Ou-Yang, Si-sheng; Lu, Jun-yan; Kong, Xiang-qian; Liang, Zhong-jie; Luo, Cheng; Jiang, Hualiang
2012-01-01
Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field. PMID:22922346
A novel in silico approach to drug discovery via computational intelligence.
Hecht, David; Fogel, Gary B
2009-04-01
A computational intelligence drug discovery platform is introduced as an innovative technology designed to accelerate high-throughput drug screening for generalized protein-targeted drug discovery. This technology results in collections of novel small molecule compounds that bind to protein targets as well as details on predicted binding modes and molecular interactions. The approach was tested on dihydrofolate reductase (DHFR) for novel antimalarial drug discovery; however, the methods developed can be applied broadly in early stage drug discovery and development. For this purpose, an initial fragment library was defined, and an automated fragment assembly algorithm was generated. These were combined with a computational intelligence screening tool for prescreening of compounds relative to DHFR inhibition. The entire method was assayed relative to spaces of known DHFR inhibitors and with chemical feasibility in mind, leading to experimental validation in future studies.
Virtual Screening with AutoDock: Theory and Practice
Cosconati, Sandro; Forli, Stefano; Perryman, Alex L.; Harris, Rodney; Goodsell, David S.; Olson, Arthur J.
2011-01-01
Importance to the field Virtual screening is a computer-based technique for identifying promising compounds to bind to a target molecule of known structure. Given the rapidly increasing number of protein and nucleic acid structures, virtual screening continues to grow as an effective method for the discovery of new inhibitors and drug molecules. Areas covered in this review We describe virtual screening methods that are available in the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening in pharmaceutical lead discovery. What the reader will gain A general overview of the challenges of virtual screening is presented, along with the tools available in the AutoDock suite of programs for addressing these challenges. Take home message Virtual screening is an effective tool for the discovery of compounds for use as leads in drug discovery, and the free, open source program AutoDock is an effective tool for virtual screening. PMID:21532931
Cloud computing approaches to accelerate drug discovery value chain.
Garg, Vibhav; Arora, Suchir; Gupta, Chitra
2011-12-01
Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.
Gozalbes, Rafael; Carbajo, Rodrigo J; Pineda-Lucena, Antonio
2010-01-01
In the last decade, fragment-based drug discovery (FBDD) has evolved from a novel approach in the search of new hits to a valuable alternative to the high-throughput screening (HTS) campaigns of many pharmaceutical companies. The increasing relevance of FBDD in the drug discovery universe has been concomitant with an implementation of the biophysical techniques used for the detection of weak inhibitors, e.g. NMR, X-ray crystallography or surface plasmon resonance (SPR). At the same time, computational approaches have also been progressively incorporated into the FBDD process and nowadays several computational tools are available. These stretch from the filtering of huge chemical databases in order to build fragment-focused libraries comprising compounds with adequate physicochemical properties, to more evolved models based on different in silico methods such as docking, pharmacophore modelling, QSAR and virtual screening. In this paper we will review the parallel evolution and complementarities of biophysical techniques and computational methods, providing some representative examples of drug discovery success stories by using FBDD.
Knowledge-driven lead discovery.
Pirard, Bernard
2005-11-01
Virtual screening encompasses several computational approaches which have proven valuable for identifying novel leads. These approaches rely on available information. Herein, we review recent successful applications of virtual screening. The extension of virtual screening methodologies to target families is also briefly discussed.
ERIC Educational Resources Information Center
Scott, William L.; Denton, Ryan E.; Marrs, Kathleen A.; Durrant, Jacob D.; Samaritoni, J. Geno; Abraham, Milata M.; Brown, Stephen P.; Carnahan, Jon M.; Fischer, Lindsey G.; Glos, Courtney E.; Sempsrott, Peter J.; O'Donnell, Martin J.
2015-01-01
The Distributed Drug Discovery (D3) program trains students in three drug discovery disciplines (synthesis, computational analysis, and biological screening) while addressing the important challenge of discovering drug leads for neglected diseases. This article focuses on implementation of the synthesis component in the second-semester…
Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.
Karthikeyan, Muthukumarasamy; Vyas, Renu
2015-01-01
Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.
Binding-Site Assessment by Virtual Fragment Screening
Huang, Niu; Jacobson, Matthew P.
2010-01-01
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926
Designer drugs: the evolving science of drug discovery.
Wanke, L A; DuBose, R F
1998-07-01
Drug discovery and design are fundamental to drug development. Until recently, most drugs were discovered through random screening or developed through molecular modification. New technologies are revolutionizing this phase of drug development. Rational drug design, using powerful computers and computational chemistry and employing X-ray crystallography, nuclear magnetic resonance spectroscopy, and three-dimensional quantitative structure activity relationship analysis, is creating highly specific, biologically active molecules by virtual reality modeling. Sophisticated screening technologies are eliminating all but the most active lead compounds. These new technologies promise more efficacious, safe, and cost-effective medications, while minimizing drug development time and maximizing profits.
Active-learning strategies in computer-assisted drug discovery.
Reker, Daniel; Schneider, Gisbert
2015-04-01
High-throughput compound screening is time and resource consuming, and considerable effort is invested into screening compound libraries, profiling, and selecting the most promising candidates for further testing. Active-learning methods assist the selection process by focusing on areas of chemical space that have the greatest chance of success while considering structural novelty. The core feature of these algorithms is their ability to adapt the structure-activity landscapes through feedback. Instead of full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of the various computational active-learning approaches and outline their potential for drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Discovery and Development of ATP-Competitive mTOR Inhibitors Using Computational Approaches.
Luo, Yao; Wang, Ling
2017-11-16
The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. This protein is an attractive target for new anticancer drug development. Significant progress has been made in hit discovery, lead optimization, drug candidate development and determination of the three-dimensional (3D) structure of mTOR. Computational methods have been applied to accelerate the discovery and development of mTOR inhibitors helping to model the structure of mTOR, screen compound databases, uncover structure-activity relationship (SAR) and optimize the hits, mine the privileged fragments and design focused libraries. Besides, computational approaches were also applied to study protein-ligand interactions mechanisms and in natural product-driven drug discovery. Herein, we survey the most recent progress on the application of computational approaches to advance the discovery and development of compounds targeting mTOR. Future directions in the discovery of new mTOR inhibitors using computational methods are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Computational methods in drug discovery
Leelananda, Sumudu P
2016-01-01
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed. PMID:28144341
Computational methods in drug discovery.
Leelananda, Sumudu P; Lindert, Steffen
2016-01-01
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.
Computer-Aided Drug Design in Epigenetics
NASA Astrophysics Data System (ADS)
Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng
2018-03-01
Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.
Computer-Aided Drug Design in Epigenetics
Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng
2018-01-01
Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field. PMID:29594101
Getting the Most out of PubChem for Virtual Screening
Kim, Sunghwan
2016-01-01
Introduction With the emergence of the “big data” era, the biomedical research community has great interest in exploiting publicly available chemical information for drug discovery. PubChem is an example of public databases that provide a large amount of chemical information free of charge. Areas covered This article provides an overview of how PubChem’s data, tools, and services can be used for virtual screening and reviews recent publications that discuss important aspects of exploiting PubChem for drug discovery. Expert opinion PubChem offers comprehensive chemical information useful for drug discovery. It also provides multiple programmatic access routes, which are essential to build automated virtual screening pipelines that exploit PubChem data. In addition, PubChemRDF allows users to download PubChem data and load them into a local computing facility, facilitating data integration between PubChem and other resources. PubChem resources have been used in many studies for developing bioactivity and toxicity prediction models, discovering polypharmacologic (multi-target) ligands, and identifying new macromolecule targets of compounds (for drug-repurposing or off-target side effect prediction). These studies demonstrate the usefulness of PubChem as a key resource for computer-aided drug discovery and related area. PMID:27454129
The importance of employing computational resources for the automation of drug discovery.
Rosales-Hernández, Martha Cecilia; Correa-Basurto, José
2015-03-01
The application of computational tools to drug discovery helps researchers to design and evaluate new drugs swiftly with a reduce economic resources. To discover new potential drugs, computational chemistry incorporates automatization for obtaining biological data such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), as well as drug mechanisms of action. This editorial looks at examples of these computational tools, including docking, molecular dynamics simulation, virtual screening, quantum chemistry, quantitative structural activity relationship, principal component analysis and drug screening workflow systems. The authors then provide their perspectives on the importance of these techniques for drug discovery. Computational tools help researchers to design and discover new drugs for the treatment of several human diseases without side effects, thus allowing for the evaluation of millions of compounds with a reduced cost in both time and economic resources. The problem is that operating each program is difficult; one is required to use several programs and understand each of the properties being tested. In the future, it is possible that a single computer and software program will be capable of evaluating the complete properties (mechanisms of action and ADMET properties) of ligands. It is also possible that after submitting one target, this computer-software will be capable of suggesting potential compounds along with ways to synthesize them, and presenting biological models for testing.
When drug discovery meets web search: Learning to Rank for ligand-based virtual screening.
Zhang, Wei; Ji, Lijuan; Chen, Yanan; Tang, Kailin; Wang, Haiping; Zhu, Ruixin; Jia, Wei; Cao, Zhiwei; Liu, Qi
2015-01-01
The rapid increase in the emergence of novel chemical substances presents a substantial demands for more sophisticated computational methodologies for drug discovery. In this study, the idea of Learning to Rank in web search was presented in drug virtual screening, which has the following unique capabilities of 1). Applicable of identifying compounds on novel targets when there is not enough training data available for these targets, and 2). Integration of heterogeneous data when compound affinities are measured in different platforms. A standard pipeline was designed to carry out Learning to Rank in virtual screening. Six Learning to Rank algorithms were investigated based on two public datasets collected from Binding Database and the newly-published Community Structure-Activity Resource benchmark dataset. The results have demonstrated that Learning to rank is an efficient computational strategy for drug virtual screening, particularly due to its novel use in cross-target virtual screening and heterogeneous data integration. To the best of our knowledge, we have introduced here the first application of Learning to Rank in virtual screening. The experiment workflow and algorithm assessment designed in this study will provide a standard protocol for other similar studies. All the datasets as well as the implementations of Learning to Rank algorithms are available at http://www.tongji.edu.cn/~qiliu/lor_vs.html. Graphical AbstractThe analogy between web search and ligand-based drug discovery.
Computing elastic anisotropy to discover gum-metal-like structural alloys
NASA Astrophysics Data System (ADS)
Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.
2017-08-01
The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.
Increasing Chemical Space Coverage by Combining Empirical and Computational Fragment Screens
2015-01-01
Most libraries for fragment-based drug discovery are restricted to 1,000–10,000 compounds, but over 500,000 fragments are commercially available and potentially accessible by virtual screening. Whether this larger set would increase chemotype coverage, and whether a computational screen can pragmatically prioritize them, is debated. To investigate this question, a 1281-fragment library was screened by nuclear magnetic resonance (NMR) against AmpC β-lactamase, and hits were confirmed by surface plasmon resonance (SPR). Nine hits with novel chemotypes were confirmed biochemically with KI values from 0.2 to low mM. We also computationally docked 290,000 purchasable fragments with chemotypes unrepresented in the empirical library, finding 10 that had KI values from 0.03 to low mM. Though less novel than those discovered by NMR, the docking-derived fragments filled chemotype holes from the empirical library. Crystal structures of nine of the fragments in complex with AmpC β-lactamase revealed new binding sites and explained the relatively high affinity of the docking-derived fragments. The existence of chemotype holes is likely a general feature of fragment libraries, as calculation suggests that to represent the fragment substructures of even known biogenic molecules would demand a library of minimally over 32,000 fragments. Combining computational and empirical fragment screens enables the discovery of unexpected chemotypes, here by the NMR screen, while capturing chemotypes missing from the empirical library and tailored to the target, with little extra cost in resources. PMID:24807704
ACFIS: a web server for fragment-based drug discovery
Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu
2016-01-01
In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown ‘chemical space’ to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for ‘chemical space’, which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. PMID:27150808
ACFIS: a web server for fragment-based drug discovery.
Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu
2016-07-08
In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown 'chemical space' to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for 'chemical space', which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Data Resources for the Computer-Guided Discovery of Bioactive Natural Products.
Chen, Ya; de Bruyn Kops, Christina; Kirchmair, Johannes
2017-09-25
Natural products from plants, animals, marine life, fungi, bacteria, and other organisms are an important resource for modern drug discovery. Their biological relevance and structural diversity make natural products good starting points for drug design. Natural product-based drug discovery can benefit greatly from computational approaches, which are a valuable precursor or supplementary method to in vitro testing. We present an overview of 25 virtual and 31 physical natural product libraries that are useful for applications in cheminformatics, in particular virtual screening. The overview includes detailed information about each library, the extent of its structural information, and the overlap between different sources of natural products. In terms of chemical structures, there is a large overlap between freely available and commercial virtual natural product libraries. Of particular interest for drug discovery is that at least ten percent of known natural products are readily purchasable and many more natural products and derivatives are available through on-demand sourcing, extraction and synthesis services. Many of the readily purchasable natural products are of small size and hence of relevance to fragment-based drug discovery. There are also an increasing number of macrocyclic natural products and derivatives becoming available for screening.
Developing science gateways for drug discovery in a grid environment.
Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra
2016-01-01
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.
Fragment-based drug discovery and molecular docking in drug design.
Wang, Tao; Wu, Mian-Bin; Chen, Zheng-Jie; Chen, Hua; Lin, Jian-Ping; Yang, Li-Rong
2015-01-01
Fragment-based drug discovery (FBDD) has caused a revolution in the process of drug discovery and design, with many FBDD leads being developed into clinical trials or approved in the past few years. Compared with traditional high-throughput screening, it displays obvious advantages such as efficiently covering chemical space, achieving higher hit rates, and so forth. In this review, we focus on the most recent developments of FBDD for improving drug discovery, illustrating the process and the importance of FBDD. In particular, the computational strategies applied in the process of FBDD and molecular-docking programs are highlighted elaborately. In most cases, docking is used for predicting the ligand-receptor interaction modes and hit identification by structurebased virtual screening. The successful cases of typical significance and the hits identified most recently are discussed.
Early phase drug discovery: cheminformatics and computational techniques in identifying lead series.
Duffy, Bryan C; Zhu, Lei; Decornez, Hélène; Kitchen, Douglas B
2012-09-15
Early drug discovery processes rely on hit finding procedures followed by extensive experimental confirmation in order to select high priority hit series which then undergo further scrutiny in hit-to-lead studies. The experimental cost and the risk associated with poor selection of lead series can be greatly reduced by the use of many different computational and cheminformatic techniques to sort and prioritize compounds. We describe the steps in typical hit identification and hit-to-lead programs and then describe how cheminformatic analysis assists this process. In particular, scaffold analysis, clustering and property calculations assist in the design of high-throughput screening libraries, the early analysis of hits and then organizing compounds into series for their progression from hits to leads. Additionally, these computational tools can be used in virtual screening to design hit-finding libraries and as procedures to help with early SAR exploration. Copyright © 2012 Elsevier Ltd. All rights reserved.
How to benchmark methods for structure-based virtual screening of large compound libraries.
Christofferson, Andrew J; Huang, Niu
2012-01-01
Structure-based virtual screening is a useful computational technique for ligand discovery. To systematically evaluate different docking approaches, it is important to have a consistent benchmarking protocol that is both relevant and unbiased. Here, we describe the designing of a benchmarking data set for docking screen assessment, a standard docking screening process, and the analysis and presentation of the enrichment of annotated ligands among a background decoy database.
Computational Methods in Drug Discovery
Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens
2014-01-01
Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236
Modern approaches to accelerate discovery of new antischistosomal drugs.
Neves, Bruno Junior; Muratov, Eugene; Machado, Renato Beilner; Andrade, Carolina Horta; Cravo, Pedro Vitor Lemos
2016-06-01
The almost exclusive use of only praziquantel for the treatment of schistosomiasis has raised concerns about the possible emergence of drug-resistant schistosomes. Consequently, there is an urgent need for new antischistosomal drugs. The identification of leads and the generation of high quality data are crucial steps in the early stages of schistosome drug discovery projects. Herein, the authors focus on the current developments in antischistosomal lead discovery, specifically referring to the use of automated in vitro target-based and whole-organism screens and virtual screening of chemical databases. They highlight the strengths and pitfalls of each of the above-mentioned approaches, and suggest possible roadmaps towards the integration of several strategies, which may contribute for optimizing research outputs and led to more successful and cost-effective drug discovery endeavors. Increasing partnerships and access to funding for drug discovery have strengthened the battle against schistosomiasis in recent years. However, the authors believe this battle also includes innovative strategies to overcome scientific challenges. In this context, significant advances of in vitro screening as well as computer-aided drug discovery have contributed to increase the success rate and reduce the costs of drug discovery campaigns. Although some of these approaches were already used in current antischistosomal lead discovery pipelines, the integration of these strategies in a solid workflow should allow the production of new treatments for schistosomiasis in the near future.
Hit discovery and hit-to-lead approaches.
Keseru, György M; Makara, Gergely M
2006-08-01
Hit discovery technologies range from traditional high-throughput screening to affinity selection of large libraries, fragment-based techniques and computer-aided de novo design, many of which have been extensively reviewed. Development of quality leads using hit confirmation and hit-to-lead approaches present their own challenges, depending on the hit discovery method used to identify the initial hits. In this paper, we summarize common industry practices adopted to tackle hit-to-lead challenges and review how the advantages and drawbacks of different hit discovery techniques could affect the various issues hit-to-lead groups face.
Computationally driven drug discovery meeting-3 - Verona (Italy): 4 - 6th of March 2014.
Costantino, Gabriele
2014-12-01
The following article reports on the results and the outcome of a meeting organised at the Aptuit Auditorium in Verona (Italy), which highlighted the current applications of state-of-the-art computational science to drug design in Italy. The meeting, which had > 100 people in attendance, consisted of over 40 presentations and included keynote lectures given by world-renowned speakers. The topics included in the meeting are areas related to ligand and structure-based ligand design and library design and screening; it also provided discussion pertaining to chemometrics. The meeting also stressed the importance of public-private collaboration and reviewed the different approaches to computationally driven drug discovery taken within academia and industry. The meeting helped define the current position of state-of-the-art computational drug discovery in Italy, pointing out criticalities and assets. This kind of focused meeting is important in the sense that it lends the opportunity of a restricted yet representative community of fellow professionals to deeply discuss the current methodological approaches and provide future perspectives for computationally driven drug discovery.
Discovery of Novel MDR-Mycobacterium tuberculosis Inhibitor by New FRIGATE Computational Screen
Vértessy, Beáta; Pütter, Vera; Grolmusz, Vince; Schade, Markus
2011-01-01
With 1.6 million casualties annually and 2 billion people being infected, tuberculosis is still one of the most pressing healthcare challenges. Here we report on the new computational docking algorithm FRIGATE which unites continuous local optimization techniques (conjugate gradient method) with an inherently discrete computational approach in forcefield computation, resulting in equal or better scoring accuracies than several benchmark docking programs. By utilizing FRIGATE for a virtual screen of the ZINC library against the Mycobacterium tuberculosis (Mtb) enzyme antigen 85C, we identified novel small molecule inhibitors of multiple drug-resistant Mtb, which bind in vitro to the catalytic site of antigen 85C. PMID:22164290
Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway
2012-01-01
Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens. PMID:23006893
Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...
Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing
NASA Astrophysics Data System (ADS)
Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey
Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.
Computational biology for cardiovascular biomarker discovery.
Azuaje, Francisco; Devaux, Yvan; Wagner, Daniel
2009-07-01
Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.
Kasam, Vinod; Salzemann, Jean; Botha, Marli; Dacosta, Ana; Degliesposti, Gianluca; Isea, Raul; Kim, Doman; Maass, Astrid; Kenyon, Colin; Rastelli, Giulio; Hofmann-Apitius, Martin; Breton, Vincent
2009-05-01
Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery. Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase. In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures. On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed. The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.
Advances in fragment-based drug discovery platforms.
Orita, Masaya; Warizaya, Masaichi; Amano, Yasushi; Ohno, Kazuki; Niimi, Tatsuya
2009-11-01
Fragment-based drug discovery (FBDD) has been established as a powerful alternative and complement to traditional high-throughput screening techniques for identifying drug leads. At present, this technique is widely used among academic groups as well as small biotech and large pharmaceutical companies. In recent years, > 10 new compounds developed with FBDD have entered clinical development, and more and more attention in the drug discovery field is being focused on this technique. Under the FBDD approach, a fragment library of relatively small compounds (molecular mass = 100 - 300 Da) is screened by various methods and the identified fragment hits which normally weakly bind to the target are used as starting points to generate more potent drug leads. Because FBDD is still a relatively new drug discovery technology, further developments and optimizations in screening platforms and fragment exploitation can be expected. This review summarizes recent advances in FBDD platforms and discusses the factors important for the successful application of this technique. Under the FBDD approach, both identifying the starting fragment hit to be developed and generating the drug lead from that starting fragment hit are important. Integration of various techniques, such as computational technology, X-ray crystallography, NMR, surface plasmon resonance, isothermal titration calorimetry, mass spectrometry and high-concentration screening, must be applied in a situation-appropriate manner.
Modern drug discovery technologies: opportunities and challenges in lead discovery.
Guido, Rafael V C; Oliva, Glaucius; Andricopulo, Adriano D
2011-12-01
The identification of promising hits and the generation of high quality leads are crucial steps in the early stages of drug discovery projects. The definition and assessment of both chemical and biological space have revitalized the screening process model and emphasized the importance of exploring the intrinsic complementary nature of classical and modern methods in drug research. In this context, the widespread use of combinatorial chemistry and sophisticated screening methods for the discovery of lead compounds has created a large demand for small organic molecules that act on specific drug targets. Modern drug discovery involves the employment of a wide variety of technologies and expertise in multidisciplinary research teams. The synergistic effects between experimental and computational approaches on the selection and optimization of bioactive compounds emphasize the importance of the integration of advanced technologies in drug discovery programs. These technologies (VS, HTS, SBDD, LBDD, QSAR, and so on) are complementary in the sense that they have mutual goals, thereby the combination of both empirical and in silico efforts is feasible at many different levels of lead optimization and new chemical entity (NCE) discovery. This paper provides a brief perspective on the evolution and use of key drug design technologies, highlighting opportunities and challenges.
Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex.
Hao, Ge-Fei; Wang, Fu; Li, Hui; Zhu, Xiao-Lei; Yang, Wen-Chao; Huang, Li-Shar; Wu, Jia-Wei; Berry, Edward A; Yang, Guang-Fu
2012-07-11
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20 507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 Å resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.
Molecular Docking and Drug Discovery in β-Adrenergic Receptors.
Vilar, Santiago; Sobarzo-Sanchez, Eduardo; Santana, Lourdes; Uriarte, Eugenio
2017-01-01
Evolution in computer engineering, availability of increasing amounts of data and the development of new and fast docking algorithms and software have led to improved molecular simulations with crucial applications in virtual high-throughput screening and drug discovery. Moreover, analysis of protein-ligand recognition through molecular docking has become a valuable tool in drug design. In this review, we focus on the applicability of molecular docking on a particular class of G protein-coupled receptors: the β-adrenergic receptors, which are relevant targets in clinic for the treatment of asthma and cardiovascular diseases. We describe the binding site in β-adrenergic receptors to understand key factors in ligand recognition along with the proteins activation process. Moreover, we focus on the discovery of new lead compounds that bind the receptors, on the evaluation of virtual screening using the active/ inactive binding site states, and on the structural optimization of known families of binders to improve β-adrenergic affinity. We also discussed strengths and challenges related to the applicability of molecular docking in β-adrenergic receptors. Molecular docking is a valuable technique in computational chemistry to deeply analyze ligand recognition and has led to important breakthroughs in drug discovery and design in the field of β-adrenergic receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng; Leperi, Karson T.; Deria, Pravas; Zhang, Hongda; Vermeulen, Nicolaas A.; Stoddart, J. Fraser; You, Fengqi; Hupp, Joseph T.; Farha, Omar K.; Snurr, Randall Q.
2016-01-01
Discovery of new adsorbent materials with a high CO2 working capacity could help reduce CO2 emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO2 capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO2 working capacity and a high CO2/H2 selectivity. One of the synthesized MOFs shows a higher CO2 working capacity than any MOF reported in the literature under the operating conditions investigated here. PMID:27757420
NASA Astrophysics Data System (ADS)
Kalid, Ori; Toledo Warshaviak, Dora; Shechter, Sharon; Sherman, Woody; Shacham, Sharon
2012-11-01
We present the Consensus Induced Fit Docking (cIFD) approach for adapting a protein binding site to accommodate multiple diverse ligands for virtual screening. This novel approach results in a single binding site structure that can bind diverse chemotypes and is thus highly useful for efficient structure-based virtual screening. We first describe the cIFD method and its validation on three targets that were previously shown to be challenging for docking programs (COX-2, estrogen receptor, and HIV reverse transcriptase). We then demonstrate the application of cIFD to the challenging discovery of irreversible Crm1 inhibitors. We report the identification of 33 novel Crm1 inhibitors, which resulted from the testing of 402 purchased compounds selected from a screening set containing 261,680 compounds. This corresponds to a hit rate of 8.2 %. The novel Crm1 inhibitors reveal diverse chemical structures, validating the utility of the cIFD method in a real-world drug discovery project. This approach offers a pragmatic way to implicitly account for protein flexibility without the additional computational costs of ensemble docking or including full protein flexibility during virtual screening.
Musunuru, Kiran; Bernstein, Daniel; Cole, F Sessions; Khokha, Mustafa K; Lee, Frank S; Lin, Shin; McDonald, Thomas V; Moskowitz, Ivan P; Quertermous, Thomas; Sankaran, Vijay G; Schwartz, David A; Silverman, Edwin K; Zhou, Xiaobo; Hasan, Ahmed A K; Luo, Xiao-Zhong James
2018-04-01
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research. © 2018 American Heart Association, Inc.
The multiple roles of computational chemistry in fragment-based drug design
NASA Astrophysics Data System (ADS)
Law, Richard; Barker, Oliver; Barker, John J.; Hesterkamp, Thomas; Godemann, Robert; Andersen, Ole; Fryatt, Tara; Courtney, Steve; Hallett, Dave; Whittaker, Mark
2009-08-01
Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.
The drug discovery portal: a computational platform for identifying drug leads from academia.
Clark, Rachel L; Johnston, Blair F; Mackay, Simon P; Breslin, Catherine J; Robertson, Murray N; Sutcliffe, Oliver B; Dufton, Mark J; Harvey, Alan L
2010-05-01
The Drug Discovery Portal (DDP) is a research initiative based at the University of Strathclyde in Glasgow, Scotland. It was initiated in 2007 by a group of researchers with expertise in virtual screening. Academic research groups in the university working in drug discovery programmes estimated there was a historical collection of physical compounds going back 50 years that had never been adequately catalogued. This invaluable resource has been harnessed to form the basis of the DDP library, and has attracted a high-percentage uptake from the Universities and Research Groups internationally. Its unique attributes include the diversity of the academic database, sourced from synthetic, medicinal and phytochemists working an academic laboratories and the ability to link biologists with appropriate chemical expertise through a target-matching virtual screening approach, and has resulted in seven emerging hit development programmes between international contributors.
Bakken, Gregory A; Bell, Andrew S; Boehm, Markus; Everett, Jeremy R; Gonzales, Rosalia; Hepworth, David; Klug-McLeod, Jacquelyn L; Lanfear, Jeremy; Loesel, Jens; Mathias, John; Wood, Terence P
2012-11-26
High Throughput Screening (HTS) is a successful strategy for finding hits and leads that have the opportunity to be converted into drugs. In this paper we highlight novel computational methods used to select compounds to build a new screening file at Pfizer and the analytical methods we used to assess their quality. We also introduce the novel concept of molecular redundancy to help decide on the density of compounds required in any region of chemical space in order to be confident of running successful HTS campaigns.
Compound prioritization methods increase rates of chemical probe discovery in model organisms
Wallace, Iain M; Urbanus, Malene L; Luciani, Genna M; Burns, Andrew R; Han, Mitchell KL; Wang, Hao; Arora, Kriti; Heisler, Lawrence E; Proctor, Michael; St. Onge, Robert P; Roemer, Terry; Roy, Peter J; Cummins, Carolyn L; Bader, Gary D; Nislow, Corey; Giaever, Guri
2011-01-01
SUMMARY Pre-selection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in S. cerevisiae and identified ~7,500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. This data was used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7,500 growth-inhibitory molecules has been made commercially available and the computational model and filter used are provided. PMID:22035796
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, Raj
2016-08-01
Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.
Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Sy, Jamie Bernadette A; Clavio, Nina Abigail B; Macalino, Stephani Joy Y; Emnacen, Inno A; Lee, Alexandra P; Ko, Paul Kenny L; Concepcion, Gisela P
2017-01-01
Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in Mycobacterium tuberculosis ( Mtb ), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 (( Z )- N -(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)cyclohexyl)amino)acetimidic acid) displayed inhibitory activity up to 83% at 10 μg/mL concentration against the growth of the Mtb H37Ra strain.
Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Sy, Jamie Bernadette A; Clavio, Nina Abigail B; Macalino, Stephani Joy Y; Emnacen, Inno A; Lee, Alexandra P; Ko, Paul Kenny L; Concepcion, Gisela P
2017-01-01
Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in Mycobacterium tuberculosis (Mtb), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 ((Z)-N-(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)cyclohexyl)amino)acetimidic acid) displayed inhibitory activity up to 83% at 10 μg/mL concentration against the growth of the Mtb H37Ra strain. PMID:28280303
Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.
Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu
2015-01-01
The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.
NASA Astrophysics Data System (ADS)
Raschka, Sebastian; Scott, Anne M.; Liu, Nan; Gunturu, Santosh; Huertas, Mar; Li, Weiming; Kuhn, Leslie A.
2018-03-01
While the advantage of screening vast databases of molecules to cover greater molecular diversity is often mentioned, in reality, only a few studies have been published demonstrating inhibitor discovery by screening more than a million compounds for features that mimic a known three-dimensional (3D) ligand. Two factors contribute: the general difficulty of discovering potent inhibitors, and the lack of free, user-friendly software to incorporate project-specific knowledge and user hypotheses into 3D ligand-based screening. The Screenlamp modular toolkit presented here was developed with these needs in mind. We show Screenlamp's ability to screen more than 12 million commercially available molecules and identify potent in vivo inhibitors of a G protein-coupled bile acid receptor within the first year of a discovery project. This pheromone receptor governs sea lamprey reproductive behavior, and to our knowledge, this project is the first to establish the efficacy of computational screening in discovering lead compounds for aquatic invasive species control. Significant enhancement in activity came from selecting compounds based on one of the hypotheses: that matching two distal oxygen groups in the 3D structure of the pheromone is crucial for activity. Six of the 15 most active compounds met these criteria. A second hypothesis—that presence of an alkyl sulfate side chain results in high activity—identified another 6 compounds in the top 10, demonstrating the significant benefits of hypothesis-driven screening.
Computer-aided drug design at Boehringer Ingelheim
NASA Astrophysics Data System (ADS)
Muegge, Ingo; Bergner, Andreas; Kriegl, Jan M.
2017-03-01
Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.
Molecular dynamics simulations and novel drug discovery.
Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun
2018-01-01
Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.
Virtual screening of compound libraries.
Cerqueira, Nuno M F S A; Sousa, Sérgio F; Fernandes, Pedro A; Ramos, Maria João
2009-01-01
During the last decade, Virtual Screening (VS) has definitively established itself as an important part of the drug discovery and development process. VS involves the selection of likely drug candidates from large libraries of chemical structures by using computational methodologies, but the generic definition of VS encompasses many different methodologies. This chapter provides an introduction to the field by reviewing a variety of important aspects, including the different types of virtual screening methods, and the several steps required for a successful virtual screening campaign within a state-of-the-art approach, from target selection to postfilter application. This analysis is further complemented with a small collection important VS success stories.
Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point.
Rodrigues, Tiago
2017-11-15
Natural products (NPs) present a privileged source of inspiration for chemical probe and drug design. Despite the biological pre-validation of the underlying molecular architectures and their relevance in drug discovery, the poor accessibility to NPs, complexity of the synthetic routes and scarce knowledge of their macromolecular counterparts in phenotypic screens still hinder their broader exploration. Cheminformatics algorithms now provide a powerful means of circumventing the abovementioned challenges and unlocking the full potential of NPs in a drug discovery context. Herein, I discuss recent advances in the computer-assisted design of NP mimics and how artificial intelligence may accelerate future NP-inspired molecular medicine.
Abreu, Rui Mv; Froufe, Hugo Jc; Queiroz, Maria João Rp; Ferreira, Isabel Cfr
2010-10-28
Virtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters. MOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections. MOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.
Mehta, Pakhuri; Srivastava, Shubham; Choudhary, Bhanwar Singh; Sharma, Manish; Malik, Ruchi
2017-12-01
Multidrug resistance along with side-effects of available anti-epileptic drugs and unavailability of potent and effective agents in submicromolar quantities presents the biggest therapeutic challenges in anti-epileptic drug discovery. The molecular modeling techniques allow us to identify agents with novel structures to match the continuous urge for its discovery. KCNQ2 channel represents one of the validated targets for its therapy. The present study involves identification of newer anti-epileptic agents by means of a computer-aided drug design adaptive protocol involving both structure-based virtual screening of Asinex library using homology model of KCNQ2 and 3D-QSAR based virtual screening with docking analysis, followed by dG bind and ligand efficiency calculations with ADMET studies, of which 20 hits qualified all the criterions. The best ligands of both screenings with least potential for toxicity predicted computationally were then taken for molecular dynamic simulations. All the crucial amino acid interactions were observed in hits of both screenings such as Glu130, Arg207, Arg210 and Phe137. Robustness of docking protocol was analyzed through Receiver operating characteristic (ROC) curve values 0.88 (Area under curve AUC = 0.87) in Standard Precision and 0.84 (AUC = 0.82) in Extra Precision modes. Novelty analysis indicates that these compounds have not been reported previously as anti-epileptic agents.
Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators
Pérez-Regidor, Lucía; Zarioh, Malik; Ortega, Laura; Martín-Santamaría, Sonsoles
2016-01-01
This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR) modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful) contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field. PMID:27618029
Fu, Ying; Sun, Yi-Na; Yi, Ke-Han; Li, Ming-Qiang; Cao, Hai-Feng; Li, Jia-Zhong; Ye, Fei
2017-06-09
p -Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. A combined in silico structure-based pharmacophore and molecular docking-based virtual screening were performed to identify novel potential HPPD inhibitors. The complex-based pharmacophore model (CBP) with 0.721 of ROC used for screening compounds showed remarkable ability to retrieve known active ligands from among decoy molecules. The ChemDiv database was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5 (DS 2.5) to discern interactions with key residues at the active site of HPPD. Four compounds with top rankings in the HipHop model and well-known binding model were finally chosen as lead compounds with potential inhibitory effects on the active site of target. The results provided powerful insight into the development of novel HPPD inhibitors herbicides using computational techniques.
Therrien, Eric; Weill, Nathanael; Tomberg, Anna; Corbeil, Christopher R; Lee, Devin; Moitessier, Nicolas
2014-11-24
The use of predictive computational methods in the drug discovery process is in a state of continual growth. Over the last two decades, an increasingly large number of docking tools have been developed to identify hits or optimize lead molecules through in-silico screening of chemical libraries to proteins. In recent years, the focus has been on implementing protein flexibility and water molecules. Our efforts led to the development of Fitted first reported in 2007 and further developed since then. In this study, we wished to evaluate the impact of protein flexibility and occurrence of water molecules on the accuracy of the Fitted docking program to discriminate active compounds from inactive compounds in virtual screening (VS) campaigns. For this purpose, a total of 171 proteins cocrystallized with small molecules representing 40 unique enzymes and receptors as well as sets of known ligands and decoys were selected from the Protein Data Bank (PDB) and the Directory of Useful Decoys (DUD), respectively. This study revealed that implementing displaceable crystallographic or computationally placed particle water molecules and protein flexibility can improve the enrichment in active compounds. In addition, an informed decision based on library diversity or research objectives (hit discovery vs lead optimization) on which implementation to use may lead to significant improvements.
Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery
Ekins, Sean; Freundlich, Joel S.; Choi, Inhee; Sarker, Malabika; Talcott, Carolyn
2010-01-01
We are witnessing the growing menace of both increasing cases of drug-sensitive and drug-resistant Mycobacterium tuberculosis strains and the challenge to produce the first new tuberculosis (TB) drug in well over 40 years. The TB community, having invested in extensive high-throughput screening efforts, is faced with the question of how to optimally leverage this data in order to move from a hit to a lead to a clinical candidate and potentially a new drug. Complementing this approach, yet conducted on a much smaller scale, cheminformatic techniques have been leveraged and are herein reviewed. We suggest these computational approaches should be more optimally integrated in a workflow with experimental approaches to accelerate TB drug discovery. PMID:21129975
Balancing novelty with confined chemical space in modern drug discovery.
Medina-Franco, José L; Martinez-Mayorga, Karina; Meurice, Nathalie
2014-02-01
The concept of chemical space has broad applications in drug discovery. In response to the needs of drug discovery campaigns, different approaches are followed to efficiently populate, mine and select relevant chemical spaces that overlap with biologically relevant chemical spaces. This paper reviews major trends in current drug discovery and their impact on the mining and population of chemical space. We also survey different approaches to develop screening libraries with confined chemical spaces balancing physicochemical properties. In this context, the confinement is guided by criteria that can be divided in two broad categories: i) library design focused on a relevant therapeutic target or disease and ii) library design focused on the chemistry or a desired molecular function. The design and development of chemical libraries should be associated with the specific purpose of the library and the project goals. The high complexity of drug discovery and the inherent imperfection of individual experimental and computational technologies prompt the integration of complementary library design and screening approaches to expedite the identification of new and better drugs. Library design approaches including diversity-oriented synthesis, biological-oriented synthesis or combinatorial library design, to name a few, and the design of focused libraries driven by target/disease, chemical structure or molecular function are more efficient if they are guided by multi-parameter optimization. In this context, consideration of pharmaceutically relevant properties is essential for balancing novelty with chemical space in drug discovery.
Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.
Accessible high-throughput virtual screening molecular docking software for students and educators.
Jacob, Reed B; Andersen, Tim; McDougal, Owen M
2012-05-01
We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms.
NASA Astrophysics Data System (ADS)
Jain, A.
2017-08-01
Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.
Hierarchical virtual screening approaches in small molecule drug discovery.
Kumar, Ashutosh; Zhang, Kam Y J
2015-01-01
Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.
Spyrakis, Francesca; Cavasotto, Claudio N
2015-10-01
Structure-based virtual screening is currently an established tool in drug lead discovery projects. Although in the last years the field saw an impressive progress in terms of algorithm development, computational performance, and retrospective and prospective applications in ligand identification, there are still long-standing challenges where further improvement is needed. In this review, we consider the conceptual frame, state-of-the-art and recent developments of three critical "structural" issues in structure-based drug lead discovery: the use of homology modeling to accurately model the binding site when no experimental structures are available, the necessity of accounting for the dynamics of intrinsically flexible systems as proteins, and the importance of considering active site water molecules in lead identification and optimization campaigns. Copyright © 2015 Elsevier Inc. All rights reserved.
Blueprint for antimicrobial hit discovery targeting metabolic networks.
Shen, Y; Liu, J; Estiu, G; Isin, B; Ahn, Y-Y; Lee, D-S; Barabási, A-L; Kapatral, V; Wiest, O; Oltvai, Z N
2010-01-19
Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy.
Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason
2010-01-01
Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.
PubChem BioAssay: A Decade's Development toward Open High-Throughput Screening Data Sharing.
Wang, Yanli; Cheng, Tiejun; Bryant, Stephen H
2017-07-01
High-throughput screening (HTS) is now routinely conducted for drug discovery by both pharmaceutical companies and screening centers at academic institutions and universities. Rapid advance in assay development, robot automation, and computer technology has led to the generation of terabytes of data in screening laboratories. Despite the technology development toward HTS productivity, fewer efforts were devoted to HTS data integration and sharing. As a result, the huge amount of HTS data was rarely made available to the public. To fill this gap, the PubChem BioAssay database ( https://www.ncbi.nlm.nih.gov/pcassay/ ) was set up in 2004 to provide open access to the screening results tested on chemicals and RNAi reagents. With more than 10 years' development and contributions from the community, PubChem has now become the largest public repository for chemical structures and biological data, which provides an information platform to worldwide researchers supporting drug development, medicinal chemistry study, and chemical biology research. This work presents a review of the HTS data content in the PubChem BioAssay database and the progress of data deposition to stimulate knowledge discovery and data sharing. It also provides a description of the database's data standard and basic utilities facilitating information access and use for new users.
NASA Astrophysics Data System (ADS)
Annapoorani, Angusamy; Umamageswaran, Venugopal; Parameswari, Radhakrishnan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera
2012-09-01
Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.
O'Reilly, Linda P; Long, Olivia S; Cobanoglu, Murat C; Benson, Joshua A; Luke, Cliff J; Miedel, Mark T; Hale, Pamela; Perlmutter, David H; Bahar, Ivet; Silverman, Gary A; Pak, Stephen C
2014-10-01
α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.
2014-11-01
Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.
In-silico guided discovery of novel CCR9 antagonists
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cross, Jason B.; Romero, Jan; Heifetz, Alexander; Humphries, Eric; Hall, Katie; Wu, Yuchuan; Stucka, Sabrina; Zhang, Jing; Chandonnet, Haoqun; Lippa, Blaise; Ryan, M. Dominic; Baber, J. Christian
2018-03-01
Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.
Kumar, Akhil; Tiwari, Ashish; Sharma, Ashok
2018-03-15
Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis is not able to provide complete solution of AD due to multifactorial nature of disease and one target one drug seems to fail to provide better treatment against AD. Moreover, current available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So the current AD drug discovery research shifting towards new approach for better solution that simultaneously modulate more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs. Drug discovery project is tedious, costly and long term project. Moreover, multi target AD drug discovery added extra challenges such as good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off target side effect and crossing of the blood brain barrier. These hurdles may be addressed by insilico methods for efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here we are summarizing some of the most prominent and computationally explored single target against AD and further we discussed successful example of dual or multiple inhibitors for same targets. Moreover we focused on ligand and structure based computational approach to design MTDL against AD. However is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy are useful in future MTDLs drug discovery alone or in combination with fragment based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug discovery and play an important role in optimizing multi-target drug discovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Industrial medicinal chemistry insights: neuroscience hit generation at Janssen.
Tresadern, Gary; Rombouts, Frederik J R; Oehlrich, Daniel; Macdonald, Gregor; Trabanco, Andres A
2017-10-01
The role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed. Modern medicinal chemistry is responsible for integrating innovation throughout early drug discovery, including new screening paradigms, computational approaches, novel synthetic chemistry, gene-family screening, investigating routes of delivery, and so on. In this Foundation Review, we show how a successful medicinal chemistry team has a broad impact and requires multidisciplinary expertise in these areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Olivares-Amaya, Roberto; Hachmann, Johannes; Amador-Bedolla, Carlos; Daly, Aidan; Jinich, Adrian; Atahan-Evrenk, Sule; Boixo, Sergio; Aspuru-Guzik, Alán
2012-02-01
Organic photovoltaic devices have emerged as competitors to silicon-based solar cells, currently reaching efficiencies of over 9% and offering desirable properties for manufacturing and installation. We study conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices with a molecular library motivated by experimental feasibility. We use quantum mechanics and a distributed computing approach to explore this vast molecular space. We will detail the screening approach starting from the generation of the molecular library, which can be easily extended to other kinds of molecular systems. We will describe the screening method for these materials which ranges from descriptor models, ubiquitous in the drug discovery community, to eventually reaching first principles quantum chemistry methods. We will present results on the statistical analysis, based principally on machine learning, specifically partial least squares and Gaussian processes. Alongside, clustering methods and the use of the hypergeometric distribution reveal moieties important for the donor materials and allow us to quantify structure-property relationships. These efforts enable us to accelerate materials discovery in organic photovoltaics through our collaboration with experimental groups.
Applications of chemogenomic library screening in drug discovery.
Jones, Lyn H; Bunnage, Mark E
2017-04-01
The allure of phenotypic screening, combined with the industry preference for target-based approaches, has prompted the development of innovative chemical biology technologies that facilitate the identification of new therapeutic targets for accelerated drug discovery. A chemogenomic library is a collection of selective small-molecule pharmacological agents, and a hit from such a set in a phenotypic screen suggests that the annotated target or targets of that pharmacological agent may be involved in perturbing the observable phenotype. In this Review, we describe opportunities for chemogenomic screening to considerably expedite the conversion of phenotypic screening projects into target-based drug discovery approaches. Other applications are explored, including drug repositioning, predictive toxicology and the discovery of novel pharmacological modalities.
[Adverse Effect Predictions Based on Computational Toxicology Techniques and Large-scale Databases].
Uesawa, Yoshihiro
2018-01-01
Understanding the features of chemical structures related to the adverse effects of drugs is useful for identifying potential adverse effects of new drugs. This can be based on the limited information available from post-marketing surveillance, assessment of the potential toxicities of metabolites and illegal drugs with unclear characteristics, screening of lead compounds at the drug discovery stage, and identification of leads for the discovery of new pharmacological mechanisms. This present paper describes techniques used in computational toxicology to investigate the content of large-scale spontaneous report databases of adverse effects, and it is illustrated with examples. Furthermore, volcano plotting, a new visualization method for clarifying the relationships between drugs and adverse effects via comprehensive analyses, will be introduced. These analyses may produce a great amount of data that can be applied to drug repositioning.
Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands.
Rosano, Camillo; Ponassi, Marco; Santolla, Maria Francesca; Pisano, Assunta; Felli, Lamberto; Vivacqua, Adele; Maggiolini, Marcello; Lappano, Rosamaria
2016-01-01
Estrogens influence multiple physiological processes and are implicated in many diseases as well. Cellular responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as ligand-activated transcription factors. Recently, a member of the G protein-coupled receptor (GPCR) superfamily, namely GPER/GPR30, has been identified as a further mediator of estrogen signalling in different pathophysiological conditions, including cancer. Today, computational methods are commonly used in all areas of health science research. Among these methods, virtual ligand screening has become an established technique for hit discovery and optimization. The absence of an established three-dimensional structure of GPER promoted studies of structure-based drug design in order to build reliable molecular models of this receptor. Here, we discuss the results obtained through the structure-based virtual ligand screening for GPER, which allowed the identification and synthesis of different selective agonist and antagonist moieties. These compounds led significant advances in our understanding of the GPER function at the cellular, tissue, and organismal levels. In particular, selective GPER ligands were critical toward the evaluation of the role elicited by this receptor in several pathophysiological conditions, including cancer. Considering that structure-based approaches are fundamental in drug discovery, future research breakthroughs with the aid of computer-aided molecular design and chemo-bioinformatics could generate a new class of drugs that, acting through GPER, would be useful in a variety of diseases as well as in innovative anticancer strategies.
Blueprint for antimicrobial hit discovery targeting metabolic networks
Shen, Y.; Liu, J.; Estiu, G.; Isin, B.; Ahn, Y-Y.; Lee, D-S.; Barabási, A-L.; Kapatral, V.; Wiest, O.; Oltvai, Z. N.
2010-01-01
Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy. PMID:20080587
Efficient discovery of responses of proteins to compounds using active learning
2014-01-01
Background Drug discovery and development has been aided by high throughput screening methods that detect compound effects on a single target. However, when using focused initial screening, undesirable secondary effects are often detected late in the development process after significant investment has been made. An alternative approach would be to screen against undesired effects early in the process, but the number of possible secondary targets makes this prohibitively expensive. Results This paper describes methods for making this global approach practical by constructing predictive models for many target responses to many compounds and using them to guide experimentation. We demonstrate for the first time that by jointly modeling targets and compounds using descriptive features and using active machine learning methods, accurate models can be built by doing only a small fraction of possible experiments. The methods were evaluated by computational experiments using a dataset of 177 assays and 20,000 compounds constructed from the PubChem database. Conclusions An average of nearly 60% of all hits in the dataset were found after exploring only 3% of the experimental space which suggests that active learning can be used to enable more complete characterization of compound effects than otherwise affordable. The methods described are also likely to find widespread application outside drug discovery, such as for characterizing the effects of a large number of compounds or inhibitory RNAs on a large number of cell or tissue phenotypes. PMID:24884564
Computer-aided discovery of a metal-organic framework with superior oxygen uptake.
Moghadam, Peyman Z; Islamoglu, Timur; Goswami, Subhadip; Exley, Jason; Fantham, Marcus; Kaminski, Clemens F; Snurr, Randall Q; Farha, Omar K; Fairen-Jimenez, David
2018-04-11
Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.
Shin, Woong-Hee; Kihara, Daisuke
2018-01-01
Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2 . We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.
The Screening Compound Collection: A Key Asset for Drug Discovery.
Boss, Christoph; Hazemann, Julien; Kimmerlin, Thierry; von Korff, Modest; Lüthi, Urs; Peter, Oliver; Sander, Thomas; Siegrist, Romain
2017-10-25
In this case study on an essential instrument of modern drug discovery, we summarize our successful efforts in the last four years toward enhancing the Actelion screening compound collection. A key organizational step was the establishment of the Compound Library Committee (CLC) in September 2013. This cross-functional team consisting of computational scientists, medicinal chemists and a biologist was endowed with a significant annual budget for regular new compound purchases. Based on an initial library analysis performed in 2013, the CLC developed a New Library Strategy. The established continuous library turn-over mode, and the screening library size of 300'000 compounds were maintained, while the structural library quality was increased. This was achieved by shifting the selection criteria from 'druglike' to 'leadlike' structures, enriching for non-flat structures, aiming for compound novelty, and increasing the ratio of higher cost 'Premium Compounds'. Novel chemical space was gained by adding natural compounds, macrocycles, designed and focused libraries to the collection, and through mutual exchanges of proprietary compounds with agrochemical companies. A comparative analysis in 2016 provided evidence for the positive impact of these measures. Screening the improved library has provided several highly promising hits, including a macrocyclic compound, that are currently followed up in different Hit-to-Lead and Lead Optimization programs. It is important to state that the goal of the CLC was not to achieve higher HTS hit rates, but to increase the chances of identified hits to serve as the basis of successful early drug discovery programs. The experience gathered so far legitimates the New Library Strategy.
Quantum chemical approaches in structure-based virtual screening and lead optimization
NASA Astrophysics Data System (ADS)
Cavasotto, Claudio N.; Adler, Natalia S.; Aucar, Maria G.
2018-05-01
Today computational chemistry is a consolidated tool in drug lead discovery endeavors. Due to methodological developments and to the enormous advance in computer hardware, methods based on quantum mechanics (QM) have gained great attention in the last 10 years, and calculations on biomacromolecules are becoming increasingly explored, aiming to provide better accuracy in the description of protein-ligand interactions and the prediction of binding affinities. In principle, the QM formulation includes all contributions to the energy, accounting for terms usually missing in molecular mechanics force-fields, such as electronic polarization effects, metal coordination, and covalent binding; moreover, QM methods are systematically improvable, and provide a greater degree of transferability. In this mini-review we present recent applications of explicit QM-based methods in small-molecule docking and scoring, and in the calculation of binding free-energy in protein-ligand systems. Although the routine use of QM-based approaches in an industrial drug lead discovery setting remains a formidable challenging task, it is likely they will increasingly become active players within the drug discovery pipeline.
Ballester, Pedro J.; Mangold, Martina; Howard, Nigel I.; Robinson, Richard L. Marchese; Abell, Chris; Blumberger, Jochen; Mitchell, John B. O.
2012-01-01
One of the initial steps of modern drug discovery is the identification of small organic molecules able to inhibit a target macromolecule of therapeutic interest. A small proportion of these hits are further developed into lead compounds, which in turn may ultimately lead to a marketed drug. A commonly used screening protocol used for this task is high-throughput screening (HTS). However, the performance of HTS against antibacterial targets has generally been unsatisfactory, with high costs and low rates of hit identification. Here, we present a novel computational methodology that is able to identify a high proportion of structurally diverse inhibitors by searching unusually large molecular databases in a time-, cost- and resource-efficient manner. This virtual screening methodology was tested prospectively on two versions of an antibacterial target (type II dehydroquinase from Mycobacterium tuberculosis and Streptomyces coelicolor), for which HTS has not provided satisfactory results and consequently practically all known inhibitors are derivatives of the same core scaffold. Overall, our protocols identified 100 new inhibitors, with calculated Ki ranging from 4 to 250 μM (confirmed hit rates are 60% and 62% against each version of the target). Most importantly, over 50 new active molecular scaffolds were discovered that underscore the benefits that a wide application of prospectively validated in silico screening tools is likely to bring to antibacterial hit identification. PMID:22933186
Ballester, Pedro J; Mangold, Martina; Howard, Nigel I; Robinson, Richard L Marchese; Abell, Chris; Blumberger, Jochen; Mitchell, John B O
2012-12-07
One of the initial steps of modern drug discovery is the identification of small organic molecules able to inhibit a target macromolecule of therapeutic interest. A small proportion of these hits are further developed into lead compounds, which in turn may ultimately lead to a marketed drug. A commonly used screening protocol used for this task is high-throughput screening (HTS). However, the performance of HTS against antibacterial targets has generally been unsatisfactory, with high costs and low rates of hit identification. Here, we present a novel computational methodology that is able to identify a high proportion of structurally diverse inhibitors by searching unusually large molecular databases in a time-, cost- and resource-efficient manner. This virtual screening methodology was tested prospectively on two versions of an antibacterial target (type II dehydroquinase from Mycobacterium tuberculosis and Streptomyces coelicolor), for which HTS has not provided satisfactory results and consequently practically all known inhibitors are derivatives of the same core scaffold. Overall, our protocols identified 100 new inhibitors, with calculated K(i) ranging from 4 to 250 μM (confirmed hit rates are 60% and 62% against each version of the target). Most importantly, over 50 new active molecular scaffolds were discovered that underscore the benefits that a wide application of prospectively validated in silico screening tools is likely to bring to antibacterial hit identification.
Brown, J B; Nakatsui, Masahiko; Okuno, Yasushi
2014-12-01
The cost of pharmaceutical R&D has risen enormously, both worldwide and in Japan. However, Japan faces a particularly difficult situation in that its population is aging rapidly, and the cost of pharmaceutical R&D affects not only the industry but the entire medical system as well. To attempt to reduce costs, the newly launched K supercomputer is available for big data drug discovery and structural simulation-based drug discovery. We have implemented both primary (direct) and secondary (infrastructure, data processing) methods for the two types of drug discovery, custom tailored to maximally use the 88 128 compute nodes/CPUs of K, and evaluated the implementations. We present two types of results. In the first, we executed the virtual screening of nearly 19 billion compound-protein interactions, and calculated the accuracy of predictions against publicly available experimental data. In the second investigation, we implemented a very computationally intensive binding free energy algorithm, and found that comparison of our binding free energies was considerably accurate when validated against another type of publicly available experimental data. The common feature of both result types is the scale at which computations were executed. The frameworks presented in this article provide prospectives and applications that, while tuned to the computing resources available in Japan, are equally applicable to any equivalent large-scale infrastructure provided elsewhere. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Congestion game scheduling for virtual drug screening optimization
NASA Astrophysics Data System (ADS)
Nikitina, Natalia; Ivashko, Evgeny; Tchernykh, Andrei
2018-02-01
In virtual drug screening, the chemical diversity of hits is an important factor, along with their predicted activity. Moreover, interim results are of interest for directing the further research, and their diversity is also desirable. In this paper, we consider a problem of obtaining a diverse set of virtual screening hits in a short time. To this end, we propose a mathematical model of task scheduling for virtual drug screening in high-performance computational systems as a congestion game between computational nodes to find the equilibrium solutions for best balancing the number of interim hits with their chemical diversity. The model considers the heterogeneous environment with workload uncertainty, processing time uncertainty, and limited knowledge about the input dataset structure. We perform computational experiments and evaluate the performance of the developed approach considering organic molecules database GDB-9. The used set of molecules is rich enough to demonstrate the feasibility and practicability of proposed solutions. We compare the algorithm with two known heuristics used in practice and observe that game-based scheduling outperforms them by the hit discovery rate and chemical diversity at earlier steps. Based on these results, we use a social utility metric for assessing the efficiency of our equilibrium solutions and show that they reach greatest values.
Quantitative structure-activity relationship: promising advances in drug discovery platforms.
Wang, Tao; Wu, Mian-Bin; Lin, Jian-Ping; Yang, Li-Rong
2015-12-01
Quantitative structure-activity relationship (QSAR) modeling is one of the most popular computer-aided tools employed in medicinal chemistry for drug discovery and lead optimization. It is especially powerful in the absence of 3D structures of specific drug targets. QSAR methods have been shown to draw public attention since they were first introduced. In this review, the authors provide a brief discussion of the basic principles of QSAR, model development and model validation. They also highlight the current applications of QSAR in different fields, particularly in virtual screening, rational drug design and multi-target QSAR. Finally, in view of recent controversies, the authors detail the challenges faced by QSAR modeling and the relevant solutions. The aim of this review is to show how QSAR modeling can be applied in novel drug discovery, design and lead optimization. QSAR should intentionally be used as a powerful tool for fragment-based drug design platforms in the field of drug discovery and design. Although there have been an increasing number of experimentally determined protein structures in recent years, a great number of protein structures cannot be easily obtained (i.e., membrane transport proteins and G-protein coupled receptors). Fragment-based drug discovery, such as QSAR, could be applied further and have a significant role in dealing with these problems. Moreover, along with the development of computer software and hardware, it is believed that QSAR will be increasingly important.
Drug repurposing: translational pharmacology, chemistry, computers and the clinic.
Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan
2013-01-01
The process of discovering a pharmacological compound that elicits a desired clinical effect with minimal side effects is a challenge. Prior to the advent of high-performance computing and large-scale screening technologies, drug discovery was largely a serendipitous endeavor, as in the case of thalidomide for erythema nodosum leprosum or cancer drugs in general derived from flora located in far-reaching geographic locations. More recently, de novo drug discovery has become a more rationalized process where drug-target-effect hypotheses are formulated on the basis of already known compounds/protein targets and their structures. Although this approach is hypothesis-driven, the actual success has been very low, contributing to the soaring costs of research and development as well as the diminished pharmaceutical pipeline in the United States. In this review, we discuss the evolution in computational pharmacology as the next generation of successful drug discovery and implementation in the clinic where high-performance computing (HPC) is used to generate and validate drug-target-effect hypotheses completely in silico. The use of HPC would decrease development time and errors while increasing productivity prior to in vitro, animal and human testing. We highlight approaches in chemoinformatics, bioinformatics as well as network biopharmacology to illustrate potential avenues from which to design clinically efficacious drugs. We further discuss the implications of combining these approaches into an integrative methodology for high-accuracy computational predictions within the context of drug repositioning for the efficient streamlining of currently approved drugs back into clinical trials for possible new indications.
Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G; King, Ross D
2015-03-06
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N.; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G.; King, Ross D.
2015-01-01
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist ‘Eve’ designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax. PMID:25652463
Phenotypic screening in cancer drug discovery - past, present and future.
Moffat, John G; Rudolph, Joachim; Bailey, David
2014-08-01
There has been a resurgence of interest in the use of phenotypic screens in drug discovery as an alternative to target-focused approaches. Given that oncology is currently the most active therapeutic area, and also one in which target-focused approaches have been particularly prominent in the past two decades, we investigated the contribution of phenotypic assays to oncology drug discovery by analysing the origins of all new small-molecule cancer drugs approved by the US Food and Drug Administration (FDA) over the past 15 years and those currently in clinical development. Although the majority of these drugs originated from target-based discovery, we identified a significant number whose discovery depended on phenotypic screening approaches. We postulate that the contribution of phenotypic screening to cancer drug discovery has been hampered by a reliance on 'classical' nonspecific drug effects such as cytotoxicity and mitotic arrest, exacerbated by a paucity of mechanistically defined cellular models for therapeutically translatable cancer phenotypes. However, technical and biological advances that enable such mechanistically informed phenotypic models have the potential to empower phenotypic drug discovery in oncology.
Wasko, Michael J; Pellegrene, Kendy A; Madura, Jeffry D; Surratt, Christopher K
2015-01-01
Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for "growing" the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.
Wasko, Michael J.; Pellegrene, Kendy A.; Madura, Jeffry D.; Surratt, Christopher K.
2015-01-01
Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for “growing” the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies. PMID:26441817
GPU acceleration of Dock6's Amber scoring computation.
Yang, Hailong; Zhou, Qiongqiong; Li, Bo; Wang, Yongjian; Luan, Zhongzhi; Qian, Depei; Li, Hanlu
2010-01-01
Dressing the problem of virtual screening is a long-term goal in the drug discovery field, which if properly solved, can significantly shorten new drugs' R&D cycle. The scoring functionality that evaluates the fitness of the docking result is one of the major challenges in virtual screening. In general, scoring functionality in docking requires a large amount of floating-point calculations, which usually takes several weeks or even months to be finished. This time-consuming procedure is unacceptable, especially when highly fatal and infectious virus arises such as SARS and H1N1, which forces the scoring task to be done in a limited time. This paper presents how to leverage the computational power of GPU to accelerate Dock6's (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25: 1157-1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical Staff, Compute Unified Device Architecture - Programming Guide, NVIDIA Corporation, 2008) (Compute Unified Device Architecture) platform. We also discuss many factors that will greatly influence the performance after porting the Amber scoring to GPU, including thread management, data transfer, and divergence hidden. Our experiments show that the GPU-accelerated Amber scoring achieves a 6.5× speedup with respect to the original version running on AMD dual-core CPU for the same problem size. This acceleration makes the Amber scoring more competitive and efficient for large-scale virtual screening problems.
Dynamic undocking and the quasi-bound state as tools for drug discovery
NASA Astrophysics Data System (ADS)
Ruiz-Carmona, Sergio; Schmidtke, Peter; Luque, F. Javier; Baker, Lisa; Matassova, Natalia; Davis, Ben; Roughley, Stephen; Murray, James; Hubbard, Rod; Barril, Xavier
2017-03-01
There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein-ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other 'thermodynamic' methods. We demonstrate the potential of the docking-undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40%.
Podvinec, Michael; Lim, Siew Pheng; Schmidt, Tobias; Scarsi, Marco; Wen, Daying; Sonntag, Louis-Sebastian; Sanschagrin, Paul; Shenkin, Peter S; Schwede, Torsten
2010-02-25
Dengue fever is a viral disease that affects 50-100 million people annually and is one of the most important emerging infectious diseases in many areas of the world. Currently, neither specific drugs nor vaccines are available. Here, we report on the discovery of new inhibitors of the viral NS5 RNA methyltransferase, a promising flavivirus drug target. We have used a multistage molecular docking approach to screen a library of more than 5 million commercially available compounds against the two binding sites of this enzyme. In 263 compounds chosen for experimental verification, we found 10 inhibitors with IC(50) values of <100 microM, of which four exhibited IC(50) values of <10 microM in in vitro assays. The initial hit list also contained 25 nonspecific aggregators. We discuss why this likely occurred for this particular target. We also describe our attempts to use aggregation prediction to further guide the study, following this finding.
Mass spectrometry-driven drug discovery for development of herbal medicine.
Zhang, Aihua; Sun, Hui; Wang, Xijun
2018-05-01
Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.
Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database
Butkiewicz, Mariusz; Lowe, Edward W.; Mueller, Ralf; Mendenhall, Jeffrey L.; Teixeira, Pedro L.; Weaver, C. David; Meiler, Jens
2013-01-01
With the rapidly increasing availability of High-Throughput Screening (HTS) data in the public domain, such as the PubChem database, methods for ligand-based computer-aided drug discovery (LB-CADD) have the potential to accelerate and reduce the cost of probe development and drug discovery efforts in academia. We assemble nine data sets from realistic HTS campaigns representing major families of drug target proteins for benchmarking LB-CADD methods. Each data set is public domain through PubChem and carefully collated through confirmation screens validating active compounds. These data sets provide the foundation for benchmarking a new cheminformatics framework BCL::ChemInfo, which is freely available for non-commercial use. Quantitative structure activity relationship (QSAR) models are built using Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Decision Trees (DTs), and Kohonen networks (KNs). Problem-specific descriptor optimization protocols are assessed including Sequential Feature Forward Selection (SFFS) and various information content measures. Measures of predictive power and confidence are evaluated through cross-validation, and a consensus prediction scheme is tested that combines orthogonal machine learning algorithms into a single predictor. Enrichments ranging from 15 to 101 for a TPR cutoff of 25% are observed. PMID:23299552
SemaTyP: a knowledge graph based literature mining method for drug discovery.
Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian
2018-05-30
Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-01-01
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-03-04
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.
Postgenomic strategies in antibacterial drug discovery.
Brötz-Oesterhelt, Heike; Sass, Peter
2010-10-01
During the last decade the field of antibacterial drug discovery has changed in many aspects including bacterial organisms of primary interest, discovery strategies applied and pharmaceutical companies involved. Target-based high-throughput screening had been disappointingly unsuccessful for antibiotic research. Understanding of this lack of success has increased substantially and the lessons learned refer to characteristics of targets, screening libraries and screening strategies. The 'genomics' approach was replaced by a diverse array of discovery strategies, for example, searching for new natural product leads among previously abandoned compounds or new microbial sources, screening for synthetic inhibitors by targeted approaches including structure-based design and analyses of focused libraries and designing resistance-breaking properties into antibiotics of established classes. Furthermore, alternative treatment options are being pursued including anti-virulence strategies and immunotherapeutic approaches. This article summarizes the lessons learned from the genomics era and describes discovery strategies resulting from that knowledge.
Cell and small animal models for phenotypic drug discovery.
Szabo, Mihaly; Svensson Akusjärvi, Sara; Saxena, Ankur; Liu, Jianping; Chandrasekar, Gayathri; Kitambi, Satish S
2017-01-01
The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s) or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery.
Discovery of novel drugs for promising targets.
Martell, Robert E; Brooks, David G; Wang, Yan; Wilcoxen, Keith
2013-09-01
Once a promising drug target is identified, the steps to actually discover and optimize a drug are diverse and challenging. The goal of this study was to provide a road map to navigate drug discovery. Review general steps for drug discovery and provide illustrating references. A number of approaches are available to enhance and accelerate target identification and validation. Consideration of a variety of potential mechanisms of action of potential drugs can guide discovery efforts. The hit to lead stage may involve techniques such as high-throughput screening, fragment-based screening, and structure-based design, with informatics playing an ever-increasing role. Biologically relevant screening models are discussed, including cell lines, 3-dimensional culture, and in vivo screening. The process of enabling human studies for an investigational drug is also discussed. Drug discovery is a complex process that has significantly evolved in recent years. © 2013 Elsevier HS Journals, Inc. All rights reserved.
Docking and scoring in virtual screening for drug discovery: methods and applications.
Kitchen, Douglas B; Decornez, Hélène; Furr, John R; Bajorath, Jürgen
2004-11-01
Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization. Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors. Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes. Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zunger, Alex; Kazmerski, Lawrence L.; Dalpian, Gustavo M.
The material class of hybrid organic-inorganic perovskites (AMX3) has risen rapidly from a virtually unknown material in photovoltaic applications a short 8-years ago into 20-23% efficient thin-film solar cell devices. As promising as this class of materials is, however, there are limitations associated with its poor long-term stability, non-optimal band gap, and the presence of toxic Pb atom on the metalloid site. An Edisonian laboratory exploration (i.e., growth + characterization) via trial-and-error processes of all other candidate materials, is unpractical. Our approach uses high speed computational design and discovery to screen the ‘best of class” candidates based upon optimal functionalities.
GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.
Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A
2016-01-01
In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.
Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Loesel, Jens; McLoughlin, David; Mills, James; Peakman, Marie-Claire; Sharp, Robert E; Williams, Christine; Zhu, Hongyao
2016-11-01
High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.
Open Access High Throughput Drug Discovery in the Public Domain: A Mount Everest in the Making
Roy, Anuradha; McDonald, Peter R.; Sittampalam, Sitta; Chaguturu, Rathnam
2013-01-01
High throughput screening (HTS) facilitates screening large numbers of compounds against a biochemical target of interest using validated biological or biophysical assays. In recent years, a significant number of drugs in clinical trails originated from HTS campaigns, validating HTS as a bona fide mechanism for hit finding. In the current drug discovery landscape, the pharmaceutical industry is embracing open innovation strategies with academia to maximize their research capabilities and to feed their drug discovery pipeline. The goals of academic research have therefore expanded from target identification and validation to probe discovery, chemical genomics, and compound library screening. This trend is reflected in the emergence of HTS centers in the public domain over the past decade, ranging in size from modestly equipped academic screening centers to well endowed Molecular Libraries Probe Centers Network (MLPCN) centers funded by the NIH Roadmap initiative. These centers facilitate a comprehensive approach to probe discovery in academia and utilize both classical and cutting-edge assay technologies for executing primary and secondary screening campaigns. The various facets of academic HTS centers as well as their implications on technology transfer and drug discovery are discussed, and a roadmap for successful drug discovery in the public domain is presented. New lead discovery against therapeutic targets, especially those involving the rare and neglected diseases, is indeed a Mount Everestonian size task, and requires diligent implementation of pharmaceutical industry’s best practices for a successful outcome. PMID:20809896
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán
2016-10-01
Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán
2016-10-01
Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.
Twenty years on: the impact of fragments on drug discovery.
Erlanson, Daniel A; Fesik, Stephen W; Hubbard, Roderick E; Jahnke, Wolfgang; Jhoti, Harren
2016-09-01
After 20 years of sometimes quiet growth, fragment-based drug discovery (FBDD) has become mainstream. More than 30 drug candidates derived from fragments have entered the clinic, with two approved and several more in advanced trials. FBDD has been widely applied in both academia and industry, as evidenced by the large number of papers from universities, non-profit research institutions, biotechnology companies and pharmaceutical companies. Moreover, FBDD draws on a diverse range of disciplines, from biochemistry and biophysics to computational and medicinal chemistry. As the promise of FBDD strategies becomes increasingly realized, now is an opportune time to draw lessons and point the way to the future. This Review briefly discusses how to design fragment libraries, how to select screening techniques and how to make the most of information gleaned from them. It also shows how concepts from FBDD have permeated and enhanced drug discovery efforts.
[Artificial Intelligence in Drug Discovery].
Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi
2018-04-01
According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.
Agyei, Dominic; Tsopmo, Apollinaire; Udenigwe, Chibuike C
2018-06-01
There are emerging advancements in the strategies used for the discovery and development of food-derived bioactive peptides because of their multiple food and health applications. Bioinformatics and peptidomics are two computational and analytical techniques that have the potential to speed up the development of bioactive peptides from bench to market. Structure-activity relationships observed in peptides form the basis for bioinformatics and in silico prediction of bioactive sequences encrypted in food proteins. Peptidomics, on the other hand, relies on "hyphenated" (liquid chromatography-mass spectrometry-based) techniques for the detection, profiling, and quantitation of peptides. Together, bioinformatics and peptidomics approaches provide a low-cost and effective means of predicting, profiling, and screening bioactive protein hydrolysates and peptides from food. This article discuses the basis, strengths, and limitations of bioinformatics and peptidomics approaches currently used for the discovery and analysis of food-derived bioactive peptides.
Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; ...
2017-01-31
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly availablemore » data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds.« less
Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; Liu, Miao; Winston, Donald; Chen, Wei; Graf, Tanja; Schladt, Thomas D.; Persson, Kristin A.; Prinz, Fritz B.
2017-01-01
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds. PMID:28140408
Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; Liu, Miao; Winston, Donald; Chen, Wei; Graf, Tanja; Schladt, Thomas D; Persson, Kristin A; Prinz, Fritz B
2017-01-31
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds.
Reverse screening methods to search for the protein targets of chemopreventive compounds
NASA Astrophysics Data System (ADS)
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-05-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds.
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction. PMID:29868550
Collaborative Core Research Program for Chemical-Biological Warfare Defense
2015-01-04
Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD...Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD) Current pharmaceutical approaches involving drug discovery...structural analysis and docking program generally known as fragment based drug design (FBDD). The main advantage of using these approaches is that
Flow Cytometry: Impact on Early Drug Discovery.
Edwards, Bruce S; Sklar, Larry A
2015-07-01
Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens of thousands of cells per second and more than five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, "sip-and-spit" sampling technology has restricted it to low-sample-throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens of thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multiparameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage, and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry, and parallel sample processing promise dramatically expanded single-cell profiling capabilities to bolster systems-level approaches to drug discovery. © 2015 Society for Laboratory Automation and Screening.
[Computational chemistry in structure-based drug design].
Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu
2013-07-01
Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.
Charting, navigating, and populating natural product chemical space for drug discovery.
Lachance, Hugo; Wetzel, Stefan; Kumar, Kamal; Waldmann, Herbert
2012-07-12
Natural products are a heterogeneous group of compounds with diverse, yet particular molecular properties compared to synthetic compounds and drugs. All relevant analyses show that natural products indeed occupy parts of chemical space not explored by available screening collections while at the same time largely adhering to the rule-of-five. This renders them a valuable, unique, and necessary component of screening libraries used in drug discovery. With ChemGPS-NP on the Web and Scaffold Hunter two tools are available to the scientific community to guide exploration of biologically relevant NP chemical space in a focused and targeted fashion with a view to guide novel synthesis approaches. Several of the examples given illustrate the possibility of bridging the gap between computational methods and compound library synthesis and the possibility of integrating cheminformatics and chemical space analyses with synthetic chemistry and biochemistry to successfully explore chemical space for the identification of novel small molecule modulators of protein function.The examples also illustrate the synergistic potential of the chemical space concept and modern chemical synthesis for biomedical research and drug discovery. Chemical space analysis can map under explored biologically relevant parts of chemical space and identify the structure types occupying these parts. Modern synthetic methodology can then be applied to efficiently fill this “virtual space” with real compounds.From a cheminformatics perspective, there is a clear demand for open-source and easy to use tools that can be readily applied by educated nonspecialist chemists and biologists in their daily research. This will include further development of Scaffold Hunter, ChemGPS-NP, and related approaches on the Web. Such a “cheminformatics toolbox” would enable chemists and biologists to mine their own data in an intuitive and highly interactive process and without the need for specialized computer science and cheminformatics expertise. We anticipate that it may be a viable, if not necessary, step for research initiatives based on large high-throughput screening campaigns,in particular in the pharmaceutical industry, to make the most out of the recent advances in computational tools in order to leverage and take full advantage of the large data sets generated and available in house. There are “holes” in these data sets that can and should be identified and explored by chemistry and biology.
The development of high-content screening (HCS) technology and its importance to drug discovery.
Fraietta, Ivan; Gasparri, Fabio
2016-01-01
High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.
RAS - Screens & Assays - Drug Discovery
The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.
China’s Ace in the Hole Rare Earth Elements
2010-01-01
before losing magnetism. 11 Europium sesquioxide (Eu203) has been tested as neutron absorbers for control rods in (fast breeder ) nuclear reactors ...sources of rare earth around the world, it could take anywhere from 10 to 15 years from the time of discovery to begin a full- scale rare earth...television/computer screens, it is being studied for possible use in nuclear reactors .11 Erbium is used as an amplifier for fiber optic data
Molecular scaffold analysis of natural products databases in the public domain.
Yongye, Austin B; Waddell, Jacob; Medina-Franco, José L
2012-11-01
Natural products represent important sources of bioactive compounds in drug discovery efforts. In this work, we compiled five natural products databases available in the public domain and performed a comprehensive chemoinformatic analysis focused on the content and diversity of the scaffolds with an overview of the diversity based on molecular fingerprints. The natural products databases were compared with each other and with a set of molecules obtained from in-house combinatorial libraries, and with a general screening commercial library. It was found that publicly available natural products databases have different scaffold diversity. In contrast to the common concept that larger libraries have the largest scaffold diversity, the largest natural products collection analyzed in this work was not the most diverse. The general screening library showed, overall, the highest scaffold diversity. However, considering the most frequent scaffolds, the general reference library was the least diverse. In general, natural products databases in the public domain showed low molecule overlap. In addition to benzene and acyclic compounds, flavones, coumarins, and flavanones were identified as the most frequent molecular scaffolds across the different natural products collections. The results of this work have direct implications in the computational and experimental screening of natural product databases for drug discovery. © 2012 John Wiley & Sons A/S.
A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.
Wu, Hongxi; Liu, Yalan; Guo, Mingrong; Xie, Jingli; Jiang, XiaMin
2014-09-01
Natural small peptides from foods have been proven to be efficient inhibitors of Angiotensin I-converting enzyme (ACE) for the regulation of blood pressure. The traditional ACE inhibitory peptides screening method is both time consuming and money costing, to the contrary, virtual screening method by computation can break these limitations. We establish a virtual screening method to obtain ACE inhibitory peptides with the help of Libdock module of Discovery Studio 3.5 software. A significant relationship between Libdock score and experimental IC(50) was found, Libdock score = 10.063 log(1/IC(50)) + 68.08 (R(2) = 0.62). The credibility of the relationship was confirmed by testing the coincidence of the estimated log(1/IC(50)) and measured log(1/IC(50)) (IC(50) is 50% inhibitory concentration toward ACE, in μmol/L) of 5 synthetic ACE inhibitory peptides, which was virtual hydrolyzed and screened from a kind of seafood, Phascolosoma esculenta. Accordingly, Libdock method is a valid IC(50) estimation tool and virtual screening method for small ACE inhibitory peptides. © 2014 Institute of Food Technologists®
Bead-based screening in chemical biology and drug discovery.
Komnatnyy, Vitaly V; Nielsen, Thomas E; Qvortrup, Katrine
2018-06-11
High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amenable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structurally diverse libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made in bead-based library screening and its application to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed for making a greater impact in the field.
Discovery of novel drug targets and their functions using phenotypic screening of natural products.
Chang, Junghwa; Kwon, Ho Jeong
2016-03-01
Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.
Advances in Predictive Toxicology for Discovery Safety through High Content Screening.
Persson, Mikael; Hornberg, Jorrit J
2016-12-19
High content screening enables parallel acquisition of multiple molecular and cellular readouts. In particular the predictive toxicology field has progressed from the advances in high content screening, as more refined end points that report on cellular health can be studied in combination, at the single cell level, and in relatively high throughput. Here, we discuss how high content screening has become an essential tool for Discovery Safety, the discipline that integrates safety and toxicology in the drug discovery process to identify and mitigate safety concerns with the aim to design drug candidates with a superior safety profile. In addition to customized mechanistic assays to evaluate target safety, routine screening assays can be applied to identify risk factors for frequently occurring organ toxicities. We discuss the current state of high content screening assays for hepatotoxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, and genotoxicity, including recent developments and current advances.
Lagorce, David; Pencheva, Tania; Villoutreix, Bruno O; Miteva, Maria A
2009-11-13
Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.
Fukunishi, Yoshifumi
2010-01-01
For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.
Hu, Xiao; Maffucci, Irene; Contini, Alessandro
2018-05-13
The inclusion of direct effects mediated by water during the ligand-receptor recognition is a hot-topic of modern computational chemistry applied to drug discovery and development. Docking or virtual screening with explicit hydration is still debatable, despite the successful cases that have been presented in the last years. Indeed, how to select the water molecules that will be included in the docking process or how the included waters should be treated remain open questions. In this review, we will discuss some of the most recent methods that can be used in computational drug discovery and drug development when the effect of a single water, or of a small network of interacting waters, needs to be explicitly considered. Here, we analyse software to aid the selection, or to predict the position, of water molecules that are going to be explicitly considered in later docking studies. We also present software and protocols able to efficiently treat flexible water molecules during docking, including examples of applications. Finally, we discuss methods based on molecular dynamics simulations that can be used to integrate docking studies or to reliably and efficiently compute binding energies of ligands in presence of interfacial or bridging water molecules. Software applications aiding the design of new drugs that exploit water molecules, either as displaceable residues or as bridges to the receptor, are constantly being developed. Although further validation is needed, workflows that explicitly consider water will probably become a standard for computational drug discovery soon. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The re-emergence of natural products for drug discovery in the genomics era.
Harvey, Alan L; Edrada-Ebel, RuAngelie; Quinn, Ronald J
2015-02-01
Natural products have been a rich source of compounds for drug discovery. However, their use has diminished in the past two decades, in part because of technical barriers to screening natural products in high-throughput assays against molecular targets. Here, we review strategies for natural product screening that harness the recent technical advances that have reduced these barriers. We also assess the use of genomic and metabolomic approaches to augment traditional methods of studying natural products, and highlight recent examples of natural products in antimicrobial drug discovery and as inhibitors of protein-protein interactions. The growing appreciation of functional assays and phenotypic screens may further contribute to a revival of interest in natural products for drug discovery.
Fragment-Based Phenotypic Lead Discovery: Cell-Based Assay to Target Leishmaniasis.
Ayotte, Yann; Bilodeau, François; Descoteaux, Albert; LaPlante, Steven R
2018-05-02
A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment-based phenotypic lead discovery (FPLD) combines aspects of traditional fragment-based lead discovery (FBLD), which involves the screening of small-molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug-like compounds in cell-based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low-molecular-weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone-marrow-derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A graph-based approach to construct target-focused libraries for virtual screening.
Naderi, Misagh; Alvin, Chris; Ding, Yun; Mukhopadhyay, Supratik; Brylinski, Michal
2016-01-01
Due to exorbitant costs of high-throughput screening, many drug discovery projects commonly employ inexpensive virtual screening to support experimental efforts. However, the vast majority of compounds in widely used screening libraries, such as the ZINC database, will have a very low probability to exhibit the desired bioactivity for a given protein. Although combinatorial chemistry methods can be used to augment existing compound libraries with novel drug-like compounds, the broad chemical space is often too large to be explored. Consequently, the trend in library design has shifted to produce screening collections specifically tailored to modulate the function of a particular target or a protein family. Assuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. On this account, we developed eSynth, an exhaustive graph-based search algorithm to computationally synthesize new compounds by reconnecting these building blocks following their connectivity patterns. We conducted a series of benchmarking calculations against the Directory of Useful Decoys, Enhanced database. First, in a self-benchmarking test, the correctness of the algorithm is validated with the objective to recover a molecule from its building blocks. Encouragingly, eSynth can efficiently rebuild more than 80 % of active molecules from their fragment components. Next, the capability to discover novel scaffolds is assessed in a cross-benchmarking test, where eSynth successfully reconstructed 40 % of the target molecules using fragments extracted from chemically distinct compounds. Despite an enormous chemical space to be explored, eSynth is computationally efficient; half of the molecules are rebuilt in less than a second, whereas 90 % take only about a minute to be generated. eSynth can successfully reconstruct chemically feasible molecules from molecular fragments. Furthermore, in a procedure mimicking the real application, where one expects to discover novel compounds based on a small set of already developed bioactives, eSynth is capable of generating diverse collections of molecules with the desired activity profiles. Thus, we are very optimistic that our effort will contribute to targeted drug discovery. eSynth is freely available to the academic community at www.brylinski.org/content/molecular-synthesis.Graphical abstractAssuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. Here, we developed eSynth, an automated method to synthesize new compounds by reconnecting these building blocks following the connectivity patterns via an exhaustive graph-based search algorithm. eSynth opens up a possibility to rapidly construct virtual screening libraries for targeted drug discovery.
Turcatti, Gerardo
2014-05-01
The Biomolecular Screening Facility (BSF) is a multidisciplinary laboratory created in 2006 at the Ecole Polytechnique Federale de Lausanne (EPFL) to perform medium and high throughput screening in life sciences-related projects. The BSF was conceived and developed to meet the needs of a wide range of researchers, without privileging a particular biological discipline or therapeutic area. The facility has the necessary infrastructure, multidisciplinary expertise and flexibility to perform large screening programs using small interfering RNAs (siRNAs) and chemical collections in the areas of chemical biology, systems biology and drug discovery. In the framework of the National Centres of Competence in Research (NCCR) Chemical Biology, the BSF is hosting 'ACCESS', the Academic Chemical Screening Platform of Switzerland that provides the scientific community with chemical diversity, screening facilities and know-how in chemical genetics. In addition, the BSF started its own applied research axes that are driven by innovation in thematic areas related to preclinical drug discovery and discovery of bioactive probes.
AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Yingssu; Stanford University, 333 Campus Drive, Mudd Building, Stanford, CA 94305-5080; McPhillips, Scott E.
New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data,more » performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully demonstrated. This workflow was run once on the same 96 samples that the group had examined manually and the workflow cycled successfully through all of the samples, collected data from the same samples that were selected manually and located the same peaks of unmodeled density in the resulting difference Fourier maps.« less
Zhang, Baofeng; D'Erasmo, Michael P; Murelli, Ryan P; Gallicchio, Emilio
2016-09-30
We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.
Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott
2018-05-01
The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.
Thornburg, Christopher C; Britt, John R; Evans, Jason R; Akee, Rhone K; Whitt, James A; Trinh, Spencer K; Harris, Matthew J; Thompson, Jerell R; Ewing, Teresa L; Shipley, Suzanne M; Grothaus, Paul G; Newman, David J; Schneider, Joel P; Grkovic, Tanja; O'Keefe, Barry R
2018-06-13
The US National Cancer Institute's (NCI) Natural Product Repository is one of the world's largest, most diverse collections of natural products containing over 230,000 unique extracts derived from plant, marine, and microbial organisms that have been collected from biodiverse regions throughout the world. Importantly, this national resource is available to the research community for the screening of extracts and the isolation of bioactive natural products. However, despite the success of natural products in drug discovery, compatibility issues that make extracts challenging for liquid handling systems, extended timelines that complicate natural product-based drug discovery efforts and the presence of pan-assay interfering compounds have reduced enthusiasm for the high-throughput screening (HTS) of crude natural product extract libraries in targeted assay systems. To address these limitations, the NCI Program for Natural Product Discovery (NPNPD), a newly launched, national program to advance natural product discovery technologies and facilitate the discovery of structurally defined, validated lead molecules ready for translation will create a prefractionated library from over 125,000 natural product extracts with the aim of producing a publicly-accessible, HTS-amenable library of >1,000,000 fractions. This library, representing perhaps the largest accumulation of natural-product based fractions in the world, will be made available free of charge in 384-well plates for screening against all disease states in an effort to reinvigorate natural product-based drug discovery.
Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.
Ghattas, Mohammad A; Atatreh, Noor; Bichenkova, Elena V; Bryce, Richard A
2014-07-01
Docking-based virtual screening is an established component of structure-based drug discovery. Nevertheless, scoring and ranking of computationally docked ligand libraries still suffer from many false positives. Identifying optimal docking parameters for a target protein prior to virtual screening can improve experimental hit rates. Here, we examine protocols for virtual screening against the important but challenging class of drug target, protein tyrosine phosphatases. In this study, common interaction features were identified from analysis of protein-ligand binding geometries of more than 50 complexed phosphatase crystal structures. It was found that two interactions were consistently formed across all phosphatase inhibitors: (1) a polar contact with the conserved arginine residue, and (2) at least one interaction with the P-loop backbone amide. In order to investigate the significance of these features on phosphatase-ligand binding, a series of seeded virtual screening experiments were conducted on three phosphatase enzymes, PTP1B, Cdc25b and IF2. It was observed that when the conserved arginine and P-loop amide interactions were used as pharmacophoric constraints during docking, enrichment of the virtual screen significantly increased in the three studied phosphatases, by up to a factor of two in some cases. Additionally, the use of such pharmacophoric constraints considerably improved the ability of docking to predict the inhibitor's bound pose, decreasing RMSD to the crystallographic geometry by 43% on average. Constrained docking improved enrichment of screens against both open and closed conformations of PTP1B. Incorporation of an ordered water molecule in PTP1B screening was also found to generally improve enrichment. The knowledge-based computational strategies explored here can potentially inform structure-based design of new phosphatase inhibitors using docking-based virtual screening. Copyright © 2014 Elsevier Inc. All rights reserved.
Flow Cytometry: Impact On Early Drug Discovery
Edwards, Bruce S.; Sklar, Larry A.
2015-01-01
Summary Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens-of-thousands of cells per second and over five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, “sip-and-spit” sampling technology has restricted it to low sample throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens-of-thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multi-parameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry and parallel sample processing promise dramatically expanded single cell profiling capabilities to bolster systems level approaches to drug discovery. PMID:25805180
In silico pharmacology for drug discovery: applications to targets and beyond
Ekins, S; Mestres, J; Testa, B
2007-01-01
Computational (in silico) methods have been developed and widely applied to pharmacology hypothesis development and testing. These in silico methods include databases, quantitative structure-activity relationships, similarity searching, pharmacophores, homology models and other molecular modeling, machine learning, data mining, network analysis tools and data analysis tools that use a computer. Such methods have seen frequent use in the discovery and optimization of novel molecules with affinity to a target, the clarification of absorption, distribution, metabolism, excretion and toxicity properties as well as physicochemical characterization. The first part of this review discussed the methods that have been used for virtual ligand and target-based screening and profiling to predict biological activity. The aim of this second part of the review is to illustrate some of the varied applications of in silico methods for pharmacology in terms of the targets addressed. We will also discuss some of the advantages and disadvantages of in silico methods with respect to in vitro and in vivo methods for pharmacology research. Our conclusion is that the in silico pharmacology paradigm is ongoing and presents a rich array of opportunities that will assist in expediating the discovery of new targets, and ultimately lead to compounds with predicted biological activity for these novel targets. PMID:17549046
Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space.
Alvim-Gaston, Maria; Grese, Timothy; Mahoui, Abdelaziz; Palkowitz, Alan D; Pineiro-Nunez, Marta; Watson, Ian
2014-01-01
The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.
Schuffenhauer, A; Popov, M; Schopfer, U; Acklin, P; Stanek, J; Jacoby, E
2004-12-01
This publication describes processes for the selection of chemical compounds for the building of a high-throughput screening (HTS) collection for drug discovery, using the currently implemented process in the Discovery Technologies Unit of the Novartis Institute for Biomedical Research, Basel Switzerland as reference. More generally, the currently existing compound acquisition models and practices are discussed. Our informatics, chemistry and biology-driven compound selection consists of two steps: 1) The individual compounds are filtered and grouped into three priority classes on the basis of their individual structural properties. Substructure filters are used to eliminate or penalize compounds based on unwanted structural properties. The similarity of the structures to reference ligands of the main proven druggable target families is computed, and drug-similar compounds are prioritized for the following diversity analysis. 2) The compounds are compared to the archive compounds and a diversity analysis is performed. This is done separately for the prioritized, regular and penalized compounds with increasingly stringent dissimilarity criterion. The process includes collecting vendor catalogues and monitoring the availability of samples together with the selection and purchase decision points. The development of a corporate vendor catalogue database is described. In addition to the selection methods on a per single molecule basis, selection criteria for scaffold and combinatorial chemistry projects in collaboration with compound vendors are discussed.
Performance Studies on Distributed Virtual Screening
Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.
2014-01-01
Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219
Wang, Yi; Hess, Tamara Noelle; Jones, Victoria; Zhou, Joe Zhongxiang; McNeil, Michael R.; McCammon, J. Andrew
2011-01-01
The complex and highly impermeable cell wall of Mycobacterium tuberculosis (Mtb) is largely responsible for the ability of the mycobacterium to resist the action of chemical therapeutics. An L-rhamnosyl residue, which occupies an important anchoring position in the Mtb cell wall, is an attractive target for novel anti-tuberculosis drugs. In this work, we report a virtual screening (VS) study targeting Mtb dTDP-deoxy-L-lyxo-4-hexulose reductase (RmlD), the last enzyme in the L-rhamnosyl synthesis pathway. Through two rounds of VS, we have identified four RmlD inhibitors with half inhibitory concentrations of 0.9-25 μM, and whole-cell minimum inhibitory concentrations of 20-200 μg/ml. Compared with our previous high throughput screening targeting another enzyme involved in L-rhamnosyl synthesis, virtual screening produced higher hit rates, supporting the use of computational methods in future anti-tuberculosis drug discovery efforts. PMID:22014548
Non-invasive molecular imaging for preclinical cancer therapeutic development
O'Farrell, AC; Shnyder, SD; Marston, G; Coletta, PL; Gill, JH
2013-01-01
Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development. PMID:23488622
He, Xingrui; Chen, Xia; Lin, Songbo; Mo, Xiaochang; Zhou, Pengyong; Zhang, Zhihao; Lu, Yaoyao; Yang, Yu; Gu, Haining
2016-01-01
Abstract Natural products are a major source of biological molecules. The 3‐methylfuran scaffold is found in a variety of plant secondary metabolite chemical elicitors that confer host‐plant resistance against insect pests. Herein, the diversity‐oriented synthesis of a natural‐product‐like library is reported, in which the 3‐methylfuran core is fused in an angular attachment to six common natural product scaffolds—coumarin, chalcone, flavone, flavonol, isoflavone and isoquinolinone. The structural diversity of this library is assessed computationally using cheminformatic analysis. Phenotypic high‐throughput screening of β‐glucuronidase activity uncovers several hits. Further in vivo screening confirms that these hits can induce resistance in rice to nymphs of the brown planthopper Nilaparvata lugens. This work validates the combination of diversity‐oriented synthesis and high‐throughput screening of β‐glucuronidase activity as a strategy for discovering new chemical elicitors. PMID:28168155
Discovery of novel SERCA inhibitors by virtual screening of a large compound library.
Elam, Christopher; Lape, Michael; Deye, Joel; Zultowsky, Jodie; Stanton, David T; Paula, Stefan
2011-05-01
Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Ojima, Iwao; Awasthi, Divya; Wei, Longfei; Haranahalli, Krupanandan
2016-01-01
This article presents an account of our research on the discovery and development of new-generation fluorine-containing antibacterial agents against drug-resistant tuberculosis, targeting FtsZ. FtsZ is an essential protein for bacterial cell division and a highly promising therapeutic target for antibacterial drug discovery. Through design, synthesis and semi-HTP screening of libraries of novel benzimidazoles, followed by SAR studies, we identified highly potent lead compounds. However, these lead compounds were found to lack sufficient metabolic and plasma stabilities. Accordingly, we have performed extensive study on the strategic incorporation of fluorine into lead compounds to improve pharmacological properties. This study has led to the development of highly efficacious fluorine-containing benzimidazoles as potential drug candidates. We have also performed computational docking analysis of these novel FtsZ inhibitors to identify their putative binding site. Based on the structural data and docking analysis, a plausible mode-of-action for this novel class of FtsZ inhibitors is proposed. PMID:28555087
Receptor-ligand binding sites and virtual screening.
Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R
2006-01-01
Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.
Pham-The, H; Casañola-Martin, G; Diéguez-Santana, K; Nguyen-Hai, N; Ngoc, N T; Vu-Duc, L; Le-Thi-Thu, H
2017-03-01
Histone deacetylases (HDAC) are emerging as promising targets in cancer, neuronal diseases and immune disorders. Computational modelling approaches have been widely applied for the virtual screening and rational design of novel HDAC inhibitors. In this study, different machine learning (ML) techniques were applied for the development of models that accurately discriminate HDAC2 inhibitors form non-inhibitors. The obtained models showed encouraging results, with the global accuracy in the external set ranging from 0.83 to 0.90. Various aspects related to the comparison of modelling techniques, applicability domain and descriptor interpretations were discussed. Finally, consensus predictions of these models were used for screening HDAC2 inhibitors from four chemical libraries whose bioactivities against HDAC1, HDAC3, HDAC6 and HDAC8 have been known. According to the results of virtual screening assays, structures of some hits with pair-isoform-selective activity (between HDAC2 and other HDACs) were revealed. This study illustrates the power of ML-based QSAR approaches for the screening and discovery of potent, isoform-selective HDACIs.
Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C
2013-02-01
Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.
Yeast as a potential vehicle for neglected tropical disease drug discovery.
Denny, P W; Steel, P G
2015-01-01
High-throughput screening (HTS) efforts for neglected tropical disease (NTD) drug discovery have recently received increased attention because several initiatives have begun to attempt to reduce the deficit in new and clinically acceptable therapies for this spectrum of infectious diseases. HTS primarily uses two basic approaches, cell-based and in vitro target-directed screening. Both of these approaches have problems; for example, cell-based screening does not reveal the target or targets that are hit, whereas in vitro methodologies lack a cellular context. Furthermore, both can be technically challenging, expensive, and difficult to miniaturize for ultra-HTS [(u)HTS]. The application of yeast-based systems may overcome some of these problems and offer a cost-effective platform for target-directed screening within a eukaryotic cell context. Here, we review the advantages and limitations of the technologies that may be used in yeast cell-based, target-directed screening protocols, and we discuss how these are beginning to be used in NTD drug discovery. © 2014 Society for Laboratory Automation and Screening.
Fragment informatics and computational fragment-based drug design: an overview and update.
Sheng, Chunquan; Zhang, Wannian
2013-05-01
Fragment-based drug design (FBDD) is a promising approach for the discovery and optimization of lead compounds. Despite its successes, FBDD also faces some internal limitations and challenges. FBDD requires a high quality of target protein and good solubility of fragments. Biophysical techniques for fragment screening necessitate expensive detection equipment and the strategies for evolving fragment hits to leads remain to be improved. Regardless, FBDD is necessary for investigating larger chemical space and can be applied to challenging biological targets. In this scenario, cheminformatics and computational chemistry can be used as alternative approaches that can significantly improve the efficiency and success rate of lead discovery and optimization. Cheminformatics and computational tools assist FBDD in a very flexible manner. Computational FBDD can be used independently or in parallel with experimental FBDD for efficiently generating and optimizing leads. Computational FBDD can also be integrated into each step of experimental FBDD and help to play a synergistic role by maximizing its performance. This review will provide critical analysis of the complementarity between computational and experimental FBDD and highlight recent advances in new algorithms and successful examples of their applications. In particular, fragment-based cheminformatics tools, high-throughput fragment docking, and fragment-based de novo drug design will provide the focus of this review. We will also discuss the advantages and limitations of different methods and the trends in new developments that should inspire future research. © 2012 Wiley Periodicals, Inc.
Zdrazil, B.; Neefs, J.-M.; Van Vlijmen, H.; Herhaus, C.; Caracoti, A.; Brea, J.; Roibás, B.; Loza, M. I.; Queralt-Rosinach, N.; Furlong, L. I.; Gaulton, A.; Bartek, L.; Senger, S.; Chichester, C.; Engkvist, O.; Evelo, C. T.; Franklin, N. I.; Marren, D.; Ecker, G. F.
2016-01-01
Phenotypic screening is in a renaissance phase and is expected by many academic and industry leaders to accelerate the discovery of new drugs for new biology. Given that phenotypic screening is per definition target agnostic, the emphasis of in silico and in vitro follow-up work is on the exploration of possible molecular mechanisms and efficacy targets underlying the biological processes interrogated by the phenotypic screening experiments. Herein, we present six exemplar computational protocols for the interpretation of cellular phenotypic screens based on the integration of compound, target, pathway, and disease data established by the IMI Open PHACTS project. The protocols annotate phenotypic hit lists and allow follow-up experiments and mechanistic conclusions. The annotations included are from ChEMBL, ChEBI, GO, WikiPathways and DisGeNET. Also provided are protocols which select from the IUPHAR/BPS Guide to PHARMACOLOGY interaction file selective compounds to probe potential targets and a correlation robot which systematically aims to identify an overlap of active compounds in both the phenotypic as well as any kinase assay. The protocols are applied to a phenotypic pre-lamin A/C splicing assay selected from the ChEMBL database to illustrate the process. The computational protocols make use of the Open PHACTS API and data and are built within the Pipeline Pilot and KNIME workflow tools. PMID:27774140
Multilevel Parallelization of AutoDock 4.2.
Norgan, Andrew P; Coffman, Paul K; Kocher, Jean-Pierre A; Katzmann, David J; Sosa, Carlos P
2011-04-28
Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4). Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers. Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.
Contemporary screening approaches to reaction discovery and development.
Collins, Karl D; Gensch, Tobias; Glorius, Frank
2014-10-01
New organic reactivity has often been discovered by happenstance. Several recent research efforts have attempted to leverage this to discover new reactions. In this Review, we attempt to unify reported approaches to reaction discovery on the basis of the practical and strategic principles applied. We concentrate on approaches to reaction discovery as opposed to reaction development, though conceptually groundbreaking approaches to identifying efficient catalyst systems are also considered. Finally, we provide a critical overview of the utility and application of the reported methods from the perspective of a synthetic chemist, and consider the future of high-throughput screening in reaction discovery.
Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R
2014-05-01
The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.
Metabolic stability for drug discovery and development: pharmacokinetic and biochemical challenges.
Masimirembwa, Collen M; Bredberg, Ulf; Andersson, Tommy B
2003-01-01
Metabolic stability refers to the susceptibility of compounds to biotransformation in the context of selecting and/or designing drugs with favourable pharmacokinetic properties. Metabolic stability results are usually reported as measures of intrinsic clearance, from which secondary pharmacokinetic parameters such as bioavailability and half-life can be calculated when other data on volume of distribution and fraction absorbed are available. Since these parameters are very important in defining the pharmacological and toxicological profile of drugs as well as patient compliance, the pharmaceutical industry has a particular interest in optimising for metabolic stability during the drug discovery and development process. In the early phases of drug discovery, new chemical entities cannot be administered to humans; hence, predictions of these properties have to be made from in vivo animal, in vitro cellular/subcellular and computational systems. The utility of these systems to define the metabolic stability of compounds that is predictive of the human situation will be reviewed here. The timing of performing the studies in the discovery process and the impact of recent advances in research on drug absorption, distribution, metabolism and excretion (ADME) will be evaluated with respect to the scope and depth of metabolic stability issues. Quantitative prediction of in vivo clearance from in vitro metabolism data has, for many compounds, been shown to be poor in retrospective studies. One explanation for this may be that there are components used in the equations for scaling that are missing or uncertain and should be an area of more research. For example, as a result of increased biochemical understanding of drug metabolism, old assumptions (e.g. that the liver is the principal site of first-pass metabolism) need revision and new knowledge (e.g. the relationship between transporters and drug metabolising enzymes) needs to be incorporated into in vitro-in vivo correlation models. With ADME parameters increasingly being determined on automated platforms, instead of using results from high throughput screening (HTS) campaigns as simple go/no-go filters, the time saved and the many compounds analysed using the robots should be invested in careful processing of the data. A logical step would be to investigate the potential to construct computational models to understand the factors governing metabolic stability. A rational approach to the use of HTS assays should aim to screen for many properties (e.g. physicochemical parameters, absorption, metabolism, protein binding, pharmacokinetics in animals and pharmacology) in an integrated manner rather than screen against one property on many compounds, since it is likely that the final drug will represent a global average of these properties.
[Fragment-based drug discovery: concept and aim].
Tanaka, Daisuke
2010-03-01
Fragment-Based Drug Discovery (FBDD) has been recognized as a newly emerging lead discovery methodology that involves biophysical fragment screening and chemistry-driven fragment-to-lead stages. Although fragments, defined as structurally simple and small compounds (typically <300 Da), have not been employed in conventional high-throughput screening (HTS), the recent significant progress in the biophysical screening methods enables fragment screening at a practical level. The intention of FBDD primarily turns our attention to weakly but specifically binding fragments (hit fragments) as the starting point of medicinal chemistry. Hit fragments are then promoted to more potent lead compounds through linking or merging with another hit fragment and/or attaching functional groups. Another positive aspect of FBDD is ligand efficiency. Ligand efficiency is a useful guide in screening hit selection and hit-to-lead phases to achieve lead-likeness. Owing to these features, a number of successful applications of FBDD to "undruggable targets" (where HTS and other lead identification methods failed to identify useful lead compounds) have been reported. As a result, FBDD is now expected to complement more conventional methodologies. This review, as an introduction of the following articles, will summarize the fundamental concepts of FBDD and will discuss its advantages over other conventional drug discovery approaches.
Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.
Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob
2015-01-01
Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. © 2014 Society for Laboratory Automation and Screening.
Ekins, Sean; Freundlich, Joel S.; Hobrath, Judith V.; White, E. Lucile; Reynolds, Robert C
2013-01-01
Purpose Tuberculosis treatments need to be shorter and overcome drug resistance. Our previous large scale phenotypic high-throughput screening against Mycobacterium tuberculosis (Mtb) has identified 737 active compounds and thousands that are inactive. We have used this data for building computational models as an approach to minimize the number of compounds tested. Methods A cheminformatics clustering approach followed by Bayesian machine learning models (based on publicly available Mtb screening data) was used to illustrate that application of these models for screening set selections can enrich the hit rate. Results In order to explore chemical diversity around active cluster scaffolds of the dose-response hits obtained from our previous Mtb screens a set of 1924 commercially available molecules have been selected and evaluated for antitubercular activity and cytotoxicity using Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit rates, respectively. We demonstrate that models incorporating antitubercular and cytotoxicity data in Vero cells can significantly enrich the selection of non-toxic actives compared to random selection. Across all cell lines, the Molecular Libraries Small Molecule Repository (MLSMR) and cytotoxicity model identified ~10% of the hits in the top 1% screened (>10 fold enrichment). We also showed that seven out of nine Mtb active compounds from different academic published studies and eight out of eleven Mtb active compounds from a pharmaceutical screen (GSK) would have been identified by these Bayesian models. Conclusion Combining clustering and Bayesian models represents a useful strategy for compound prioritization and hit-to lead optimization of antitubercular agents. PMID:24132686
Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-03-22
Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking.
Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-01-01
Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking. PMID:21445339
Zheng, Chunli; Wang, Jinan; Liu, Jianling; Pei, Mengjie; Huang, Chao; Wang, Yonghua
2014-08-01
The term systems pharmacology describes a field of study that uses computational and experimental approaches to broaden the view of drug actions rooted in molecular interactions and advance the process of drug discovery. The aim of this work is to stick out the role that the systems pharmacology plays across the multi-target drug discovery from natural products for cardiovascular diseases (CVDs). Firstly, based on network pharmacology methods, we reconstructed the drug-target and target-target networks to determine the putative protein target set of multi-target drugs for CVDs treatment. Secondly, we reintegrated a compound dataset of natural products and then obtained a multi-target compounds subset by virtual-screening process. Thirdly, a drug-likeness evaluation was applied to find the ADME-favorable compounds in this subset. Finally, we conducted in vitro experiments to evaluate the reliability of the selected chemicals and targets. We found that four of the five randomly selected natural molecules can effectively act on the target set for CVDs, indicating the reasonability of our systems-based method. This strategy may serve as a new model for multi-target drug discovery of complex diseases.
Accelerating the discovery of materials for clean energy in the era of smart automation
NASA Astrophysics Data System (ADS)
Tabor, Daniel P.; Roch, Loïc M.; Saikin, Semion K.; Kreisbeck, Christoph; Sheberla, Dennis; Montoya, Joseph H.; Dwaraknath, Shyam; Aykol, Muratahan; Ortiz, Carlos; Tribukait, Hermann; Amador-Bedolla, Carlos; Brabec, Christoph J.; Maruyama, Benji; Persson, Kristin A.; Aspuru-Guzik, Alán
2018-05-01
The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace.
Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.
Hasan, Naveed; Kumar, Rohit; Kavuru, Mani S
2014-10-01
Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer
Young, Jonathan H.; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D.; White, Michael A.; Marcotte, Edward M.
2016-01-01
Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26755624
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer.
Young, Jonathan H; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D; White, Michael A; Marcotte, Edward M
2016-05-01
Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
When fragments link: a bibliometric perspective on the development of fragment-based drug discovery.
Romasanta, Angelo K S; van der Sijde, Peter; Hellsten, Iina; Hubbard, Roderick E; Keseru, Gyorgy M; van Muijlwijk-Koezen, Jacqueline; de Esch, Iwan J P
2018-05-05
Fragment-based drug discovery (FBDD) is a highly interdisciplinary field, rich in ideas integrated from pharmaceutical sciences, chemistry, biology, and physics, among others. To enrich our understanding of the development of the field, we used bibliometric techniques to analyze 3642 publications in FBDD, complementing accounts by key practitioners. Mapping its core papers, we found the transfer of knowledge from academia to industry. Co-authorship analysis showed that university-industry collaboration has grown over time. Moreover, we show how ideas from other scientific disciplines have been integrated into the FBDD paradigm. Keyword analysis showed that the field is organized into four interconnected practices: library design, fragment screening, computational methods, and optimization. This study highlights the importance of interactions among various individuals and institutions from diverse disciplines in newly emerging scientific fields. Copyright © 2018. Published by Elsevier Ltd.
Heifetz, Alexander; Barker, Oliver; Verquin, Geraldine; Wimmer, Norbert; Meutermans, Wim; Pal, Sandeep; Law, Richard J; Whittaker, Mark
2013-05-24
Obesity is an increasingly common disease. While antagonism of the melanin-concentrating hormone-1 receptor (MCH-1R) has been widely reported as a promising therapeutic avenue for obesity treatment, no MCH-1R antagonists have reached the market. Discovery and optimization of new chemical matter targeting MCH-1R is hindered by reduced HTS success rates and a lack of structural information about the MCH-1R binding site. X-ray crystallography and NMR, the major experimental sources of structural information, are very slow processes for membrane proteins and are not currently feasible for every GPCR or GPCR-ligand complex. This situation significantly limits the ability of these methods to impact the drug discovery process for GPCR targets in "real-time", and hence, there is an urgent need for other practical and cost-efficient alternatives. We present here a conceptually pioneering approach that integrates GPCR modeling with design, synthesis, and screening of a diverse library of sugar-based compounds from the VAST technology (versatile assembly on stable templates) to provide structural insights on the MCH-1R binding site. This approach creates a cost-efficient new avenue for structure-based drug discovery (SBDD) against GPCR targets. In our work, a primary VAST hit was used to construct a high-quality MCH-1R model. Following model validation, a structure-based virtual screen yielded a 14% hit rate and 10 novel chemotypes of potent MCH-1R antagonists, including EOAI3367472 (IC50 = 131 nM) and EOAI3367474 (IC50 = 213 nM).
Computer-aided drug discovery.
Bajorath, Jürgen
2015-01-01
Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approaches are highlighted that aid in the identification and optimization of new drug candidates. Emphasis is put on the presentation and discussion of computational concepts and methods, rather than case studies or application examples. As such, this contribution aims to provide an overview of the current methodological spectrum of computational drug discovery for a broad audience.
Building Cognition: The Construction of Computational Representations for Scientific Discovery
ERIC Educational Resources Information Center
Chandrasekharan, Sanjay; Nersessian, Nancy J.
2015-01-01
Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a…
Taylor, James A; Mitchenall, Lesley A; Rejzek, Martin; Field, Robert A; Maxwell, Anthony
2013-01-01
DNA topoisomerases are highly exploited targets for antimicrobial drugs. The spread of antibiotic resistance represents a significant threat to public health and necessitates the discovery of inhibitors that target topoisomerases in novel ways. However, the traditional assays for topoisomerase activity are not suitable for the high-throughput approaches necessary for drug discovery. In this study we validate a novel assay for screening topoisomerase inhibitors. A library of 960 compounds was screened against Escherichia coli DNA gyrase and archaeal Methanosarcina mazei DNA topoisomerase VI. Several novel inhibitors were identified for both enzymes, and subsequently characterised in vitro and in vivo. Inhibitors from the M. mazei topoisomerase VI screen were tested for their ability to inhibit Arabidopsis topoisomerase VI in planta. The data from this work present new options for antibiotic drug discovery and provide insight into the mechanism of topoisomerase VI.
Taylor, James A.; Mitchenall, Lesley A.; Rejzek, Martin; Field, Robert A.; Maxwell, Anthony
2013-01-01
DNA topoisomerases are highly exploited targets for antimicrobial drugs. The spread of antibiotic resistance represents a significant threat to public health and necessitates the discovery of inhibitors that target topoisomerases in novel ways. However, the traditional assays for topoisomerase activity are not suitable for the high-throughput approaches necessary for drug discovery. In this study we validate a novel assay for screening topoisomerase inhibitors. A library of 960 compounds was screened against Escherichia coli DNA gyrase and archaeal Methanosarcina mazei DNA topoisomerase VI. Several novel inhibitors were identified for both enzymes, and subsequently characterised in vitro and in vivo. Inhibitors from the M. mazei topoisomerase VI screen were tested for their ability to inhibit Arabidopsis topoisomerase VI in planta. The data from this work present new options for antibiotic drug discovery and provide insight into the mechanism of topoisomerase VI. PMID:23469129
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato
2017-02-01
Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.
Jacoby, Edgar; Schuffenhauer, Ansgar; Popov, Maxim; Azzaoui, Kamal; Havill, Benjamin; Schopfer, Ulrich; Engeloch, Caroline; Stanek, Jaroslav; Acklin, Pierre; Rigollier, Pascal; Stoll, Friederike; Koch, Guido; Meier, Peter; Orain, David; Giger, Rudolph; Hinrichs, Jürgen; Malagu, Karine; Zimmermann, Jürg; Roth, Hans-Joerg
2005-01-01
The NIBR (Novartis Institutes for BioMedical Research) compound collection enrichment and enhancement project integrates corporate internal combinatorial compound synthesis and external compound acquisition activities in order to build up a comprehensive screening collection for a modern drug discovery organization. The main purpose of the screening collection is to supply the Novartis drug discovery pipeline with hit-to-lead compounds for today's and the future's portfolio of drug discovery programs, and to provide tool compounds for the chemogenomics investigation of novel biological pathways and circuits. As such, it integrates designed focused and diversity-based compound sets from the synthetic and natural paradigms able to cope with druggable and currently deemed undruggable targets and molecular interaction modes. Herein, we will summarize together with new trends published in the literature, scientific challenges faced and key approaches taken at NIBR to match the chemical and biological spaces.
Artificial intelligence approaches for rational drug design and discovery.
Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław
2007-01-01
Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.
Arrayed antibody library technology for therapeutic biologic discovery.
Bentley, Cornelia A; Bazirgan, Omar A; Graziano, James J; Holmes, Evan M; Smider, Vaughn V
2013-03-15
Traditional immunization and display antibody discovery methods rely on competitive selection amongst a pool of antibodies to identify a lead. While this approach has led to many successful therapeutic antibodies, targets have been limited to proteins which are easily purified. In addition, selection driven discovery has produced a narrow range of antibody functionalities focused on high affinity antagonism. We review the current progress in developing arrayed protein libraries for screening-based, rather than selection-based, discovery. These single molecule per microtiter well libraries have been screened in multiplex formats against both purified antigens and directly against targets expressed on the cell surface. This facilitates the discovery of antibodies against therapeutically interesting targets (GPCRs, ion channels, and other multispanning membrane proteins) and epitopes that have been considered poorly accessible to conventional discovery methods. Copyright © 2013. Published by Elsevier Inc.
Pharmacological screening technologies for venom peptide discovery.
Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina
2017-12-01
Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.
Mordwinkin, Nicholas M.; Burridge, Paul W.; Wu, Joseph C.
2013-01-01
Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results, and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach. PMID:23229562
In silico toxicology for the pharmaceutical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Luis G., E-mail: Luis.Valerio@fda.hhs.go
2009-12-15
The applied use of in silico technologies (a.k.a. computational toxicology, in silico toxicology, computer-assisted tox, e-tox, i-drug discovery, predictive ADME, etc.) for predicting preclinical toxicological endpoints, clinical adverse effects, and metabolism of pharmaceutical substances has become of high interest to the scientific community and the public. The increased accessibility of these technologies for scientists and recent regulations permitting their use for chemical risk assessment supports this notion. The scientific community is interested in the appropriate use of such technologies as a tool to enhance product development and safety of pharmaceuticals and other xenobiotics, while ensuring the reliability and accuracy ofmore » in silico approaches for the toxicological and pharmacological sciences. For pharmaceutical substances, this means active and impurity chemicals in the drug product may be screened using specialized software and databases designed to cover these substances through a chemical structure-based screening process and algorithm specific to a given software program. A major goal for use of these software programs is to enable industry scientists not only to enhance the discovery process but also to ensure the judicious use of in silico tools to support risk assessments of drug-induced toxicities and in safety evaluations. However, a great amount of applied research is still needed, and there are many limitations with these approaches which are described in this review. Currently, there is a wide range of endpoints available from predictive quantitative structure-activity relationship models driven by many different computational software programs and data sources, and this is only expected to grow. For example, there are models based on non-proprietary and/or proprietary information specific to assessing potential rodent carcinogenicity, in silico screens for ICH genetic toxicity assays, reproductive and developmental toxicity, theoretical prediction of human drug metabolism, mechanisms of action for pharmaceuticals, and newer models for predicting human adverse effects. How accurate are these approaches is both a statistical issue and challenge in toxicology. In this review, fundamental concepts and the current capabilities and limitations of this technology will be critically addressed.« less
A permutation-based non-parametric analysis of CRISPR screen data.
Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua
2017-07-19
Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .
Prakash, Chandra; Sharma, Raman; Gleave, Michelle; Nedderman, Angus
2008-11-01
Drug induced toxicity remains one of the major reasons for failures of new pharmaceuticals, and for the withdrawal of approved drugs from the market. Efforts are being made to reduce attrition of drug candidates, and to minimize their bioactivation potential in the early stages of drug discovery in order to bring safer compounds to the market. Therefore, in addition to potency and selectivity; drug candidates are now selected on the basis of acceptable metabolism/toxicology profiles in preclinical species. To support this, new approaches have been developed, which include extensive in vitro methods using human and animal hepatic cellular and subcellular systems, recombinant human drug metabolizing enzymes, increased automation for higher-throughput screens, sensitive analytical technologies and in silico computational models to assess the metabolism aspects of the new chemical entities. By using these approaches many compounds that might have serious adverse reactions associated with them are effectively eliminated before reaching clinical trials, however some toxicities such as those caused by idiosyncratic responses, are not detected until a drug is in late stages of clinical trials or has become available to the market. One of the proposed mechanisms for the development of idiosyncratic drug toxicity is the bioactivation of drugs to form reactive metabolites by drug metabolizing enzymes. This review discusses the different approaches to, and benefits of using existing in vitro techniques, for the detection of reactive intermediates in order to minimize bioactivation potential in drug discovery.
Overview Article: Identifying transcriptional cis-regulatory modules in animal genomes
Suryamohan, Kushal; Halfon, Marc S.
2014-01-01
Gene expression is regulated through the activity of transcription factors and chromatin modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily-identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods has led to an explosion of both computational and empirical methods for CRM discovery in model and non-model organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against transcription factors or histone post-translational modifications, identification of nucleosome-depleted “open” chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted transcription factor binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. PMID:25704908
Ebola virus: A gap in drug design and discovery - experimental and computational perspective.
Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S
2017-03-01
The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.
Capacity building in anthelmintic drug discovery.
Kron, Michael; Yousif, Fouad; Ramirez, Bernadette
2007-10-01
International collaboration in anthelmintic drug discovery holds special challenges compared with local or national discovery projects, and at the same time presents the opportunity to build capacity, forge long lasting inter-institutional relationships and strengthen infrastructure in multinational priority areas. This chapter discusses important issues that should be considered in the context of anthelmintic screening centre development and will give examples (Philippines and Egypt) of the productivity of developing country based screening centres. The positive outcomes of infrastructure building is realised in greater capacities for anthelmintic screening at institutions in the countries where the parasitic diseases are endemic and allows for optimum use of specialised resources for public health priority diseases that may be different from those in Western countries. Support for developing country based screening centres also can help countries optimise product development procedures and policies and can facilitate diffusion of desirable technology in corresponding global regions around the world.
Stem cells: a model for screening, discovery and development of drugs.
Kitambi, Satish Srinivas; Chandrasekar, Gayathri
2011-01-01
The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.
Integration of Lead Discovery Tactics and the Evolution of the Lead Discovery Toolbox.
Leveridge, Melanie; Chung, Chun-Wa; Gross, Jeffrey W; Phelps, Christopher B; Green, Darren
2018-06-01
There has been much debate around the success rates of various screening strategies to identify starting points for drug discovery. Although high-throughput target-based and phenotypic screening has been the focus of this debate, techniques such as fragment screening, virtual screening, and DNA-encoded library screening are also increasingly reported as a source of new chemical equity. Here, we provide examples in which integration of more than one screening approach has improved the campaign outcome and discuss how strengths and weaknesses of various methods can be used to build a complementary toolbox of approaches, giving researchers the greatest probability of successfully identifying leads. Among others, we highlight case studies for receptor-interacting serine/threonine-protein kinase 1 and the bromo- and extra-terminal domain family of bromodomains. In each example, the unique insight or chemistries individual approaches provided are described, emphasizing the synergy of information obtained from the various tactics employed and the particular question each tactic was employed to answer. We conclude with a short prospective discussing how screening strategies are evolving, what this screening toolbox might look like in the future, how to maximize success through integration of multiple tactics, and scenarios that drive selection of one combination of tactics over another.
2016-01-01
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography. PMID:28004573
Quantum probability ranking principle for ligand-based virtual screening.
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Quantum probability ranking principle for ligand-based virtual screening
NASA Astrophysics Data System (ADS)
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Cheminformatics in Drug Discovery, an Industrial Perspective.
Chen, Hongming; Kogej, Thierry; Engkvist, Ola
2018-05-18
Cheminformatics has established itself as a core discipline within large scale drug discovery operations. It would be impossible to handle the amount of data generated today in a small molecule drug discovery project without persons skilled in cheminformatics. In addition, due to increased emphasis on "Big Data", machine learning and artificial intelligence, not only in the society in general, but also in drug discovery, it is expected that the cheminformatics field will be even more important in the future. Traditional areas like virtual screening, library design and high-throughput screening analysis are highlighted in this review. Applying machine learning in drug discovery is an area that has become very important. Applications of machine learning in early drug discovery has been extended from predicting ADME properties and target activity to tasks like de novo molecular design and prediction of chemical reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
O’Connor, Anne; Brasher, Christopher J.; Slatter, David A.; Meckelmann, Sven W.; Hawksworth, Jade I.; Allen, Stuart M.; O’Donnell, Valerie B.
2017-01-01
Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides. PMID:28405621
Cohen Freue, Gabriela V.; Meredith, Anna; Smith, Derek; Bergman, Axel; Sasaki, Mayu; Lam, Karen K. Y.; Hollander, Zsuzsanna; Opushneva, Nina; Takhar, Mandeep; Lin, David; Wilson-McManus, Janet; Balshaw, Robert; Keown, Paul A.; Borchers, Christoph H.; McManus, Bruce; Ng, Raymond T.; McMaster, W. Robert
2013-01-01
Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies. PMID:23592955
Van Vooren, Steven; Coessens, Bert; De Moor, Bart; Moreau, Yves; Vermeesch, Joris R
2007-09-01
Genome-wide array comparative genomic hybridization screening is uncovering pathogenic submicroscopic chromosomal imbalances in patients with developmental disorders. In those patients, imbalances appear now to be scattered across the whole genome, and most patients carry different chromosomal anomalies. Screening patients with developmental disorders can be considered a forward functional genome screen. The imbalances pinpoint the location of genes that are involved in human development. Because most imbalances encompass regions harboring multiple genes, the challenge is to (1) identify those genes responsible for the specific phenotype and (2) disentangle the role of the different genes located in an imbalanced region. In this review, we discuss novel tools and relevant databases that have recently been developed to aid this gene discovery process. Identification of the functional relevance of genes will not only deepen our understanding of human development but will, in addition, aid in the data interpretation and improve genetic counseling.
Stern, Andrew M; Schurdak, Mark E; Bahar, Ivet; Berg, Jeremy M; Taylor, D Lansing
2016-07-01
Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, and iterative quantitative systems pharmacology (QSP)-driven drug discovery and development strategy and platform that we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing on the patient as the starting and the end point. © 2016 Society for Laboratory Automation and Screening.
FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects.
Lagorce, David; Sperandio, Olivier; Galons, Hervé; Miteva, Maria A; Villoutreix, Bruno O
2008-09-24
Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python) based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after) experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules) that can be easily tuned.
Guo, Chuangxing; Linton, Angelica; Jalaie, Mehran; Kephart, Susan; Ornelas, Martha; Pairish, Mason; Greasley, Samantha; Richardson, Paul; Maegley, Karen; Hickey, Michael; Li, John; Wu, Xin; Ji, Xiaodong; Xie, Zhi
2013-06-01
The M2 isoform of pyruvate kinase is an emerging target for antitumor therapy. In this letter, we describe the discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as potent and selective PKM2 activators which were found to have a novel binding mode. The original lead identified from high throughput screening was optimized into an efficient series via computer-aided structure-based drug design. Both a representative compound from this series and an activator described in the literature were used as molecular tools to probe the biological effects of PKM2 activation on cancer cells. Our results suggested that PKM2 activation alone is not sufficient to alter cancer cell metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.
ESKAPEing the labyrinth of antibacterial discovery.
Tommasi, Ruben; Brown, Dean G; Walkup, Grant K; Manchester, John I; Miller, Alita A
2015-08-01
Antimicrobial drug resistance is a growing threat to global public health. Multidrug resistance among the 'ESKAPE' organisms - encompassing Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - is of particular concern because they are responsible for many serious infections in hospitals. Although some promising agents are in the pipeline, there is an urgent need for new antibiotic scaffolds. However, antibacterial researchers have struggled to identify new small molecules with meaningful cellular activity, especially those effective against multidrug-resistant Gram-negative pathogens. This difficulty ultimately stems from an incomplete understanding of efflux systems and compound permeation through bacterial membranes. This Opinion article describes findings from target-based and phenotypic screening efforts carried out at AstraZeneca over the past decade, discusses some of the subsequent chemistry challenges and concludes with a description of new approaches comprising a combination of computational modelling and advanced biological tools which may pave the way towards the discovery of new antibacterial agents.
Machine-Learning Techniques Applied to Antibacterial Drug Discovery
Durrant, Jacob D.; Amaro, Rommie E.
2014-01-01
The emergence of drug-resistant bacteria threatens to catapult humanity back to the pre-antibiotic era. Even now, multi-drug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the resulting vacuum. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics in an academic setting, leading to improved hit rates and faster transitions to pre-clinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. PMID:25521642
Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio
2015-01-01
In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.
Wu, Bainan; Barile, Elisa; De, Surya K.; Wei, Jun; Purves, Angela; Pellecchia, Maurizio
2015-01-01
In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications. PMID:25986689
Antituberculosis activity of the molecular libraries screening center network library.
Maddry, Joseph A; Ananthan, Subramaniam; Goldman, Robert C; Hobrath, Judith V; Kwong, Cecil D; Maddox, Clinton; Rasmussen, Lynn; Reynolds, Robert C; Secrist, John A; Sosa, Melinda I; White, E Lucile; Zhang, Wei
2009-09-01
There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.
High Throughput Screening for Inhibitors of Mycobacterium tuberculosis H37Rv
ANANTHAN, SUBRAMANIAM; FAALEOLEA, ELLEN R.; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; LAUGHON, BARBARA E.; MADDRY, JOSEPH A.; MEHTA, ALKA; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SHINDO, NICE; SHOWE, DUSTIN N.; SOSA, MELINDA I.; SULING, WILLIAM J.; WHITE, E. LUCILE
2009-01-01
SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target new biochemical pathways and treat drug resistant forms of the disease. One approach to addressing this need is through high throughput screening of medicinally relevant libraries against the whole bacterium in order to discover a variety of new, active scaffolds that will stimulate new biological research and drug discovery. Through the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (www.taacf.org), a large, medicinally relevant chemical library was screened against M. tuberculosis strain H37Rv. The screening methods and a medicinal chemistry analysis of the results are reported herein. PMID:19758845
High-throughput screening for bioactive components from traditional Chinese medicine.
Zhu, Yanhui; Zhang, Zhiyun; Zhang, Meng; Mais, Dale E; Wang, Ming-Wei
2010-12-01
Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements. Here we review the developments in these techniques under the perspective of their applicability in natural product drug discovery. Methods in library building, component characterizing, biological evaluation, and other screening methods including NMR and X-ray diffraction are discussed.
Solution NMR Spectroscopy in Target-Based Drug Discovery.
Li, Yan; Kang, Congbao
2017-08-23
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Computational predictions of energy materials using density functional theory
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
Spjuth, Ola; Karlsson, Andreas; Clements, Mark; Humphreys, Keith; Ivansson, Emma; Dowling, Jim; Eklund, Martin; Jauhiainen, Alexandra; Czene, Kamila; Grönberg, Henrik; Sparén, Pär; Wiklund, Fredrik; Cheddad, Abbas; Pálsdóttir, Þorgerður; Rantalainen, Mattias; Abrahamsson, Linda; Laure, Erwin; Litton, Jan-Eric; Palmgren, Juni
2017-09-01
We provide an e-Science perspective on the workflow from risk factor discovery and classification of disease to evaluation of personalized intervention programs. As case studies, we use personalized prostate and breast cancer screenings. We describe an e-Science initiative in Sweden, e-Science for Cancer Prevention and Control (eCPC), which supports biomarker discovery and offers decision support for personalized intervention strategies. The generic eCPC contribution is a workflow with 4 nodes applied iteratively, and the concept of e-Science signifies systematic use of tools from the mathematical, statistical, data, and computer sciences. The eCPC workflow is illustrated through 2 case studies. For prostate cancer, an in-house personalized screening tool, the Stockholm-3 model (S3M), is presented as an alternative to prostate-specific antigen testing alone. S3M is evaluated in a trial setting and plans for rollout in the population are discussed. For breast cancer, new biomarkers based on breast density and molecular profiles are developed and the US multicenter Women Informed to Screen Depending on Measures (WISDOM) trial is referred to for evaluation. While current eCPC data management uses a traditional data warehouse model, we discuss eCPC-developed features of a coherent data integration platform. E-Science tools are a key part of an evidence-based process for personalized medicine. This paper provides a structured workflow from data and models to evaluation of new personalized intervention strategies. The importance of multidisciplinary collaboration is emphasized. Importantly, the generic concepts of the suggested eCPC workflow are transferrable to other disease domains, although each disease will require tailored solutions. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte
2017-07-13
Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.
Computer-Aided Drug Discovery: Molecular Docking of Diminazene Ligands to DNA Minor Groove
ERIC Educational Resources Information Center
Kholod, Yana; Hoag, Erin; Muratore, Katlynn; Kosenkov, Dmytro
2018-01-01
The reported project-based laboratory unit introduces upper-division undergraduate students to the basics of computer-aided drug discovery as a part of a computational chemistry laboratory course. The students learn to perform model binding of organic molecules (ligands) to the DNA minor groove with computer-aided drug discovery (CADD) tools. The…
Bryce, Richard A
2011-04-01
The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.
Impact of computational structure-based methods on drug discovery.
Reynolds, Charles H
2014-01-01
Structure-based drug design has become an indispensible tool in drug discovery. The emergence of structure-based design is due to gains in structural biology that have provided exponential growth in the number of protein crystal structures, new computational algorithms and approaches for modeling protein-ligand interactions, and the tremendous growth of raw computer power in the last 30 years. Computer modeling and simulation have made major contributions to the discovery of many groundbreaking drugs in recent years. Examples are presented that highlight the evolution of computational structure-based design methodology, and the impact of that methodology on drug discovery.
Applications of SHAPES screening in drug discovery.
Lepre, Christopher A; Peng, Jeffrey; Fejzo, Jasna; Abdul-Manan, Norzehan; Pocas, Jennifer; Jacobs, Marc; Xie, Xiaoling; Moore, Jonathan M
2002-12-01
The SHAPES strategy combines nuclear magnetic resonance (NMR) screening of a library of small drug-like molecules with a variety of complementary methods, such as virtual screening, high throughput enzymatic assays, combinatorial chemistry, X-ray crystallography, and molecular modeling, in a directed search for new medicinal chemistry leads. In the past few years, the SHAPES strategy has found widespread utility in pharmaceutical research. To illustrate a variety of different implementations of the method, we will focus in this review on recent applications of the SHAPES strategy in several drug discovery programs at Vertex Pharmaceuticals.
Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann
2016-03-10
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs
2016-01-01
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages. PMID:27074285
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.
Wagner, Jeffrey R; Lee, Christopher T; Durrant, Jacob D; Malmstrom, Robert D; Feher, Victoria A; Amaro, Rommie E
2016-06-08
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.
Computational chemistry at Janssen
NASA Astrophysics Data System (ADS)
van Vlijmen, Herman; Desjarlais, Renee L.; Mirzadegan, Tara
2017-03-01
Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.
White, David T; Eroglu, Arife Unal; Wang, Guohua; Zhang, Liyun; Sengupta, Sumitra; Ding, Ding; Rajpurohit, Surendra K; Walker, Steven L; Ji, Hongkai; Qian, Jiang; Mumm, Jeff S
2017-01-01
The zebrafish has emerged as an important model for whole-organism small-molecule screening. However, most zebrafish-based chemical screens have achieved only mid-throughput rates. Here we describe a versatile whole-organism drug discovery platform that can achieve true high-throughput screening (HTS) capacities. This system combines our automated reporter quantification in vivo (ARQiv) system with customized robotics, and is termed ‘ARQiv-HTS’. We detail the process of establishing and implementing ARQiv-HTS: (i) assay design and optimization, (ii) calculation of sample size and hit criteria, (iii) large-scale egg production, (iv) automated compound titration, (v) dispensing of embryos into microtiter plates, and (vi) reporter quantification. We also outline what we see as best practice strategies for leveraging the power of ARQiv-HTS for zebrafish-based drug discovery, and address technical challenges of applying zebrafish to large-scale chemical screens. Finally, we provide a detailed protocol for a recently completed inaugural ARQiv-HTS effort, which involved the identification of compounds that elevate insulin reporter activity. Compounds that increased the number of insulin-producing pancreatic beta cells represent potential new therapeutics for diabetic patients. For this effort, individual screening sessions took 1 week to conclude, and sessions were performed iteratively approximately every other day to increase throughput. At the conclusion of the screen, more than a half million drug-treated larvae had been evaluated. Beyond this initial example, however, the ARQiv-HTS platform is adaptable to almost any reporter-based assay designed to evaluate the effects of chemical compounds in living small-animal models. ARQiv-HTS thus enables large-scale whole-organism drug discovery for a variety of model species and from numerous disease-oriented perspectives. PMID:27831568
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Kennedy Space Center Director Jim Kennedy watches one of the computer screens as the countdown heads for launch of Space Shuttle Discovery on mission STS-121. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
Moitessier, N; Englebienne, P; Lee, D; Lawandi, J; Corbeil, C R
2008-01-01
Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and scoring methods, with exhaustive lists of these. We next discuss reported comparative studies, outlining criteria for their interpretation. In the final section, we describe some of the remaining developments that would potentially lead to a universally applicable docking/scoring method. PMID:18037925
Pharmer: efficient and exact pharmacophore search.
Koes, David Ryan; Camacho, Carlos J
2011-06-27
Pharmacophore search is a key component of many drug discovery efforts. Pharmer is a new computational approach to pharmacophore search that scales with the breadth and complexity of the query, not the size of the compound library being screened. Two novel methods for organizing pharmacophore data, the Pharmer KDB-tree and Bloom fingerprints, enable Pharmer to perform an exact pharmacophore search of almost two million structures in less than a minute. In general, Pharmer is more than an order of magnitude faster than existing technologies. The complete source code is available under an open-source license at http://pharmer.sourceforge.net .
Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide.
Schneider, Gisbert; Reker, Daniel; Chen, Tao; Hauenstein, Kurt; Schneider, Petra; Altmann, Karl-Heinz
2016-09-26
The cyclodepsipeptide doliculide is a marine natural product with strong actin-polymerizing and anticancer activities. Evidence for doliculide acting as a potent and subtype-selective antagonist of prostanoid E receptor 3 (EP3) is presented. Computational target prediction suggested that this membrane receptor is a likely macromolecular target and enabled immediate in vitro validation. This proof-of-concept study demonstrates the in silico deorphanization of phenotypic screening hits as a viable concept for future natural-product-inspired chemical biology and drug discovery efforts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Virtual screening for development of new effective compounds against Staphylococcus aureus.
Diniz, Roseane Costa; Soares, Lucas Weba; da Silva, Luis Claudio Nascimento
2018-03-26
Staphylococcus aureus is a notorious pathogenic bacterium causing a wide range of diseases from soft-tissue contamination, to more serious and deep-seated infections. This species is highlighted by its ability to express several kinds of virulence factors and to acquire genes related to drug resistance. Target this number of factors to design any drug is not an easy task. In this review we discuss the importance of computational methods to impulse the development of new drugs against S. aureus. The application of docking methods to screen large library of natural or synthetic compounds and to provide insights into action mechanisms is demonstrated. Particularly, highlighted the studies that validated in silico results with biochemical and microbiological assays. We also comment the computer-aided design of new molecules using some known inhibitors. The confirmation of in silico results with biochemical and microbiological assays allowed the identification of lead molecules that could be used for drug design such as rhodomyrtone, quinuclidine, berberine (and their derivative compounds). The fast development in the computational methods is essential to improve our ability to discovery new drugs, as well as to expand understanding about drug-target interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
PARP inhibition as a prototype for synthetic lethal screens.
Liu, Xuesong
2013-01-01
Although DNA damaging chemotherapy and radiation therapy remain the main stay of current treatments for cancer patient, these therapies usually have toxic side effect and narrow therapeutic window. One of the challenges in cancer drug discovery is how to identify drugs that selectively kill cancer cells while leaving the normal cell intact. Recently, synthetic lethality has been applied to cancer drug discovery in various settings, and has become a promising approach for identifying novel agents for the treatment of cancer. A prototypical example is the synthetic lethal interaction between PARP inhibition and BRCA deficiency. PARP inhibitors represent the most advanced clinical agents targeting specifically DNA repair mechanisms in cancer therapy. In this chapter, I will review the molecular mechanism for this synthetic lethality and the clinical applications for PARP inhibitors. I will also discuss the formats of synthetic lethal screens, current progress on the utilization of these screens, and some of the advantages and challenges of synthetic lethal screens in cancer drug discovery.
Pandey, Udai Bhan
2011-01-01
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process. PMID:21415126
Discovery and study of novel protein tyrosine phosphatase 1B inhibitors
NASA Astrophysics Data System (ADS)
Zhang, Qian; Chen, Xi; Feng, Changgen
2017-10-01
Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.
A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors.
Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song
2017-01-18
Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive "flexible docking", as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way.
A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors
Hu, Huabin; Xia, Jie; Wang, Dongmei; Wang, Xiang Simon; Wu, Song
2017-01-01
Histone deacetylase 3 (HDAC3) has been recently identified as a potential target for the treatment of cancer and other diseases, such as chronic inflammation, neurodegenerative diseases, and diabetes. Virtual screening (VS) is currently a routine technique for hit identification, but its success depends on rational development of VS strategies. To facilitate this process, we applied our previously released benchmarking dataset, i.e., MUBD-HDAC3 to the evaluation of structure-based VS (SBVS) and ligand-based VS (LBVS) combinatorial approaches. We have identified FRED (Chemgauss4) docking against a structural model of HDAC3, i.e., SAHA-3 generated by a computationally inexpensive “flexible docking”, as the best SBVS approach and a common feature pharmacophore model, i.e., Hypo1 generated by Catalyst/HipHop as the optimal model for LBVS. We then developed a pipeline that was composed of Hypo1, FRED (Chemgauss4), and SAHA-3 sequentially, and demonstrated that it was superior to other combinations in terms of ligand enrichment. In summary, we present the first highly-validated, rationally-designed VS strategy specific to HDAC3 inhibitor discovery. The constructed pipeline is publicly accessible for the scientific community to identify novel HDAC3 inhibitors in a time-efficient and cost-effective way. PMID:28106794
Stevanović, Strahinja; Perdih, Andrej; Senćanski, Milan; Glišić, Sanja; Duarte, Margarida; Tomás, Ana M; Sena, Filipa V; Sousa, Filipe M; Pereira, Manuela M; Solmajer, Tom
2018-03-27
There is an urgent need for the discovery of new antileishmanial drugs with a new mechanism of action. Type 2 NADH dehydrogenase from Leishmania infantum ( Li NDH2) is an enzyme of the parasite's respiratory system, which catalyzes the electron transfer from NADH to ubiquinone without coupled proton pumping. In previous studies of the related NADH: ubiquinone oxidoreductase crystal structure from Saccharomyces cerevisiae , two ubiquinone-binding sites (UQ I and UQ II ) were identified and shown to play an important role in the NDH-2-catalyzed oxidoreduction reaction. Based on the available structural data, we developed a three-dimensional structural model of Li NDH2 using homology detection methods and performed an in silico virtual screening campaign to search for potential inhibitors targeting the Li NDH2 ubiquinone-binding site 1-UQ I . Selected compounds displaying favorable properties in the computational screening experiments were assayed for inhibitory activity in the structurally similar recombinant NDH-2 from S. aureus and leishmanicidal activity was determined in the wild-type axenic amastigotes and promastigotes of L. infantum . The identified compound, a substituted 6-methoxy-quinalidine, showed promising nanomolar leishmanicidal activity on wild-type axenic promastigotes and amastigotes of L. infantum and the potential for further development.
The Proximal Lilly Collection: Mapping, Exploring and Exploiting Feasible Chemical Space.
Nicolaou, Christos A; Watson, Ian A; Hu, Hong; Wang, Jibo
2016-07-25
Venturing into the immensity of the small molecule universe to identify novel chemical structure is a much discussed objective of many methods proposed by the chemoinformatics community. To this end, numerous approaches using techniques from the fields of computational de novo design, virtual screening and reaction informatics, among others, have been proposed. Although in principle this objective is commendable, in practice there are several obstacles to useful exploitation of the chemical space. Prime among them are the sheer number of theoretically feasible compounds and the practical concern regarding the synthesizability of the chemical structures conceived using in silico methods. We present the Proximal Lilly Collection initiative implemented at Eli Lilly and Co. with the aims to (i) define the chemical space of small, drug-like compounds that could be synthesized using in-house resources and (ii) facilitate access to compounds in this large space for the purposes of ongoing drug discovery efforts. The implementation of PLC relies on coupling access to available synthetic knowledge and resources with chemo/reaction informatics techniques and tools developed for this purpose. We describe in detail the computational framework supporting this initiative and elaborate on the characteristics of the PLC virtual collection of compounds. As an example of the opportunities provided to drug discovery researchers by easy access to a large, realistically feasible virtual collection such as the PLC, we describe a recent application of the technology that led to the discovery of selective kinase inhibitors.
Allosteric Tuning of Caspase-7: A Fragment-Based Drug Discovery Approach.
Vance, Nicholas R; Gakhar, Lokesh; Spies, M Ashley
2017-11-13
The caspase family of cysteine proteases are highly sought-after drug targets owing to their essential roles in apoptosis, proliferation, and inflammation pathways. High-throughput screening efforts to discover inhibitors have gained little traction. Fragment-based screening has emerged as a powerful approach for the discovery of innovative drug leads. This method has become a central facet of drug discovery campaigns in the pharmaceutical industry and academia. A fragment-based drug discovery campaign against human caspase-7 resulted in the discovery of a novel series of allosteric inhibitors. An X-ray crystal structure of caspase-7 bound to a fragment hit and a thorough kinetic characterization of a zymogenic form of the enzyme were used to investigate the allosteric mechanism of inhibition. This work further advances our understanding of the mechanisms of allosteric control of this class of pharmaceutically relevant enzymes, and provides a new path forward for drug discovery efforts. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Computer-aided drug discovery research at a global contract research organization
NASA Astrophysics Data System (ADS)
Kitchen, Douglas B.
2017-03-01
Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.
Computer-aided drug discovery research at a global contract research organization.
Kitchen, Douglas B
2017-03-01
Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.
Discovery of novel human acrosin inhibitors by virtual screening
NASA Astrophysics Data System (ADS)
Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo
2011-10-01
Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.
15 years of zebrafish chemical screening
Rennekamp, Andrew J.; Peterson, Randall T.
2015-01-01
In 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature. We found that zebrafish screens have expanded beyond the use of developmental phenotypes to include behavioral, cardiac, metabolic, proliferative and regenerative endpoints. Additionally, many creative strategies have been used to uncover the mechanisms of action of new small molecules including chemical phenocopy, genetic phenocopy, mutant rescue, and spatial localization strategies. PMID:25461724
McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam
2011-07-01
The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory.
Mizutani, Miho Yamada; Itai, Akiko
2004-09-23
A method of easily finding ligands, with a variety of core structures, for a given target macromolecule would greatly contribute to the rapid identification of novel lead compounds for drug development. We have developed an efficient method for discovering ligand candidates from a number of flexible compounds included in databases, when the three-dimensional (3D) structure of the drug target is available. The method, named ADAM&EVE, makes use of our automated docking method ADAM, which has already been reported. Like ADAM, ADAM&EVE takes account of the flexibility of each molecule in databases, by exploring the conformational space fully and continuously. Database screening has been made much faster than with ADAM through the tuning of parameters, so that computational screening of several hundred thousand compounds is possible in a practical time. Promising ligand candidates can be selected according to various criteria based on the docking results and characteristics of compounds. Furthermore, we have developed a new tool, EVE-MAKE, for automatically preparing the additional compound data necessary for flexible docking calculation, prior to 3D database screening. Among several successful cases of lead discovery by ADAM&EVE, the finding of novel acetylcholinesterase (AChE) inhibitors is presented here. We performed a virtual screening of about 160 000 commercially available compounds against the X-ray crystallographic structure of AChE. Among 114 compounds that could be purchased and assayed, 35 molecules with various core structures showed inhibitory activities with IC(50) values less than 100 microM. Thirteen compounds had IC(50) values between 0.5 and 10 microM, and almost all their core structures are very different from those of known inhibitors. The results demonstrate the effectiveness and validity of the ADAM&EVE approach and provide a starting point for development of novel drugs to treat Alzheimer's disease.
Simple animal models for amyotrophic lateral sclerosis drug discovery.
Patten, Shunmoogum A; Parker, J Alex; Wen, Xiao-Yan; Drapeau, Pierre
2016-08-01
Simple animal models have enabled great progress in uncovering the disease mechanisms of amyotrophic lateral sclerosis (ALS) and are helping in the selection of therapeutic compounds through chemical genetic approaches. Within this article, the authors provide a concise overview of simple model organisms, C. elegans, Drosophila and zebrafish, which have been employed to study ALS and discuss their value to ALS drug discovery. In particular, the authors focus on innovative chemical screens that have established simple organisms as important models for ALS drug discovery. There are several advantages of using simple animal model organisms to accelerate drug discovery for ALS. It is the authors' particular belief that the amenability of simple animal models to various genetic manipulations, the availability of a wide range of transgenic strains for labelling motoneurons and other cell types, combined with live imaging and chemical screens should allow for new detailed studies elucidating early pathological processes in ALS and subsequent drug and target discovery.
Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery
Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.
2013-01-01
SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795
Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.
Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland
2013-07-01
In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.
Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform
Ramasamy, Sakthivel; Bennet, Devasier; Kim, Sanghyo
2014-01-01
This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS) system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. PMID:25525360
GWASinlps: Nonlocal prior based iterative SNP selection tool for genome-wide association studies.
Sanyal, Nilotpal; Lo, Min-Tzu; Kauppi, Karolina; Djurovic, Srdjan; Andreassen, Ole A; Johnson, Valen E; Chen, Chi-Hua
2018-06-19
Multiple marker analysis of the genome-wide association study (GWAS) data has gained ample attention in recent years. However, because of the ultra high-dimensionality of GWAS data, such analysis is challenging. Frequently used penalized regression methods often lead to large number of false positives, whereas Bayesian methods are computationally very expensive. Motivated to ameliorate these issues simultaneously, we consider the novel approach of using nonlocal priors in an iterative variable selection framework. We develop a variable selection method, named, iterative nonlocal prior based selection for GWAS, or GWASinlps, that combines, in an iterative variable selection framework, the computational efficiency of the screen-and-select approach based on some association learning and the parsimonious uncertainty quantification provided by the use of nonlocal priors. The hallmark of our method is the introduction of 'structured screen-and-select' strategy, that considers hierarchical screening, which is not only based on response-predictor associations, but also based on response-response associations, and concatenates variable selection within that hierarchy. Extensive simulation studies with SNPs having realistic linkage disequilibrium structures demonstrate the advantages of our computationally efficient method compared to several frequentist and Bayesian variable selection methods, in terms of true positive rate, false discovery rate, mean squared error, and effect size estimation error. Further, we provide empirical power analysis useful for study design. Finally, a real GWAS data application was considered with human height as phenotype. An R-package for implementing the GWASinlps method is available at https://cran.r-project.org/web/packages/GWASinlps/index.html. Supplementary data are available at Bioinformatics online.
An ion channel library for drug discovery and safety screening on automated platforms.
Wible, Barbara A; Kuryshev, Yuri A; Smith, Stephen S; Liu, Zhiqi; Brown, Arthur M
2008-12-01
Ion channels represent the third largest class of targets in drug discovery after G-protein coupled receptors and kinases. In spite of this ranking, ion channels continue to be under exploited as drug targets compared with the other two groups for several reasons. First, with 400 ion channel genes and an even greater number of functional channels due to mixing and matching of individual subunits, a systematic collection of ion channel-expressing cell lines for drug discovery and safety screening has not been available. Second, the lack of high-throughput functional assays for ion channels has limited their use as drug targets. Now that automated electrophysiology has come of age and provided the technology to assay ion channels at medium to high throughput, we have addressed the need for a library of ion channel cell lines by constructing the Ion Channel Panel (ChanTest Corp., Cleveland, OH). From 400 ion channel genes, a collection of 82 of the most relevant human ion channels for drug discovery, safety, and human disease has been assembled.Each channel has been stably overexpressed in human embryonic kidney 293 or Chinese hamster ovary cells. Cell lines have been selected and validated on automated electrophysiology systems to facilitate cost-effective screening for safe and selective compounds at earlier stages in the drug development process. The screening and validation processes as well as the relative advantages of different screening platforms are discussed.
Learning from the past for TB drug discovery in the future
Mikušová, Katarína; Ekins, Sean
2016-01-01
Tuberculosis drug discovery has shifted in recent years from a primarily target-based approach to one that uses phenotypic high-throughput screens. As examples of this, through our EU-funded FP7 collaborations, New Medicines for Tuberculosis was target-based and our more-recent More Medicines for Tuberculosis project predominantly used phenotypic screening. From these projects we have examples of success (DprE1) and failure (PimA) going from drug to target and from target to drug, respectively. It is clear that we still have much to learn about the drug targets and the complex effects of the drugs on Mycobacterium tuberculosis. We propose a more integrated approach that learns from earlier drug discovery efforts that could help to move drug discovery forward. PMID:27717850
Developments in SPR Fragment Screening.
Chavanieu, Alain; Pugnière, Martine
2016-01-01
Fragment-based approaches have played an increasing role alongside high-throughput screening in drug discovery for 15 years. The label-free biosensor technology based on surface plasmon resonance (SPR) is now sensitive and informative enough to serve during primary screens and validation steps. In this review, the authors discuss the role of SPR in fragment screening. After a brief description of the underlying principles of the technique and main device developments, they evaluate the advantages and adaptations of SPR for fragment-based drug discovery. SPR can also be applied to challenging targets such as membrane receptors and enzymes. The high-level of immobilization of the protein target and its stability are key points for a relevant screening that can be optimized using oriented immobilized proteins and regenerable sensors. Furthermore, to decrease the rate of false negatives, a selectivity test may be performed in parallel on the main target bearing the binding site mutated or blocked with a low-off-rate ligand. Fragment-based drug design, integrated in a rational workflow led by SPR, will thus have a predominant role for the next wave of drug discovery which could be greatly enhanced by new improvements in SPR devices.
DOVIS: an implementation for high-throughput virtual screening using AutoDock.
Zhang, Shuxing; Kumar, Kamal; Jiang, Xiaohui; Wallqvist, Anders; Reifman, Jaques
2008-02-27
Molecular-docking-based virtual screening is an important tool in drug discovery that is used to significantly reduce the number of possible chemical compounds to be investigated. In addition to the selection of a sound docking strategy with appropriate scoring functions, another technical challenge is to in silico screen millions of compounds in a reasonable time. To meet this challenge, it is necessary to use high performance computing (HPC) platforms and techniques. However, the development of an integrated HPC system that makes efficient use of its elements is not trivial. We have developed an application termed DOVIS that uses AutoDock (version 3) as the docking engine and runs in parallel on a Linux cluster. DOVIS can efficiently dock large numbers (millions) of small molecules (ligands) to a receptor, screening 500 to 1,000 compounds per processor per day. Furthermore, in DOVIS, the docking session is fully integrated and automated in that the inputs are specified via a graphical user interface, the calculations are fully integrated with a Linux cluster queuing system for parallel processing, and the results can be visualized and queried. DOVIS removes most of the complexities and organizational problems associated with large-scale high-throughput virtual screening, and provides a convenient and efficient solution for AutoDock users to use this software in a Linux cluster platform.
PyGOLD: a python based API for docking based virtual screening workflow generation.
Patel, Hitesh; Brinkjost, Tobias; Koch, Oliver
2017-08-15
Molecular docking is one of the successful approaches in structure based discovery and development of bioactive molecules in chemical biology and medicinal chemistry. Due to the huge amount of computational time that is still required, docking is often the last step in a virtual screening approach. Such screenings are set as workflows spanned over many steps, each aiming at different filtering task. These workflows can be automatized in large parts using python based toolkits except for docking using the docking software GOLD. However, within an automated virtual screening workflow it is not feasible to use the GUI in between every step to change the GOLD configuration file. Thus, a python module called PyGOLD was developed, to parse, edit and write the GOLD configuration file and to automate docking based virtual screening workflows. The latest version of PyGOLD, its documentation and example scripts are available at: http://www.ccb.tu-dortmund.de/koch or http://www.agkoch.de. PyGOLD is implemented in Python and can be imported as a standard python module without any further dependencies. oliver.koch@agkoch.de, oliver.koch@tu-dortmund.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Sulfonylureas and Glinides as New PPARγ Agonists:. Virtual Screening and Biological Assays
NASA Astrophysics Data System (ADS)
Scarsi, Marco; Podvinec, Michael; Roth, Adrian; Hug, Hubert; Kersten, Sander; Albrecht, Hugo; Schwede, Torsten; Meyer, Urs A.; Rücker, Christoph
2007-12-01
This work combines the predictive power of computational drug discovery with experimental validation by means of biological assays. In this way, a new mode of action for type 2 diabetes drugs has been unvealed. Most drugs currently employed in the treatment of type 2 diabetes either target the sulfonylurea receptor stimulating insulin release (sulfonylureas, glinides), or target PPARγ improving insulin resistance (thiazolidinediones). Our work shows that sulfonylureas and glinides bind to PPARγ and exhibit PPARγ agonistic activity. This result was predicted in silico by virtual screening and confirmed in vitro by three biological assays. This dual mode of action of sulfonylureas and glinides may open new perspectives for the molecular pharmacology of antidiabetic drugs, since it provides evidence that drugs can be designed which target both the sulfonylurea receptor and PPARγ. Targeting both receptors could in principle allow to increase pancreatic insulin secretion, as well as to improve insulin resistance.
Novel Virtual Screening Approach for the Discovery of Human Tyrosinase Inhibitors
Ai, Ni; Welsh, William J.; Santhanam, Uma; Hu, Hong; Lyga, John
2014-01-01
Tyrosinase is the key enzyme involved in the human pigmentation process, as well as the undesired browning of fruits and vegetables. Compounds inhibiting tyrosinase catalytic activity are an important class of cosmetic and dermatological agents which show high potential as depigmentation agents used for skin lightening. The multi-step protocol employed for the identification of novel tyrosinase inhibitors incorporated the Shape Signatures computational algorithm for rapid screening of chemical libraries. This algorithm converts the size and shape of a molecule, as well its surface charge distribution and other bio-relevant properties, into compact histograms (signatures) that lend themselves to rapid comparison between molecules. Shape Signatures excels at scaffold hopping across different chemical families, which enables identification of new actives whose molecular structure is distinct from other known actives. Using this approach, we identified a novel class of depigmentation agents that demonstrated promise for skin lightening product development. PMID:25426625
Novel virtual screening approach for the discovery of human tyrosinase inhibitors.
Ai, Ni; Welsh, William J; Santhanam, Uma; Hu, Hong; Lyga, John
2014-01-01
Tyrosinase is the key enzyme involved in the human pigmentation process, as well as the undesired browning of fruits and vegetables. Compounds inhibiting tyrosinase catalytic activity are an important class of cosmetic and dermatological agents which show high potential as depigmentation agents used for skin lightening. The multi-step protocol employed for the identification of novel tyrosinase inhibitors incorporated the Shape Signatures computational algorithm for rapid screening of chemical libraries. This algorithm converts the size and shape of a molecule, as well its surface charge distribution and other bio-relevant properties, into compact histograms (signatures) that lend themselves to rapid comparison between molecules. Shape Signatures excels at scaffold hopping across different chemical families, which enables identification of new actives whose molecular structure is distinct from other known actives. Using this approach, we identified a novel class of depigmentation agents that demonstrated promise for skin lightening product development.
Building Cognition: The Construction of Computational Representations for Scientific Discovery.
Chandrasekharan, Sanjay; Nersessian, Nancy J
2015-11-01
Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in cognitive processes. However, DC analyses by and large have not examined scientific discovery, and they mostly focus on memory offloading, particularly how the use of existing external representations changes the nature of cognitive tasks. In contrast, we study discovery processes and argue that discoveries emerge from the processes of building the computational representation. The building process integrates manipulations in imagination and in the representation, creating a coupled cognitive system of model and modeler, where the model is incorporated into the modeler's imagination. This account extends DC significantly, and we present some of the theoretical and application implications of this extended account. Copyright © 2014 Cognitive Science Society, Inc.
Fragment-based drug discovery and its application to challenging drug targets.
Price, Amanda J; Howard, Steven; Cons, Benjamin D
2017-11-08
Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening
NASA Astrophysics Data System (ADS)
Machutta, Carl A.; Kollmann, Christopher S.; Lind, Kenneth E.; Bai, Xiaopeng; Chan, Pan F.; Huang, Jianzhong; Ballell, Lluis; Belyanskaya, Svetlana; Besra, Gurdyal S.; Barros-Aguirre, David; Bates, Robert H.; Centrella, Paolo A.; Chang, Sandy S.; Chai, Jing; Choudhry, Anthony E.; Coffin, Aaron; Davie, Christopher P.; Deng, Hongfeng; Deng, Jianghe; Ding, Yun; Dodson, Jason W.; Fosbenner, David T.; Gao, Enoch N.; Graham, Taylor L.; Graybill, Todd L.; Ingraham, Karen; Johnson, Walter P.; King, Bryan W.; Kwiatkowski, Christopher R.; Lelièvre, Joël; Li, Yue; Liu, Xiaorong; Lu, Quinn; Lehr, Ruth; Mendoza-Losana, Alfonso; Martin, John; McCloskey, Lynn; McCormick, Patti; O'Keefe, Heather P.; O'Keeffe, Thomas; Pao, Christina; Phelps, Christopher B.; Qi, Hongwei; Rafferty, Keith; Scavello, Genaro S.; Steiginga, Matt S.; Sundersingh, Flora S.; Sweitzer, Sharon M.; Szewczuk, Lawrence M.; Taylor, Amy; Toh, May Fern; Wang, Juan; Wang, Minghui; Wilkins, Devan J.; Xia, Bing; Yao, Gang; Zhang, Jean; Zhou, Jingye; Donahue, Christine P.; Messer, Jeffrey A.; Holmes, David; Arico-Muendel, Christopher C.; Pope, Andrew J.; Gross, Jeffrey W.; Evindar, Ghotas
2017-07-01
The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.
2018-01-01
Although many new anti-infectives have been discovered and developed solely using phenotypic cellular screening and assay optimization, most researchers recognize that structure-guided drug design is more practical and less costly. In addition, a greater chemical space can be interrogated with structure-guided drug design. The practicality of structure-guided drug design has launched a search for the targets of compounds discovered in phenotypic screens. One method that has been used extensively in malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA). Here, small molecules from phenotypic screens with demonstrated antiparasitic activity are used in genome-based target discovery methods. In this Review, we discuss the newest, most promising druggable targets discovered or further validated by evolution-based methods, as well as some exceptions. PMID:29451780
Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric
2013-10-01
Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.
McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam
2011-01-01
The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory. PMID:21806374
An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery
Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing
2010-01-01
The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897
Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.
Huang, Boshi; Kang, Dongwei; Zhan, Peng; Liu, Xinyong
2015-12-01
The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.
Knowing when to give up: early-rejection stratagems in ligand docking
NASA Astrophysics Data System (ADS)
Skone, Gwyn; Voiculescu, Irina; Cameron, Stephen
2009-10-01
Virtual screening is an important resource in the drug discovery community, of which protein-ligand docking is a significant part. Much software has been developed for this purpose, largely by biochemists and those in related disciplines, who pursue ever more accurate representations of molecular interactions. The resulting tools, however, are very processor-intensive. This paper describes some initial results from a project to review computational chemistry techniques for docking from a non-chemistry standpoint. An abstract blueprint for protein-ligand docking using empirical scoring functions is suggested, and this is used to discuss potential improvements. By introducing computer science tactics such as lazy function evaluation, dramatic increases to throughput can and have been realized using a real-world docking program. Naturally, they can be extended to any system that approximately corresponds to the architecture outlined.
Computational design of molecules for an all-quinone redox flow battery.
Er, Süleyman; Suh, Changwon; Marshak, Michael P; Aspuru-Guzik, Alán
2015-02-01
Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH 2 ) ( i.e. , two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.
A reliable computational workflow for the selection of optimal screening libraries.
Gilad, Yocheved; Nadassy, Katalin; Senderowitz, Hanoch
2015-01-01
The experimental screening of compound collections is a common starting point in many drug discovery projects. Successes of such screening campaigns critically depend on the quality of the screened library. Many libraries are currently available from different vendors yet the selection of the optimal screening library for a specific project is challenging. We have devised a novel workflow for the rational selection of project-specific screening libraries. The workflow accepts as input a set of virtual candidate libraries and applies the following steps to each library: (1) data curation; (2) assessment of ADME/T profile; (3) assessment of the number of promiscuous binders/frequent HTS hitters; (4) assessment of internal diversity; (5) assessment of similarity to known active compound(s) (optional); (6) assessment of similarity to in-house or otherwise accessible compound collections (optional). For ADME/T profiling, Lipinski's and Veber's rule-based filters were implemented and a new blood brain barrier permeation model was developed and validated (85 and 74 % success rate for training set and test set, respectively). Diversity and similarity descriptors which demonstrated best performances in terms of their ability to select either diverse or focused sets of compounds from three databases (Drug Bank, CMC and CHEMBL) were identified and used for diversity and similarity assessments. The workflow was used to analyze nine common screening libraries available from six vendors. The results of this analysis are reported for each library providing an assessment of its quality. Furthermore, a consensus approach was developed to combine the results of these analyses into a single score for selecting the optimal library under different scenarios. We have devised and tested a new workflow for the rational selection of screening libraries under different scenarios. The current workflow was implemented using the Pipeline Pilot software yet due to the usage of generic components, it can be easily adapted and reproduced by computational groups interested in rational selection of screening libraries. Furthermore, the workflow could be readily modified to include additional components. This workflow has been routinely used in our laboratory for the selection of libraries in multiple projects and consistently selects libraries which are well balanced across multiple parameters.Graphical abstract.
NASA Astrophysics Data System (ADS)
Moreno, Roxana Arleen
The present dissertation tested the hypothesis that software pedagogical agents can promote constructivist learning in a discovery-based multimedia environment. In a preliminary study, students who received a computer-based lesson on environmental science performed better on subsequent tests of problem solving and motivation when they learned with the mediation of a fictional agent compared to when they learned the same material from text. In order to investigate further the basis for this personal agent effect, I varied whether the agent's words were presented as speech or on-screen text and whether or not the agent's image appeared on the screen. Both with a fictional agent (Experiment 1) and a video of a human face (Experiment 2), students performed better on tests of retention, problem-solving transfer, and program ratings when words were presented as speech rather than on-screen text (producing a modality effect) but visual presence of the agent did not affect test performance (producing no image effect). Next, I varied whether or not the agent's words were presented in conversational style (i.e., as dialogue) or formal style (i.e., as monologue) both using speech (Experiment 3) and on-screen text (Experiment 4). In both experiments, there was a dialogue effect in which conversational-style produced better retention and transfer performance. Students who learned with conversational-style text rated the program more favorably than those who learned with monologue-style text. The results support cognitive principles of multimedia learning which underlie the understanding of a computer lesson about a complex scientific system.
Kaserer, Teresa; Beck, Katharina R; Akram, Muhammad; Odermatt, Alex; Schuster, Daniela
2015-12-19
Computational methods are well-established tools in the drug discovery process and can be employed for a variety of tasks. Common applications include lead identification and scaffold hopping, as well as lead optimization by structure-activity relationship analysis and selectivity profiling. In addition, compound-target interactions associated with potentially harmful effects can be identified and investigated. This review focuses on pharmacophore-based virtual screening campaigns specifically addressing the target class of hydroxysteroid dehydrogenases. Many members of this enzyme family are associated with specific pathological conditions, and pharmacological modulation of their activity may represent promising therapeutic strategies. On the other hand, unintended interference with their biological functions, e.g., upon inhibition by xenobiotics, can disrupt steroid hormone-mediated effects, thereby contributing to the development and progression of major diseases. Besides a general introduction to pharmacophore modeling and pharmacophore-based virtual screening, exemplary case studies from the field of short-chain dehydrogenase/reductase (SDR) research are presented. These success stories highlight the suitability of pharmacophore modeling for the various application fields and suggest its application also in futures studies.
Novel Computational Approaches to Drug Discovery
NASA Astrophysics Data System (ADS)
Skolnick, Jeffrey; Brylinski, Michal
2010-01-01
New approaches to protein functional inference based on protein structure and evolution are described. First, FINDSITE, a threading based approach to protein function prediction, is summarized. Then, the results of large scale benchmarking of ligand binding site prediction, ligand screening, including applications to HIV protease, and GO molecular functional inference are presented. A key advantage of FINDSITE is its ability to use low resolution, predicted structures as well as high resolution experimental structures. Then, an extension of FINDSITE to ligand screening in GPCRs using predicted GPCR structures, FINDSITE/QDOCKX, is presented. This is a particularly difficult case as there are few experimentally solved GPCR structures. Thus, we first train on a subset of known binding ligands for a set of GPCRs; this is then followed by benchmarking against a large ligand library. For the virtual ligand screening of a number of Dopamine receptors, encouraging results are seen, with significant enrichment in identified ligands over those found in the training set. Thus, FINDSITE and its extensions represent a powerful approach to the successful prediction of a variety of molecular functions.
Damm-Ganamet, Kelly L; Bembenek, Scott D; Venable, Jennifer W; Castro, Glenda G; Mangelschots, Lieve; Peeters, Daniëlle C G; Mcallister, Heather M; Edwards, James P; Disepio, Daniel; Mirzadegan, Taraneh
2016-05-12
Here, we report a high-throughput virtual screening (HTVS) study using phosphoinositide 3-kinase (both PI3Kγ and PI3Kδ). Our initial HTVS results of the Janssen corporate database identified small focused libraries with hit rates at 50% inhibition showing a 50-fold increase over those from a HTS (high-throughput screen). Further, applying constraints based on "chemically intuitive" hydrogen bonds and/or positional requirements resulted in a substantial improvement in the hit rates (versus no constraints) and reduced docking time. While we find that docking scoring functions are not capable of providing a reliable relative ranking of a set of compounds, a prioritization of groups of compounds (e.g., low, medium, and high) does emerge, which allows for the chemistry efforts to be quickly focused on the most viable candidates. Thus, this illustrates that it is not always necessary to have a high correlation between a computational score and the experimental data to impact the drug discovery process.
Mukherjee, Sudipto; Rizzo, Robert C.
2014-01-01
Scoring functions are a critically important component of computer-aided screening methods for the identification of lead compounds during early stages of drug discovery. Here, we present a new multi-grid implementation of the footprint similarity (FPS) scoring function that was recently developed in our laboratory which has proven useful for identification of compounds which bind to a protein on a per-residue basis in a way that resembles a known reference. The grid-based FPS method is much faster than its Cartesian-space counterpart which makes it computationally tractable for on-the-fly docking, virtual screening, or de novo design. In this work, we establish that: (i) relatively few grids can be used to accurately approximate Cartesian space footprint similarity, (ii) the method yields improved success over the standard DOCK energy function for pose identification across a large test set of experimental co-crystal structures, for crossdocking, and for database enrichment, and (iii) grid-based FPS scoring can be used to tailor construction of new molecules to have specific properties, as demonstrated in a series of test cases targeting the viral protein HIVgp41. The method will be made available in the program DOCK6. PMID:23436713
Macromolecular target prediction by self-organizing feature maps.
Schneider, Gisbert; Schneider, Petra
2017-03-01
Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.
In Silico Chemogenomics Drug Repositioning Strategies for Neglected Tropical Diseases.
Andrade, Carolina Horta; Neves, Bruno Junior; Melo-Filho, Cleber Camilo; Rodrigues, Juliana; Silva, Diego Cabral; Braga, Rodolpho Campos; Cravo, Pedro Vitor Lemos
2018-03-08
Only ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, is emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds. However, different to the one-drug-one-target paradigm, chemogenomics attempts to identify all potential ligands for all possible targets and diseases. In this review, we summarize current methodological development efforts in drug repositioning that use state-of-the-art computational ligand- and structure-based chemogenomics approaches. Furthermore, we highlighted the recent progress in computational drug repositioning for some NTDs, based on curation and modeling of genomic, biological, and chemical data. Additionally, we also present in-house and other successful examples and suggest possible solutions to existing pitfalls. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4
NASA Astrophysics Data System (ADS)
Evensen, Erik; Joseph-McCarthy, Diane; Weiss, Gregory A.; Schreiber, Stuart L.; Karplus, Martin
2007-07-01
Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these "random" methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.
Computational modeling in melanoma for novel drug discovery.
Pennisi, Marzio; Russo, Giulia; Di Salvatore, Valentina; Candido, Saverio; Libra, Massimo; Pappalardo, Francesco
2016-06-01
There is a growing body of evidence highlighting the applications of computational modeling in the field of biomedicine. It has recently been applied to the in silico analysis of cancer dynamics. In the era of precision medicine, this analysis may allow the discovery of new molecular targets useful for the design of novel therapies and for overcoming resistance to anticancer drugs. According to its molecular behavior, melanoma represents an interesting tumor model in which computational modeling can be applied. Melanoma is an aggressive tumor of the skin with a poor prognosis for patients with advanced disease as it is resistant to current therapeutic approaches. This review discusses the basics of computational modeling in melanoma drug discovery and development. Discussion includes the in silico discovery of novel molecular drug targets, the optimization of immunotherapies and personalized medicine trials. Mathematical and computational models are gradually being used to help understand biomedical data produced by high-throughput analysis. The use of advanced computer models allowing the simulation of complex biological processes provides hypotheses and supports experimental design. The research in fighting aggressive cancers, such as melanoma, is making great strides. Computational models represent the key component to complement these efforts. Due to the combinatorial complexity of new drug discovery, a systematic approach based only on experimentation is not possible. Computational and mathematical models are necessary for bringing cancer drug discovery into the era of omics, big data and personalized medicine.
Mathematical modeling for novel cancer drug discovery and development.
Zhang, Ping; Brusic, Vladimir
2014-10-01
Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.
STS-48 MS Brown on OV-103's aft flight deck poses for ESC photo
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) Mark N. Brown looks away from the portable laptop computer screen to pose for an Electronic Still Camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Brown was working at the payload station before the interruption. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
Global vision of druggability issues: applications and perspectives.
Abi Hussein, Hiba; Geneix, Colette; Petitjean, Michel; Borrel, Alexandre; Flatters, Delphine; Camproux, Anne-Claude
2017-02-01
During the preliminary stage of a drug discovery project, the lack of druggability information and poor target selection are the main causes of frequent failures. Elaborating on accurate computational druggability prediction methods is a requirement for prioritizing target selection, designing new drugs and avoiding side effects. In this review, we describe a survey of recently reported druggability prediction methods mainly based on networks, statistical pocket druggability predictions and virtual screening. An application for a frequent mutation of p53 tumor suppressor is presented, illustrating the complementarity of druggability prediction approaches, the remaining challenges and potential new drug development perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inhibition of Retinoblastoma Protein Inactivation
2017-11-01
SUBJECT TERMS cell cycle, Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY...screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor, cancer, cell-cycle inhibition, activation...modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography . 3.0 ACCOMPLISHMENTS Summary: We
Novel opportunities for computational biology and sociology in drug discovery
Yao, Lixia
2009-01-01
Drug discovery today is impossible without sophisticated modeling and computation. In this review we touch on previous advances in computational biology and by tracing the steps involved in pharmaceutical development, we explore a range of novel, high value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy-industry ties for scientific and human benefit. Attention to these opportunities could promise punctuated advance, and will complement the well-established computational work on which drug discovery currently relies. PMID:19674801
High-throughput screening and small animal models, where are we?
Giacomotto, Jean; Ségalat, Laurent
2010-01-01
Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day. PMID:20423335
An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening
2017-01-01
DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790
An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening.
MacConnell, Andrew B; Price, Alexander K; Paegel, Brian M
2017-03-13
DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.
Pan, Huiqin; Yang, Wenzhi; Zhang, Yibei; Yang, Min; Feng, Ruihong; Wu, Wanying; Guo, Dean
2015-08-01
The exploration of new chemical entities from herbal medicines may provide candidates for the in silico screening of drug leads. However, this significant work is hindered by the presence of multiple classes of plant metabolites and many re-discovered structures. This study presents an integrated strategy that uses ultrahigh-performance liquid chromatography/linear ion-trap quadrupole/Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap-MS) coupled with in-house library data for the systematic characterization and discovery of new potentially bioactive molecules. Exploration of the indole alkaloids from Uncaria rhynchophylla (UR) is presented as a model study. Initially, the primary characterization of alkaloids was achieved using mass defect filtering and neutral loss filtering. Subsequently, phytochemical isolation obtained 14 alkaloid compounds as reference standards, including a new one identified as 16,17-dihydro-O-demethylhirsuteine by NMR analyses. The direct-infusion fragmentation behaviors of these isolated alkaloids were studied to provide diagnostic structural information facilitating the rapid differentiation and characterization of four different alkaloid subtypes. Ultimately, after combining the experimental results with a survey of an in-house library containing 129 alkaloids isolated from the Uncaria genus, a total of 92 alkaloids (60 free alkaloids and 32 alkaloid O-glycosides) were identified or tentatively characterized, 56 of which are potential new alkaloids for the Uncaria genus. Hydroxylation on ring A, broad variations in the C-15 side chain, new N-oxides, and numerous O-glycosides, represent the novel features of the newly discovered indole alkaloid structures. These results greatly expand our knowledge of UR chemistry and are useful for the computational screening of potentially bioactive molecules from indole alkaloids. Graphical Abstract A four-step integrated strategy for the systematic characterization and efficient discovery of new indole alkaloids from Uncaria rhynchophylla.
Xiao, Xiaodong; Douthwaite, Julie A; Chen, Yan; Kemp, Ben; Kidd, Sara; Percival-Alwyn, Jennifer; Smith, Alison; Goode, Kate; Swerdlow, Bonnie; Lowe, David; Wu, Herren; Dall'Acqua, William F; Chowdhury, Partha S
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.
G-protein-coupled receptors: new approaches to maximise the impact of GPCRS in drug discovery.
Davey, John
2004-04-01
IBC's Drug Discovery Technology Series is a group of conferences highlighting technological advances and applications in niche areas of the drug discovery pipeline. This 2-day meeting focused on G-protein-coupled receptors (GPCRs), probably the most important and certainly the most valuable class of targets for drug discovery. The meeting was chaired by J Beesley (Vice President, European Business Development for LifeSpan Biosciences, Seattle, USA) and included 17 presentations on various aspects of GPCR activity, drug screens and therapeutic analyses. Keynote Addresses covered two of the emerging areas in GPCR regulation; receptor dimerisation (G Milligan, Professor of Molecular Pharmacology and Biochemistry, University of Glasgow, UK) and proteins that interact with GPCRs (J Bockaert, Laboratory of Functional Genomics, CNRS Montpellier, France). A third Keynote Address from W Thomsen (Director of GPCR Drug Screening, Arena Pharmaceuticals, USA) discussed Arena's general approach to drug discovery and illustrated this with reference to the development of an agonist with potential efficacy in Type II diabetes.
Scott, Daniel J; Kummer, Lutz; Egloff, Pascal; Bathgate, Ross A D; Plückthun, Andreas
2014-11-01
The largest single class of drug targets is the G protein-coupled receptor (GPCR) family. Modern high-throughput methods for drug discovery require working with pure protein, but this has been a challenge for GPCRs, and thus the success of screening campaigns targeting soluble, catalytic protein domains has not yet been realized for GPCRs. Therefore, most GPCR drug screening has been cell-based, whereas the strategy of choice for drug discovery against soluble proteins is HTS using purified proteins coupled to structure-based drug design. While recent developments are increasing the chances of obtaining GPCR crystal structures, the feasibility of screening directly against purified GPCRs in the unbound state (apo-state) remains low. GPCRs exhibit low stability in detergent micelles, especially in the apo-state, over the time periods required for performing large screens. Recent methods for generating detergent-stable GPCRs, however, offer the potential for researchers to manipulate GPCRs almost like soluble enzymes, opening up new avenues for drug discovery. Here we apply cellular high-throughput encapsulation, solubilization and screening (CHESS) to the neurotensin receptor 1 (NTS1) to generate a variant that is stable in the apo-state when solubilized in detergents. This high stability facilitated the crystal structure determination of this receptor and also allowed us to probe the pharmacology of detergent-solubilized, apo-state NTS1 using robotic ligand binding assays. NTS1 is a target for the development of novel antipsychotics, and thus CHESS-stabilized receptors represent exciting tools for drug discovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Chiu, Charles Y
2015-01-01
Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672
Zebrafish models in neuropsychopharmacology and CNS drug discovery.
Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J
2017-07-01
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.
NASA Astrophysics Data System (ADS)
Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja
2015-01-01
Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.
New technologies for application to veterinary therapeutics.
Riviere, Jim E
2010-01-01
The purpose of this contribution is to review new technologies and make an educated prediction as to how they will impact veterinary pharmacology over the coming decades. By examining past developments, it becomes evident that change is incremental and predictable unless either a transforming discovery or a change in societal behaviour occurs. In the last century, both discoveries and behaviours have dramatically changed medicine, pharmacology and therapeutics. In this chapter, the potential effects of six transforming technologies on veterinary therapeutics are examined: continued advances in computer technology, microfluidics, nanotechnology, high-throughput screening, control and targeted drug delivery and pharmacogenomics. These should lead to the more efficacious and safer use of existing medicants, and the development of novel drugs across most therapeutic classes through increases in our knowledge base, as well as more efficient drug development. Although this growth in technology portends major advances over the next few decades, economic and regulatory constraints must still be overcome for these new drugs or therapeutic approaches to become common practise.
Connecting the virtual world of computers to the real world of medicinal chemistry.
Glen, Robert C
2011-03-01
Drug discovery involves the simultaneous optimization of chemical and biological properties, usually in a single small molecule, which modulates one of nature's most complex systems: the balance between human health and disease. The increased use of computer-aided methods is having a significant impact on all aspects of the drug-discovery and development process and with improved methods and ever faster computers, computer-aided molecular design will be ever more central to the discovery process.
Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Amit; Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570; Shimizu, Takeshi
2016-06-03
Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors basedmore » on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.« less
Microfluidics for cell-based high throughput screening platforms - A review.
Du, Guansheng; Fang, Qun; den Toonder, Jaap M J
2016-01-15
In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.
TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery.
Vanwetswinkel, Sophie; Heetebrij, Robert J; van Duynhoven, John; Hollander, Johan G; Filippov, Dmitri V; Hajduk, Philip J; Siegal, Gregg
2005-02-01
We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by comparing 1D NMR spectra of compound mixtures in the presence of a target immobilized on a solid support to a control sample. The method has been validated by the detection of a variety of ligands for protein and nucleic acid targets (K(D) from 60 to 5000 muM). The ligand binding capacity of a protein was undiminished after 2000 different compounds had been applied, indicating the potential to apply the assay for screening typical fragment libraries. TINS can be used in competition mode, allowing rapid characterization of the ligand binding site. TINS may allow screening of targets that are difficult to produce or that are insoluble, such as membrane proteins.
Er, Süleyman; Suh, Changwon; Marshak, Michael P.
2015-01-01
Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships. PMID:29560173
ChemoPy: freely available python package for computational biology and chemoinformatics.
Cao, Dong-Sheng; Xu, Qing-Song; Hu, Qian-Nan; Liang, Yi-Zeng
2013-04-15
Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently. The python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows. Supplementary data are available at Bioinformatics online.
First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Karl Johnson
The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. Newmore » materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.« less
Mass spectrometry for fragment screening.
Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris
2017-11-08
Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Docking-based classification models for exploratory toxicology ...
Background: Exploratory toxicology is a new emerging research area whose ultimate mission is that of protecting human health and environment from risks posed by chemicals. In this regard, the ethical and practical limitation of animal testing has encouraged the promotion of computational methods for the fast screening of huge collections of chemicals available on the market. Results: We derived 24 reliable docking-based classification models able to predict the estrogenic potential of a large collection of chemicals having high quality experimental data, kindly provided by the U.S. Environmental Protection Agency (EPA). The predictive power of our docking-based models was supported by values of AUC, EF1% (EFmax = 7.1), -LR (at SE = 0.75) and +LR (at SE = 0.25) ranging from 0.63 to 0.72, from 2.5 to 6.2, from 0.35 to 0.67 and from 2.05 to 9.84, respectively. In addition, external predictions were successfully made on some representative known estrogenic chemicals. Conclusion: We show how structure-based methods, widely applied to drug discovery programs, can be adapted to meet the conditions of the regulatory context. Importantly, these methods enable one to employ the physicochemical information contained in the X-ray solved biological target and to screen structurally-unrelated chemicals. Shows how structure-based methods, widely applied to drug discovery programs, can be adapted to meet the conditions of the regulatory context. Evaluation of 24 reliable dockin
Bate, A; Lindquist, M; Edwards, I R
2008-04-01
After market launch, new information on adverse effects of medicinal products is almost exclusively first highlighted by spontaneous reporting. As data sets of spontaneous reports have become larger, and computational capability has increased, quantitative methods have been increasingly applied to such data sets. The screening of such data sets is an application of knowledge discovery in databases (KDD). Effective KDD is an iterative and interactive process made up of the following steps: developing an understanding of an application domain, creating a target data set, data cleaning and pre-processing, data reduction and projection, choosing the data mining task, choosing the data mining algorithm, data mining, interpretation of results and consolidating and using acquired knowledge. The process of KDD as it applies to the analysis of spontaneous reports can be exemplified by its routine use on the 3.5 million suspected adverse drug reaction (ADR) reports in the WHO ADR database. Examples of new adverse effects first highlighted by the KDD process on WHO data include topiramate glaucoma, infliximab vasculitis and the association of selective serotonin reuptake inhibitors (SSRIs) and neonatal convulsions. The KDD process has already improved our ability to highlight previously unsuspected ADRs for clinical review in spontaneous reporting, and we anticipate that such techniques will be increasingly used in the successful screening of other healthcare data sets such as patient records in the future.
Machine learning properties of binary wurtzite superlattices
Pilania, G.; Liu, X. -Y.
2018-01-12
The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less
Machine learning properties of binary wurtzite superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, G.; Liu, X. -Y.
The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.
2016-09-01
Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.
Ufarté, Lisa; Bozonnet, Sophie; Laville, Elisabeth; Cecchini, Davide A; Pizzut-Serin, Sandra; Jacquiod, Samuel; Demanèche, Sandrine; Simonet, Pascal; Franqueville, Laure; Veronese, Gabrielle Potocki
2016-01-01
Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.
Inhibition of Retinoblastoma Protein Inactivation
2016-09-01
Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY CLASSIFICATION OF: 17...developed a method to perform fragment based screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor...cancer, cell-cycle inhibition, activation, modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography
Changing the Scale and Efficiency of Chemical Warfare Countermeasure Discovery Using the Zebrafish
Peterson, Randall T.; MacRae, Calum A.
2013-01-01
As the scope of potential chemical warfare agents grows rapidly and as the diversity of potential threat scenarios expands with non-state actors, so a need for innovative approaches to countermeasure development has emerged. In the last few years, the utility of the zebrafish as a model organism that is amenable to high-throughput screening has become apparent and this system has been applied to the unbiased discovery of chemical warfare countermeasures. This review summarizes the in vivo screening approach that has been pioneered in the countermeasure discovery arena, and highlights the successes to date as well as the potential challenges in moving the field forward. Importantly, the establishment of a zebrafish platform for countermeasure discovery would offer a rapid response system for the development of antidotes to the continuous stream of new potential chemical warfare agents. PMID:24273586
Fallarero, Adyary; Hanski, Leena; Vuorela, Pia
2014-09-01
Natural product sources have been a valuable provider of molecular diversity in many drug discovery programs and several therapeutically important drugs have been isolated from these. However, the screening of such materials can be very complicated due to the fact that they contain a complex mixture of secondary metabolites, but also the purified natural compounds exert a challenge for bioactivity screening. Success in identifying new therapeutics using in vitro bioassays is largely dependent upon the proper design, validation, and implementation of the screening assay. In this review, we discuss some aspects which are of significant concern when screening natural products in a microtiter plate-based format, being partly applicable to other assay formats as well, such as validation parameters, layouts for assay protocols, and common interferences caused by natural products samples, as well as various troubleshooting strategies. Examples from the field of natural product drug discovery of antibacterial compounds are discussed, and contributions from the realm of academic screenings are highlighted. Georg Thieme Verlag KG Stuttgart · New York.
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-12-01
The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-01-01
Motivation: The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. Results: We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. Availability and implementation: BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Contact: Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254488
Anticancer drug discovery and pharmaceutical chemistry: a history.
Braña, Miguel F; Sánchez-Migallón, Ana
2006-10-01
There are several procedures for the chemical discovery and design of new drugs from the point of view of the pharmaceutical or medicinal chemistry. They range from classical methods to the very new ones, such as molecular modeling or high throughput screening. In this review, we will consider some historical approaches based on the screening of natural products, the chances for luck, the systematic screening of new chemical entities and serendipity. Another group comprises rational design, as in the case of metabolic pathways, conformation versus configuration and, finally, a brief description on available new targets to be carried out. In each approach, the structure of some examples of clinical interest will be shown.
AutoClickChem: click chemistry in silico.
Durrant, Jacob D; McCammon, J Andrew
2012-01-01
Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.
AutoClickChem: Click Chemistry in Silico
Durrant, Jacob D.; McCammon, J. Andrew
2012-01-01
Academic researchers and many in industry often lack the financial resources available to scientists working in “big pharma.” High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu. PMID:22438795
Soleilhac, Emmanuelle; Nadon, Robert; Lafanechere, Laurence
2010-02-01
Screening compounds with cell-based assays and microscopy image-based analysis is an approach currently favored for drug discovery. Because of its high information yield, the strategy is called high-content screening (HCS). This review covers the application of HCS in drug discovery and also in basic research of potential new pathways that can be targeted for treatment of pathophysiological diseases. HCS faces several challenges, however, including the extraction of pertinent information from the massive amount of data generated from images. Several proposed approaches to HCS data acquisition and analysis are reviewed. Different solutions from the fields of mathematics, bioinformatics and biotechnology are presented. Potential applications and limits of these recent technical developments are also discussed. HCS is a multidisciplinary and multistep approach for understanding the effects of compounds on biological processes at the cellular level. Reliable results depend on the quality of the overall process and require strong interdisciplinary collaborations.
Copper homeostasis gene discovery in Drosophila melanogaster.
Norgate, Melanie; Southon, Adam; Zou, Sige; Zhan, Ming; Sun, Yu; Batterham, Phil; Camakaris, James
2007-06-01
Recent studies have shown a high level of conservation between Drosophila melanogaster and mammalian copper homeostasis mechanisms. These studies have also demonstrated the efficiency with which this species can be used to characterize novel genes, at both the cellular and whole organism level. As a versatile and inexpensive model organism, Drosophila is also particularly useful for gene discovery applications and thus has the potential to be extremely useful in identifying novel copper homeostasis genes and putative disease genes. In order to assess the suitability of Drosophila for this purpose, three screening approaches have been investigated. These include an analysis of the global transcriptional response to copper in both adult flies and an embryonic cell line using DNA microarray analysis. Two mutagenesis-based screens were also utilized. Several candidate copper homeostasis genes have been identified through this work. In addition, the results of each screen were carefully analyzed to identify any factors influencing efficiency and sensitivity. These are discussed here with the aim of maximizing the efficiency of future screens and the most suitable approaches are outlined. Building on this information, there is great potential for the further use of Drosophila for copper homeostasis gene discovery.
Drug search for leishmaniasis: a virtual screening approach by grid computing
NASA Astrophysics Data System (ADS)
Ochoa, Rodrigo; Watowich, Stanley J.; Flórez, Andrés; Mesa, Carol V.; Robledo, Sara M.; Muskus, Carlos
2016-07-01
The trypanosomatid protozoa Leishmania is endemic in 100 countries, with infections causing 2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen 2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.
Drug search for leishmaniasis: a virtual screening approach by grid computing.
Ochoa, Rodrigo; Watowich, Stanley J; Flórez, Andrés; Mesa, Carol V; Robledo, Sara M; Muskus, Carlos
2016-07-01
The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.
An information technology emphasis in biomedical informatics education.
Kane, Michael D; Brewer, Jeffrey L
2007-02-01
Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.
Case study: impact of technology investment on lead discovery at Bristol-Myers Squibb, 1998-2006.
Houston, John G; Banks, Martyn N; Binnie, Alastair; Brenner, Stephen; O'Connell, Jonathan; Petrillo, Edward W
2008-01-01
We review strategic approaches taken over an eight-year period at BMS to implement new high-throughput approaches to lead discovery. Investments in compound management infrastructure and chemistry library production capability allowed significant growth in the size, diversity and quality of the BMS compound collection. Screening platforms were upgraded with robust automated technology to support miniaturized assay formats, while workflows and information handling technologies were streamlined for improved performance. These technology changes drove the need for a supporting organization in which critical engineering, informatics and scientific skills were more strongly represented. Taken together, these investments led to significant improvements in speed and productivity as well a greater impact of screening campaigns on the initiation of new drug discovery programs.
ADDME – Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective
Tsaioun, Katya; Bottlaender, Michel; Mabondzo, Aloise
2009-01-01
The advent of early absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening has increased the attrition rate of weak drug candidates early in the drug-discovery process, and decreased the proportion of compounds failing in clinical trials for ADMET reasons. This paper reviews the history of ADMET screening and its place in pharmaceutical development, and central nervous system drug discovery in particular. Assays that have been developed in response to specific needs and improvements in technology that result in higher throughput and greater accuracy of prediction of human mechanisms of absorption and toxicity are discussed. The paper concludes with the authors' forecast of new models that will better predict human efficacy and toxicity. PMID:19534730
Organs-on-chips at the frontiers of drug discovery
Esch, Eric W.; Bahinski, Anthony; Huh, Dongeun
2016-01-01
Improving the effectiveness of preclinical predictions of human drug responses is critical to reducing costly failures in clinical trials. Recent advances in cell biology, microfabrication and microfluidics have enabled the development of microengineered models of the functional units of human organs — known as organs-on-chips — that could provide the basis for preclinical assays with greater predictive power. Here, we examine the new opportunities for the application of organ-on-chip technologies in a range of areas in preclinical drug discovery, such as target identification and validation, target-based screening, and phenotypic screening. We also discuss emerging drug discovery opportunities enabled by organs-on-chips, as well as important challenges in realizing the full potential of this technology. PMID:25792263
ADVANCES IN DISCOVERING SMALL MOLECULES TO PROBE PROTEIN FUNCTION IN A SYSTEMS CONTEXT
Doyle, Shelby K; Pop, Marius S; Evans, Helen L; Koehler, Angela N
2015-01-01
High throughput screening has historically been used for drug discovery almost exclusively by the pharmaceutical industry. Due to a significant decrease in costs associated with establishing a high throughput facility and an exponential interest in discovering probes of development and disease associated biomolecules, HTS core facilities have become an integral part of most academic and non-profit research institutions over the past decade. This major shift has led to the development of new HTS methodologies extending beyond the capabilities and target classes used in classical drug discovery approaches such as traditional enzymatic activity-based screens. In this brief review we describe some of the most interesting developments in HTS technologies and methods for chemical probe discovery. PMID:26615565
From Roentgen to magnetic resonance imaging: the history of medical imaging.
Scatliff, James H; Morris, Peter J
2014-01-01
Medical imaging has advanced in remarkable ways since the discovery of x-rays 120 years ago. Today's radiologists can image the human body in intricate detail using computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and various other modalities. Such technology allows for improved screening, diagnosis, and monitoring of disease, but it also comes with risks. Many imaging modalities expose patients to ionizing radiation, which potentially increases their risk of developing cancer in the future, and imaging may also be associated with possible allergic reactions or risks related to the use of intravenous contrast agents. In addition, the financial costs of imaging are taxing our health care system, and incidental findings can trigger anxiety and further testing. This issue of the NCMJ addresses the pros and cons of medical imaging and discusses in detail the following uses of medical imaging: screening for breast cancer with mammography, screening for osteoporosis and monitoring of bone mineral density with dual-energy x-ray absorptiometry, screening for congenital hip dysplasia in infants with ultrasound, and evaluation of various heart conditions with cardiac imaging. Together, these articles show the challenges that must be met as we seek to harness the power of today's imaging technologies, as well as the potential benefits that can be achieved when these hurdles are overcome.
Role of Chemical Reactivity and Transition State Modeling for Virtual Screening.
Karthikeyan, Muthukumarasamy; Vyas, Renu; Tambe, Sanjeev S; Radhamohan, Deepthi; Kulkarni, Bhaskar D
2015-01-01
Every drug discovery research program involves synthesis of a novel and potential drug molecule utilizing atom efficient, economical and environment friendly synthetic strategies. The current work focuses on the role of the reactivity based fingerprints of compounds as filters for virtual screening using a tool ChemScore. A reactant-like (RLS) and a product- like (PLS) score can be predicted for a given compound using the binary fingerprints derived from the numerous known organic reactions which capture the molecule-molecule interactions in the form of addition, substitution, rearrangement, elimination and isomerization reactions. The reaction fingerprints were applied to large databases in biology and chemistry, namely ChEMBL, KEGG, HMDB, DSSTox, and the Drug Bank database. A large network of 1113 synthetic reactions was constructed to visualize and ascertain the reactant product mappings in the chemical reaction space. The cumulative reaction fingerprints were computed for 4000 molecules belonging to 29 therapeutic classes of compounds, and these were found capable of discriminating between the cognition disorder related and anti-allergy compounds with reasonable accuracy of 75% and AUC 0.8. In this study, the transition state based fingerprints were also developed and used effectively for virtual screening in drug related databases. The methodology presented here provides an efficient handle for the rapid scoring of molecular libraries for virtual screening.
Potential biological targets for bioassay development in drug discovery of Sturge-Weber syndrome.
Mohammadipanah, Fatemeh; Salimi, Fatemeh
2018-02-01
Sturge-Weber Syndrome (SWS) is a neurocutaneous disease with clinical manifestations including ocular (glaucoma), cutaneous (port-wine birthmark), neurologic (seizures), and vascular problems. Molecular mechanisms of SWS pathogenesis are initiated by the somatic mutation in GNAQ. Therefore, no definite treatments exist for SWS and treatment options only mitigate the intensity of its clinical manifestations. Biological assay design for drug discovery against this syndrome demands comprehensive knowledge on mechanisms which are involved in its pathogenesis. By analysis of the interrelated molecular targets of SWS, some in vitro bioassay systems can be allotted for drug screening against its progression. Development of such platforms of bioassay can bring along the implementation of high-throughput screening of natural or synthetic compounds in drug discovery programs. Regarding the fact that study of molecular targets and their integration in biological assay design can facilitate the process of effective drug discovery; some potential biological targets and their respective biological assay for SWS drug discovery are propounded in this review. For this purpose, some biological targets for SWS drug discovery such as acetylcholinesterase, alkaline phosphatase, GABAergic receptors, Hypoxia-Inducible Factor (HIF)-1α and 2α are suggested. © 2017 John Wiley & Sons A/S.
Delivering The Benefits of Chemical-Biological Integration in ...
Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intention of this research program is to quickly evaluate thousands of chemicals for potential risk but with much reduced cost relative to historical approaches. This work involves computational and data driven approaches including high-throughput screening, modeling, text-mining and the integration of chemistry, exposure and biological data. We have developed a number of databases and applications that are delivering on the vision of developing a deeper understanding of chemicals and their effects on exposure and biological processes that are supporting a large community of scientists in their research efforts. This presentation will provide an overview of our work to bring together diverse large scale data from the chemical and biological domains, our approaches to integrate and disseminate these data, and the delivery of models supporting computational toxicology. This abstract does not reflect U.S. EPA policy. Presentation at ACS TOXI session on Computational Chemistry and Toxicology in Chemical Discovery and Assessement (QSARs).
Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca
2018-01-01
Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268
Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios
2017-06-01
The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.
Computational methods for a three-dimensional model of the petroleum-discovery process
Schuenemeyer, J.H.; Bawiec, W.J.; Drew, L.J.
1980-01-01
A discovery-process model devised by Drew, Schuenemeyer, and Root can be used to predict the amount of petroleum to be discovered in a basin from some future level of exploratory effort: the predictions are based on historical drilling and discovery data. Because marginal costs of discovery and production are a function of field size, the model can be used to make estimates of future discoveries within deposit size classes. The modeling approach is a geometric one in which the area searched is a function of the size and shape of the targets being sought. A high correlation is assumed between the surface-projection area of the fields and the volume of petroleum. To predict how much oil remains to be found, the area searched must be computed, and the basin size and discovery efficiency must be estimated. The basin is assumed to be explored randomly rather than by pattern drilling. The model may be used to compute independent estimates of future oil at different depth intervals for a play involving multiple producing horizons. We have written FORTRAN computer programs that are used with Drew, Schuenemeyer, and Root's model to merge the discovery and drilling information and perform the necessary computations to estimate undiscovered petroleum. These program may be modified easily for the estimation of remaining quantities of commodities other than petroleum. ?? 1980.
Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLean, Larry R.; Zhang, Ying; Degnen, William
2010-10-28
Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.
Immersive Theater - a Proven Way to Enhance Learning Retention
NASA Astrophysics Data System (ADS)
Reiff, P. H.; Zimmerman, L.; Spillane, S.; Sumners, C.
2014-12-01
The portable immersive theater has gone from our first demonstration at fall AGU 2003 to a product offered by multiple companies in various versions to literally millions of users per year. As part of our NASA funded outreach program, we conducted a test of learning in a portable Discovery Dome as contrasted with learning the same materials (visuals and sound track) on a computer screen. We tested 200 middle school students (primarily underserved minorities). Paired t-tests and an independent t-test were used to compare the amount of learning that students achieved. Interest questionnaires were administered to participants in formal (public school) settings and focus groups were conducted in informal (museum camp and educational festival) settings. Overall results from the informal and formal educational setting indicated that there was a statistically significant increase in test scores after viewing We Choose Space. There was a statistically significant increase in test scores for students who viewed We Choose Space in the portable Discovery Dome (9.75) as well as with the computer (8.88). However, long-term retention of the material tested on the questionnaire indicated that for students who watched We Choose Space in the portable Discovery Dome, there was a statistically significant long-term increase in test scores (10.47), whereas, six weeks after learning on the computer, the improvements over the initial baseline (3.49) were far less and were not statistically significant. The test score improvement six weeks after learning in the dome was essentially the same as the post test immediately after watching the show, demonstrating virtually no loss of gained information in the six week interval. In the formal educational setting, approximately 34% of the respondents indicated that they wanted to learn more about becoming a scientist, while 35% expressed an interest in a career in space science. In the informal setting, 26% indicated that they were interested in pursuing a career in space science.
A new approach to the rationale discovery of polymeric biomaterials
Kohn, Joachim; Welsh, William J.; Knight, Doyle
2007-01-01
This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176
Poisson Statistics of Combinatorial Library Sampling Predict False Discovery Rates of Screening
2017-01-01
Microfluidic droplet-based screening of DNA-encoded one-bead-one-compound combinatorial libraries is a miniaturized, potentially widely distributable approach to small molecule discovery. In these screens, a microfluidic circuit distributes library beads into droplets of activity assay reagent, photochemically cleaves the compound from the bead, then incubates and sorts the droplets based on assay result for subsequent DNA sequencing-based hit compound structure elucidation. Pilot experimental studies revealed that Poisson statistics describe nearly all aspects of such screens, prompting the development of simulations to understand system behavior. Monte Carlo screening simulation data showed that increasing mean library sampling (ε), mean droplet occupancy, or library hit rate all increase the false discovery rate (FDR). Compounds identified as hits on k > 1 beads (the replicate k class) were much more likely to be authentic hits than singletons (k = 1), in agreement with previous findings. Here, we explain this observation by deriving an equation for authenticity, which reduces to the product of a library sampling bias term (exponential in k) and a sampling saturation term (exponential in ε) setting a threshold that the k-dependent bias must overcome. The equation thus quantitatively describes why each hit structure’s FDR is based on its k class, and further predicts the feasibility of intentionally populating droplets with multiple library beads, assaying the micromixtures for function, and identifying the active members by statistical deconvolution. PMID:28682059
Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G
2011-03-21
Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.
Natural product discovery: past, present, and future.
Katz, Leonard; Baltz, Richard H
2016-03-01
Microorganisms have provided abundant sources of natural products which have been developed as commercial products for human medicine, animal health, and plant crop protection. In the early years of natural product discovery from microorganisms (The Golden Age), new antibiotics were found with relative ease from low-throughput fermentation and whole cell screening methods. Later, molecular genetic and medicinal chemistry approaches were applied to modify and improve the activities of important chemical scaffolds, and more sophisticated screening methods were directed at target disease states. In the 1990s, the pharmaceutical industry moved to high-throughput screening of synthetic chemical libraries against many potential therapeutic targets, including new targets identified from the human genome sequencing project, largely to the exclusion of natural products, and discovery rates dropped dramatically. Nonetheless, natural products continued to provide key scaffolds for drug development. In the current millennium, it was discovered from genome sequencing that microbes with large genomes have the capacity to produce about ten times as many secondary metabolites as was previously recognized. Indeed, the most gifted actinomycetes have the capacity to produce around 30-50 secondary metabolites. With the precipitous drop in cost for genome sequencing, it is now feasible to sequence thousands of actinomycete genomes to identify the "biosynthetic dark matter" as sources for the discovery of new and novel secondary metabolites. Advances in bioinformatics, mass spectrometry, proteomics, transcriptomics, metabolomics and gene expression are driving the new field of microbial genome mining for applications in natural product discovery and development.
Computational neuropharmacology: dynamical approaches in drug discovery.
Aradi, Ildiko; Erdi, Péter
2006-05-01
Computational approaches that adopt dynamical models are widely accepted in basic and clinical neuroscience research as indispensable tools with which to understand normal and pathological neuronal mechanisms. Although computer-aided techniques have been used in pharmaceutical research (e.g. in structure- and ligand-based drug design), the power of dynamical models has not yet been exploited in drug discovery. We suggest that dynamical system theory and computational neuroscience--integrated with well-established, conventional molecular and electrophysiological methods--offer a broad perspective in drug discovery and in the search for novel targets and strategies for the treatment of neurological and psychiatric diseases.
Czarny, T. L.; Perri, A. L.; French, S.
2014-01-01
The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489
Metabolic Profile of the Cellulolytic Industrial Actinomycete Thermobifida fusca
Vanee, Niti
2017-01-01
Actinomycetes have a long history of being the source of numerous valuable natural products and medicinals. To expedite product discovery and optimization of biochemical production, high-throughput technologies can now be used to screen the library of compounds present (or produced) at a given time in an organism. This not only facilitates chemical product screening, but also provides a comprehensive methodology to the study cellular metabolic networks to inform cellular engineering. Here, we present some of the first metabolomic data of the industrial cellulolytic actinomycete Thermobifida fusca generated using LC-MS/MS. The underlying objective of conducting global metabolite profiling was to gain better insight on the innate capabilities of T. fusca, with a long-term goal of facilitating T. fusca-based bioprocesses. The T. fusca metabolome was characterized for growth on two cellulose-relevant carbon sources, cellobiose and Avicel. Furthermore, the comprehensive list of measured metabolites was computationally integrated into a metabolic model of T. fusca, to study metabolic shifts in the network flux associated with carbohydrate and amino acid metabolism. PMID:29137138
Hu, Juan; Pang, Wen-Sheng; Han, Jing; Zhang, Kuan; Zhang, Ji-Zhou; Chen, Li-Dian
2018-12-01
Stroke is a disease of the leading causes of mortality and disability across the world, but the benefits of drugs curative effects look less compelling, intracellular calcium overload is considered to be a key pathologic factor for ischemic stroke. Gualou Guizhi decoction (GLGZD), a classical Chinese medicine compound prescription, it has been used to human clinical therapy of sequela of cerebral ischemia stroke for 10 years. This work investigated the GLGZD improved prescription against intracellular calcium overload could decreased the concentration of [Ca 2+ ] i in cortex and striatum neurone of MCAO rats. GLGZD contains Trichosanthin and various small molecular that they are the potential active ingredients directed against NR2A, NR2B, FKBP12 and Calnodulin target proteins/enzyme have been screened by computer simulation. "Multicomponent systems" is capable to create pharmacological superposition effects. The Chinese medicine compound prescriptions could be considered as promising sources of candidates for discovery new agents.
Chemical Space: Big Data Challenge for Molecular Diversity.
Awale, Mahendra; Visini, Ricardo; Probst, Daniel; Arús-Pous, Josep; Reymond, Jean-Louis
2017-10-25
Chemical space describes all possible molecules as well as multi-dimensional conceptual spaces representing the structural diversity of these molecules. Part of this chemical space is available in public databases ranging from thousands to billions of compounds. Exploiting these databases for drug discovery represents a typical big data problem limited by computational power, data storage and data access capacity. Here we review recent developments of our laboratory, including progress in the chemical universe databases (GDB) and the fragment subset FDB-17, tools for ligand-based virtual screening by nearest neighbor searches, such as our multi-fingerprint browser for the ZINC database to select purchasable screening compounds, and their application to discover potent and selective inhibitors for calcium channel TRPV6 and Aurora A kinase, the polypharmacology browser (PPB) for predicting off-target effects, and finally interactive 3D-chemical space visualization using our online tools WebDrugCS and WebMolCS. All resources described in this paper are available for public use at www.gdb.unibe.ch.
Scala, Angela; Rescifina, Antonio; Micale, Nicola; Piperno, Anna; Schirmeister, Tanja; Maes, Louis; Grassi, Giovanni
2018-02-01
In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8ΔCTE, fused benzo[b]thiophenes and β,β'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20 μm). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-topology. Based on the predicted physicochemical and ADME-Tox properties, compound 2b has been identified as a new drug-like, non-mutagen, non-carcinogen, and non-neurotoxic lead candidate. © 2017 John Wiley & Sons A/S.
Patel, Disha; Bauman, Joseph D.; Arnold, Eddy
2015-01-01
X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this “chemical interrogation” of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. PMID:25117499
Patel, Disha; Bauman, Joseph D; Arnold, Eddy
2014-01-01
X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this "chemical interrogation" of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. Copyright © 2014. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Hulshof, Casper D.; de Jong, Ton
2006-01-01
Students encounter many obstacles during scientific discovery learning with computer-based simulations. It is hypothesized that an effective type of support, that does not interfere with the scientific discovery learning process, should be delivered on a "just-in-time" base. This study explores the effect of facilitating access to…
Martins da Silva, Sarah J.; Brown, Sean G.; Sutton, Keith; King, Louise V.; Ruso, Halil; Gray, David W.; Wyatt, Paul G.; Kelly, Mark C.; Barratt, Christopher L.R.; Hope, Anthony G.
2017-01-01
Abstract STUDY QUESTION Can pharma drug discovery approaches be utilized to transform investigation into novel therapeutics for male infertility? SUMMARY ANSWER High-throughput screening (HTS) is a viable approach to much-needed drug discovery for male factor infertility. WHAT IS KNOWN ALREADY There is both huge demand and a genuine clinical need for new treatment options for infertile men. However, the time, effort and resources required for drug discovery are currently exorbitant, due to the unique challenges of the cellular, physical and functional properties of human spermatozoa and a lack of appropriate assay platform. STUDY DESIGN, SIZE, DURATION Spermatozoa were obtained from healthy volunteer research donors and subfertile patients undergoing IVF/ICSI at a hospital-assisted reproductive techniques clinic between January 2012 and November 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS A HTS assay was developed and validated using intracellular calcium ([Ca2+]i) as a surrogate for motility in human spermatozoa. Calcium fluorescence was detected using a Flexstation microplate reader (384-well platform) and compared with responses evoked by progesterone, a compound known to modify a number of biologically relevant behaviours in human spermatozoa. Hit compounds identified following single point drug screen (10 μM) of an ion channel-focussed library assembled by the University of Dundee Drug Discovery Unit were rescreened to ensure potency using standard 10 point half-logarithm concentration curves, and tested for purity and integrity using liquid chromatography and mass spectrometry. Hit compounds were grouped by structure activity relationships and five representative compounds then further investigated for direct effects on spermatozoa, using computer-assisted sperm assessment, sperm penetration assay and whole-cell patch clamping. MAIN RESULTS AND THE ROLE OF CHANCE Of the 3242 ion channel library ligands screened, 384 compounds (11.8%) elicited a statistically significant increase in calcium fluorescence, with greater than 3× median absolute deviation above the baseline. Seventy-four compounds eliciting ≥50% increase in fluorescence in the primary screen were rescreened and evaluated further, resulting in 48 hit compounds that produced a concentration-dependent increase in [Ca2+]i. Sperm penetration studies confirmed in vitro exposure to two hit compounds (A and B) resulted in significant improvement in functional motility in spermatozoa from healthy volunteer donors (A: 1 cm penetration index 2.54, 2 cm penetration index 2.49; P < 0.005 and B: 1 cm penetration index 2.1, 2 cm penetration index 2.6; P < 0.005), but crucially, also in patient samples from those undergoing fertility treatment (A: 1 cm penetration index 2.4; P = 0.009, 2 cm penetration index 3.6; P = 0.02 and B: 1 cm penetration index 2.2; P = 0.0004, 2 cm penetration index 3.6; P = 0.002). This was primarily as a result of direct or indirect CatSper channel action, supported by evidence from electrophysiology studies of individual sperm. LIMITATIONS, REASONS FOR CAUTION Increase and fluxes in [Ca2+]i are fundamental to the regulation of sperm motility and function, including acrosome reaction. The use of calcium signalling as a surrogate for sperm motility is acknowledged as a potential limitation in this study. WIDER IMPLICATIONS OF THE FINDINGS We conclude that HTS can robustly, efficiently, identify novel compounds that increase [Ca2+]i in human spermatozoa and functionally modify motility, and propose its use as a cornerstone to build and transform much-needed drug discovery for male infertility. STUDY FUNDING/COMPETING INTEREST(S) The majority of the data were obtained using funding from TENOVUS Scotland and Chief Scientist Office NRS Fellowship. Additional funding was provided by NHS Tayside, MRC project grants (MR/K013343/1, MR/012492/1) and University of Abertay. The authors declare that there is no conflict of interest. TRAIL REGISTRATION NUMBER N/A. PMID:28333338
Martins da Silva, Sarah J; Brown, Sean G; Sutton, Keith; King, Louise V; Ruso, Halil; Gray, David W; Wyatt, Paul G; Kelly, Mark C; Barratt, Christopher L R; Hope, Anthony G
2017-05-01
Can pharma drug discovery approaches be utilized to transform investigation into novel therapeutics for male infertility? High-throughput screening (HTS) is a viable approach to much-needed drug discovery for male factor infertility. There is both huge demand and a genuine clinical need for new treatment options for infertile men. However, the time, effort and resources required for drug discovery are currently exorbitant, due to the unique challenges of the cellular, physical and functional properties of human spermatozoa and a lack of appropriate assay platform. Spermatozoa were obtained from healthy volunteer research donors and subfertile patients undergoing IVF/ICSI at a hospital-assisted reproductive techniques clinic between January 2012 and November 2016. A HTS assay was developed and validated using intracellular calcium ([Ca2+]i) as a surrogate for motility in human spermatozoa. Calcium fluorescence was detected using a Flexstation microplate reader (384-well platform) and compared with responses evoked by progesterone, a compound known to modify a number of biologically relevant behaviours in human spermatozoa. Hit compounds identified following single point drug screen (10 μM) of an ion channel-focussed library assembled by the University of Dundee Drug Discovery Unit were rescreened to ensure potency using standard 10 point half-logarithm concentration curves, and tested for purity and integrity using liquid chromatography and mass spectrometry. Hit compounds were grouped by structure activity relationships and five representative compounds then further investigated for direct effects on spermatozoa, using computer-assisted sperm assessment, sperm penetration assay and whole-cell patch clamping. Of the 3242 ion channel library ligands screened, 384 compounds (11.8%) elicited a statistically significant increase in calcium fluorescence, with greater than 3× median absolute deviation above the baseline. Seventy-four compounds eliciting ≥50% increase in fluorescence in the primary screen were rescreened and evaluated further, resulting in 48 hit compounds that produced a concentration-dependent increase in [Ca2+]i. Sperm penetration studies confirmed in vitro exposure to two hit compounds (A and B) resulted in significant improvement in functional motility in spermatozoa from healthy volunteer donors (A: 1 cm penetration index 2.54, 2 cm penetration index 2.49; P < 0.005 and B: 1 cm penetration index 2.1, 2 cm penetration index 2.6; P < 0.005), but crucially, also in patient samples from those undergoing fertility treatment (A: 1 cm penetration index 2.4; P = 0.009, 2 cm penetration index 3.6; P = 0.02 and B: 1 cm penetration index 2.2; P = 0.0004, 2 cm penetration index 3.6; P = 0.002). This was primarily as a result of direct or indirect CatSper channel action, supported by evidence from electrophysiology studies of individual sperm. Increase and fluxes in [Ca2+]i are fundamental to the regulation of sperm motility and function, including acrosome reaction. The use of calcium signalling as a surrogate for sperm motility is acknowledged as a potential limitation in this study. We conclude that HTS can robustly, efficiently, identify novel compounds that increase [Ca2+]i in human spermatozoa and functionally modify motility, and propose its use as a cornerstone to build and transform much-needed drug discovery for male infertility. The majority of the data were obtained using funding from TENOVUS Scotland and Chief Scientist Office NRS Fellowship. Additional funding was provided by NHS Tayside, MRC project grants (MR/K013343/1, MR/012492/1) and University of Abertay. The authors declare that there is no conflict of interest. N/A. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Turk, Samo; Kovac, Andreja; Boniface, Audrey; Bostock, Julieanne M; Chopra, Ian; Blanot, Didier; Gobec, Stanislav
2009-03-01
The ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add L-Ala, D-Glu, meso-A(2)pm or L-Lys, and D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute 'Diversity Set' on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation. Our approach of virtual screening and subsequent in vitro biochemical evaluation of the best ranked compounds has provided four novel MurD inhibitors (best IC(50)=10 microM) and one novel MurF inhibitor (IC(50)=63 microM).
CamMedNP: building the Cameroonian 3D structural natural products database for virtual screening.
Ntie-Kang, Fidele; Mbah, James A; Mbaze, Luc Meva'a; Lifongo, Lydia L; Scharfe, Michael; Hanna, Joelle Ngo; Cho-Ngwa, Fidelis; Onguéné, Pascal Amoa; Owono Owono, Luc C; Megnassan, Eugene; Sippl, Wolfgang; Efange, Simon M N
2013-04-16
Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We present CamMedNP - a new database beginning with more than 2,500 compounds of natural origin, along with some of their derivatives which were obtained through hemisynthesis. These are pure compounds which have been previously isolated and characterized using modern spectroscopic methods and published by several research teams spread across Cameroon. In the present study, 224 distinct medicinal plant species belonging to 55 plant families from the Cameroonian flora have been considered. About 80 % of these have been previously published and/or referenced in internationally recognized journals. For each compound, the optimized 3D structure, drug-like properties, plant source, collection site and currently known biological activities are given, as well as literature references. We have evaluated the "drug-likeness" of this database using Lipinski's "Rule of Five". A diversity analysis has been carried out in comparison with the ChemBridge diverse database. CamMedNP could be highly useful for database screening and natural product lead generation programs.
Shaghafi, Michael B; Barrett, David G; Willard, Francis S; Overman, Larry E
2014-02-15
We report the discovery of the glucose-dependent insulin secretogogue activity of a novel class of polycyclic guanidines through phenotypic screening as part of the Lilly Open Innovation Drug Discovery platform. Three compounds from the University of California, Irvine, 1-3, having the 3-arylhexahydropyrrolo[1,2-c]pyrimidin-1-amine scaffold acted as insulin secretagogues under high, but not low, glucose conditions. Exploration of the structure-activity relationship around the scaffold demonstrated the key role of the guanidine moiety, as well as the importance of two lipophilic regions, and led to the identification of 9h, which stimulated insulin secretion in isolated rat pancreatic islets in a glucose-dependent manner. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
ScreenCube: A 3D Printed System for Rapid and Cost-Effective Chemical Screening in Adult Zebrafish.
Monstad-Rios, Adrian T; Watson, Claire J; Kwon, Ronald Y
2018-02-01
Phenotype-based small molecule screens in zebrafish embryos and larvae have been successful in accelerating pathway and therapeutic discovery for diverse biological processes. Yet, the application of chemical screens to adult physiologies has been relatively limited due to additional demands on cost, space, and labor associated with screens in adult animals. In this study, we present a 3D printed system and methods for intermittent drug dosing that enable rapid and cost-effective chemical administration in adult zebrafish. Using prefilled screening plates, the system enables dosing of 96 fish in ∼3 min, with a 10-fold reduction in drug quantity compared to that used in previous chemical screens in adult zebrafish. We characterize water quality kinetics during immersion in the system and use these kinetics to rationally design intermittent dosing regimens that result in 100% fish survival. As a demonstration of system fidelity, we show the potential to identify two known chemical inhibitors of adult tail fin regeneration, cyclopamine and dorsomorphin. By developing methods for rapid and cost-effective chemical administration in adult zebrafish, this study expands the potential for small molecule discovery in postembryonic models of development, disease, and regeneration.
First-principles data-driven discovery of transition metal oxides for artificial photosynthesis
NASA Astrophysics Data System (ADS)
Yan, Qimin
We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.
Drug Discovery in Fish, Flies, and Worms
Strange, Kevin
2016-01-01
Abstract Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies. PMID:28053067
Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery.
Nsair, Ali; MacLellan, W Robb
2011-04-30
The discovery of induced pluripotent stem cells (iPSC) has, in the short time since their discovery, revolutionized the field of stem cell biology. This technology allows the generation of a virtually unlimited supply of cells with pluripotent potential similar to that of embryonic stem cells (ESC). However, in contrast to ESC, iPSC are not subject to the same ethical concerns and can be easily generated from living individuals. For the first time, patient-specific iPSC can be generated and offer a supply of genetically identical cells that can be differentiated into all somatic cell types for potential use in regenerative therapies or drug screening and testing. As the techniques for generation of iPSC lines are constantly evolving, new uses for human iPSC are emerging from in-vitro disease modeling to high throughput drug discovery and screening. This technology promises to revolutionize the field of medicine and offers new hope for understanding and treatment of numerous diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A
2009-01-01
The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.
Speck-Planche, Alejandro; Cordeiro, Maria N D S
2015-01-01
Resistance of bacteria to current antibiotics is an alarming health problem. In this sense, Pseudomonas represents a genus of Gram-negative pathogens, which has emerged as one of the most dangerous species causing nosocomial infections. Despite the effort of the scientific community, drug resistant strains of bacteria belonging to Pseudomonas spp. prevail. The high costs associated to drug discovery and the urgent need for more efficient antimicrobial chemotherapies envisage the fact that computeraided methods can rationalize several stages involved in the development of a new drug. In this work, we introduce a chemoinformatic methodology devoted to the construction of a multitasking model for quantitative-structure biological effect relationships (mtk-QSBER). The purpose of this model was to perform simultaneous predictions of anti-Pseudomonas activities and ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties of organic compounds. The mtk-QSBER model was created from a large and heterogeneous dataset (more than 54000 cases) and displayed accuracies higher than 90% in both training and prediction sets. In order to demonstrate the applicability of our mtk-QSBER model, we used the investigational antibacterial drug delafloxacin as a case of study, for which experimental results were recently reported. The predictions performed for many biological effects of this drug exhibited a remarkable convergence with the experimental assays, confirming that our model can serve as useful tool for virtual screening of potent and safer anti-Pseudomonas agents.
Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond
Mannodi-Kanakkithodi, Arun; Chandrasekaran, Anand; Kim, Chiho; ...
2017-12-19
The Materials Genome Initiative (MGI) has heralded a sea change in the philosophy of materials design. In an increasing number of applications, the successful deployment of novel materials has benefited from the use of computational methodologies, data descriptors, and machine learning. Polymers have long suffered from a lack of data on electronic, mechanical, and dielectric properties across large chemical spaces, causing a stagnation in the set of suitable candidates for various applications. Extensive efforts over the last few years have seen the fruitful application of MGI principles toward the accelerated discovery of attractive polymer dielectrics for capacitive energy storage. Here,more » we review these efforts, highlighting the importance of computational data generation and screening, targeted synthesis and characterization, polymer fingerprinting and machine-learning prediction models, and the creation of an online knowledgebase to guide ongoing and future polymer discovery and design. We lay special emphasis on the fingerprinting of polymers in terms of their genome or constituent atomic and molecular fragments, an idea that pays homage to the pioneers of the human genome project who identified the basic building blocks of the human DNA. As a result, by scoping the polymer genome, we present an essential roadmap for the design of polymer dielectrics, and provide future perspectives and directions for expansions to other polymer subclasses and properties.« less
Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannodi-Kanakkithodi, Arun; Chandrasekaran, Anand; Kim, Chiho
The Materials Genome Initiative (MGI) has heralded a sea change in the philosophy of materials design. In an increasing number of applications, the successful deployment of novel materials has benefited from the use of computational methodologies, data descriptors, and machine learning. Polymers have long suffered from a lack of data on electronic, mechanical, and dielectric properties across large chemical spaces, causing a stagnation in the set of suitable candidates for various applications. Extensive efforts over the last few years have seen the fruitful application of MGI principles toward the accelerated discovery of attractive polymer dielectrics for capacitive energy storage. Here,more » we review these efforts, highlighting the importance of computational data generation and screening, targeted synthesis and characterization, polymer fingerprinting and machine-learning prediction models, and the creation of an online knowledgebase to guide ongoing and future polymer discovery and design. We lay special emphasis on the fingerprinting of polymers in terms of their genome or constituent atomic and molecular fragments, an idea that pays homage to the pioneers of the human genome project who identified the basic building blocks of the human DNA. As a result, by scoping the polymer genome, we present an essential roadmap for the design of polymer dielectrics, and provide future perspectives and directions for expansions to other polymer subclasses and properties.« less
Discovery – Lung Cancer Screening Saves Lives: The NLST
NCI funded the National Lung Screening Trial, an eight-year study that used new technology to detect small, aggressive tumors early enough to surgically remove them. This approach reduced lung cancer deaths among participants by 20 percent.
Potential biological targets for bioassay development in drug discovery of Sturge-Weber syndrome.
Mohammadipanah, Fatemeh; Salimi, Fatemeh
2017-04-29
Sturge-Weber Syndrome (SWS) is among the neurocutaneous diseases, which has several clinical manifestations of ocular (glaucoma), cutaneous (port-wine stain), neurological (seizures) and vascular problems. Molecular mechanisms of SWS pathogenesis are initiated by the somatic mutation in GNAQ. Therefore, no definite treatments exist for the SWS and treatment options only mitigate the intensity of its clinical manifestations. Biological assay design for drug discovery against this syndrome demands comprehensive knowledge on mechanisms which are involved in its pathogenesis. By analysis of the interrelated molecular targets of SWS, some in vitro bioassay systems can be allotted for drug screening against this syndrome. Development of such platforms of bioassay can bring along the implementation of high throughput screening of natural or synthetic compounds in drug discovery programs. Regarding the fact that study of biological targets and their integration in biological assay design can facilitate the process of effective drug discovery; some potential biological targets and their respective biological assay for SWS drug discovery are propounded in this review. For this purpose, some biological targets for SWS drug discovery such as acetylcholine esterase, alkaline phosphatase, gamma-aminobutyricacidergic, Hypoxia-Inducible Factor (HIF) -1α and 2α are suggested. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Isgut, Monica; Rao, Mukkavilli; Yang, Chunhua; Subrahmanyam, Vangala; Rida, Padmashree C G; Aneja, Ritu
2018-03-01
Modern drug discovery efforts have had mediocre success rates with increasing developmental costs, and this has encouraged pharmaceutical scientists to seek innovative approaches. Recently with the rise of the fields of systems biology and metabolomics, network pharmacology (NP) has begun to emerge as a new paradigm in drug discovery, with a focus on multiple targets and drug combinations for treating disease. Studies on the benefits of drug combinations lay the groundwork for a renewed focus on natural products in drug discovery. Natural products consist of a multitude of constituents that can act on a variety of targets in the body to induce pharmacodynamic responses that may together culminate in an additive or synergistic therapeutic effect. Although natural products cannot be patented, they can be used as starting points in the discovery of potent combination therapeutics. The optimal mix of bioactive ingredients in natural products can be determined via phenotypic screening. The targets and molecular mechanisms of action of these active ingredients can then be determined using chemical proteomics, and by implementing a reverse pharmacokinetics approach. This review article provides evidence supporting the potential benefits of natural product-based combination drugs, and summarizes drug discovery methods that can be applied to this class of drugs. © 2017 Wiley Periodicals, Inc.
Novel opportunities for computational biology and sociology in drug discovery☆
Yao, Lixia; Evans, James A.; Rzhetsky, Andrey
2013-01-01
Current drug discovery is impossible without sophisticated modeling and computation. In this review we outline previous advances in computational biology and, by tracing the steps involved in pharmaceutical development, explore a range of novel, high-value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy–industry links for scientific and human benefit. Attention to these opportunities could promise punctuated advance and will complement the well-established computational work on which drug discovery currently relies. PMID:20349528
Fragment-based approaches to the discovery of kinase inhibitors.
Mortenson, Paul N; Berdini, Valerio; O'Reilly, Marc
2014-01-01
Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.
Using genetic methods to define the targets of compounds with antimalarial activity
Flannery, Erika L.; Fidock, David A.; Winzeler, Elizabeth A.
2013-01-01
Although phenotypic cellular screening has been used to drive antimalarial drug discovery in recent years, in some cases target-based drug discovery remains more attractive. This is especially true when appropriate high-throughput cellular assays are lacking, as is the case for drug discovery efforts that aim to provide a replacement for primaquine (4-N-(6-methoxyquinolin-8-yl)pentane-1,4-diamine), the only drug that can block Plasmodium transmission to Anopheles mosquitoes and eliminate liver-stage hypnozoites. At present, however, there are no known chemically validated parasite protein targets that are important in all Plasmodium parasite developmental stages and that can be used in traditional biochemical compound screens. We propose that a plethora of novel, chemically validated, cross-stage antimalarial targets still remain to be discovered from the ~5,500 proteins encoded by the Plasmodium genomes. Here we discuss how in vitro evolution of drug-resistant strains of Plasmodium falciparum and subsequent whole-genome analysis can be used to find the targets of some of the many compounds discovered in whole-cell phenotypic screens. PMID:23927658
Walhart, Tara
2015-01-01
Persistent oncogenic human papillomavirus (HPV) infection increases the probability that precancerous anal high-grade squamous intraepithelial lesions will progress to invasive anal cancer. Anal neoplasia associated with HPV disproportionately affects HIV-infected individuals, especially men who have sex with men. Prevention is limited to HPV vaccine recommendations, highlighting the need for new treatments. The purpose of this review is to provide HIV information to nurse clinical scientists about HPV-related cancer to highlight the connection between: (a) HPV biology and pathogenesis and (b) the development of drugs and novel therapeutic methods using high-throughput screening. PubMed and CINAHL were used to search the literature to determine HPV-related epidemiology, biology, and use of high-throughput screening for drug discovery. Several events in the HPV life cycle have the potential to be developed into biologic targets for drug discovery using the high-throughput screening technique, which has been successfully used to identify compounds to inhibit HPV infections. Copyright © 2015 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
Ferreira, Leonardo L G; Ferreira, Rafaela S; Palomino, David L; Andricopulo, Adriano D
2018-04-27
The glycolytic enzyme fructose-1,6-bisphosphate aldolase is a validated molecular target in human African trypanosomiasis (HAT) drug discovery, a neglected tropical disease (NTD) caused by the protozoan Trypanosoma brucei. Herein, a structure-based virtual screening (SBVS) approach to the identification of novel T. brucei aldolase inhibitors is described. Distinct molecular docking algorithms were used to screen more than 500,000 compounds against the X-ray structure of the enzyme. This SBVS strategy led to the selection of a series of molecules which were evaluated for their activity on recombinant T. brucei aldolase. The effort led to the discovery of structurally new ligands able to inhibit the catalytic activity the enzyme. The predicted binding conformations were additionally investigated in molecular dynamics simulations, which provided useful insights into the enzyme-inhibitor intermolecular interactions. The molecular modeling results along with the enzyme inhibition data generated practical knowledge to be explored in further structure-based drug design efforts in HAT drug discovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Roth, Bryan L; Lopez, Estela; Beischel, Scott; Westkaemper, Richard B; Evans, Jon M
2004-05-01
Because psychoactive plants exert profound effects on human perception, emotion, and cognition, discovering the molecular mechanisms responsible for psychoactive plant actions will likely yield insights into the molecular underpinnings of human consciousness. Additionally, it is likely that elucidation of the molecular targets responsible for psychoactive drug actions will yield validated targets for CNS drug discovery. This review article focuses on an unbiased, discovery-based approach aimed at uncovering the molecular targets responsible for psychoactive drug actions wherein the main active ingredients of psychoactive plants are screened at the "receptorome" (that portion of the proteome encoding receptors). An overview of the receptorome is given and various in silico, public-domain resources are described. Newly developed tools for the in silico mining of data derived from the National Institute of Mental Health Psychoactive Drug Screening Program's (NIMH-PDSP) K(i) Database (K(i) DB) are described in detail. Additionally, three case studies aimed at discovering the molecular targets responsible for Hypericum perforatum, Salvia divinorum, and Ephedra sinica actions are presented. Finally, recommendations are made for future studies.
Tickle, Simon; Howells, Louise; O'Dowd, Victoria; Starkie, Dale; Whale, Kevin; Saunders, Mark; Lee, David; Lightwood, Daniel
2015-04-01
For a therapeutic antibody to succeed, it must meet a range of potency, stability, and specificity criteria. Many of these characteristics are conferred by the amino acid sequence of the heavy and light chain variable regions and, for this reason, can be screened for during antibody selection. However, it is important to consider that antibodies satisfying all these criteria may be of low frequency in an immunized animal; for this reason, it is essential to have a mechanism that allows for efficient sampling of the immune repertoire. UCB's core antibody discovery platform combines high-throughput B cell culture screening and the identification and isolation of single, antigen-specific IgG-secreting B cells through a proprietary technique called the "fluorescent foci" method. Using state-of-the-art automation to facilitate primary screening, extremely efficient interrogation of the natural antibody repertoire is made possible; more than 1 billion immune B cells can now be screened to provide a useful starting point from which to identify the rare therapeutic antibody. This article will describe the design, construction, and commissioning of a bespoke automated screening platform and two examples of how it was used to screen for antibodies against two targets. © 2014 Society for Laboratory Automation and Screening.
Studying circadian rhythm and sleep using genetic screens in Drosophila.
Axelrod, Sofia; Saez, Lino; Young, Michael W
2015-01-01
The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab. © 2015 Elsevier Inc. All rights reserved.
2013-01-01
The disappointing results obtained in recent clinical trials renew the interest in experimental/computational techniques for the discovery of neuroprotective drugs. In this context, multitarget or multiplexing QSAR models (mt-QSAR/mx-QSAR) may help to predict neurotoxicity/neuroprotective effects of drugs in multiple assays, on drug targets, and in model organisms. In this work, we study a data set downloaded from CHEMBL; each data point (>8000) contains the values of one out of 37 possible measures of activity, 493 assays, 169 molecular or cellular targets, and 11 different organisms (including human) for a given compound. In this work, we introduce the first mx-QSAR model for neurotoxicity/neuroprotective effects of drugs based on the MARCH-INSIDE (MI) method. First, we used MI to calculate the stochastic spectral moments (structural descriptors) of all compounds. Next, we found a model that classified correctly 2955 out of 3548 total cases in the training and validation series with Accuracy, Sensitivity, and Specificity values > 80%. The model also showed excellent results in Computational-Chemistry simulations of High-Throughput Screening (CCHTS) experiments, with accuracy = 90.6% for 4671 positive cases. Next, we reported the synthesis, characterization, and experimental assays of new rasagiline derivatives. We carried out three different experimental tests: assay (1) in the absence of neurotoxic agents, assay (2) in the presence of glutamate, and assay (3) in the presence of H2O2. Compounds 11 with 27.4%, 8 with 11.6%, and 9 with 15.4% showed the highest neuroprotective effects in assays (1), (2), and (3), respectively. After that, we used the mx-QSAR model to carry out a CCHTS of the new compounds in >400 unique pharmacological tests not carried out experimentally. Consequently, this model may become a promising auxiliary tool for the discovery of new drugs for the treatment of neurodegenerative diseases. PMID:23855599
Discovery and Nurturance of Giftedness in the Culturally Different.
ERIC Educational Resources Information Center
Torrance, E. Paul
Discussed in the monograph are methods for identifying and developing programs for culturally different gifted students. In an overview section, the important issues and trends associated with the discovery and nurturance of giftedness among the culturally different are considered; and screening methods which involve modified traditional…
Cappel, Daniel; Sherman, Woody; Beuming, Thijs
2017-01-01
The ability to accurately characterize the solvation properties (water locations and thermodynamics) of biomolecules is of great importance to drug discovery. While crystallography, NMR, and other experimental techniques can assist in determining the structure of water networks in proteins and protein-ligand complexes, most water molecules are not fully resolved and accurately placed. Furthermore, understanding the energetic effects of solvation and desolvation on binding requires an analysis of the thermodynamic properties of solvent involved in the interaction between ligands and proteins. WaterMap is a molecular dynamics-based computational method that uses statistical mechanics to describe the thermodynamic properties (entropy, enthalpy, and free energy) of water molecules at the surface of proteins. This method can be used to assess the solvent contributions to ligand binding affinity and to guide lead optimization. In this review, we provide a comprehensive summary of published uses of WaterMap, including applications to lead optimization, virtual screening, selectivity analysis, ligand pose prediction, and druggability assessment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sokolov, Anatoliy N.; Atahan-Evrenk, Sule; Mondal, Rajib; Akkerman, Hylke B.; Sánchez-Carrera, Roel S.; Granados-Focil, Sergio; Schrier, Joshua; Mannsfeld, Stefan C.B.; Zoombelt, Arjan P.; Bao, Zhenan; Aspuru-Guzik, Alán
2011-01-01
For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. On the basis of estimates from the Marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field-effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm2 V−1 s−1, respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm2 V−1 s−1 reported to date. PMID:21847111
COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT (CADDD): in silico-chemico-biological approach
Kapetanovic, I.M.
2008-01-01
It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3-D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve. PMID:17229415
Enabling drug discovery project decisions with integrated computational chemistry and informatics
NASA Astrophysics Data System (ADS)
Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.
2017-03-01
Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.
Procacci, Piero
2016-06-27
We present a new release (6.0β) of the ORAC program [Marsili et al. J. Comput. Chem. 2010, 31, 1106-1116] with a hybrid OpenMP/MPI (open multiprocessing message passing interface) multilevel parallelism tailored for generalized ensemble (GE) and fast switching double annihilation (FS-DAM) nonequilibrium technology aimed at evaluating the binding free energy in drug-receptor system on high performance computing platforms. The production of the GE or FS-DAM trajectories is handled using a weak scaling parallel approach on the MPI level only, while a strong scaling force decomposition scheme is implemented for intranode computations with shared memory access at the OpenMP level. The efficiency, simplicity, and inherent parallel nature of the ORAC implementation of the FS-DAM algorithm, project the code as a possible effective tool for a second generation high throughput virtual screening in drug discovery and design. The code, along with documentation, testing, and ancillary tools, is distributed under the provisions of the General Public License and can be freely downloaded at www.chim.unifi.it/orac .
Clustering molecular dynamics trajectories for optimizing docking experiments.
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.
Pérez Del Palacio, José; Díaz, Caridad; de la Cruz, Mercedes; Annang, Frederick; Martín, Jesús; Pérez-Victoria, Ignacio; González-Menéndez, Víctor; de Pedro, Nuria; Tormo, José R; Algieri, Francesca; Rodriguez-Nogales, Alba; Rodríguez-Cabezas, M Elena; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; Gálvez, Julio
2016-07-01
It is widely accepted that central nervous system inflammation and systemic inflammation play a significant role in the progression of chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Therefore, it seems reasonable to propose that the use of anti-inflammatory drugs might diminish the cumulative effects of inflammation. Indeed, some epidemiological studies suggest that sustained use of anti-inflammatory drugs may prevent or slow down the progression of neurodegenerative diseases. However, the anti-inflammatory drugs and biologics used clinically have the disadvantage of causing side effects and a high cost of treatment. Alternatively, natural products offer great potential for the identification and development of bioactive lead compounds into drugs for treating inflammatory diseases with an improved safety profile. In this work, we present a validated high-throughput screening approach in 96-well plate format for the discovery of new molecules with anti-inflammatory/immunomodulatory activity. The in vitro models are based on the quantitation of nitrite levels in RAW264.7 murine macrophages and interleukin-8 in Caco-2 cells. We have used this platform in a pilot project to screen a subset of 5976 noncytotoxic crude microbial extracts from the MEDINA microbial natural product collection. To our knowledge, this is the first report on an high-throughput screening of microbial natural product extracts for the discovery of immunomodulators. © 2016 Society for Laboratory Automation and Screening.
Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.
Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong
2015-11-01
The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorsteinson, Nels; Ban, Fuqiang; Santos-Filho, Osvaldo
2009-01-01
Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We alsomore » screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [{sup 3}H]5{alpha}-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 {mu}M concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.« less
Computer Simulation of Embryonic Systems: What can a ...
(1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative pr
Computational Modeling and Simulation of Developmental ...
Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic
Kostal, Jakub; Voutchkova-Kostal, Adelina
2016-01-19
Using computer models to accurately predict toxicity outcomes is considered to be a major challenge. However, state-of-the-art computational chemistry techniques can now be incorporated in predictive models, supported by advances in mechanistic toxicology and the exponential growth of computing resources witnessed over the past decade. The CADRE (Computer-Aided Discovery and REdesign) platform relies on quantum-mechanical modeling of molecular interactions that represent key biochemical triggers in toxicity pathways. Here, we present an external validation exercise for CADRE-SS, a variant developed to predict the skin sensitization potential of commercial chemicals. CADRE-SS is a hybrid model that evaluates skin permeability using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines reactivity with skin proteins via quantum-mechanical modeling. The results were promising with an overall very good concordance of 93% between experimental and predicted values. Comparison to performance metrics yielded by other tools available for this endpoint suggests that CADRE-SS offers distinct advantages for first-round screenings of chemicals and could be used as an in silico alternative to animal tests where permissible by legislative programs.
Population patch clamp electrophysiology: a breakthrough technology for ion channel screening.
Dale, Tim J; Townsend, Claire; Hollands, Emma C; Trezise, Derek J
2007-10-01
Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.
Damoiseaux, Robert
2014-05-01
The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.
Weidel, Elisabeth; Negri, Matthias; Empting, Martin; Hinsberger, Stefan; Hartmann, Rolf W
2014-01-01
In order to identify new scaffolds for drug discovery, surface plasmon resonance is frequently used to screen structurally diverse libraries. Usually, hit rates are low and identification processes are time consuming. Hence, approaches which improve hit rates and, thus, reduce the library size are required. In this work, we studied three often used strategies for their applicability to identify inhibitors of PqsD. In two of them, target-specific aspects like inhibition of a homologous protein or predicted binding determined by virtual screening were used for compound preselection. Finally, a fragment library, covering a large chemical space, was screened and served as comparison. Indeed, higher hit rates were observed for methods employing preselected libraries indicating that target-oriented compound selection provides a time-effective alternative.
Sarkar, Sovan
2013-01-01
Autophagy is a cellular degradation process involved in the clearance of aggregate-prone proteins associated with neurodegenerative diseases. While the mTOR pathway has been known to be the major regulator of autophagy, recent advancements into the regulation of autophagy have identified mTOR-independent autophagy pathways that are amenable to chemical perturbations. Several chemical and genetic screens have been undertaken to identify small molecule and genetic regulators of autophagy, respectively. The small molecule autophagy enhancers offer great potential as therapeutic candidates not only for neurodegenerative diseases, but also for diverse human diseases where autophagy acts as a protective pathway. This review highlights the various chemical screening platforms for autophagy drug discovery pertinent for the treatment of neurodegenerative diseases.
NMR-Fragment Based Virtual Screening: A Brief Overview.
Singh, Meenakshi; Tam, Benjamin; Akabayov, Barak
2018-01-25
Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.
The University of New Mexico Center for Molecular Discovery
Edwards, Bruce S.; Gouveia, Kristine; Oprea, Tudor I.; Sklar, Larry A.
2015-01-01
The University of New Mexico Center for Molecular Discovery (UNMCMD) is an academic research center that specializes in discovery using high throughput flow cytometry (HTFC) integrated with virtual screening, as well as knowledge mining and drug informatics. With a primary focus on identifying small molecules that can be used as chemical probes and as leads for drug discovery, it is a central core resource for research and translational activities at UNM that supports implementation and management of funded screening projects as well as “up-front” services such as consulting for project design and implementation, assistance in assay development and generation of preliminary data for pilot projects in support of competitive grant applications. The HTFC platform in current use represents advanced, proprietary technology developed at UNM that is now routinely capable of processing bioassays arrayed in 96-, 384- and 1536-well formats at throughputs of 60,000 or more wells per day. Key programs at UNMCMD include screening of research targets submitted by the international community through NIH’s Molecular Libraries Program; a multi-year effort involving translational partnerships at UNM directed towards drug repurposing - identifying new uses for clinically approved drugs; and a recently established personalized medicine initiative for advancing cancer therapy by the application of “smart” oncology drugs in selected patients based on response patterns of their cancer cells in vitro. UNMCMD discoveries, innovation, and translation have contributed to a wealth of inventions, patents, licenses and publications, as well as startup companies, clinical trials and a multiplicity of domestic and international collaborative partnerships to further the research enterprise. PMID:24409953
The University of New Mexico Center for Molecular Discovery.
Edwards, Bruce S; Gouveia, Kristine; Oprea, Tudor I; Sklar, Larry A
2014-03-01
The University of New Mexico Center for Molecular Discovery (UNMCMD) is an academic research center that specializes in discovery using high throughput flow cytometry (HTFC) integrated with virtual screening, as well as knowledge mining and drug informatics. With a primary focus on identifying small molecules that can be used as chemical probes and as leads for drug discovery, it is a central core resource for research and translational activities at UNM that supports implementation and management of funded screening projects as well as "up-front" services such as consulting for project design and implementation, assistance in assay development and generation of preliminary data for pilot projects in support of competitive grant applications. The HTFC platform in current use represents advanced, proprietary technology developed at UNM that is now routinely capable of processing bioassays arrayed in 96-, 384- and 1536-well formats at throughputs of 60,000 or more wells per day. Key programs at UNMCMD include screening of research targets submitted by the international community through NIH's Molecular Libraries Program; a multi-year effort involving translational partnerships at UNM directed towards drug repurposing - identifying new uses for clinically approved drugs; and a recently established personalized medicine initiative for advancing cancer therapy by the application of "smart" oncology drugs in selected patients based on response patterns of their cancer cells in vitro. UNMCMD discoveries, innovation, and translation have contributed to a wealth of inventions, patents, licenses and publications, as well as startup companies, clinical trials and a multiplicity of domestic and international collaborative partnerships to further the research enterprise.
Machine Learning Helps Identify CHRONO as a Circadian Clock Component
Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.
2014-01-01
Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000
Medicinal chemistry inspired fragment-based drug discovery.
Lanter, James; Zhang, Xuqing; Sui, Zhihua
2011-01-01
Lead generation can be a very challenging phase of the drug discovery process. The two principal methods for this stage of research are blind screening and rational design. Among the rational or semirational design approaches, fragment-based drug discovery (FBDD) has emerged as a useful tool for the generation of lead structures. It is particularly powerful as a complement to high-throughput screening approaches when the latter failed to yield viable hits for further development. Engagement of medicinal chemists early in the process can accelerate the progression of FBDD efforts by incorporating drug-friendly properties in the earliest stages of the design process. Medium-chain acyl-CoA synthetase 2b and ketohexokinase are chosen as examples to illustrate the importance of close collaboration of medicinal chemists, crystallography, and modeling. Copyright © 2011 Elsevier Inc. All rights reserved.
Solid-Phase Biological Assays for Drug Discovery
NASA Astrophysics Data System (ADS)
Forsberg, Erica M.; Sicard, Clémence; Brennan, John D.
2014-06-01
In the past 30 years, there has been a significant growth in the use of solid-phase assays in the area of drug discovery, with a range of new assays being used for both soluble and membrane-bound targets. In this review, we provide some basic background to typical drug targets and immobilization protocols used in solid-phase biological assays (SPBAs) for drug discovery, with emphasis on particularly labile biomolecular targets such as kinases and membrane-bound receptors, and highlight some of the more recent approaches for producing protein microarrays, bioaffinity columns, and other devices that are central to small molecule screening by SPBA. We then discuss key applications of such assays to identify drug leads, with an emphasis on the screening of mixtures. We conclude by highlighting specific advantages and potential disadvantages of SPBAs, particularly as they relate to particular assay formats.
Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches
Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal
2015-01-01
Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141
Karawajczyk, Anna; Giordanetto, Fabrizio; Benningshof, Jorg; Hamza, Daniel; Kalliokoski, Tuomo; Pouwer, Kees; Morgentin, Remy; Nelson, Adam; Müller, Gerhard; Piechot, Alexander; Tzalis, Dimitrios
2015-11-01
High-throughput screening (HTS) represents a major cornerstone of drug discovery. The availability of an innovative, relevant and high-quality compound collection to be screened often dictates the final fate of a drug discovery campaign. Given that the chemical space to be sampled in research programs is practically infinite and sparsely populated, significant efforts and resources need to be invested in the generation and maintenance of a competitive compound collection. The European Lead Factory (ELF) project is addressing this challenge by leveraging the diverse experience and know-how of academic groups and small and medium enterprises (SMEs) engaged in synthetic and/or medicinal chemistry. Here, we describe the novelty, diversity, structural complexity, physicochemical characteristics and overall attractiveness of this first batch of ELF compounds for HTS purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Role of HTS in Drug Discovery at the University of Michigan
Larsen, Martha J.; Larsen, Scott D.; Fribley, Andrew; Grembecka, Jolanta; Homan, Kristoff; Mapp, Anna; Haak, Andrew; Nikolovska-Coleska, Zaneta; Stuckey, Jeanne A.; Sun, Duxin
2014-01-01
High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty. PMID:24409957
A resource management architecture based on complex network theory in cloud computing federation
NASA Astrophysics Data System (ADS)
Zhang, Zehua; Zhang, Xuejie
2011-10-01
Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.
Target assessment for antiparasitic drug discovery
Frearson, Julie A.; Wyatt, Paul G.; Gilbert, Ian H.; Fairlamb, Alan H.
2010-01-01
Drug discovery is a high-risk, expensive and lengthy process taking at least 12 years and costing upwards of US$500 million per drug to reach the clinic. For neglected diseases, the drug discovery process is driven by medical need and guided by pre-defined target product profiles. Assessment and prioritisation of the most promising targets for entry into screening programmes is crucial for maximising chances of success. Here we describe criteria used in our drug discovery unit for target assessment and introduce the ‘traffic light’ system as a prioritisation and management tool. We hope this brief review will stimulate basic scientists to acquire additional information necessary for drug discovery. PMID:17962072
Lei, Hao; Jones, Christopher; Zhu, Tian; Patel, Kavankumar; Wolf, Nina M; Fung, Leslie W-M; Lee, Hyun; Johnson, Michael E
2016-02-15
The de novo purine biosynthesis pathway is an attractive target for antibacterial drug design, and PurE from this pathway has been identified to be crucial for Bacillus anthracis survival in serum. In this study we adopted a fragment-based hit discovery approach, using three screening methods-saturation transfer difference nucleus magnetic resonance (STD-NMR), water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR, and surface plasmon resonance (SPR), against B. anthracis PurE (BaPurE) to identify active site binding fragments by initially testing 352 compounds in a Zenobia fragment library. Competition STD NMR with the BaPurE product effectively eliminated non-active site binding hits from the primary hits, selecting active site binders only. Binding affinities (dissociation constant, KD) of these compounds varied between 234 and 301μM. Based on test results from the Zenobia compounds, we subsequently developed and applied a streamlined fragment screening strategy to screen a much larger library consisting of 3000 computationally pre-selected fragments. Thirteen final fragment hits were confirmed to exhibit binding affinities varying from 14μM to 700μM, which were categorized into five different basic scaffolds. All thirteen fragment hits have ligand efficiencies higher than 0.30. We demonstrated that at least two fragments from two different scaffolds exhibit inhibitory activity against the BaPurE enzyme. Published by Elsevier Ltd.
Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction.
Winter, Martin; Bretschneider, Tom; Kleiner, Carola; Ries, Robert; Hehn, Jörg P; Redemann, Norbert; Luippold, Andreas H; Bischoff, Daniel; Büttner, Frank H
2018-07-01
Label-free, mass spectrometric (MS) detection is an emerging technology in the field of drug discovery. Unbiased deciphering of enzymatic reactions is a proficient advantage over conventional label-based readouts suffering from compound interference and intricate generation of tailored signal mediators. Significant evolvements of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, as well as associated liquid handling instrumentation, triggered extensive efforts in the drug discovery community to integrate the comprehensive MS readout into the high-throughput screening (HTS) portfolio. Providing speed, sensitivity, and accuracy comparable to those of conventional, label-based readouts, combined with merits of MS-based technologies, such as label-free parallelized measurement of multiple physiological components, emphasizes the advantages of MALDI-TOF for HTS approaches. Here we describe the assay development for the identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors. In the context of this precious drug target, MALDI-TOF was integrated into the HTS environment and cross-compared with the well-established AlphaScreen technology. We demonstrate robust and accurate IC 50 determination with high accordance to data generated by AlphaScreen. Additionally, a tailored MALDI-TOF assay was developed to monitor compound-dependent, irreversible modification of the active cysteine of PTP1B. Overall, the presented data proves the promising perspective for the integration of MALDI-TOF into drug discovery campaigns.
Czarny, T L; Perri, A L; French, S; Brown, E D
2014-06-01
The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.
Lee, Dennis; Barnes, Stephen
2010-01-01
The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.
Borysko, Petro; Moroz, Yurii S; Vasylchenko, Oleksandr V; Hurmach, Vasyl V; Starodubtseva, Anastasia; Stefanishena, Natalia; Nesteruk, Kateryna; Zozulya, Sergey; Kondratov, Ivan S; Grygorenko, Oleksandr O
2018-05-09
A combination approach of a fragment screening and "SAR by catalog" was used for the discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Initial screening of 3695-fragment library against bromodomain 1 of BRD4 using thermal shift assay (TSA), followed by initial hit validation, resulted in 73 fragment hits, which were used to construct a follow-up library selected from available screening collection. Additionally, analogs of inactive fragments, as well as a set of randomly selected compounds were also prepared (3 × 3200 compounds in total). Screening of the resulting sets using TSA, followed by re-testing at several concentrations, counter-screen, and TR-FRET assay resulted in 18 confirmed hits. Compounds derived from the initial fragment set showed better hit rate as compared to the other two sets. Finally, building dose-response curves revealed three compounds with IC 50 = 1.9-7.4 μM. For these compounds, binding sites and conformations in the BRD4 (4UYD) have been determined by docking. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S
2015-01-01
Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes. DOI: http://dx.doi.org/10.7554/eLife.08261.001 PMID:26218223
Ghaemi, Reza; Selvaganapathy, Ponnambalam R
Drug discovery is a long and expensive process, which usually takes 12-15 years and could cost up to ~$1 billion. Conventional drug discovery process starts with high throughput screening and selection of drug candidates that bind to specific target associated with a disease condition. However, this process does not consider whether the chosen candidate is optimal not only for binding but also for ease of administration, distribution in the body, effect of metabolism and associated toxicity if any. A holistic approach, using model organisms early in the drug discovery process to select drug candidates that are optimal not only in binding but also suitable for administration, distribution and are not toxic is now considered as a viable way for lowering the cost and time associated with the drug discovery process. However, the conventional drug discovery assays using Drosophila are manual and required skill operator, which makes them expensive and not suitable for high-throughput screening. Recently, microfluidics has been used to automate many of the operations (e.g. sorting, positioning, drug delivery) associated with the Drosophila drug discovery assays and thereby increase their throughput. This review highlights recent microfluidic devices that have been developed for Drosophila assays with primary application towards drug discovery for human diseases. The microfluidic devices that have been reviewed in this paper are categorized based on the stage of the Drosophila that have been used. In each category, the microfluidic technologies behind each device are described and their potential biological applications are discussed.
Nexus Between Protein–Ligand Affinity Rank-Ordering, Biophysical Approaches, and Drug Discovery
2013-01-01
The confluence of computational and biophysical methods to accurately rank-order the binding affinities of small molecules and determine structures of macromolecular complexes is a potentially transformative advance in the work flow of drug discovery. This viewpoint explores the impact that advanced computational methods may have on the efficacy of small molecule drug discovery and optimization, particularly with respect to emerging fragment-based methods. PMID:24900579
Teach-Discover-Treat (TDT): Collaborative Computational Drug Discovery for Neglected Diseases
Jansen, Johanna M.; Cornell, Wendy; Tseng, Y. Jane; Amaro, Rommie E.
2012-01-01
Teach – Discover – Treat (TDT) is an initiative to promote the development and sharing of computational tools solicited through a competition with the aim to impact education and collaborative drug discovery for neglected diseases. Collaboration, multidisciplinary integration, and innovation are essential for successful drug discovery. This requires a workforce that is trained in state-of-the-art workflows and equipped with the ability to collaborate on platforms that are accessible and free. The TDT competition solicits high quality computational workflows for neglected disease targets, using freely available, open access tools. PMID:23085175
Thorne, Natasha; Malik, Nasir; Shah, Sonia; Zhao, Jean; Class, Bradley; Aguisanda, Francis; Southall, Noel; Xia, Menghang; McKew, John C; Rao, Mahendra; Zheng, Wei
2016-05-01
Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell-derived astrocytes and an optimized astrocyte differentiation protocol, it was possible to screen approximately 4,100 compounds in titration to identify 22 that are cytoprotective of astrocytes. This study is the largest-scale high-throughput screen conducted using human astrocytes, with a total of 17,536 data points collected in the primary screen. The results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. ©AlphaMed Press.
Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening
Abrahams, Garth L.; Kumar, Anuradha; Savvi, Suzana; Hung, Alvin W.; Wen, Shijun; Abell, Chris; Barry, Clifton E.; Sherman, David R.; Boshoff, Helena I.M.; Mizrahi, Valerie
2012-01-01
SUMMARY Whole-cell screening of Mycobacterium tuberculosis (Mtb) remains a mainstay of drug discovery but subsequent target elucidation often proves difficult. Conditional mutants that under-express essential genes have been used to identify compounds with known mechanism of action by target-based whole-cell screening (TB-WCS). Here, the feasibility of TB-WCS in Mtb was assessed by generating mutants that conditionally express pantothenate synthetase (panC), diaminopimelate decarboxylase (lysA) and isocitrate lyase (icl1). The essentiality of panC and lysA, and conditional essentiality of icl1 for growth on fatty acids, was confirmed. Depletion of PanC and Icl1 rendered the mutants hypersensitive to target-specific inhibitors. Stable reporter strains were generated for use in high-throughput screening, and their utility demonstrated by identifying compounds that display greater potency against a PanC-depleted strain. These findings illustrate the power of TB-WCS as a tool for tuberculosis drug discovery. PMID:22840772
Hop, Cornelis E C A; Cole, Mark J; Davidson, Ralph E; Duignan, David B; Federico, James; Janiszewski, John S; Jenkins, Kelly; Krueger, Suzanne; Lebowitz, Rebecca; Liston, Theodore E; Mitchell, Walter; Snyder, Mark; Steyn, Stefan J; Soglia, John R; Taylor, Christine; Troutman, Matt D; Umland, John; West, Michael; Whalen, Kevin M; Zelesky, Veronica; Zhao, Sabrina X
2008-11-01
Evaluation and optimization of drug metabolism and pharmacokinetic data plays an important role in drug discovery and development and several reliable in vitro ADME models are available. Recently higher throughput in vitro ADME screening facilities have been established in order to be able to evaluate an appreciable fraction of synthesized compounds. The ADME screening process can be dissected in five distinct steps: (1) plate management of compounds in need of in vitro ADME data, (2) optimization of the MS/MS method for the compounds, (3) in vitro ADME experiments and sample clean up, (4) collection and reduction of the raw LC-MS/MS data and (5) archival of the processed ADME data. All steps will be described in detail and the value of the data on drug discovery projects will be discussed as well. Finally, in vitro ADME screening can generate large quantities of data obtained under identical conditions to allow building of reliable in silico models.
Content-Based Discovery for Web Map Service using Support Vector Machine and User Relevance Feedback
Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi
2016-01-01
Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery. PMID:27861505
Hu, Kai; Gui, Zhipeng; Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi
2016-01-01
Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery.
Früh, Virginie; Zhou, Yunpeng; Chen, Dan; Loch, Caroline; Eiso, AB; Grinkova, Yelena N.; Verheij, Herman; Sligar, Stephen G; Bushweller, John H.; Siegal, Gregg
2014-01-01
Summary Membrane proteins are important pharmaceutical targets, but they pose significant challenges for fragment based drug discovery approaches. Here we present the first successful use of biophysical methods to screen for fragment ligands to an integral membrane protein. The E. coli inner membrane protein DsbB was solubilized in detergent micelles and lipid bilayer nanodiscs. The solubilized protein was immobilized with retention of functionality and used to screen 1,071 drug fragments for binding using Target Immobilized NMR Screening. Biochemical and biophysical validation of the 8 most potent hits revealed an IC50 range of 7 to 200 μM. The ability to insert a broad array of membrane proteins into nanodiscs, combined with the efficiency of TINS, demonstrates the feasibility of finding fragments targeting membrane proteins. PMID:20797617
High Throughput Screening for Anti–Trypanosoma cruzi Drug Discovery
Alonso-Padilla, Julio; Rodríguez, Ana
2014-01-01
The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti–T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti–T. cruzi drug entities in the near future, are reviewed here. PMID:25474364
High throughput screening for anti-Trypanosoma cruzi drug discovery.
Alonso-Padilla, Julio; Rodríguez, Ana
2014-12-01
The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti-T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti-T. cruzi drug entities in the near future, are reviewed here.
ERIC Educational Resources Information Center
Njoo, Melanie; de Jong, Ton
This paper contains the results of a study on the importance of discovery learning using computer simulations. The purpose of the study was to identify what constitutes discovery learning and to assess the effects of instructional support measures. College students were observed working with an assignment and a computer simulation in the domain of…
Automated combinatorial method for fast and robust prediction of lattice thermal conductivity
NASA Astrophysics Data System (ADS)
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Toher, Cormac; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano
The lack of computationally inexpensive and accurate ab-initio based methodologies to predict lattice thermal conductivity, κl, without computing the anharmonic force constants or performing time-consuming ab-initio molecular dynamics, is one of the obstacles preventing the accelerated discovery of new high or low thermal conductivity materials. The Slack equation is the best alternative to other more expensive methodologies but is highly dependent on two variables: the acoustic Debye temperature, θa, and the Grüneisen parameter, γ. Furthermore, different definitions can be used for these two quantities depending on the model or approximation. Here, we present a combinatorial approach based on the quasi-harmonic approximation to elucidate which definitions of both variables produce the best predictions of κl. A set of 42 compounds was used to test accuracy and robustness of all possible combinations. This approach is ideal for obtaining more accurate values than fast screening models based on the Debye model, while being significantly less expensive than methodologies that solve the Boltzmann transport equation.
Towards novel therapeutics for HIV through fragment-based screening and drug design.
Tiefendbrunn, Theresa; Stout, C David
2014-01-01
Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.
McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam
2011-05-01
The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core applies pharmaceutical industry project-management principles in an academic setting by bringing together multidisciplinary teams to fill critical scientific and technology gaps, using an experienced team of industry-trained researchers and project managers. The KU HTS proactively engages in supporting grant applications for extramural funding, intellectual-property management and technology transfer. The KU HTS staff further provides educational opportunities for the KU faculty and students to learn cutting-edge technologies in drug-discovery platforms through seminars, workshops, internships and course teaching. This is the first instalment of a two-part contribution from the KU HTS laboratory.
Use of combinatorial chemistry to speed drug discovery.
Rádl, S
1998-10-01
IBC's International Conference on Integrating Combinatorial Chemistry into the Discovery Pipeline was held September 14-15, 1998. The program started with a pre-conference workshop on High-Throughput Compound Characterization and Purification. The agenda of the main conference was divided into sessions of Synthesis, Automation and Unique Chemistries; Integrating Combinatorial Chemistry, Medicinal Chemistry and Screening; Combinatorial Chemistry Applications for Drug Discovery; and Information and Data Management. This meeting was an excellent opportunity to see how big pharma, biotech and service companies are addressing the current bottlenecks in combinatorial chemistry to speed drug discovery. (c) 1998 Prous Science. All rights reserved.
NASA Technical Reports Server (NTRS)
Pell, Barney
2003-01-01
A viewgraph presentation on NASA's Discovery Systems Project is given. The topics of discussion include: 1) NASA's Computing Information and Communications Technology Program; 2) Discovery Systems Program; and 3) Ideas for Information Integration Using the Web.
Bhinder, Bhavneet; Antczak, Christophe; Shum, David; Radu, Constantin; Mahida, Jeni P.; Liu-Sullivan, Nancy; Ibáñez, Glorymar; Raja, Balajee Somalinga; Calder, Paul A.; Djaballah, Hakim
2014-01-01
Memorial Sloan-Kettering Cancer Center (MSKCC) has implemented the creation of a full service state-of-the-art High-throughput Screening Core Facility (HTSCF) equipped with modern robotics and custom-built screening data management resources to rapidly store and query chemical and RNAi screening data outputs. The mission of the facility is to provide oncology clinicians and researchers alike with access to cost-effective HTS solutions for both chemical and RNAi screening, with an ultimate goal of novel target identification and drug discovery. HTSCF was established in 2003 to support the institution’s commitment to growth in molecular pharmacology and in the realm of therapeutic agents to fight chronic diseases such as cancer. This endeavor required broad range of expertise in technology development to establish robust and innovative assays, large collections of diverse chemical and RNAi duplexes to probe specific cellular events, sophisticated compound and data handling capabilities, and a profound knowledge in assay development, hit validation, and characterization. Our goal has been to strive for constant innovation, and we strongly believe in shifting the paradigm from traditional drug discovery towards translational research now, making allowance for unmet clinical needs in patients. Our efforts towards repurposing FDA-approved drugs fructified when digoxin, identified through primary HTS, was administered in the clinic for treatment of stage Vb retinoblastoma. In summary, the overall aim of our facility is to identify novel chemical probes, to study cellular processes relevant to investigator’s research interest in chemical biology and functional genomics, and to be instrumental in accelerating the process of drug discovery in academia. PMID:24661215
The interdependence between screening methods and screening libraries.
Shelat, Anang A; Guy, R Kiplin
2007-06-01
The most common methods for discovery of chemical compounds capable of manipulating biological function involves some form of screening. The success of such screens is highly dependent on the chemical materials - commonly referred to as libraries - that are assayed. Classic methods for the design of screening libraries have depended on knowledge of target structure and relevant pharmacophores for target focus, and on simple count-based measures to assess other properties. The recent proliferation of two novel screening paradigms, structure-based screening and high-content screening, prompts a profound rethink about the ideal composition of small-molecule screening libraries. We suggest that currently utilized libraries are not optimal for addressing new targets by high-throughput screening, or complex phenotypes by high-content screening.
Fragment-based drug discovery using rational design.
Jhoti, H
2007-01-01
Fragment-based drug discovery (FBDD) is established as an alternative approach to high-throughput screening for generating novel small molecule drug candidates. In FBDD, relatively small libraries of low molecular weight compounds (or fragments) are screened using sensitive biophysical techniques to detect their binding to the target protein. A lower absolute affinity of binding is expected from fragments, compared to much higher molecular weight hits detected by high-throughput screening, due to their reduced size and complexity. Through the use of iterative cycles of medicinal chemistry, ideally guided by three-dimensional structural data, it is often then relatively straightforward to optimize these weak binding fragment hits into potent and selective lead compounds. As with most other lead discovery methods there are two key components of FBDD; the detection technology and the compound library. In this review I outline the two main approaches used for detecting the binding of low affinity fragments and also some of the key principles that are used to generate a fragment library. In addition, I describe an example of how FBDD has led to the generation of a drug candidate that is now being tested in clinical trials for the treatment of cancer.
Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing
2015-01-01
In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181
Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery.
Thomford, Nicholas Ekow; Senthebane, Dimakatso Alice; Rowe, Arielle; Munro, Daniella; Seele, Palesa; Maroyi, Alfred; Dzobo, Kevin
2018-05-25
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Screening of sorghum lines for resistance against sugarcane aphid, Melanaphis sacchari (Zehnter)
USDA-ARS?s Scientific Manuscript database
The sugarcane aphid Melanaphis sacchari (Zehnter) has emerged as the most significant threat to sorghum (Sorghum bicolor (L.) Moench) production in the United States. Since 2013, discovery of aphid resistant germplasm has been a priority all stakeholders involved. We screened twenty three differen...
Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances
Lionta, Evanthia; Spyrou, George; Vassilatis, Demetrios K.; Cournia, Zoe
2014-01-01
Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and applications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the initial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of topscoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, induced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that enable the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional proteins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to inhibit the mutant H1047R PI3Kα kinase. Second, we discuss a strategy for the identification of selective binders for the RXRα nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein target through the SBVS process. PMID:25262799
NASA Astrophysics Data System (ADS)
Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua
2017-11-01
The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus (S. xylosus) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus. Nine hits were identified from 2500 compounds by docking studies. Then, these 9 compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus. Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.
Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua
2017-01-01
The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus ( S. xylosus ) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus . Nine hits were identified from 2,500 compounds by docking studies. Then, these nine compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus . Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.
QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors
NASA Astrophysics Data System (ADS)
Briard, Jennie G.; Fernandez, Michael; de Luna, Phil; Woo, Tom. K.; Ben, Robert N.
2016-05-01
Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.
Hériché, Jean-Karim; Lees, Jon G.; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M. Julia; Hossain, M. Julius; Adler, Priit; Fernández, José M.; Krallinger, Martin; Haering, Christian H.; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A.; Orengo, Christine; Ellenberg, Jan
2014-01-01
The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848
Screening applications in drug discovery based on microfluidic technology
Eribol, P.; Uguz, A. K.; Ulgen, K. O.
2016-01-01
Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays. PMID:26865904
Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics.
Tolliday, Nicola; Clemons, Paul A; Ferraiolo, Paul; Koehler, Angela N; Lewis, Timothy A; Li, Xiaohua; Schreiber, Stuart L; Gerhard, Daniela S; Eliasof, Scott
2006-09-15
In 2002, the National Cancer Institute created the Initiative for Chemical Genetics (ICG), to enable public research using small molecules to accelerate the discovery of cancer-relevant small-molecule probes. The ICG is a public-access research facility consisting of a tightly integrated team of synthetic and analytical chemists, assay developers, high-throughput screening and automation engineers, computational scientists, and software developers. The ICG seeks to facilitate the cross-fertilization of synthetic chemistry and cancer biology by creating a research environment in which new scientific collaborations are possible. To date, the ICG has interacted with 76 biology laboratories from 39 institutions and more than a dozen organic synthetic chemistry laboratories around the country and in Canada. All chemistry and screening data are deposited into the ChemBank web site (http://chembank.broad.harvard.edu/) and are available to the entire research community within a year of generation. ChemBank is both a data repository and a data analysis environment, facilitating the exploration of chemical and biological information across many different assays and small molecules. This report outlines how the ICG functions, how researchers can take advantage of its screening, chemistry and informatic capabilities, and provides a brief summary of some of the many important research findings.
Screening applications in drug discovery based on microfluidic technology.
Eribol, P; Uguz, A K; Ulgen, K O
2016-01-01
Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.
Li, Xiaolan; Milan Bonotto, Rafaela; No, Joo Hwan; Kim, Keum Hyun; Baek, Sungmin; Kim, Hee Young; Windisch, Marc Peter; Pamplona Mosimann, Ana Luiza; de Borba, Luana; Liuzzi, Michel; Hansen, Michael Adsetts Edberg; Nunes Duarte dos Santos, Claudia; Freitas-Junior, Lucio Holanda
2013-01-01
Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates. PMID:23437413
QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors
Briard, Jennie G.; Fernandez, Michael; De Luna, Phil; Woo, Tom. K.; Ben, Robert N.
2016-01-01
Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds. PMID:27216585
QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors.
Briard, Jennie G; Fernandez, Michael; De Luna, Phil; Woo, Tom K; Ben, Robert N
2016-05-24
Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.
Science of the science, drug discovery and artificial neural networks.
Patel, Jigneshkumar
2013-03-01
Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.
Virtual screening methods as tools for drug lead discovery from large chemical libraries.
Ma, X H; Zhu, F; Liu, X; Shi, Z; Zhang, J X; Yang, S Y; Wei, Y Q; Chen, Y Z
2012-01-01
Virtual screening methods have been developed and explored as useful tools for searching drug lead compounds from chemical libraries, including large libraries that have become publically available. In this review, we discussed the new developments in exploring virtual screening methods for enhanced performance in searching large chemical libraries, their applications in screening libraries of ~ 1 million or more compounds in the last five years, the difficulties in their applications, and the strategies for further improving these methods.
Lin, Yuxin; Chen, Feifei; Shen, Li; Tang, Xiaoyu; Du, Cui; Sun, Zhandong; Ding, Huijie; Chen, Jiajia; Shen, Bairong
2018-05-21
Prostate cancer (PCa) is a fatal malignant tumor among males in the world and the metastasis is a leading cause for PCa death. Biomarkers are therefore urgently needed to detect PCa metastatic signature at the early time. MicroRNAs are small non-coding RNAs with the potential to be biomarkers for disease prediction. In addition, computer-aided biomarker discovery is now becoming an attractive paradigm for precision diagnosis and prognosis of complex diseases. In this study, we identified key microRNAs as biomarkers for predicting PCa metastasis based on network vulnerability analysis. We first extracted microRNAs and mRNAs that were differentially expressed between primary PCa and metastatic PCa (MPCa) samples. Then we constructed the MPCa-specific microRNA-mRNA network and screened microRNA biomarkers by a novel bioinformatics model. The model emphasized the characterization of systems stability changes and the network vulnerability with three measurements, i.e. the structurally single-line regulation, the functional importance of microRNA targets and the percentage of transcription factor genes in microRNA unique targets. With this model, we identified five microRNAs as putative biomarkers for PCa metastasis. Among them, miR-101-3p and miR-145-5p have been previously reported as biomarkers for PCa metastasis and the remaining three, i.e. miR-204-5p, miR-198 and miR-152, were screened as novel biomarkers for PCa metastasis. The results were further confirmed by the assessment of their predictive power and biological function analysis. Five microRNAs were identified as candidate biomarkers for predicting PCa metastasis based on our network vulnerability analysis model. The prediction performance, literature exploration and functional enrichment analysis convinced our findings. This novel bioinformatics model could be applied to biomarker discovery for other complex diseases.
O'Duibhir, Eoghan; Carragher, Neil O; Pollard, Steven M
2017-04-01
Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Whiting, Matthew; Tripp, Jonathan C; Lin, Ying-Chuan; Lindstrom, William; Olson, Arthur J; Elder, John H; Sharpless, K Barry; Fokin, Valery V
2006-12-28
Building from the results of a computational screen of a range of triazole-containing compounds for binding efficiency to human immunodeficiency virus type 1 protease (HIV-1-Pr), a novel series of potent inhibitors has been developed. The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), which provides ready access to 1,4-disubstituted-1,2,3-triazoles, was used to unite a focused library of azide-containing fragments with a diverse array of functionalized alkyne-containing building blocks. In combination with direct screening of the crude reaction products, this method led to the rapid identification of a lead structure and readily enabled optimization of both azide and alkyne fragments. Replacement of the triazole with a range of alternative linkers led to greatly reduced protease inhibition; however, further functionalization of the triazoles at the 5-position gave a series of compounds with increased activity, exhibiting Ki values as low as 8 nM.
FilTer BaSe: A web accessible chemical database for small compound libraries.
Kolte, Baban S; Londhe, Sanjay R; Solanki, Bhushan R; Gacche, Rajesh N; Meshram, Rohan J
2018-03-01
Finding novel chemical agents for targeting disease associated drug targets often requires screening of large number of new chemical libraries. In silico methods are generally implemented at initial stages for virtual screening. Filtering of such compound libraries on physicochemical and substructure ground is done to ensure elimination of compounds with undesired chemical properties. Filtering procedure, is redundant, time consuming and requires efficient bioinformatics/computer manpower along with high end software involving huge capital investment that forms a major obstacle in drug discovery projects in academic setup. We present an open source resource, FilTer BaSe- a chemoinformatics platform (http://bioinfo.net.in/filterbase/) that host fully filtered, ready to use compound libraries with workable size. The resource also hosts a database that enables efficient searching the chemical space of around 348,000 compounds on the basis of physicochemical and substructure properties. Ready to use compound libraries and database presented here is expected to aid a helping hand for new drug developers and medicinal chemists. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We present here a whole-cell and permeabilized E. coli cell 1' active/inactive microplate screen for ß-D-xylosidase, xylanase, endocellulase, and ferulic acid esterase enzyme activities which are critical for the enzymatic deconstruction of biomass for fuels and chemicals. Transformants from genomic...
Goodell, John R.; McMullen, Jonathan P.; Zaborenko, Nikolay; Maloney, Jason R.; Ho, Chuan-Xing; Jensen, Klavs F.; Porco, John A.
2010-01-01
An automated, silicon-based microreactor system has been developed for rapid, low-volume, multidimensional reaction screening. Use of the microfluidic platform to identify transformations of densely functionalized bicyclo[3.2.1]octanoid scaffolds will be described. PMID:20560568
den Besten, Matthijs; Thomas, Arthur J; Schroeder, Ralph
2009-04-22
It is often said that the life sciences are transforming into an information science. As laboratory experiments are starting to yield ever increasing amounts of data and the capacity to deal with those data is catching up, an increasing share of scientific activity is seen to be taking place outside the laboratories, sifting through the data and modelling "in silico" the processes observed "in vitro." The transformation of the life sciences and similar developments in other disciplines have inspired a variety of initiatives around the world to create technical infrastructure to support the new scientific practices that are emerging. The e-Science programme in the United Kingdom and the NSF Office for Cyberinfrastructure are examples of these. In Switzerland there have been no such national initiatives. Yet, this has not prevented scientists from exploring the development of similar types of computing infrastructures. In 2004, a group of researchers in Switzerland established a project, SwissBioGrid, to explore whether Grid computing technologies could be successfully deployed within the life sciences. This paper presents their experiences as a case study of how the life sciences are currently operating as an information science and presents the lessons learned about how existing institutional and technical arrangements facilitate or impede this operation. SwissBioGrid gave rise to two pilot projects: one for proteomics data analysis and the other for high-throughput molecular docking ("virtual screening") to find new drugs for neglected diseases (specifically, for dengue fever). The proteomics project was an example of a data management problem, applying many different analysis algorithms to Terabyte-sized datasets from mass spectrometry, involving comparisons with many different reference databases; the virtual screening project was more a purely computational problem, modelling the interactions of millions of small molecules with a limited number of protein targets on the coat of the dengue virus. Both present interesting lessons about how scientific practices are changing when they tackle the problems of large-scale data analysis and data management by means of creating a novel technical infrastructure. In the experience of SwissBioGrid, data intensive discovery has a lot to gain from close collaboration with industry and harnessing distributed computing power. Yet the diversity in life science research implies only a limited role for generic infrastructure; and the transience of support means that researchers need to integrate their efforts with others if they want to sustain the benefits of their success, which are otherwise lost.
ERIC Educational Resources Information Center
Robinson, William R.
2000-01-01
Describes a review of research that addresses the effectiveness of simulations in promoting scientific discovery learning and the problems that learners may encounter when using discovery learning. (WRM)
Development of Drugs for Epstein - Barr virus using High-Throughput in silico Virtual Screening
Li, Ning; Thompson, Scott; Jiang, Hualiang; Lieberman, Paul M.; Luo, Cheng
2010-01-01
Importance of the field Epstein-Barr virus (EBV) is a ubiquitious human herpesvirus that is causally associated with endemic forms of Burkitt’s lymphoma (BL), nasopharyngeal carcinoma, and lymphoproliferative disease in immunosuppressed individuals. On a global scale, EBV infects over 90% of the adult population and is responsible for ~1% of all human cancers. To date, there is no efficacious drug or therapy for the treatment of EBV infection and EBV-related diseases. Areas covered in this review In this review, we discuss the existing anti-EBV inhibitors and those under development. We discuss the value of different molecular targets, including EBV lytic DNA replication enzymes, as well as proteins that are expressed exclusively during latent infection, like EBNA1 and LMP1. Since the atomic structure of the EBNA1 DNA binding domain has been described, it is an attractive target for in silico methods of drug design and small molecule screening. We discuss the use of computational methods that can greatly facilitate the development of novel inhibitors and how in silico screening methods can be applied to target proteins with known structures, like EBNA1, to treat EBV infection and disease. What the reader will gain The reader will be familiarized with the problems in targeting of EBV for inhibition by small molecules and how computational methods can greatly facilitate this process. Take home message Despite the impressive efficacy of nucleoside analogues for the treatment of herpesvirus lytic infection, there remain few effective treatments for latent infections. Since EBV-latent infection persists within and contributes to the formation of EBV-associated cancers, targeting EBV latent proteins is an unmet medical need. High throughput in silico screening can accelerate the process of drug discovery for novel and selective agents that inhibit EBV latent infection and associated disease. PMID:22822721
Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y
2014-07-08
The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model for drug screens in industry and academia.
Yeast as a tool to identify anti-aging compounds
Zimmermann, Andreas; Hofer, Sebastian; Pendl, Tobias; Kainz, Katharina; Madeo, Frank; Carmona-Gutierrez, Didac
2018-01-01
Abstract In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification. PMID:29905792
Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär
2016-01-01
Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513
NASA Astrophysics Data System (ADS)
Giardiello, Marco; Liptrott, Neill J.; McDonald, Tom O.; Moss, Darren; Siccardi, Marco; Martin, Phil; Smith, Darren; Gurjar, Rohan; Rannard, Steve P.; Owen, Andrew
2016-10-01
Considerable scope exists to vary the physical and chemical properties of nanoparticles, with subsequent impact on biological interactions; however, no accelerated process to access large nanoparticle material space is currently available, hampering the development of new nanomedicines. In particular, no clinically available nanotherapies exist for HIV populations and conventional paediatric HIV medicines are poorly available; one current paediatric formulation utilizes high ethanol concentrations to solubilize lopinavir, a poorly soluble antiretroviral. Here we apply accelerated nanomedicine discovery to generate a potential aqueous paediatric HIV nanotherapy, with clinical translation and regulatory approval for human evaluation. Our rapid small-scale screening approach yields large libraries of solid drug nanoparticles (160 individual components) targeting oral dose. Screening uses 1 mg of drug compound per library member and iterative pharmacological and chemical evaluation establishes potential candidates for progression through to clinical manufacture. The wide applicability of our strategy has implications for multiple therapy development programmes.
Xing, Li; McDonald, Joseph J; Kolodziej, Steve A; Kurumbail, Ravi G; Williams, Jennifer M; Warren, Chad J; O'Neal, Janet M; Skepner, Jill E; Roberds, Steven L
2011-03-10
Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.
Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda
2015-10-01
Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.
Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.
Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin
2016-02-01
High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.
Beeman, Katrin; Baumgärtner, Jens; Laubenheimer, Manuel; Hergesell, Karlheinz; Hoffmann, Martin; Pehl, Ulrich; Fischer, Frank; Pieck, Jan-Carsten
2017-12-01
Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.
Fragment-based design of kinase inhibitors: a practical guide.
Erickson, Jon A
2015-01-01
Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported.
Ultralow Thermal Conductivity in Full Heusler Semiconductors.
He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris
2016-07-22
Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.
The U.S. Environmental Protection Agency strategic plan for evaluating the toxicity of chemicals.
Firestone, Michael; Kavlock, Robert; Zenick, Hal; Kramer, Melissa
2010-02-01
In the 2007 report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences envisioned a major transition in toxicity testing from cumbersome, expensive, and lengthy in vivo testing with qualitative endpoints, to in vitro robotic high-throughput screening with mechanistic quantitative parameters. Recognizing the need for agencies to partner and collaborate to ensure global harmonization, standardization, quality control and information sharing, the U.S. Environmental Protection Agency is leading by example and has established an intra-agency Future of Toxicity Testing Workgroup (FTTW). This workgroup has produced an ambitious blueprint for incorporating this new scientific paradigm to change the way chemicals are screened and evaluated for toxicity. Four main components of this strategy are discussed, as follows: (1) the impact and benefits of various types of regulatory activities, (2) chemical screening and prioritization, (3) toxicity pathway-based risk assessment, and (4) institutional transition. The new paradigm is predicated on the discovery of molecular perturbation pathways at the in vitro level that predict adverse health effects from xenobiotics exposure, and then extrapolating those events to the tissue, organ, or whole organisms by computational models. Research on these pathways will be integrated and compiled using the latest technology with the cooperation of global agencies, industry, and other stakeholders. The net result will be that chemical toxicity screening will become more efficient and cost-effective, include real-world exposure assessments, and eliminate currently used uncertainty factors.
Screen Time at Home and School among Low-Income Children Attending Head Start
Fletcher, Erica N.; Whitaker, Robert C.; Marino, Alexis J.; Anderson, Sarah E.
2013-01-01
Objective To describe the patterns of screen viewing at home and school among low-income preschool-aged children attending Head Start and identify factors associated with high home screen time in this population. Few studies have examined both home and classroom screen time, or included computer use as a component of screen viewing. Methods Participants were 2221 low-income preschool-aged children in the United States studied in the Head Start Family and Child Experiences Survey (FACES) in spring 2007. For 5 categories of screen viewing (television, video/DVD, video games, computer games, other computer use), we assessed children’s typical weekday home (parent-reported) and classroom (teacher-reported) screen viewing in relation to having a television in the child’s bedroom and sociodemographic factors. Results Over half of children (55.7%) had a television in their bedroom, and 12.5% had high home screen time (>4 hours/weekday). Television was the most common category of home screen time, but 56.6% of children had access to a computer at home and 37.5% had used it on the last typical weekday. After adjusting for sociodemographic characteristics, children with a television in their bedroom were more likely to have high home screen time [odds ratio=2.57 (95% confidence interval: 1.80–3.68)]. Classroom screen time consisted almost entirely of computer use; 49.4% of children used a classroom computer for ≥1 hour/week, and 14.2% played computer games at school ≥5 hours/week. Conclusions In 2007, one in eight low-income children attending Head Start had >4 hours/weekday of home screen time, which was associated with having a television in the bedroom. In the Head Start classroom, television and video viewing were uncommon but computer use was common. PMID:24891924
Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments
De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944
NASA Astrophysics Data System (ADS)
Cui, Wei; Parker, Laurie L.
2016-07-01
Fluorescent drug screening assays are essential for tyrosine kinase inhibitor discovery. Here we demonstrate a flexible, antibody-free TR-LRET kinase assay strategy that is enabled by the combination of streptavidin-coated quantum dot (QD) acceptors and biotinylated, Tb3+ sensitizing peptide donors. By exploiting the spectral features of Tb3+ and QD, and the high binding affinity of the streptavidin-biotin interaction, we achieved multiplexed detection of kinase activity in a modular fashion without requiring additional covalent labeling of each peptide substrate. This strategy is compatible with high-throughput screening, and should be adaptable to the rapidly changing workflows and targets involved in kinase inhibitor discovery.
Fabrication and characterization of thin-film phosphor combinatorial libraries
NASA Astrophysics Data System (ADS)
Mordkovich, V. Z.; Jin, Zhengwu; Yamada, Y.; Fukumura, T.; Kawasaki, M.; Koinuma, H.
2002-05-01
The laser molecular beam epitaxy method was employed to fabricate thin-film combinatorial libraries of ZnO-based phosphors on different substrates. Fabrication of both pixel libraries, on the example of Fe-doped ZnO, and spread libraries, on the example of Eu-doped ZnO, has been demonstrated. Screening of the Fe-doped ZnO libraries led to the discovery of weak green cathodoluminescence with the maximum efficiency at the Fe content of 0.58 mol %. Screening of the Eu-doped ZnO libraries led to the discovery of unusual reddish-violet cathodoluminescence which is observed in a broad range of Eu concentration. No photoluminescence was registered in either system.
Beedie, Shaunna L.; Rore, Holly M.; Barnett, Shelby; Chau, Cindy H.; Luo, Weiming; Greig, Nigel H.; Figg, William D.; Vargesson, Neil
2016-01-01
Thalidomide, a drug known for its teratogenic side-effects, is used successfully to treat a variety of clinical conditions including leprosy and multiple myeloma. Intense efforts are underway to synthesize and identify safer, clinically relevant analogs. Here, we conduct a preliminary in vivo screen of a library of new thalidomide analogs to determine which agents demonstrate activity, and describe a cohort of compounds with anti-angiogenic properties, anti-inflammatory properties and some compounds which exhibited both. The combination of the in vivo zebrafish and chicken embryo model systems allows for the accelerated discovery of new, potential therapies for cancerous and inflammatory conditions. PMID:27120781
Benmansour, Fatiha; Trist, Iuni; Coutard, Bruno; Decroly, Etienne; Querat, Gilles; Brancale, Andrea; Barral, Karine
2017-01-05
With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLean, Larry R.; Zhang, Ying; Li, Hua
Biochemical and X-ray crystallographic studies confirmed that hydroxyquinoline derivatives identified by virtual screening were actually covalent inhibitors of the MIF tautomerase. Adducts were formed by N-alkylation of the Pro-1 at the catalytic site with a loss of an amino group of the inhibitor.
Molkhou, P
1999-04-01
Since discovery of IgE in 1967, which was a real revolution in allergy field, new biological methods as Phadiatop for inhalant allergens and RAST fx5 for food allergens, have been used routinely. Both methods are very useful for reliable and cost efficient atopy screening.
The essential roles of chemistry in high-throughput screening triage
Dahlin, Jayme L; Walters, Michael A
2015-01-01
It is increasingly clear that academic high-throughput screening (HTS) and virtual HTS triage suffers from a lack of scientists trained in the art and science of early drug discovery chemistry. Many recent publications report the discovery of compounds by screening that are most likely artifacts or promiscuous bioactive compounds, and these results are not placed into the context of previous studies. For HTS to be most successful, it is our contention that there must exist an early partnership between biologists and medicinal chemists. Their combined skill sets are necessary to design robust assays and efficient workflows that will weed out assay artifacts, false positives, promiscuous bioactive compounds and intractable screening hits, efforts that ultimately give projects a better chance at identifying truly useful chemical matter. Expertise in medicinal chemistry, cheminformatics and purification sciences (analytical chemistry) can enhance the post-HTS triage process by quickly removing these problematic chemotypes from consideration, while simultaneously prioritizing the more promising chemical matter for follow-up testing. It is only when biologists and chemists collaborate effectively that HTS can manifest its full promise. PMID:25163000
Fragment screening of cyclin G-associated kinase by weak affinity chromatography.
Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten
2012-11-01
Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.
RNA 3D Modules in Genome-Wide Predictions of RNA 2D Structure
Theis, Corinna; Zirbel, Craig L.; zu Siederdissen, Christian Höner; Anthon, Christian; Hofacker, Ivo L.; Nielsen, Henrik; Gorodkin, Jan
2015-01-01
Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution. These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D module prediction tools and apply them on a 13-way vertebrate sequence-based alignment. We find that RNA 3D modules predicted by metaRNAmodules and JAR3D are significantly enriched in the screened windows compared to their shuffled counterparts. The initially estimated FDR of 47.0% is lowered to below 25% when certain 3D module predictions are present in the window of the 2D prediction. We discuss the implications and prospects for further development of computational strategies for detection of RNA 2D structure in genomic sequence. PMID:26509713
Biology-driven library design for probe discovery.
Inglese, James; Hasson, Samuel A
2011-10-28
Libraries of diverse small molecules are important to probe and drug discovery. The current trend toward building massive screening collections to support drug development, a special application of chemical biology, can limit their broader potential. Biology-driven construction methods (Wallace et al., 2011) are rapidly emerging to bring chemical libraries back on a viable path. Copyright © 2011 Elsevier Ltd. All rights reserved.
The discovery of tricyclic pyridone JAK2 inhibitors. Part 1: hit to lead.
Siu, Tony; Kozina, Ekaterina S; Jung, Joon; Rosenstein, Craig; Mathur, Anjili; Altman, Michael D; Chan, Grace; Xu, Lin; Bachman, Eric; Mo, Jan-Rung; Bouthillette, Melaney; Rush, Thomas; Dinsmore, Christopher J; Marshall, C Gary; Young, Jonathan R
2010-12-15
This paper describes the discovery and design of a novel class of JAK2 inhibitors. Furthermore, we detail the optimization of a screening hit using ligand binding efficiency and log D. These efforts led to the identification of compound 41, which demonstrates in vivo activity in our study. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yang, Ling-Ling; Li, Guo-Bo; Yan, Heng-Xiu; Sun, Qi-Zheng; Ma, Shuang; Ji, Pan; Wang, Ze-Rong; Feng, Shan; Zou, Jun; Yang, Sheng-Yong
2012-10-01
Aberrant activation of casein kinase 1 (CK1) has been demonstrated to be implicated in the pathogenesis of cancer and various central nervous system disorders. Discovery of CK1 inhibitors has thus attracted much attention in recent years. In this account, we describe the discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors. An optimal common-feature pharmacophore hypothesis, termed Hypo2, was firstly generated, followed by virtual screening using Hypo2 against several chemical databases. One of the best hit compounds, N6-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine, was chosen for the subsequent hit-to-lead optimization under the guide of Hypo2, which led to the discovery of a new lead compound (1-(3-(3-amino-1H-pyrazolo[3,4-d]pyrimidin-6-ylamino)phenyl)-3-(3-chloro-4-fluorophenyl)urea) that potently inhibits CK1 with an IC(50) value of 78 nM. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Bacterial contamination of computer touch screens.
Gerba, Charles P; Wuollet, Adam L; Raisanen, Peter; Lopez, Gerardo U
2016-03-01
The goal of this study was to determine the occurrence of opportunistic bacterial pathogens on the surfaces of computer touch screens used in hospitals and grocery stores. Opportunistic pathogenic bacteria were isolated on touch screens in hospitals; Clostridium difficile and vancomycin-resistant Enterococcus and in grocery stores; methicillin-resistant Staphylococcus aureus. Enteric bacteria were more common on grocery store touch screens than on hospital computer touch screens. Published by Elsevier Inc.
Component architecture in drug discovery informatics.
Smith, Peter M
2002-05-01
This paper reviews the characteristics of a new model of computing that has been spurred on by the Internet, known as Netcentric computing. Developments in this model led to distributed component architectures, which, although not new ideas, are now realizable with modern tools such as Enterprise Java. The application of this approach to scientific computing, particularly in pharmaceutical discovery research, is discussed and highlighted by a particular case involving the management of biological assay data.
Moretti, Loris; Sartori, Luca
2016-09-01
In the field of Computer-Aided Drug Discovery and Development (CADDD) the proper software infrastructure is essential for everyday investigations. The creation of such an environment should be carefully planned and implemented with certain features in order to be productive and efficient. Here we describe a solution to integrate standard computational services into a functional unit that empowers modelling applications for drug discovery. This system allows users with various level of expertise to run in silico experiments automatically and without the burden of file formatting for different software, managing the actual computation, keeping track of the activities and graphical rendering of the structural outcomes. To showcase the potential of this approach, performances of five different docking programs on an Hiv-1 protease test set are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC
2008-01-01
Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms. Conclusion We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens. PMID:18534020
Novel drug discovery for Chagas disease.
Moraes, Carolina B; Franco, Caio H
2016-01-01
Chagas disease is a chronic infection associated with long-term morbidity. Increased funding and advocacy for drug discovery for neglected diseases have prompted the introduction of several important technological advances, and Chagas disease is among the neglected conditions that has mostly benefited from technological developments. A number of screening campaigns, and the development of new and improved in vitro and in vivo assays, has led to advances in the field of drug discovery. This review highlights the major advances in Chagas disease drug screening, and how these are being used not only to discover novel chemical entities and drug candidates, but also increase our knowledge about the disease and the parasite. Different methodologies used for compound screening and prioritization are discussed, as well as novel techniques for the investigation of these targets. The molecular mechanism of action is also discussed. Technological advances have been executed with scientific rigour for the development of new in vitro cell-based assays and in vivo animal models, to bring about novel and better drugs for Chagas disease, as well as to increase our understanding of what are the necessary properties for a compound to be successful in the clinic. The gained knowledge, combined with new exciting approaches toward target deconvolution, will help identifying new targets for Chagas disease chemotherapy in the future.
Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong
2016-01-01
Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.
Cardiac Arrhythmia: In vivo screening in the zebrafish to overcome complexity in drug discovery.
Macrae, Calum A
2010-07-01
IMPORTANCE OF THE FIELD: Cardiac arrhythmias remain a major challenge for modern drug discovery. Clinical events are paroxysmal, often rare and may be asymptomatic until a highly morbid complication. Target selection is often based on limited information and though highly specific agents are identified in screening, the final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index and substantial toxicities. AREAS COVERED IN THIS REVIEW: Our understanding of complexity of arrhythmogenesis has grown dramatically over the last two decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in arrhythmia. This review surveys the literature on arrhythmia mechanisms from 1965 to the present day, outlines the complex biology underlying potentially each and every rhythm disturbance, and highlights the problems for rational target identification. The rationale for in vivo screening is described and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. WHAT THE READER WILL GAIN: An overview of the complex mechanisms underlying most clinical arrhythmias, and insight into the limits of ion channel conductances as drug targets. An introduction to the zebrafish as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology including in vivo screening of zebrafish genetic disease models. TAKE HOME MESSAGE: In vivo screening in faithful disease models allows the effects of drugs on integrative physiology and disease biology to be captured during the screening process, in a manner agnostic to potential drug target or targets. This systematic strategy bypasses current gaps in our understanding of disease biology, but emphasizes the importance of the rigor of the disease model.
A New In Vivo Screening Paradigm to Accelerate Antimalarial Drug Discovery
Jiménez-Díaz, María Belén; Viera, Sara; Ibáñez, Javier; Mulet, Teresa; Magán-Marchal, Noemí; Garuti, Helen; Gómez, Vanessa; Cortés-Gil, Lorena; Martínez, Antonio; Ferrer, Santiago; Fraile, María Teresa; Calderón, Félix; Fernández, Esther; Shultz, Leonard D.; Leroy, Didier; Wilson, David M.; García-Bustos, José Francisco; Gamo, Francisco Javier; Angulo-Barturen, Iñigo
2013-01-01
The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR), which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0) of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1) or induce parasite clearance (PRR >1) with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally) in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a feasible task. PMID:23825598
Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.
Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong
2014-03-15
Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.
Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo
2018-05-17
In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lindblom, Katrina; Gregory, Tess; Flight, Ingrid H K; Zajac, Ian
2011-01-01
Objective This study investigated the efficacy of an internet-based personalized decision support (PDS) tool designed to aid in the decision to screen for colorectal cancer (CRC) using a fecal occult blood test. We tested whether the efficacy of the tool in influencing attitudes to screening was mediated by perceived usability and acceptability, and considered the role of computer self-efficacy and computer anxiety in these relationships. Methods Eighty-one participants aged 50–76 years worked through the on-line PDS tool and completed questionnaires on computer self-efficacy, computer anxiety, attitudes to and beliefs about CRC screening before and after exposure to the PDS, and perceived usability and acceptability of the tool. Results Repeated measures ANOVA found that PDS exposure led to a significant increase in knowledge about CRC and screening, and more positive attitudes to CRC screening as measured by factors from the Preventive Health Model. Perceived usability and acceptability of the PDS mediated changes in attitudes toward CRC screening (but not CRC knowledge), and computer self-efficacy and computer anxiety were significant predictors of individuals' perceptions of the tool. Conclusion Interventions designed to decrease computer anxiety, such as computer courses and internet training, may improve the acceptability of new health information technologies including internet-based decision support tools, increasing their impact on behavior change. PMID:21857024
Four disruptive strategies for removing drug discovery bottlenecks.
Ekins, Sean; Waller, Chris L; Bradley, Mary P; Clark, Alex M; Williams, Antony J
2013-03-01
Drug discovery is shifting focus from industry to outside partners and, in the process, creating new bottlenecks. Technologies like high throughput screening (HTS) have moved to a larger number of academic and institutional laboratories in the USA, with little coordination or consideration of the outputs and creating a translational gap. Although there have been collaborative public-private partnerships in Europe to share pharmaceutical data, the USA has seemingly lagged behind and this may hold it back. Sharing precompetitive data and models may accelerate discovery across the board, while finding the best collaborators, mining social media and mobile approaches to open drug discovery should be evaluated in our efforts to remove drug discovery bottlenecks. We describe four strategies to rectify the current unsustainable situation. Copyright © 2012 Elsevier Ltd. All rights reserved.
8. DETAIL OF COMPUTER SCREEN AND CONTROL BOARDS: LEFT SCREEN ...
8. DETAIL OF COMPUTER SCREEN AND CONTROL BOARDS: LEFT SCREEN TRACKS RESIDUAL CHLORINE; INDICATES AMOUNT OF SUNLIGHT WHICH ENABLES OPERATOR TO ESTIMATE NEEDED CHLORINE; CENTER SCREEN SHOWS TURNOUT STRUCTURES; RIGHT SCREEN SHOWS INDICATORS OF ALUMINUM SULFATE TANK FARM. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA
Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G
2017-11-29
The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.
Computational methods for 2D materials: discovery, property characterization, and application design
NASA Astrophysics Data System (ADS)
Paul, J. T.; Singh, A. K.; Dong, Z.; Zhuang, H.; Revard, B. C.; Rijal, B.; Ashton, M.; Linscheid, A.; Blonsky, M.; Gluhovic, D.; Guo, J.; Hennig, R. G.
2017-11-01
The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials’ electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.
Drug Discovery for Neglected Diseases: Molecular Target-Based and Phenotypic Approaches
2013-01-01
Drug discovery for neglected tropical diseases is carried out using both target-based and phenotypic approaches. In this paper, target-based approaches are discussed, with a particular focus on human African trypanosomiasis. Target-based drug discovery can be successful, but careful selection of targets is required. There are still very few fully validated drug targets in neglected diseases, and there is a high attrition rate in target-based drug discovery for these diseases. Phenotypic screening is a powerful method in both neglected and non-neglected diseases and has been very successfully used. Identification of molecular targets from phenotypic approaches can be a way to identify potential new drug targets. PMID:24015767
Orphan diseases: state of the drug discovery art.
Volmar, Claude-Henry; Wahlestedt, Claes; Brothers, Shaun P
2017-06-01
Since 1983 more than 300 drugs have been developed and approved for orphan diseases. However, considering the development of novel diagnosis tools, the number of rare diseases vastly outpaces therapeutic discovery. Academic centers and nonprofit institutes are now at the forefront of rare disease R&D, partnering with pharmaceutical companies when academic researchers discover novel drugs or targets for specific diseases, thus reducing the failure risk and cost for pharmaceutical companies. Considerable progress has occurred in the art of orphan drug discovery, and a symbiotic relationship now exists between pharmaceutical industry, academia, and philanthropists that provides a useful framework for orphan disease therapeutic discovery. Here, the current state-of-the-art of drug discovery for orphan diseases is reviewed. Current technological approaches and challenges for drug discovery are considered, some of which can present somewhat unique challenges and opportunities in orphan diseases, including the potential for personalized medicine, gene therapy, and phenotypic screening.