akihiko Hoshide, all mission specialists. During the STS-124 mission, Discovery's crew installed the Japan Aerospace Exploration Agency's large Kibo laboratory and its remote manipulator system leaving a larger space station and one with increased science capabilities. Photo Credit: (NASA/Bill Ingalls)
Shuttle Discovery Is Demated From SCA
2012-04-19
The space shuttle Discovery is suspended from a sling held by two cranes after the NASA 747 Shuttle Carrier Aircraft (SCA) was pushed back from underneath at Washington Dulles International Airport, Thursday, April 19, 2012, in Sterling, VA. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
Space Shuttle Discovery Landing
2012-04-17
Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) lands at Washington Dulles International Airport, Tuesday, April 17, 2012, in Sterling, Va. The Steven F. Udvar-Hazy Center is seen in the background. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Smithsonian Institution/Eric Long)
Shuttle Discovery Is Demated From SCA
2012-04-19
The space shuttle Discovery is suspended from a sling held by two cranes as the NASA 747 Shuttle Carrier Aircraft (SCA) is pushed back from underneath at Washington Dulles International Airport, Thursday, April 19, 2012, in Sterling, VA. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
Space Shuttle Discovery Fly-Over
2012-04-17
Jarod Ondas (left), of Virginia, and his brother Austin, watch as space shuttle Discovery approaches the National Air and Space Museum’s Steven F. Udvar-Hazy Center for its fly-over, Tuesday, April 17, 2012, in Chantilly, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)
Shuttle Discovery Is Demated From SCA
2012-04-19
Workers monitor the lift of the space shuttle Discovery from the top of the NASA 747 Shuttle Carrier Aircraft (SCA) at Washington Dulles International Airport, Thursday, April 19, 2012, in Sterling, VA. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
A Mars Exploration Discovery Program
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Paige, D. A.
2000-07-01
The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.
A Mars Exploration Discovery Program
NASA Technical Reports Server (NTRS)
Hansen, C. J.; Paige, D. A.
2000-01-01
The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.
2011-03-10
STS133-S-133 (9 March 2011) --- Space shuttle Discovery rolls down Runway 15 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Landing was at 11:57 a.m. (EST) on March 9, 2011, completing a more than 12-day STS-133 mission to the International Space Station. Onboard are NASA astronauts Steve Lindsey, commander; Eric Boe, pilot; Steve Bowen, Alvin Drew, Michael Barratt and Nicole Stott, all mission specialists. Discovery and its six-member crew delivered the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. STS-133 was Discovery's 39th and final mission. This was the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. Photo credit: NASA or National Aeronautics and Space Administration
Cassini’s Discoveries at Saturn and the Proposed Cassini Solstice Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Spilker, L. J.; Mitchell, R. T.; Cuzzi, J.; Gombosi, T. I.; Ingersoll, A. P.; Lunine, J. I.
2009-12-01
Understanding of the Saturn system has been greatly enhanced by the Cassini-Huygens mission. Fundamental discoveries have altered our views of Saturn, Titan and the other icy satellites, the rings, and magnetosphere of the system. Key discoveries include: water-rich plumes emanating from the south pole of Enceladus; hints of possible activity on Dione and of rings around Rhea; a methane hydrological cycle on Titan complete with fluvial erosion, lakes, and seas of liquid methane and ethane; non-axisymmetric ring microstructure in all moderate optical depth rings; south polar vortices on Saturn; and a unique magnetosphere that shares characteristics with both Earth’s and Jupiter’s magnetospheres. These new discoveries are directly relevant to current Solar System science goals including: planet and satellite formation processes, formation of gas giants, the nature of organic material, the history of volatiles, habitable zones and processes for life, processes that shape planetary bodies, and evolution of exoplanets. The proposed 7-year Cassini Solstice Mission would address new questions that have arisen during the Cassini Prime and Equinox Missions, and would observe seasonal and temporal change in the Saturn system to prepare for future missions to Saturn, Titan, and Enceladus. The proposed Cassini Solstice Mission would provide new science in three ways. First, it would observe seasonally and temporally dependent processes on Saturn, Titan and other icy satellites, and within the rings and magnetosphere, in a hitherto unobserved seasonal phase from equinox to solstice. Second, it would address new questions that have arisen during the mission thus far, providing qualitatively new measurements (e.g. of Enceladus and Titan) which could not be accommodated in the earlier mission phases. Tthird, it would conduct a close-in mission phase at Saturn that would provide unique science including comparison to the Juno observations at Jupiter.
Discovery STS-131 Mission Landing
2010-04-20
STS131-S-092 (20 April 2010) --- Japanese astronaut Naoko Yamazaki, left, and Dr. Kuniaki Shiraki, Executive Director, Japan Aerospace Exploration Agency (JAXA), talk near the space shuttle Discovery shortly after Discovery and the STS-131 crew landed at the Kennedy Space Center in Cape Canaveral, Fla., on April 20, 2010. NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their 15-day journey of more than 6.2 million miles. The STS-131 mission to the International Space Station delivered science racks, new crew sleeping quarters, equipment and supplies. Photo credit: NASA/Bill Ingalls
Discovery STS-131 Mission Landing
2010-04-20
STS131-S-091 (20 April 2010) --- NASA Deputy Administrator Lori Garver and NASA astronaut Alan Poindexter, STS-131 commander, walk around under the space shuttle Discovery shortly after Discovery and its seven-member crew landed at the Kennedy Space Center in Cape Canaveral, Fla., on April 20, 2010. Poindexter and NASA astronaut James P. Dutton Jr., pilot; along with NASA astronauts Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their 15-day journey of more than 6.2 million miles. The STS-131 mission to the International Space Station delivered science racks, new crew sleeping quarters, equipment and supplies. Photo credit: NASA/Bill Ingalls
2011-02-24
CAPE CANAVERAL, Fla. -- House Of Representatives Democratic Leader Nancy Pelosi, from California's 8th District, is greeted by NASA Kennedy Space Center Director Robert Cabana. Pelosi is at Florida's space center to witness space shuttle Discovery make history as it lifts off on its final scheduled mission from Launch Pad 39A. While at the center, Pelosi attended a presentation in the Operations Support Building II and toured Orbiter Processing Facilities 1 and 2 where shuttles Atlantis and Endeavour are being prepared for their final missions respectively. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery will make its 39th mission and is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2011-02-24
CAPE CANAVERAL, Fla. -- CAPE CANAVERAL, Fla. -- House Of Representatives Democratic Leader Nancy Pelosi, from California's 8th District, fourth from left, and other VIPs pose for a photo with NASA Kennedy Space Center Director Robert Cabana. They are at Florida's space center to witness space shuttle Discovery make history as it lifts off on its final scheduled mission from Launch Pad 39A. While at the center, they attended a presentation in the Operations Support Building II and toured Orbiter Processing Facilities 1 and 2 where shuttles Atlantis and Endeavour are being prepared for their final missions respectively. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery will make its 39th mission and is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2011-02-24
CAPE CANAVERAL, Fla. -- House Of Representatives Democratic Leader Nancy Pelosi, from California's 8th District, left, and United Space Alliance worker Brian Elleman pose for a photo at NASA's Kennedy Space Center in Florida. Pelosi is at the space center to witness space shuttle Discovery make history as it lifts off on its final scheduled mission from Launch Pad 39A. While at the center, Pelosi attended a presentation in the Operations Support Building II and toured Orbiter Processing Facilities 1 and 2 where shuttles Atlantis and Endeavour are being prepared for their final missions respectively. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery will make its 39th mission and is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
STS-51 astronauts photographed during sleep period on Discovery's middeck
NASA Technical Reports Server (NTRS)
1993-01-01
Four of the five STS-51 crew members were photographed during one of their sleep periods on Discovery's middeck. At bottom center, astronaut Frank L. Culbertson Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.
1999-12-27
After landing at the Shuttle Landing Facility, the STS-103 crew poses in front of the orbiter Discovery. Standing left to right are Commander Curtis L. Brown Jr., Mission Specialist Claude Nicollier of Switzerland, Pilot Scott J. Kelly, and Mission Specialists Jean-Francois Clervoy of France, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.) and Steven L. Smith. The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 p.m. EST and wheel stop at 7:01:34 p.m. EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history
1999-12-27
After landing at the Shuttle Landing Facility, STS-103 Mission Specialist Jean-François Clervoy of France (left), with the European Space Agency (ESA), and Commander Curtis L. Brown Jr. (right) look over the orbiter Discovery. They and other crew members Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.) and Claude Nicollier of Switzerland (also with ESA), completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 p.m. EST and wheel stop at 7:01:34 p.m. EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history
2011-02-24
CAPE CANAVERAL, Fla. -- Folks from across the country camped out in communities surrounding NASA's Kennedy Space Center in Florida to witness space shuttle Discovery make history by lifting off on its final scheduled mission from Launch Pad 39A. Seen here is Sand Point Park near U. S. Highway 1 and State Road 406, also known as the A. Max Brewer Causeway, in Titusville, Fla. Liftoff is set for 4:50 p.m. EST on Feb. 24. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2005-08-03
S114-E-6396 (3 August 2005) --- Space Shuttle Discoverys underside thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the missions third session of extravehicular activities (EVA). Lake Nasser along the Nile River, Egypt is visible near Discoverys starboard wing.
Perfect launch for Space Shuttle Discovery on mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Trailing a fiery-looking column of smoke, Space Shuttle Discovery hurtles into a blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.
Perfect launch for Space Shuttle Discovery on mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Smoke billows out from Launch Pad 39A as Space Shuttle Discovery soars into the blue sky on mission STS-105 to the International Space Station. Liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.
Mission specification for three generic mission classes
NASA Technical Reports Server (NTRS)
1979-01-01
Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.
2001-02-15
STS-102 Mission Specialist James Voss occupies seat 5 in orbiter Discovery, getting ready for a simulated countdown. At left is Eugenia Tucker, Space Gateway Support Fire Safety. Voss is part of the Expedition Two crew who will be going to the International Space Station for their four-month rotation. Expedition One will return to Earth with Discovery. STS-102 is the eighth construction flight to the Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8
STS-103 Wiring inspections in the aft compartment of Discovery
NASA Technical Reports Server (NTRS)
1999-01-01
Todd Biddle, with United Space Alliance, inspects wiring in the aft compartment of Discovery before launch. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope.
STS-91 Launch of Discovery from Launch Pad 39-A
NASA Technical Reports Server (NTRS)
1998-01-01
Searing the early evening sky with its near sun-like rocket exhaust, the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir.
Rollout - Shuttle Discovery - STS 41D Launch - KSC
1986-11-26
S86-41700 (19 May 1984) --- The Space Shuttle Discovery moves towards Pad A on the crawler transporter for its maiden flight. Discovery will be launched on its first mission no earlier than June 19, 1984. Flight 41-D will carry a crew of six; Commander Henry Hartsfield, Pilot Mike Coats, Mission Specialists Dr. Judith Resnik, Dr. Steven Hawley and Richard Mullane and Payload Specialist Charles Walker. Walker is the first payload specialist to fly aboard a space shuttle. He will be running the materials processing device developed by McDonnell Douglas as part of its Electrophoresis Operations in Space project. Mission 41-D is scheduled to be a seven-day flight and to land at Edwards Air Force Base in California. The Syncom IV-1 (LEASAT) will be deployed from Discovery's cargo bay and the OAST-1, Large Format Camera, IMAX and Cinema 360 cameras will be aboard.
2007-11-07
KENNEDY SPACE CENTER, FLA. -- STS-120 Pilot George Zamka is happy to be back at NASA's Kennedy Space Center after the 15-day mission to the International Space Station aboard space shuttle Discovery. The Discovery crew completed mission STS-120 with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett
2007-11-07
KENNEDY SPACE CENTER, FLA. -- STS-120 Doug Wheelock is happy to back at NASA's Kennedy Space Center after the 15-day mission to the International Space Station aboard space shuttle Discovery. The Discovery crew completed mission STS-120 with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett
STS-85 Discovery OV-103 landing and crew portrait
1997-08-19
STS085-S-011 (19 August 1997) --- Following the landing of the Space Shuttle Discovery on runway 33 at the Kennedy Space Center (KSC), the six member crew poses for a final crew portrait. The landing, at 7:08 a.m. (EDT), August 19, 1997, marked the completion of a successful 12-day STS-85 mission. Left to right are payload specialist Bjarni Tryggvason of the Canadian Space Agency (CSA), along with astronauts Stephen K. Robinson, mission specialist; N. Jan Davis, payload commander; Curtis L. Brown, Jr., mission commander; Kent V. Rominger, pilot; and Robert L. Curbeam, Jr., mission specialist.
1999-12-17
An olivaceous cormorant soars in the cloud-streaked sky near the Space Shuttle Discovery as it waits for liftoff on mission STS-103. To the left of Discovery is the Rotating Service Structure, rolled back on Dec. 16 in preparation for launch. At right is a 290-foot-high water tank with a capacity of 300,000 gallons. The tank is part of the sound suppression water system used during launch. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-102 crew poses for a photo on the 215-foot level of the Fixed Service Structure. Behind them is Space Shuttle Discovery. Standing, left to right, are Mission Specialist Susan Helms, Pilot James Kelly, Mission Specialists Andrew Thomas and Paul Richards, Commander James Wetherbee and Mission Specialists Yury Usachev and James Voss. The crew is taking part in Terminal Countdown Demonstration Test activities, which include emergency exit training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
2011-03-09
CAPE CANAVERAL, Fla. - Space shuttle Discovery touches down on Runway 15 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Landing was at 11:57 a.m. EST, completing the 13-day STS-133 mission to the International Space Station. Main gear touchdown was at 11:57:17 a.m., followed by nose gear touchdown at 11:57:28, and wheelstop at 11:58:14 a.m. On board are Commander Steve Lindsey, Pilot Eric Boe, and Mission Specialists Nicole Stott, Michael Barratt, Alvin Drew and Steve Bowen. Discovery and its six-member crew delivered the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. STS-133 was Discovery's 39th and final mission. This was the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. Photo credit: NASA/Kim Shiflett
1999-12-27
KENNEDY SPACE CENTER, Fla. -- The orbiter Discovery looks like a blue ghost as it drops from the darkness onto lighted runway 33 at KSC's Shuttle Landing Facility. After traveling more than 3,267,000 miles on a successful eight-day mission to service the Hubble Space Telescope, the orbiter touches down at 7:00:47 p.m. EST. Aboard are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France, who spent the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history
Domain-specific Web Service Discovery with Service Class Descriptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocco, D; Caverlee, J; Liu, L
2005-02-14
This paper presents DynaBot, a domain-specific web service discovery system. The core idea of the DynaBot service discovery system is to use domain-specific service class descriptions powered by an intelligent Deep Web crawler. In contrast to current registry-based service discovery systems--like the several available UDDI registries--DynaBot promotes focused crawling of the Deep Web of services and discovers candidate services that are relevant to the domain of interest. It uses intelligent filtering algorithms to match services found by focused crawling with the domain-specific service class descriptions. We demonstrate the capability of DynaBot through the BLAST service discovery scenario and describe ourmore » initial experience with DynaBot.« less
2008-04-26
CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, space shuttle Discovery, looking like a giant bat, hangs suspended above the transfer aisle. The crane holding it will lift Discovery to the upper levels and lower it into high bay 3. In the bay, Discovery will be mated to the external tank and solid rocket boosters for launch on the upcoming STS-124 mission to the International Space Station. On the mission, the STS-124 crew will transport the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System to the space station. Launch of Discovery is targeted for May 31 Photo credit: NASA/Jim Grossmann
Ribbon cutting opens new ELV offices
NASA Technical Reports Server (NTRS)
2000-01-01
Viewed from the side, orbiter Discovery, with its seven-member crew, touches down on the landing strip at Edwards Air Force Base, Calif., after an 11-day mission to the International Space Station. The orbiter's main landing gear touched down on EAFB runway 22 at 5 p.m. With the aid of its drag chute, Discovery came to a complete stop at 5:01 p.m. At the conclusion of mission STS-92, Discovery and crew had traveled about 5.3 million statute miles. Following vehicle safing and preliminary offloading efforts, workers will begin preparations for Discovery's transcontinental ferry flight back to KSC on the back of NASA's modified Boeing 747.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
Space Shuttle Discovery Landing
2012-04-17
NASA Deputy Administrator Lori Garver, at podium, speaks to those in attendance at Apron W after the 747 Shuttle Carrier Aircraft (SCA) with space shuttle Discovery mounted on top rolled to a halt at Washington Dulles International Airport, Tuesday, April 17, 2012 in Sterling, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles. NASA will transfer Discovery to the National Air and Space Museum to begin its new mission to commemorate past achievements in space and to educate and inspire future generations of explorers. Photo Credit: (NASA/Smithsonian Institution/Dane Penland)
2006-05-19
KENNEDY SPACE CENTER, FLA. -- Near Launch Pad 39B, wild pigs (at right) root for food near a stand of trees while Space Shuttle Discovery rolls out to the pad. The 4.2-mile journey from the Vehicle Assembly Building began at 12:45 p.m. EDT. The rollout is an important step before launch of Discovery on mission STS-121 to the International Space Station. Discovery's launch is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, Discovery's crew will test new hardware and techniques to improve shuttle safety, as well as deliver supplies and make repairs to the station. Photo credit: NASA/Ken Thornsley
STS-51 astronauts photographed during sleep period on Discovery's middeck
1993-09-20
STS051-20-037 (12-22 Sept 1993) --- Four of the five astronaut crew members were photographed during one of their sleep periods on the Space Shuttle Discovery's mid-deck. At bottom center, astronaut Frank L. Culbertson, Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.
Launch of STS-60 Shuttle Discovery
1994-02-03
STS060-S-105 (3 Feb 1994) --- The Space Shuttle Discovery heads toward an eight-day mission in Earth orbit with five NASA astronauts and a Russian cosmonaut aboard. Liftoff occurred as scheduled at 7:10 a.m. (EST), February 3, 1994. Aboard the spacecraft were astronauts Charles F. Bolden Jr., commander; Kenneth S. Reightler Jr., pilot; Franklin R. Chang-Diaz, payload commander; and N. Jan Davis and Ronald M. Sega, mission specialists, along with Russian cosmonaut Sergei K. Krikalev, also a mission specialist.
Launch of STS-60 Shuttle Discovery
1994-02-03
STS060-S-106 (3 Feb 1994) --- Palm trees are silhouetted in the foreground of this 70mm image as the Space Shuttle Discovery heads toward an eight-day mission in Earth orbit. Liftoff occurred as scheduled at 7:10 a.m. (EST), February 3, 1994. Aboard the spacecraft were astronauts Charles F. Bolden Jr., commander; Kenneth S. Reightler Jr., pilot; Franklin R. Chang-Diaz, payload commander; and N. Jan Davis and Ronald M. Sega, mission specialists, along with Russian cosmonaut Sergei K. Krikalev, also a mission specialist.
2011-01-07
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
STS-114: Discovery Mission Status/Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Bob Castle, Mission Operations Representative, and Wayne Hale, Space Shuttle Deputy Program Manager are seen during a post Mission Management Team (MMT) briefing. Bob Castle talks about the Multi-Purpose Logistics Module (MPLM) payload and its readiness for unberthing. Wayne Hale presents pictures of the Space Shuttle Thermal Blanket, Wind Tunnel Tests, and Space Shuttle Blanket Pre and Post Tests. Questions from the news media about the Thermal Protection System after undocking and re-entry of the Space Shuttle Discovery, and lessons learned are addressed.
Systems Engineering Lessons Learned for Class D Missions
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Piatek, Irene; Moore, Josh; Calvert, Derek
2015-01-01
One of NASA's goals within human exploration is to determine how to get humans to Mars safely and to live and work on the Martian surface. To accomplish this goal, several smaller missions act as stepping-stones to the larger end goal. NASA uses these smaller missions to develop new technologies and learn about how to survive outside of Low Earth Orbit for long periods. Additionally, keeping a cadence of these missions allows the team to maintain proficiency in the complex art of bringing spacecraft to fruition. Many of these smaller missions are robotic in nature and have smaller timescales, whereas there are others that involve crew and have longer mission timelines. Given the timelines associated with these various missions, different levels of risk and rigor need to be implemented to be more in line with what is appropriate for the mission. Thus, NASA has four different classifications that range from Class A to Class D based on the mission details. One of these projects is the Resource Prospector (RP) Mission, which is a multi-center and multi-institution collaborative project to search for volatiles in the polar regions of the Moon. The RP mission is classified as a Class D mission and as such, has the opportunity to more tightly manage, and therefore accept, greater levels of risk. The requirements for Class D missions were at the forefront of the design and thus presented unique challenges in vehicle development and systems engineering processes. This paper will discuss the systems engineering process at NASA and how that process is tailored for Class D missions, specifically the RP mission.
Titan's atmosphere and surface in 2026: the AVIATR Titan Airplane Mission
NASA Astrophysics Data System (ADS)
McKay, Chris; Barnes, Jason W.; Lemke, Lawrence; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David; Flasar, F. Michael
2010-04-01
This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.
Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).
2005-08-09
Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in Calif. at 5:11 a.m. this morning, following the very successful 14-day STS-114 return to flight mission.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester waits to don his helmet during suit fit check as part of Terminal Countdown Demonstration Test activities. He and other crew members Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Daniel Barry are also taking part in the TCDT, which includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew - Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency - several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
Pipeline of Known Chemical Classes of Antibiotics
d’Urso de Souza Mendes, Cristina; de Souza Antunes, Adelaide Maria
2013-01-01
Many approaches are used to discover new antibiotic compounds, one of the most widespread being the chemical modification of known antibiotics. This type of discovery has been so important in the development of new antibiotics that most antibiotics used today belong to the same chemical classes as antibiotics discovered in the 1950s and 1960s. Even though the discovery of new classes of antibiotics is urgently needed, the chemical modification of antibiotics in known classes is still widely used to discover new antibiotics, resulting in a great number of compounds in the discovery and clinical pipeline that belong to existing classes. In this scenario, the present article presents an overview of the R&D pipeline of new antibiotics in known classes of antibiotics, from discovery to clinical trial, in order to map out the technological trends in this type of antibiotic R&D, aiming to identify the chemical classes attracting most interest, their spectrum of activity, and the new subclasses under development. The result of the study shows that the new antibiotics in the pipeline belong to the following chemical classes: quinolones, aminoglycosides, macrolides, oxazolidinones, tetracyclines, pleuromutilins, beta-lactams, lipoglycopeptides, polymyxins and cyclic lipopeptides. PMID:27029317
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi looks at tile on the underside of the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
Potential Large Decadal Missions Enabled by Nasas Space Launch System
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.
2016-01-01
Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.
Designing astrophysics missions for NASA's Space Launch System
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.
2016-10-01
Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.
Potential large missions enabled by NASA's space launch system
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.
2016-07-01
Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.
Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David
2011-01-01
The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.
1999-12-27
After landing at the Shuttle Landing Facility, STS-103 Mission Specialists Jean-Francois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency, listen to a comment by Commander Curtis L. Brown Jr. while looking over the orbiter Discovery. Other members of the crew are Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and John M. Grunsfeld (Ph.D.). The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 p.m. EST and wheel stop at 7:01:34 p.m. EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history
STS-114: Discovery Crew Post Landing Press Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
The crew of the STS-114 Discovery is shown during a post landing press briefing. Commander Collins introduces the crew members who consist of Pilot Jim Kelley, Mission Specialist Soichi Noguchi from JAXA, Steve Robinson, Mission Specialist and Charlie Camarda, Mission Specialist. Steve Robinson answers a question from the news media about the repair that he performed in orbit, and his feelings about being back in his hometown of California. Commander Collins talks about the most significant accomplishment of the mission. The briefing ends as each crewmember reflects on the Space Shuttle Columbia tragedy and expresses their personal thoughts and feelings as they re-entered the Earth's atmosphere.
2001-08-09
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester suits up for launch on mission STS-105. The mission is Forrester’s first space flight. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the International Space Station, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
Create your own science planning tool in 3 days with SOA
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Polanskey, Carol A.; O'Reilly, Taifun
2003-01-01
Scientific discovery and advancement of knowledge has been, and continues to be, the goal for space missions at Jet Propulsion Laboratory. Scientist must plan their observation/experiments to get the maximum data return in order to make those discoveries. However, each mission has different science objectives, a different spacecraft and different instrument payloads, as well as, different routes to different destinations with different spacecraft restrictions and characteristics. In the current reduced cost environment, manageable cost for mission planning software is a must. Science Opportunity Analyzer (SOA), a planning tool for scientists and mission planners, utilizes a simple approach to reduce cost and promote reusability.
2011-02-24
CAPE CANAVERAL, Fla. -- CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Robert Cabana, right, explains the operations taking place at Florida's space center to House Of Representatives Democratic Leader Nancy Pelosi, from California's 8th District, fourth from left, and other VIPs. They are at Florida's space center to witness space shuttle Discovery make history as it lifts off on its final scheduled mission from Launch Pad 39A. While at the center, they attended a presentation in the Operations Support Building II and toured Orbiter Processing Facilities 1 and 2 where shuttles Atlantis and Endeavour are being prepared for their final missions respectively. Discovery and its six-member STS-133 crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery will make its 39th mission and is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew prepares to depart NASA's Kennedy Space Center in Florida in T-38 training jets. Mission Specialist Michael Barratt, left, Pilot Eric Boe and Mission Specialist Nicole Stott and their three crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2006-07-17
KENNEDY SPACE CENTER, FLA. - Workers and media at NASA's Kennedy Space Center watch while the orbiter Discovery, following the landing from mission STS-121, is prepared for the roll to the Orbiter Processing Facility. Discovery's smooth and perfect landing was on time at 9:14 a.m. EDT on Runway 15 of NASA's Shuttle Landing Facility after traveling 5.3 million miles on 202 orbits. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. Photo credit: NASA/Kim Shiflett
STS-33 Discovery, OV-103, approached by service vehicles after landing
1989-11-27
STS033-S-017 (27 Nov 1989) --- The Space Shuttle Discovery is approached by safing vehicles and team members following its late-afternoon landing at Edwards Air Force Base in southern California. A five member crew aboard had just completed the DOD-devoted STS-33 mission. The landing occurred at 16:31:02 p.m. (PST), Nov. 27, 1989. Onboard Discovery for the mission and still aboard the craft when this photo was made were Astronauts Frederick D. Gregory, John E. Blaha, Kathryn C. Thornton, F. Story Musgrave and Manley L. Carter.
STS-103 Wiring inspections in the aft compartment of Discovery
NASA Technical Reports Server (NTRS)
1999-01-01
Chris Kidd, with United Space Alliance (USA) stands by outside the aft compartment of Discovery while Todd Biddle (USA) inspects wiring inside. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope.
2011-02-24
CAPE CANAVERAL, Fla. - In the Operations and Checkout Building (O&C) at NASA's Kennedy Space Center in Florida, the astronauts of space shuttle Discovery's STS-133 crew put on their launch-and-entry suits and check the fit of their helmets and gloves before heading to the Astrovan for the ride to Launch Pad 39A. Mission Specialist Steve Bowen, seen here, is making his third spaceflight. The last time he suited up for flight was in May 2010 for the STS-132 mission. Bowen replaces astronaut Tim Kopra as Mission Specialist 2, because Kopra was injured in a recent bicycle accident that prevented him from lifting off during this launch window. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
2011-02-24
CAPE CANAVERAL, Fla. - In the Operations and Checkout Building (O&C) at NASA's Kennedy Space Center in Florida, the astronauts of space shuttle Discovery's STS-133 crew put on their launch-and-entry suits and check the fit of their helmets and gloves before heading to the Astrovan for the ride to Launch Pad 39A. Mission Specialist Steve Bowen, seen here, is making his third spaceflight. The last time he suited up for flight was in May 2010 for the STS-132 mission. Bowen replaces astronaut Tim Kopra as Mission Specialist 2, because Kopra was injured in a recent bicycle accident that prevented him from lifting off during this launch window. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann
Space Shuttle Discovery rolls out to Launch Pad 39A for Oct. 5 launch
NASA Technical Reports Server (NTRS)
2000-01-01
As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date.
WFIRST-AFTA Presentation to the NRC Mid-Decadal Panel
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Grady, Kevin; Ruffa, John; Melton, Mark; Content, Dave; Zhao, Feng
2015-01-01
Over the past two years, increased funding has enabled significant progress in technology matura1on as well as addi1onal fidelity in the design reference mission. WFIRST with the 2.4--m telescope and coronagraph provides an exci1ng science program, superior to that recommended by NWNH and also advances exoplanet imaging technology (the highest ranked medium--class NWNH recommenda1on). Great opportunity for astronomy and astrophysics discoveries. Broad community support for WFIRST. Key development areas are anchored in a decade of investments in JPL's HCIT and GSFC's DCL. Great progress made in pre--formula1on, ready for KDP--A and launch in mid--2020s.
Mars Scout 2007 - a current status
NASA Technical Reports Server (NTRS)
Matousek, Steve
2003-01-01
The Mars Program institutes the Mars Scout Missions in order to address science goals in the program not otherwise covered in baseline Mars plans. Mars Scout missions will be Principal-Investigator (PI) led science missions. Analogous to the Discovery Program, PI-led investigations optimize the use of limited resources to accomplish focused science and allow the flexibility to quickly respond to discoveries at Mars. Scout missions also require unique investments in technology and reliance upon Mars-based infrastructure such as telecom relay orbiters. Scouts utilize a two-step competitive process for selection. In Dec, 2002, the Step 2 selections by NASA were announced and then approximately five month studies will result in a selection for flight around August, 2003 for a mission to be launched in 2007.
Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave
2013-01-01
Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.
Sample Return Propulsion Technology Development Under NASA's ISPT Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.
2011-01-01
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12
STS-96 Discovery Night Landing with Drag chute
NASA Technical Reports Server (NTRS)
1999-01-01
With its drag chute fully deployed, Space Shuttle Discovery lands on KSC's brightly lighted Shuttle Landing Facility runway 15, completing the 9-day, 19-hour, 13-minute and 1-second long STS-96 mission. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission. This was the 94th flight in the Space Shuttle program and the 26th for Discovery, also marking the 47th landing at KSC, the 24th in the last 25 missions, 11th at night, and the 18th consecutive landing in Florida.
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
1997-08-07
KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments
Behind the Scenes of the Discovery Channel's Rosetta Mission Documentary Special
NASA Astrophysics Data System (ADS)
Ayres, S.
2016-03-01
On the evening of 12 November 2014, the Discovery Channel documentary Landing on a Comet: Rosetta Mission was broadcast around the world. This was the culmination of months of preparation and behind-the-scenes lming. Shelley Ayres, the producer, director and writer of the one-hour special recounts how this came about and re ects on her experience.
2006-02-18
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center's Orbiter Processing Facility bay 3, United Space Alliance shuttle technicians remove the hard cover from a window on Space Shuttle Discovery to enable STS-121 crew members to inspect the window from the cockpit. Launch of Space Shuttle Discovery on mission STS-121, the second return-to-flight mission, is scheduled no earlier than May.
Discovery prepares to land after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Seen from across the creek bordering runway 33 at the Shuttle Landing Facility, orbiter Discovery touches down after a successful mission of nine days and 3.6 million miles. Flying above it (left) is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Discovery prepares to land after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Viewed across the creek bordering runway 33, orbiter Discovery touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Perfect launch for Space Shuttle Discovery on mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Viewed from between the trees, Space Shuttle Discovery rises above the smoke as it soars into the blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.
2009-01-11
CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss. Photo credit: NASA/Jim Grossmann
2009-01-11
CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss Photo credit: NASA/Jim Grossmann
2009-01-11
CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss Photo credit: NASA/Jim Grossmann
Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman applies tape to hold the gap filler in place on the orbiter Discovery while the glue dries. Looking on is quality inspector Travis Schlingman. Discovery is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
2008-05-31
CAPE CANAVERAL, Fla. -- All eyes look skyward as space shuttle Discovery launches on its STS-124 mission. The group gathered here at the Banana River viewing site at NASA's Kennedy Space Center are members of the first graduating class of astronauts after the Apollo program. In 1978 a new group of 35 astronauts was selected after nine years without new astronauts. The pilots were Daniel Brandenstein, Michael Coats, Richard Covey, John Creighton, Robert Gibson, Frederick D. Gregory, Frederick Hauck, Jon McBride, Francis "Dick" Scobee, Brewster Shaw, Loren Shriver, David Walker and Donald Williams. The mission specialists were Guion Bluford, James Buchli, John Fabian, Anna Fisher, Dale Gardner, S. David Griggs, Terry Hart, Steven Hawley, Jeffrey Hoffman, Shannon Lucid, Ronald McNair, Richard Mullane, Steven Nagel, George Nelson, Ellison Onizuka, Judith Resnik, Sally Ride, Rhea Seddon, Robert Stewart, Kathryn D. Sullivan, Norman Thagard and James van Hoften. Since then, a new group has been selected roughly every two years. Photo credit: NASA/Jim Grossmann
The mini-CIDEX GC/IMS: Analysis of cometary ice and dust
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori
1995-01-01
Comets are recognized as among the most scientifically important objects in the solar system. They are presumed relics of the early primitive material in the solar nebula and are believed to have provided a general enrichment of volatiles to the inner solar system. The Cometary Coma Chemical Composition (C4) Mission, a proposed Discovery-Class Mission, will analyze materials released into the coma, providing information leading to the understanding of the chemical composition and make-up of the cometary nucleus. As one of two scientific instruments in the C4 spacecraft, an advanced and streamlined version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX, will employ an X-Ray Fluorescence (XRF) spectrometer to determine bulk elemental composition of cometary dust grains and a Gas Chromatograph/Ion Mobility Spectrometer (GC/IMS) for determination of the molecular composition of dust and ices following stepwise pyrolysis and combustion. A description of the mini-CIDEX IMS will be provided as well as data from analyses conducted using the mini-CIDEX breadboard instrument.
Re-Vitalizing the First Year Class through Student Engagement and Discovery Learning
ERIC Educational Resources Information Center
Steuter, Erin; Doyle, Judith
2010-01-01
The first year course in Sociology at Mount Allison University introduced students to social issues via dynamic class interactions and assignments that are designed to build conceptual and applied skills. Developments to the course organization have maximized the opportunities for discovery learning and have made the class an enjoyable teaching…
FY10 Engineering Innovations, Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, M A; Aceves, S M; Paulson, C N
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
STS-26 Mission Control Center (MCC) activity at JSC
1988-10-02
STS026-S-101 (2 Oct 1988) --- Flight controllers in the Johnson Space Center?s mission control center listen to a presentation by the five members of the STS 26 crew on the fourth day of Discovery?s orbital mission. Flight Directors Charles W. Shaw and James M. (Milt) Heflin (in the foreground) and other controllers view a television image of Earth on a screen in the front of the flight control room while each member relates some inner feelings while paying tribute to the Challenger crew.
2006-06-30
KENNEDY SPACE CENTER, FLA. - Inside Space Shuttle Discovery, these lockers store food containers for use on mission STS-121. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Each astronaut’s food stored aboard the space shuttle is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Kim Shiflett
Astronauts of Mission STS-120 visit Stennis Space Center
2007-12-13
Astronaut Pam Melroy presents a commemorative collage of photos and items flown aboard space shuttle Discovery to Bob Cabana, director of NASA's Stennis Space Center in South Mississippi. Melroy commanded NASA's space shuttle mission STS-120. She and fellow crewmembers (from left) Doug Wheelock, Stephanie Wilson, George Zamka, Scott Parazynski and Paolo Nespoli visited Stennis Dec. 13, 2007, to thank employees for the reliability and safe performance of the space shuttle's main engines, which on Oct. 23 launched them aboard Discovery on their mission to the International Space Station.
Astronauts of Mission STS-120 visit Stennis Space Center
NASA Technical Reports Server (NTRS)
2007-01-01
Astronaut Pam Melroy presents a commemorative collage of photos and items flown aboard space shuttle Discovery to Bob Cabana, director of NASA's Stennis Space Center in South Mississippi. Melroy commanded NASA's space shuttle mission STS-120. She and fellow crewmembers (from left) Doug Wheelock, Stephanie Wilson, George Zamka, Scott Parazynski and Paolo Nespoli visited Stennis Dec. 13, 2007, to thank employees for the reliability and safe performance of the space shuttle's main engines, which on Oct. 23 launched them aboard Discovery on their mission to the International Space Station.
STS-33 Discovery, OV-103, crew eats preflight breakfast at KSC O and C Bldg
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 crewmembers eat preflight breakfast at Kennedy Space Center (KSC) Operations and Checkout (O and C) Building before boarding Discovery, Orbiter Vehicle (OV) 103. Sitting around table and wearing mission t-shirts (left to right) are Mission Specialist (MS) Manley L. Carter, Jr, MS Kathryn C. Thornton, MS F. Story Musgrave, Commander Frederick D. Gregory, and Pilot John E. Blaha. A cake decorated with the STS-33 mission insignia is in the center of the table. A Thanksgiving Day decoration (turkey) sits on the table.
STS-85 Discovery OV-103 landing
1997-08-19
STS085-S-014 (19 Aug. 1997) --- The main landing gear of the space shuttle Discovery touches down on Runway 33 at the Kennedy Space Center to mark the successful completion of 12-day STS-85 mission. Landing occurred at 7:08 a.m. (EDT) on Aug. 19, 1997. Onboard were astronauts Curtis L. Brown, mission commander; Kent V. Rominger, pilot; N. Jan Davis, payload commander; and Robert L. Curbeam and Stephen K. Robinson, both mission specialists; along with payload specialist Bjarni Tryggvason, representing the Canadian Space Agency. Photo credit: NASA
Tile survey taken during EVA 3
2005-08-03
S114-E-6376 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discoverys underside is featured in this image photographed by astronaut Stephen K. Robinson (out of frame), STS-114 mission specialist, during the missions third session of extravehicular activities (EVA). While perched on a Space Station truss, astronaut Soichi Noguchi (background), mission specialist representing Japan Aerospace Exploration Agency (JAXA), acts as observer and communication relay station between fellow spacewalker Robinson and astronaut Andrew S. W. Thomas aboard Discovery.
2006-07-17
KENNEDY SPACE CENTER, FLA. - Under tow by a diesel-powered tractor, the orbiter Discovery rolls past the Vehicle Assembly Building as it travels along the two-mile tow-way to the Orbiter Processing Facility from NASA's Shuttle Landing Facility. Umbilical lines for coolant and purge air are still attached. Discovery landed at the SLF at 9:14 a.m. EDT, completing mission STS-121. Discovery traveled 5.3 million miles, landing on orbit 202. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. Main gear touchdown occurred on time at 9:14:43 EDT. Wheel stop was at 9:15:49 EDT. During the mission, the STS-121 crew tested new equipment and procedures to improve shuttle safety, and delivered supplies and made repairs to the International Space Station. Photo credit: NASA/Jim Grossmann
2001-07-18
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in front of the M-113 armored personnel carrier that is part of emergency egress training at the pad. From left to right, they are STS-105 Commander Scott Horowitz, Mission Specialist Daniel Barry, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-05
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester (left) and Pilot Rick Sturckow (right) walk away from the T-38 jet they arrived in at the KSC Shuttle Landing Facility. The STS-105 and Expedition Three crews are returning to Kennedy to make final preparations for launch . On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001
Discovery lands at KSC after completing mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. Orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is prepared for installation while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
1998-11-07
After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
2004-03-05
KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialists Charles Camarda and Soichi Noguchi sit outside the crew hatch on the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. They and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
2008-06-14
CAPE CANAVERAL, Fla. – The STS-124 mission crew pose for a final group photo before heading to crew quarters after their successful landing aboard space shuttle Discovery on Runway 15 at NASA's Kennedy Space Center. The landing ended a 14-day mission to the International Space Station. From left are Pilot Ken Ham, Mission Specialists Karen Nyberg and Akihiko Hoshide, Commander Mark Kelly, and Mission Specialists Mike Fossum and Ron Garan. Discovery's main landing gear touched down at 11:15:19 a.m. EDT. The nose landing gear touched down at 11:15:30 a.m. and wheel stop was at 11:16:19 a.m. The mission completed 5.7 million miles. The STS-124 mission delivered the Japan Aerospace Exploration Agency's large Japanese Pressurized Module and its remote manipulator system to the space station. Photo credit: NASA/Kim Shiflett
1999-12-27
After landing at the Shuttle Landing Facility, STS-103 Pilot Scott J. Kelly (left) and Commander Curtis L. Brown Jr. (right) look at the tiles on orbiter Discovery. They and other crew members Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Francois Clervoy of France and Claude Nicollier of Switzerland, completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 p.m. EST and wheel stop at 7:01:34 p.m. EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history
1999-12-27
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Discovery drops out of the darkness onto runway 33 at the Shuttle Landing Facility after traveling more than 3,267,000 miles on a successful eight-day mission to service the Hubble Space Telescope. Astronauts Curtis L. Brown Jr., Commander; Scott J. Kelly, Pilot; and Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France, all Mission Specialists, spent the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 p.m. EST and wheel stop at 7:01:34 p.m. EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history
STS-105 MPLM is moved into the PCR
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Just before sunrise the payload canister arrives at Launch Pad 39A. In the background is Space Shuttle Discovery, waiting to launch on mission STS-105. Inside the canister are the primary payloads on the mission, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room on the Rotation Service Structure where they will be moved into the Discoverys payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.
Tryggvason and Robinson examine Discovery after landing
NASA Technical Reports Server (NTRS)
1997-01-01
STS-85 Payload Specialist and Canadian Space Agency astronaut Bjarni V. Tryggvason (left) and Mission Specialist Stephen K. Robinson examine the Space Shuttle orbiter Discovery after the space plane landed on Runway 33 at KSCs Shuttle Landing Facility Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. Also on board were Commander Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Commander N. Jan Davis and Mission Specialist Robert L. Curbeam, Jr. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earths middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS- 1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center.
1984-04-24
The official mission insignia for the 41-D Space Shuttle flight features the Discovery - NASA's third orbital vehicle - as it makes its maiden voyage. The ghost ship represents the orbiter's namesakes which have figured prominently in the history of exploration. The Space Shuttle Discovery heads for new horizons to extend that proud tradition. Surnames for the crewmembers of NASA's eleventh Space Shuttle mission encircle the red, white, and blue scene.
STS-121: Discovery Post Landing Press Conference
NASA Technical Reports Server (NTRS)
2006-01-01
On July 17, 2006 Dean Acosta (NASA Press Secretary), Mike Griffin (Administrator), Bill Gerstenmaier (Associate Administrator of Space Operations), and Mike Leinbach (NASA Launch Director) expressed how proud they were to be a part of the STS-121/ Discovery team. They also explained how flawlessly the mission performed and how it was the best mission ever flown. They proceeded to answer numerous questions from the press.
NASA Astrophysics Data System (ADS)
Tumewu, Widya Anjelia; Wulan, Ana Ratna; Sanjaya, Yayan
2017-05-01
The purpose of this study was to know comparing the effectiveness of learning using Project-based learning (PjBL) and Discovery Learning (DL) toward students metacognitive strategies on global warming concept. A quasi-experimental research design with a The Matching-Only Pretest-Posttest Control Group Design was used in this study. The subjects were students of two classes 7th grade of one of junior high school in Bandung City, West Java of 2015/2016 academic year. The study was conducted on two experimental class, that were project-based learning treatment on the experimental class I and discovery learning treatment was done on the experimental class II. The data was collected through questionnaire to know students metacognitive strategies. The statistical analysis showed that there were statistically significant differences in students metacognitive strategies between project-based learning and discovery learning.
NASA Technical Reports Server (NTRS)
1998-01-01
The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.
STS-105 Mission Specialists in slidewire basket during TCDT at pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialists Daniel Barry (left) and Patrick Forrester (right) wait in the slidewire basket that is part of the emergency egress system. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
NASA Technical Reports Server (NTRS)
2007-01-01
The Space Shuttle Discovery and its seven-member STS-120 crew headed toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from Kennedy Space Center's launch pad 39A occurred at 11:38:19 a.m. (EDT) on October 23, 2007. Onboard were astronauts Pam Melroy, commander; George Zamka, pilot; Scott Parazynski, Stephanie Wilson, Doug Wheelock, European Space Agency's (ESA) Paolo Nespoli and Daniel Tani, all mission specialists. Discovery linked up with the station for a joint mission of continued construction. The mission delivered the Italian-built U.S. Node 2, named Harmony. During the 14-day mission, the crew installed Harmony, moved and deployed the P6 solar arrays to their permanent position.
NASA Technical Reports Server (NTRS)
2007-01-01
The Space Shuttle Discovery and its seven-member STS-120 crew headed toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from Kennedy Space Center's launch pad 39A occurred at 11:38:19 a.m. (EDT) on October 23, 2007. Onboard were astronauts Pam Melroy, commander; George Zamka, pilot; Scott Parazynski, Stephanie Wilson, Doug Wheelock, European Space Agency's (ESA) Paolo Nespoli, and Daniel Tani, all mission specialists. Discovery linked up with the station for a joint mission of continued construction. The mission delivered the Italian-built U.S. Node 2, named Harmony. During the 14-day mission, the crew installed Harmony, and moved and deployed the P6 solar arrays to their permanent position.
NASA Technical Reports Server (NTRS)
2007-01-01
The Space Shuttle Discovery and its seven-member STS-120 crew headed toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from Kennedy Space Center's launch pad 39A occurred at 11:38:19 a.m. (EDT) on October 23, 2007. Onboard were astronauts Pam Melroy, commander; George Zamka, pilot; Scott Parazynski, Stephanie Wilson, Doug Wheelock, European Space Agency's (ESA) Paolo Nespoli and Daniel Tani, all mission specialists. Discovery linked up with the station for a joint mission of continued construction, The mission delivered the Italian-built U.S. Node 2, named Harmony. During the 14-day mission, the crew installed Harmony, and moved and deployed the P6 solar arrays to their permanent position.
NASA Technical Reports Server (NTRS)
Russell, C. T.; Metzger, A.; Pieters, C.; Elphic, R. C.; McCord, T.; Head, J.; Abshire, J.; Philips, R.; Sykes, M.; A'Hearn, M.;
1994-01-01
After many years of development, solar electric propulsion is now a practical low cost alternative for many planetary missions. In response to the recent Discovery AO, we and a number of colleagues have examined the scientific return from a missioon to map the Moon and then rendezvous with a small body. In planning this mission, we found that solar electric propulsion was quite affordable under the Discovery guidelines, that many targets could be reached more rapidly with solar electric propulsion than chemical propulsion, that a large number of planetary bodies were accessible with modest propulsion systems, and that such missions were quite adaptable, with generous launch windows which minimized mission risks. Moreover, solar electric propulsion is ideally suited for large payloads requiring a large amount of power.
2008-05-06
CAPE CANAVERAL, Fla. -- After their arrival at NASA Kennedy Space Center's Shuttle Landing Facility, the crew of space shuttle Discovery's STS-124 mission gather for a group photo. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, or TCDT. From left are Mission Specialist Greg Chamitoff, Pilot Ken Ham, Mission Specialist Karen Nyberg, Commander Mark Kelly and Mission Specialists Ron Garan, Mike Fossum and Akihiko Hoshide, who represents the Japan Aerospace Exploration Agency, or JAXA. TCDT is a rehearsal for launch that includes practicing emergency procedures, handling on-orbit equipment, and simulating a launch countdown. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
Media photographers on VAB roof for Launch STS-120
2007-10-23
From the roof of the Vehicle Assembly Building at NASA's Kennedy Space Center, media photographers capture the launch of space shuttle Discovery as it soars from its seaside launch pad. Liftoff was on time at 11:38:19 a.m. EDT. Discovery carries the Italian-built U.S. Node 2, called Harmony. During the 14-day STS-120 mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6.
2010-04-04
Contrails are seen as workers leave the Launch Control Center after the launch of the space shuttle Discovery and the start of the STS-131 mission at NASA Kennedy Space Center in Cape Canaveral, Fla. on Monday April 5, 2010. Discovery is carrying a multi-purpose logistics module filled with science racks for the laboratories aboard the station. The mission has three planned spacewalks, with work to include replacing an ammonia tank assembly, retrieving a Japanese experiment from the station’s exterior, and switching out a rate gyro assembly on the station’s truss structure. Photo Credit: (NASA/Bill Ingalls)
2006-07-17
KENNEDY SPACE CENTER, FLA. - LeRoy Cain, manager of Shuttle Launch Integration, and Michael Fossum, STS-121 mission specialist, take a look at the orbiter Discovery during the traditional post-flight walk-around after the landing. Discovery's smooth and perfect landing was on time at 9:14 a.m. EDT on Runway 15 of NASA's Shuttle Landing Facility after traveling 5.3 million miles on 202 orbits. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. Photo credit: NASA/Kim Shiflett
1995-02-03
STS063-S-007 (3 Feb 1995) --- The race to catch up with the Russia's Mir gets underway as the Space Shuttle Discovery launches from Pad 39B, Kennedy Space Center (KSC) at 12:22:04 (EST), February 3, 1995. Discovery is the first in the current fleet of four Space Shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) Shuttle flight are astronauts James D. Wetherbee, mission commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov.
General view from inside the payload bay of the Orbiter ...
General view from inside the payload bay of the Orbiter Discovery approximately along its centerline looking aft towards the bulkhead of the aft fuselage. Note panels and insulation removed for access to the orbiter's subsystems for inspection and post-mission processing. This photo was taken during the processing of the Orbiter Discovery after its final mission and in preparation for its transition to the National Air and Space Museum. This view was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2009-07-30
CAPE CANAVERAL, Fla. – The payload canister rolls onto Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.
2009-07-30
CAPE CANAVERAL, Fla. – The payload canister rolls to Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.
2009-07-30
CAPE CANAVERAL, Fla. – The payload canister rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.
2010-04-04
NASA Administrator Charles Bolden looks out the window of Firing Room Four in the Launch Control Center during the launch of the space shuttle Discovery and the start of the STS-131 mission at NASA Kennedy Space Center in Cape Canaveral, Fla. on Monday April 5, 2010. Discovery is carrying a multi-purpose logistics module filled with science racks for the laboratories aboard the station. The mission has three planned spacewalks, with work to include replacing an ammonia tank assembly, retrieving a Japanese experiment from the station’s exterior, and switching out a rate gyro assembly on the station’s truss structure. Photo Credit: (NASA/Bill Ingalls)
2007-10-22
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A on NASA's Kennedy Space Center, space shuttle Discovery is fully revealed after rollback of the rotating service structure, at far left. Next to it is the fixed service structure, or FSS, with the 80-foot-tall lightning mast on top. Extending from the FSS to the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below it, also extending toward Discovery from the structure, is the orbiter access arm with the White Room at the end. The crew gains access into the orbiter through the White Room. Rollback of the RSS started at 3:34 p.m. EDT and was complete at 4:20 p.m. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-120. Discovery is scheduled for liftoff at 11:38 a.m. EDT on Oct. 23. The mission will be the 23rd assembly flight to the International Space Station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. The 14-day mission will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Kim Shiflett
2000-09-11
KENNEDY SPACE CENTER, Fla. -- As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2000-09-11
KENNEDY SPACE CENTER, Fla. -- As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2009-03-15
CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Flow Director for space shuttle Discovery Stephanie Stilson, Assistant Launch Director Pete Nickolenko and Shuttle Launch Director Mike Leinbach check the computers for follow-up images of the launch of space shuttle Discovery on the STS-119 mission. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Joel Smith prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Nadine Phillips prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
1998-11-07
Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
1998-11-07
Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
1998-11-07
Orbiter Discovery startles a great white egret (below) next to runway 33 as it touches down at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
1998-11-07
Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
1998-11-07
Orbiter Discovery smokes its tires as it touches down on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai,M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
1998-11-07
Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
1998-06-02
KENNEDY SPACE CENTER, Fla. -- Some of Florida's natural foliage stands silent sentinel to the lift off of the Space Shuttle Discovery from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Daniel T. Barry is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-22
KENNEDY SPACE CENTER, Fla. -- Completing mission STS-105, orbiter Discovery and its crew drop through scattered clouds to land on KSC's Shuttle Landing Facility runway 15. Discovery trails its drag chute that helps slow the orbiter. Main gear touchdown was at 2:22:58 p.m. EDT, wheel stop at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew, delivery of equipment supplies and scientific experiments, and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first out of five in 2001to occur in daylight at KSC
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-05
KENNEDY SPACE CENTER, Fla. -- After their arrival at Kennedy Space Center’s Shuttle Landing Facility, the STS-105 and Expedition Three crews greet the media. At the microphone is Commander Scott Horowitz. Behind him are (left to right) Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester, and the Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Dezhurov. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9
Discovery lands at KSC after completing mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. Orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15, creating a cloud of smoke as its wheels touch the concrete. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.
Discovery lands at KSC after completing mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. With its drag chute trailing behind, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.
Discovery lands at KSC after completing mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. A great blue heron flies along with orbiter Discovery as it lands on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.
Discovery lands at KSC after completing mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. With its drag chute just beginning to open, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.
1998-06-02
KENNEDY SPACE CENTER, Fla. -- The Space Coast's natural foliage frames the Space Shuttle Discovery and the reflection of the intense heat and light of its liftoff from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir
1998-06-02
KENNEDY SPACE CENTER, Fla. -- Tree branches frame the Space Shuttle Discovery as it lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir
2009-08-24
CAPE CANAVERAL, Fla. – Xenon lights over Launch Pad 39A at NASA's Kennedy Space Center in Florida compete with the lightning strike seen to the left. Space shuttle Discovery is on the pad waiting for a scheduled liftoff on the STS-128 mission. Launch was scrubbed due to the weather conditions that violated the limitations for liftoff. Another launch attempt was scheduled for 1:10 a.m. Aug. 26. Discovery's 13-day mission will deliver more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. The equipment includes a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. The mission is the 128th in the Space Shuttle Program, the 37th flight of Discovery and the 30th station assembly flight. Photo credit: NASA/Ben Cooper
Wada, Carol K
2004-01-01
Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.
Large Observatory for X-ray Timing (LOFT-P): A Probe-Class Mission Concept Study
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Ray, P. S.; Chakrabarty, D.; Feroci, M.; Jenke, Peter; Griffith, C.; Zane, S.; Winter, B.; Brandt, S.; Hernamdez, M.;
2016-01-01
LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (less than $1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESA's M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broadband spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. Many of LOFTP's targets are bright, rapidly varying sources, so these measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P was presented as an example mission to the head of NASA's Astrophysics Division, to demonstrate the strong community support for creation of a probe-class, for missions costing between $500M and $1B. We submitted a white paper4 in response to NASA PhysPAG's call for white papers: Probe-class Mission Concepts, describing LOFT-P science and a simple extrapolation from the ESA study costs. The next step for probe-class missions will be input into the NASA Astrophysics Decadal Survey to encourage the creation of a probe-class opportunity. We report on a 2016 study by MSFC's Advanced Concepts Office of LOFT-P, a US-led probe-class LOFT concept.
Mars exploration, Venus swingby and conjunction class mission modes, time period 2000 to 2045
NASA Technical Reports Server (NTRS)
Young, A. C.; Mulqueen, J. A.; Skinner, J. E.
1984-01-01
Trajectory and mission requirement data are presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver; the second stage brakes the spacecraft and Earth braking stage into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the space station circular orbit.
Human Exploration of Earth's Neighborhood and Mars
NASA Technical Reports Server (NTRS)
Condon, Gerald
2003-01-01
The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.
2006-10-05
KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, the solid rocket boosters (SRBs) are being stacked for the orbiter Discovery and mission STS-116. Seen here are the nose cones on top of the SRBs. Discovery will be rolling over to the VAB in early November to be stacked with the SRBs and external tank for launch. STS-116 will be mission number 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Jack Pfaller
STS-85 Discovery OV-103 landing
1997-08-19
STS085-S-013 (19 August 1997) --- The drag chute of the Space Shuttle Discovery is fully deployed in this scene of the spacecraft's landing on runway 33 at the Kennedy Space Center (KSC). The landing, at 7:08 a.m. (EDT), August 19, 1997, marked the completion of a successful 12-day STS-85 mission. Onboard were astronauts Curtis L. Brown, Jr., mission commander; Kent V. Rominger, pilot; N. Jan Davis, payload commander; and Robert L. Curbeam, Jr., and Stephen K. Robinson, both mission specialists; along with payload specialist Bjarni Tryggvason, representing the Canadian Space Agency (CSA).
2011-01-07
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Seen on display overhead are the five orbiter tribute wall hangings. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The gate is open to Launch Pad 39B where Space Shuttle Discovery remains on the pad after scrub of Return to Flight mission STS-114. The July 13 mission was scrubbed when a low-level fuel cut-off sensor for the liquid hydrogen tank inside the External Tank failed a routine prelaunch check during the countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
2006-12-07
KENNEDY SPACE CENTER, FLA. -- Under a blue sky, Space Shuttle Discovery is ready for launch of mission STS-116 from Launch Pad 39B. Beneath Discovery's wings are the tail masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. Seen above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm, extending from the FSS. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below it, also extending toward Discovery from the FSS, is the orbiter access arm with the White Room at the end. The crew gains access into the orbiter through the White Room. Discovery is scheduled to launch on mission STS-116 at 9:35 p.m. today. On the mission, the crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Ken Thornsley
1999-12-19
Space Shuttle Discovery hurtles through clouds of smoke and steam in its successful launch on mission STS-103. Liftoff occurred at 7:50 p.m. EST from Launch Pad 39B. On board are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. STS-103 is a Hubble Servicing Mission, with three planned space walks designed to install new equipment and replace old. The primary objective is to replace the gyroscopes that make up the three Rate Sensor Units. Extravehicular activities include installing a new computer, changing out one of the Fine Guidance Sensors, replacing a tape recorder with a new solid state recorder, and installing a voltage/temperature improvement kit, and begin repairing the insulation on the telescope's outer surface. After the 7-day, 21-hour mission, Discovery is targeted to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST. This is the 27th flight of Discovery and the 96th mission in the Space Shuttle Program. It is the third launch at Kennedy Space Center in 1999
2006-07-17
KENNEDY SPACE CENTER, FLA. - Vapor trails flow from Discovery's wing tips as it makes a speedy approach to Runway 15 at NASA's Shuttle Landing Facility, completing mission STS-121 to the International Space Station. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5.3 million miles, landing on orbit 202. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. Main gear touchdown occurred on time at 9:14:43 EDT. Wheel stop was at 9:15:49 EDT. The returning crew members aboard are Commander Steven Lindsey, Pilot Mark Kelly and Mission Specialists Piers Sellers, Michael Fossum, Lisa Nowak and Stephanie Wilson. Mission Specialist Thomas Reiter, who launched with the crew on July 4, remained on the station to join the Expedition 13 crew there. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. During the mission, the STS-121 crew tested new equipment and procedures to improve shuttle safety, and delivered supplies and made repairs to the International Space Station. Photo credit: NASA/Tony Gray & Tim Powers
2006-07-17
KENNEDY SPACE CENTER, FLA. - Vapor trails flow from Discovery's wing tips as it makes a speedy approach to Runway 15 at NASA's Shuttle Landing Facility, completing mission STS-121 to the International Space Station. At touchdown -- nominally about 2,500 ft. beyond the runway threshold -- the orbiter is traveling at a speed ranging from 213 to 226 mph. Discovery traveled 5.3 million miles, landing on orbit 202. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. Main gear touchdown occurred on time at 9:14:43 EDT. Wheel stop was at 9:15:49 EDT. The returning crew members aboard are Commander Steven Lindsey, Pilot Mark Kelly and Mission Specialists Piers Sellers, Michael Fossum, Lisa Nowak and Stephanie Wilson. Mission Specialist Thomas Reiter, who launched with the crew on July 4, remained on the station to join the Expedition 13 crew there. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. During the mission, the STS-121 crew tested new equipment and procedures to improve shuttle safety, and delivered supplies and made repairs to the International Space Station. Photo credit: NASA/Tony Gray & Tim Powers
STS-96 Discovery night landing front view
NASA Technical Reports Server (NTRS)
1999-01-01
Bright lights at KSC's Shuttle Landing Facility runway 15 illuminate the landing of Space Shuttle Discovery, which completes the 9-day, 19-hour, 13-minute and 1-second long STS-96 mission. A contrail streams from the wing. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission. This was the 94th flight in the Space Shuttle program and the 26th for Discovery, also marking the 47th at KSC, the 24th in the last 25 missions, 11th at night, and the 18th consecutive landing in Florida.
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Mission Specialist Nicole Stott prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Stott and her five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Commander Steve Lindsey, left, and Mission Specialist Nicole Stott prepare to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. The six-member crew will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Mission Specialist Tim Kopra prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Kopra and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
STS-128 Space Shuttle Discovery on Pad 39a
2009-08-24
The space shuttle Discovery is poised for liftoff on the STS-128 mission from pad 39a at the Kennedy Space Center in Cape Canaveral, Fla., Monday, Aug. 24, 2009. Discovery is scheduled to launch early Tuesday morning. Photo Credit: (NASA/Bill Ingalls)
2004-01-22
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Stephanie Stilson, NASA vehicle manager for Discovery, stands in front of a leading edge on the wing of Discovery. She is being filmed for a special feature on the KSC Web about the recent Orbiter Major Modification period on Discovery, which included inspection, modifications and reservicing of most systems onboard, plus installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
NASA Technical Reports Server (NTRS)
Spangelo, Sara
2015-01-01
The goal of this paper is to explore the mission opportunities that are uniquely enabled by U-class Solar Electric Propulsion (SEP) technologies. Small SEP thrusters offers significant advantages relative to existing technologies and will revolutionize the class of mission architectures that small spacecraft can accomplish by enabling trajectory maneuvers with significant change in velocity requirements and reaction wheel-free attitude control. This paper aims to develop and apply a common system-level modeling framework to evaluate these thrusters for relevant upcoming mission scenarios, taking into account the mass, power, volume, and operational constraints of small highly-constrained missions. We will identify the optimal technology for broad classes of mission applications for different U-class spacecraft sizes and provide insights into what constrains the system performance to identify technology areas where improvements are needed.
2000-09-12
KENNEDY SPACE CENTER, Fla. -- The morning sun spotlights Launch Pad 39A and Space Shuttle Discovery atop the Mobile Launcher Platform. To its left is the Rotating Service Structure in its open position, at the top of the ramp that the Shuttle must negotiate on the crawler-transporter. Above Discovery looms the 80-foot fiberglass lightning mast. At the far left is the Vehicle Assembly Building, where a Space Shuttle begins its voyage to the pad. Discovery is scheduled to launch on mission STS-92 Oct. 5 at 9:30 p.m. EDT. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2000-09-12
KENNEDY SPACE CENTER, Fla. -- The morning sun spotlights Launch Pad 39A and Space Shuttle Discovery atop the Mobile Launcher Platform. To its left is the Rotating Service Structure in its open position, at the top of the ramp that the Shuttle must negotiate on the crawler-transporter. Above Discovery looms the 80-foot fiberglass lightning mast. At the far left is the Vehicle Assembly Building, where a Space Shuttle begins its voyage to the pad. Discovery is scheduled to launch on mission STS-92 Oct. 5 at 9:30 p.m. EDT. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
Viewed across the creek bordering runway 33, orbiter Discovery prepares to touch down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Flying above it is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95
NASA Technical Reports Server (NTRS)
1998-01-01
The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
GeoGebra Assist Discovery Learning Model for Problem Solving Ability and Attitude toward Mathematics
NASA Astrophysics Data System (ADS)
Murni, V.; Sariyasa, S.; Ardana, I. M.
2017-09-01
This study aims to describe the effet of GeoGebra utilization in the discovery learning model on mathematical problem solving ability and students’ attitude toward mathematics. This research was quasi experimental and post-test only control group design was used in this study. The population in this study was 181 of students. The sampling technique used was cluster random sampling, so the sample in this study was 120 students divided into 4 classes, 2 classes for the experimental class and 2 classes for the control class. Data were analyzed by using one way MANOVA. The results of data analysis showed that the utilization of GeoGebra in discovery learning can lead to solving problems and attitudes towards mathematics are better. This is because the presentation of problems using geogebra can assist students in identifying and solving problems and attracting students’ interest because geogebra provides an immediate response process to students. The results of the research are the utilization of geogebra in the discovery learning can be applied in learning and teaching wider subject matter, beside subject matter in this study.
David, L
1996-05-01
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.
Cassini Titan Flybys: The Next Year (April 2012 through April 2013)
NASA Astrophysics Data System (ADS)
Ray, T.; Burton, M.; Pitesky, J. E.; Steadman, K.; Roy, M.
2012-04-01
This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.
The STS-92 crew is ready to leave KSC after CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
The STS-92 crew strides across the runway at KSC's Shuttle Landing Facility, heading toward the aircraft that will take them back to Houston. They were at KSC for Crew Equipment Interface Test (CEIT) activities, looking over their mission payload and related equipment. From left are Mission Specialists Bill McArthur and Jeff Wisoff, Pilot Pam Melroy, Mission Specialist Michael Lopez-Alegria, Commander Brian Duffy and Mission Specialist Koichi Wakata, who is with the Japanese space agency. Not seen is Mission Specialist Leroy Chiao, who was also at KSC for the CEIT. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).
Software engineering processes for Class D missions
NASA Astrophysics Data System (ADS)
Killough, Ronnie; Rose, Debi
2013-09-01
Software engineering processes are often seen as anathemas; thoughts of CMMI key process areas and NPR 7150.2A compliance matrices can motivate a software developer to consider other career fields. However, with adequate definition, common-sense application, and an appropriate level of built-in flexibility, software engineering processes provide a critical framework in which to conduct a successful software development project. One problem is that current models seem to be built around an underlying assumption of "bigness," and assume that all elements of the process are applicable to all software projects regardless of size and tolerance for risk. This is best illustrated in NASA's NPR 7150.2A in which, aside from some special provisions for manned missions, the software processes are to be applied based solely on the criticality of the software to the mission, completely agnostic of the mission class itself. That is, the processes applicable to a Class A mission (high priority, very low risk tolerance, very high national significance) are precisely the same as those applicable to a Class D mission (low priority, high risk tolerance, low national significance). This paper will propose changes to NPR 7150.2A, taking mission class into consideration, and discuss how some of these changes are being piloted for a current Class D mission—the Cyclone Global Navigation Satellite System (CYGNSS).
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
The Lunar Prospector Discovery Mission: mission and measurement description.
NASA Astrophysics Data System (ADS)
Hubbard, G. S.; Binder, A. B.; Feldman, W.
1998-06-01
Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon's composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.
The Lunar Prospector discovery mission: mission and measurement description.
NASA Astrophysics Data System (ADS)
Hubbard, G. S.; Binder, A. B.; Feldman, W.
Lunar Prospector, the first competitively selected planetary mission in NASA's discovery program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the moon's composition and structure. The suite of five instruments will be outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.
Mission commander James Wetherbee on the forward flight deck
1995-02-03
STS063-06-027 (3-11 Feb 1995) --- Seated at the commander's station on the Space Shuttle Discovery's flight deck, astronaut James D. Wetherbee, commander, was photographed by a crew mate during early phases of the STS-63 mission. A great deal of time was spent during the first few days of the mission to check a leaky thruster, which could have had a negative influence on rendezvous operations with Russia's Mir Space Station. As it turned out, all the related problems were solved and the two spacecraft succeded in achieving close proximity operations. Others onboard the Discovery were astronauts Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; and mission specialists C. Michael Foale, Janice E. Voss, and Russian cosmonaut Vladimir G. Titov.
NASA Technical Reports Server (NTRS)
1997-01-01
The Rotating Service Structure has been retracted at Pad 39A. Discovery, the Space Shuttle for STS-82 Mission is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Which will be installed, the Fine Guidance Sensor #1 (FGS-1) and the Space Telescope Imaging Spectrograph (STIS) which will be installed. STS-82 will launch with a crew of seven at 3:54 a.m. February 11, 1997. The launch window is 65 minutes. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.
View of Mission Control Center during the Apollo 13 oxygen cell failure
NASA Technical Reports Server (NTRS)
1970-01-01
Mrs. Mary Haise receives an explanation of the revised flight plan of the Apollo 13 mission from Astronaut Gerald P. Carr in the Viewing Room of Mission Control Center, bldg 30, Manned Spacecraft Center (MSC). Her husband, Astronaut Fred W. Haise Jr., was joining the fellow crew members in making corrections in their spacecraft following discovery of an oxygen cell failure several hours earlier (34900); Dr. Charles A. Berry, Director of Medical Research and Operations Directorate at MSC, converses with Mrs. Marilyn Lovell in the Viewing Room of Mission Control Center. Mrs. Lovell's husband, Astronaut James A. Lovell Jr., was busily making corrections inside the spacecraft following discovery of an oxygen cell failure several hours earlier (34901).
Towards a class library for mission planning
NASA Technical Reports Server (NTRS)
Pujo, Oliver; Smith, Simon T.; Starkey, Paul; Wolff, Thilo
1994-01-01
The PASTEL Mission Planning System (MPS) has been developed in C++ using an object-oriented (OO) methodology. While the scope and complexity of this system cannot compare to that of an MPS for a complex mission one of the main considerations of the development was to ensure that we could reuse some of the classes in future MPS. We present here PASTEL MPS classes which could be used in the foundations of a class library for MPS.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
STS-26 MS Nelson on fixed based (FB) shuttle mission simulator (SMS) middeck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains on the middeck of the fixed based (FB) shuttle mission simulator (SMS). Nelson, wearing communications assembly headset, adjusts camera mounting bracket.
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Duane Williams prepares the blanket insulation to be installed on the body flap on orbiter Discovery. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
2004-01-22
KENNEDY SPACE CENTER, FLA. - Stephanie Stilson, NASA vehicle manager for Discovery, is being filmed for a special feature on the KSC Web about the recent Orbiter Major Modification period, which included inspection, modifications and reservicing of most systems onboard Discovery, plus installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
2004-03-08
KENNEDY SPACE CENTER, FLA. - One of four rudder speed brake actuators arrives at Cape Canaveral Air Force Station. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
2004-03-08
KENNEDY SPACE CENTER, FLA. - A rudder speed brake actuator sits on an air-bearing pallet to undergo X-raying. Four actuators to be installed on the orbiter Discovery are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
Advances in Architectural Elements For Future Missions to Titan
NASA Astrophysics Data System (ADS)
Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John
2010-05-01
The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and to describe recent advances and ongoing planning for a Titan balloon and surface elements. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851
Oceans in the Outer Solar System: Future Exploration of Europa, Titan, and Enceladus
NASA Astrophysics Data System (ADS)
Johnson, T.; Clark, K.; Cutts, J.; Lunine, J.; Pappalardo, R.; Reh, K.
Observational and theoretical evidence points to water-rich oceans or seas within several of the icy satellites of the outer planets, notably Europa and Enceladus, and hydrocarbon reservoirs within Titan. Here we report on concepts for future studies of these fascinating targets of high astrobiological relevance. Europa Exploration: Post-Galileo exploration of Europa presents several major technical challenges. We argue that four recent investments in technology and research allow a flagship mission class Europa exploration that relies on demonstrated technologies and achieves the high level science objectives. 1. Mass and Trip Time: Utilizing indirect Earth gravity assist, trajectories allows ˜2000 - 3000 kg dry mass, permitting ˜150 - 200 kg of science payload. 2. Radiation Tolerant Electronics: A significant program of radiation hard technology development has been done by NASA. The necessary radiation-tolerant elements are now ready for flight. 3. Science Mission: The science mission would last approximately two years, with a Jupiter system science phase of ˜1.5 yr and a 90 day nominal orbital mission at Europa, with significant probability of functioning much longer. 4. Planetary Protection: The ultimate fate of an orbiter will be impact with Europa. Planetary protection requirements will be met by radiation sterilization during the primary mission for most external and unshielded internal surfaces, combined with pre-launch sterilization of shielded components. We conclude that a flagship class Europa mission can now be developed relying on existing technologies, having significant scientific capability. Titan and Enceladus Exploration: Remarkable discoveries by the Cassini/Huygens related to hydrocarbons at Titan and water vapor geysering at Enceladus demand follow-up of these astrobiologically relevant worlds by future missions. An aerial platform capable of observing the surface of Titan from beneath the obscuring cloud cover and descending repeatedly to the surface, can offer a powerful scientific capability. Taking advantage of both the density and cold temperature of the atmosphere of Titan a hot-air balloon implementation provides long duration operation at a very modest cost in terms of energy input. A Saturn orbiter making repeated encounters of Titan and Enceladus in a so-called cycler orbit can carry out new science at Enceladus while also providing high bandwidth downlink communications for the aerial platform.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman installs the gap filler between tiles on the orbiter Discovery, which is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
2005-12-14
KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman applies the Teflon-coated fabric to the gap filler before installation on the orbiter Discovery, which is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-08
KENNEDY SPACE CENTER, Fla. -- On Launch Pad 39a, the Rotating Service Structure rolls back from around Space Shuttle Discovery in preparation for launch on mission STS-105. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9
2001-08-05
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz arrives at KSC aboard a T-38 jet to make final preparations for launch. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001
2000-10-24
Viewed from the side, orbiter Discovery, with its seven-member crew, touches down on the landing strip at Edwards Air Force Base, Calif., after an 11-day mission to the International Space Station. The orbiter’s main landing gear touched down on EAFB runway 22 at 5 p.m. With the aid of its drag chute, Discovery came to a complete stop at 5:01 p.m. At the conclusion of mission STS-92, Discovery and crew had traveled about 5.3 million statute miles. Following vehicle safing and preliminary offloading efforts, workers will begin preparations for Discovery’s transcontinental ferry flight back to KSC on the back of NASA’s modified Boeing 747
2000-10-24
Orbiter Discovery, with its seven-member crew, approaches the landing strip at Edwards Air Force Base, Calif., after an 11-day mission to the International Space Station. The orbiter’s main landing gear touched down on EAFB runway 22 at 5 p.m. With the aid of its drag chute, Discovery came to a complete stop at 5:01 p.m. At the conclusion of mission STS-92, Discovery and crew had traveled about 5.3 million statute miles. Following vehicle safing and preliminary offloading efforts, workers will begin preparations for Discovery’s transcontinental ferry flight back to KSC on the back of NASA’s modified Boeing 747
2000-10-24
Orbiter Discovery, with its seven-member crew, approaches the landing strip at Edwards Air Force Base, Calif., after an 11-day mission to the International Space Station. The orbiter’s main landing gear touched down on EAFB runway 22 at 5 p.m. With the aid of its drag chute, Discovery came to a complete stop at 5:01 p.m. At the conclusion of mission STS-92, Discovery and crew had traveled about 5.3 million statute miles. Following vehicle safing and preliminary offloading efforts, workers will begin preparations for Discovery’s transcontinental ferry flight back to KSC on the back of NASA’s modified Boeing 747
2000-10-24
With its drag chute deployed, orbiter Discovery and its seven-member crew roll toward a stop at Edwards Air Force Base, Calif., after an 11-day mission to the International Space Station. The orbiter’s main landing gear touched down on EAFB runway 22 at 5 p.m. With the aid of its drag chute, Discovery came to a complete stop at 5:01 p.m. At the conclusion of mission STS-92, Discovery and crew had traveled about 5.3 million statute miles. Following vehicle safing and preliminary offloading efforts, workers will begin preparations for Discovery’s transcontinental ferry flight back to KSC on the back of NASA’s modified Boeing 747
2000-10-24
With its drag chute deployed, orbiter Discovery and its seven-member crew roll toward a stop at Edwards Air Force Base, Calif., after an 11-day mission to the International Space Station. The orbiter’s main landing gear touched down on EAFB runway 22 at 5 p.m. With the aid of its drag chute, Discovery came to a complete stop at 5:01 p.m. At the conclusion of mission STS-92, Discovery and crew had traveled about 5.3 million statute miles. Following vehicle safing and preliminary offloading efforts, workers will begin preparations for Discovery’s transcontinental ferry flight back to KSC on the back of NASA’s modified Boeing 747
2000-10-24
Orbiter Discovery, with its seven-member crew, touches down on the landing strip at Edwards Air Force Base, Calif., after an 11-day mission to the International Space Station. The orbiter’s main landing gear touched down on EAFB runway 22 at 5 p.m. With the aid of its drag chute, Discovery came to a complete stop at 5:01 p.m. At the conclusion of mission STS-92, Discovery and crew had traveled about 5.3 million statute miles. Following vehicle safing and preliminary offloading efforts, workers will begin preparations for Discovery’s transcontinental ferry flight back to KSC on the back of NASA’s modified Boeing 747
2010-04-05
201004050001hq (5 April 2010) --- NASA Administrator Charles Bolden looks out the window of Firing Room Four in the Launch Control Center during the launch of the space shuttle Discovery and the start of the STS-131 mission at NASA Kennedy Space Center in Cape Canaveral, Fla. on April 5, 2010. Discovery is carrying a multi-purpose logistics module filled with science racks for the laboratories aboard the International Space Station. The mission has three planned spacewalks, with work to include replacing an ammonia tank assembly, retrieving a Japanese experiment from the station?s exterior, and switching out a rate gyro assembly on the station?s truss structure. Photo Credit: NASA/Bill Ingalls
STS-102 crew meets with media at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee talks about the mission during a media event at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
JSC officials in MCC Bldg 30 monitor STS-26 Discovery, OV-103, activity
1988-10-03
JSC officials, laughing, listen to crewmembers' commentary onboard Discovery, Orbiter Vehicle (OV) 103, during STS-26. In the Flight Control Room (FCR) of JSC's Mission Control Center (MCC) Bldg 30 and seated at the Mission Operations Directorate (MOD) console, MOD Director Eugene F. Kranz (foreground), wearing red, white and blue vest, smiles along with JSC Director Aaron Cohen and Flight Crew Operations Deputy Director Henry W. Hartsfield, Jr. (far right).
JSC Officials in MCC Bldg 30 monitor STS-26 Discovery, OV-103, activity
NASA Technical Reports Server (NTRS)
1988-01-01
JSC Officials, laughing, listen to crewmembers' commentary onboard Discovery, Orbiter Vehicle (OV) 103, during STS-26. In the Flight Control Room (FCR) of JSC's Mission Control Center (MCC) Bldg 30 and seated at the Mission Operations Directorate (MOD) console, MOD Director Eugene F. Kranz (foreground), wearing red, white and blue vest, smiles along with JSC Director Aaron Cohen and Flight Crew Operations Deputy Director Henry W. Hartsfield, Jr. (far right).
2006-08-03
KENNEDY SPACE CENTER, FLA. - Suspended by cables in bay 3 of the Orbiter Processing Facility, the orbiter boom sensor system is lowered toward its place in Discovery's payload bay. It was removed last week in order to inspect the power system, which is routine after every flight. Discovery returned from mission STS-121 in late July, and is now being processed for mission STS-116, scheduled to launch in mid-December. Photo credit: NASA/Jim Grossmann
Earth observations taken from Discovery during STS-85 mission - Typhoon Winnie
1997-08-15
S85-E-5092 (14 August 1997) --- Flying directly over the eye just before 3 p.m. (EST), Aug. 15, the STS-85 crew members captured this image of Super Typhoon Winnie. The massive typhoon is located about half way between Japan and New Guinea in the Pacific Ocean. The Canadian-built robot arm of Discovery, being used in operations with CRISTA-SPAS on this mission, is partially visible in left foreground.
STS-105 and Expedition Three crews talk to media at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, STS-105 Mission Specialist Daniel Barry responds to a question during a media interview. With him are (left to right) Mission Specialist Patrick Forrester, Pilot Rick Sturckow and Commander Scott Horowitz; with the Expedition Three crew Commander Frank Culbertson and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, who are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
STS-96 FD Highlights and Crew Activities Report: Flight Day 06
NASA Technical Reports Server (NTRS)
1999-01-01
On this sixth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing logistics transfer activities within the Discovery/International Space Station orbiting complex. Ochoa, Jernigan, Husband and Barry devote a significant part of their day to the transfer of bags of different sizes and shapes from the SPACEHAB module in Discovery's cargo bay to resting places inside the International Space Station. Payette and Tokarev complete the maintenance on the storage batteries. Barry and Tokarev complete installation of the remaining sound mufflers over the fans in Zarya. Barry then measures the sound levels at different positions inside the module. Rominger and Tokarev conduct a news conference with Russian reporters from the Mission Control Center in Moscow.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. Behind him on the left is George Hoggard, of the KSC/CCAS Fire Department, who supervises the driving. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Daniel Barry; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
STS-105 and Expedition Three crews in White Room at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-08-05
KENNEDY SPACE CENTER, Fla. -- Two members of the Expedition Three crew arrive at Kennedy Space Center’s Shuttle Landing Facility to make final preparations before launch of STS-105. At left is Commander Frank Culbertson, who piloted the T-38 in the background with his passenger cosmonaut Mikhail Tyurin (right). The Shuttle crew comprises commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001
Discovery lands at KSC after completing mission STS-105
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. With its drag chute trailing behind, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. The 525-foot-tall Vehicle Assembly Building can be seen in the background. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.
STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2004-03-05
KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.
The STS-103 crew with loved ones at Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-103 crew pose for photographers with their loved ones at Launch Pad 39B. Space Shuttle Discovery is in the background, next to the Fixed Service Structure lit up like a Christmas tree. Viewed left to right are Mission Specialist Steven L. Smith and his wife, Peggy; Pilot Scott J. Kelly and his wife, Leslie; Commander Curtis L. Brown Jr. and his fiancee, Ann Brickert; Mission Specialist C. Michael Foale; Laurence Clervoy and her husband, Mission Specialist Jean-Frangois Clervoy; Mission Specialist John M. Grunsfeld and his wife, Carol; Mission Specialist Claude Nicollier and his wife, Susana. Nicollier and Clervoy are with the European Space Agency. The mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST.
STS-96 Discovery night landing side view
NASA Technical Reports Server (NTRS)
1999-01-01
Beneath a bright moon, the landing of Space Shuttle Discovery at KSC's Shuttle Landing Facility runway 15 is reflected in the nearby canal. This 47th Shuttle landing at KSC completes the 9- day, 19-hour, 13-minute and 1-second long STS-96 mission. It is the 94th flight in the Space Shuttle program, the 26th for Discovery, the 11th night landing, and the 18th consecutive landing in Florida. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission.
Development Efforts Expanded in Ion Propulsion: Ion Thrusters Developed With Higher Power Levels
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Rawlin, Vincent K.; Sovey, James S.
2003-01-01
The NASA Glenn Research Center was the major contributor of 2-kW-class ion thruster technology to the Deep Space 1 mission, which was successfully completed in early 2002. Recently, NASA s Office of Space Science awarded approximately $21 million to Glenn to develop higher power xenon ion propulsion systems for large flagship missions such as outer planet explorers and sample return missions. The project, referred to as NASA's Evolutionary Xenon Thruster (NEXT), is a logical follow-on to the ion propulsion system demonstrated on Deep Space 1. The propulsion system power level for NEXT is expected to be as high as 25 kW, incorporating multiple ion thrusters, each capable of being throttled over a 1- to 6-kW power range. To date, engineering model thrusters have been developed, and performance and plume diagnostics are now being documented. The project team-Glenn, the Jet Propulsion Laboratory, General Dynamics, Boeing Electron Dynamic Devices, the Applied Physics Laboratory, the University of Michigan, and Colorado State University-is in the process of developing hardware for a ground demonstration of the NEXT propulsion system, which comprises a xenon feed system, controllers, multiple thrusters, and power processors. The development program also will include life assessments by tests and analyses, single-string tests of ion thrusters and power systems, and finally, multistring thruster system tests in calendar year 2005. In addition, NASA's Office of Space Science selected Glenn to lead the development of a 25-kW xenon thruster to enable NASA to conduct future missions to the outer planets of Jupiter and beyond, under the High Power Electric Propulsion (HiPEP) program. The development of a 100-kW-class ion propulsion system and power conversion systems are critical components to enable future nuclear-electric propulsion systems. In fiscal year 2003, a team composed of Glenn, the Boeing Company, General Dynamics, the Applied Physics Laboratory, the Naval Research Laboratory, the University of Wisconsin, the University of Michigan, and Colorado State University will perform a 6-month study that will result in the design of a 25-kW ion thruster, a propellant feed system, and a power processing architecture. The following 2 years will involve hardware development, wear tests, single-string tests of the thruster-power circuits and the xenon feed system, and subsystem service life analyses. The 2-kW-class ion propulsion technology developed for the Deep Space 1 mission will be used for NASA's discovery mission Dawn, which involves maneuvering a spacecraft to survey the asteroids Ceres and Vesta. The 6-kW-class ion thruster subsystem technology under NEXT is scheduled to be flight ready by calendar year 2006. The less mature 25- kW ion thruster system under HiPEP is expected to be ready for a flight advanced development program in calendar year 2006.
CYGNSS: Lessons We are Learning from a Class D Mission
NASA Technical Reports Server (NTRS)
Tumlinson, Jessica
2015-01-01
CYGNSS: Lessons Learned from NASA Class D Mission and how they selected their parts for the program to include balance between cost, risk, schedule and technology available as well as balancing cost restraints with mission risk profile.
2006-12-07
KENNEDY SPACE CENTER, FLA. -- Under a blue sky streaked with clouds, Launch Pad 39B holds Space Shuttle Discovery, ready for launch of mission STS-116. At the far left is the rotating service structure, rolled back after midnight in preparation for launch. Next to Discovery is the fixed service structure, with the 80-foot-high lightning mast on top, part of the lightning protection system on the pad. Beneath Discovery's wings are the tail masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. Seen above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm, extending from the FSS. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below it, also extending toward Discovery from the FSS, is the orbiter access arm with the White Room at the end. The crew gains access into the orbiter through the White Room. Discovery is scheduled to launch on mission STS-116 at 9:35 p.m. today. On the mission, the crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Ken Thornsley
KEPLER Mission: development and overview
NASA Astrophysics Data System (ADS)
Borucki, William J.
2016-03-01
The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.
KEPLER Mission: development and overview.
Borucki, William J
2016-03-01
The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Safety Engineer Dwayne Thompson, left, and NASA Safety Engineer Dallas McCarter rehearse procedures for the liftoff of space shuttle Discovery's final mission with other STS-133 launch team members in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2007-11-07
KENNEDY SPACE CENTER, FLA. -- Associate Administrator for NASA Space Operations William Gerstenmaier and Shuttle Program Manager Wayne Hale examine the thermal protection system on the wing of space shuttle Discovery after its landing at NASA's Kennedy Space Center. Discovery completed the 15-day mission STS-120, with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA//Kim Shiflett
2007-11-07
KENNEDY SPACE CENTER, FLA. -- Shuttle Program Manager Wayne Hale points to the left wing of space shuttle Discovery after its landing at NASA's Kennedy Space Center. To the left is Associate Administrator for NASA Space Operations William Gerstenmaier. Discovery completed the 15-day mission STS-120, with an on-time landing at 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Robert Holl sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Guidance and Navigation Engineer Jennifer Guida sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Charlie Blackwell-Thompson sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Assistant Launch Orbiter Test Conductor Mark Taffet sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 Assistant Launch Director Pete Nickolenko sits at his console in Firing Room 4 along with other launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Orbiter Project Engineer Todd Campbell sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 NASA Test Director Stephen Payne sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Launch Orbiter Test Conductor John Kracsun sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Checkout activity on the Remote Manipulator System (RMS) arm
1997-02-12
S82-E-5016 (12 Feb. 1997) --- Astronaut Steven A. Hawley, STS-82 mission specialist, controls Discovery's Remote Manipulation System (RMS), from the aft flight deck. Hawley and his crew mates are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. Hawley served as a mission specialist on NASA's 1990 mission which was responsible for placing HST in Earth-orbit. This view was taken with an Electronic Still Camera (ESC).
Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions
NASA Technical Reports Server (NTRS)
Mason, Lee; Gibson, Marc; Poston, Dave
2013-01-01
Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-Wclass radioisotope power systems being developed for science missions and below the typical 100-kWe-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.
NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkman, Clarissa O.; Fankhauser, Jana G.
2011-04-01
In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: It’s all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlightmore » - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies« less
STS-103 Mission Specialist Smith suits up before launch
NASA Technical Reports Server (NTRS)
1999-01-01
After donning his launch and entry suit, sts-103 Mission Specialist Steven L. Smith shows a positive attitude over the second launch attempt for Space Shuttle Discovery. The previous launch attempt on Dec. 17 was scrubbed about 8:52 p.m. due to numerous violations of weather launch commit criteria at KSC. Smith and other crew members Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Francois Clervoy of France are scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.
2007-11-07
KENNEDY SPACE CENTER, FLA. -- After space shuttle Discovery's landing at NASA's Kennedy Space Center, workers transfer experiments to vehicles. Discovery completed a 15-day mission to the International Space Station with a smooth landing on Runway 33. Main gear touchdown was 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. The crew completed a 15-day mission to the International Space Station with a smooth landing on Runway 33. Main gear touchdown was 1:01:16 p.m. Wheel stop was at 1:02:07 p.m. Mission elapsed time was 15 days, 2 hours, 24 minutes and 2 seconds. Mission STS-120 continued the construction of the station with the installation of the Harmony Node 2 module and the relocation of the P6 truss. Photo credit: NASA/Jim Grossmann
Metcalf-Lindenburger on Discovery flight deck
2010-04-06
S131-E-006107 (6 April 2010) --- NASA astronaut Dorothy Metcalf-Lindenburger, STS-131 mission specialist, reads a checklist on the aft flight deck of space shuttle Discovery during flight day two activities.