Discovery of Novel Mammary Developmental and Cancer Genes Using ENU Mutagenesis
2002-10-01
death rates we need new therapeutic targets, currently a major challenge facing cancer researchers This requires an understanding of the undiscovered pathways that operate to drive breast cancer cell proliferation, cell survival and cell differentiation, pathways which are also likely to operate during normal mammary development, and which go awry in cancer The discovery of signalling pathways operative in breast cancer has utilised examination of mammary gland development following systemic endocrine ablation or viral insertion, positional cloning in affected families and
Service-based analysis of biological pathways
Zheng, George; Bouguettaya, Athman
2009-01-01
Background Computer-based pathway discovery is concerned with two important objectives: pathway identification and analysis. Conventional mining and modeling approaches aimed at pathway discovery are often effective at achieving either objective, but not both. Such limitations can be effectively tackled leveraging a Web service-based modeling and mining approach. Results Inspired by molecular recognitions and drug discovery processes, we developed a Web service mining tool, named PathExplorer, to discover potentially interesting biological pathways linking service models of biological processes. The tool uses an innovative approach to identify useful pathways based on graph-based hints and service-based simulation verifying user's hypotheses. Conclusion Web service modeling of biological processes allows the easy access and invocation of these processes on the Web. Web service mining techniques described in this paper enable the discovery of biological pathways linking these process service models. Algorithms presented in this paper for automatically highlighting interesting subgraph within an identified pathway network enable the user to formulate hypothesis, which can be tested out using our simulation algorithm that are also described in this paper. PMID:19796403
A Guided Discovery Approach for Learning Metabolic Pathways
ERIC Educational Resources Information Center
Schultz, Emeric
2005-01-01
Learning the wealth of information in metabolic pathways is both challenging and overwhelming for students. A step-by-step guided discovery approach to the learning of the chemical steps in gluconeogenesis and the citric acid cycle is described. This approach starts from concepts the student already knows, develops these further in a logical…
Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick.
Schor, Raissa; Cox, Russell
2018-03-01
Covering: 1893 to 2017Harold Raistrick was involved in the discovery of many of the most important classes of fungal metabolites during the 20th century. This review focusses on how these discoveries led to developments in isotopic labelling, biomimetic chemistry and the discovery, analysis and exploitation of biosynthetic gene clusters for major classes of fungal metabolites including: alternariol; geodin and metabolites of the emodin pathway; maleidrides; citrinin and the azaphilones; dehydrocurvularin; mycophenolic acid; and the tropolones. Key recent advances in the molecular understanding of these important pathways, including the discovery of biosynthetic gene clusters, the investigation of the molecular and chemical aspects of key biosynthetic steps, and the reengineering of key components of the pathways are reviewed and compared. Finally, discussion of key relationships between metabolites and pathways and the most important recent advances and opportunities for future research directions are given.
Plant metabolic clusters - from genetics to genomics.
Nützmann, Hans-Wilhelm; Huang, Ancheng; Osbourn, Anne
2016-08-01
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Yan, Maocai; Li, Guanqun; An, Jing
2017-06-01
The Wnt/β-catenin signaling pathway typically shows aberrant activation in various cancer cells, especially colorectal cancer cells. This signaling pathway regulates the expression of a variety of tumor-related proteins, including c-myc and cyclin D1, and plays essential roles in tumorigenesis and in the development of many cancers. Small molecules that block the interactions between β-catenin and Tcf4, a downstream stage of activation of the Wnt/β-catenin signaling pathway, could efficiently cut off this signal transduction and thereby act as a novel class of anticancer drugs. This paper reviews the currently reported inhibitors that target β-catenin/Tcf4 interactions, focusing on the discovery approaches taken in the design of these inhibitors and their bioactivities. A brief perspective is then shared on the future discovery and development of this class of inhibitors. Impact statement This mini-review summarized the current knowledge of inhibitors of interactions of beta-catenin/Tcf4 published to date according to their discovery approaches, and discussed their in vitro and in vivo activities, selectivities, and pharmacokinetic properties. Several reviews presently available now in this field describe modulators of the Wnt/beta-catenin pathway, but are generally focused on the bioactivities of these inhibitors. By contrast, this review focused on the drug discovery approaches taken in identifying these types of inhibitors and provided our perspective on further strategies for future drug discoveries. This review also integrated many recently published and important works on highly selective inhibitors as well as rational drug design. We believe that the findings and strategies summarized in this review have broad implications and will be of interest throughout the biochemical and pharmaceutical research community.
Zhang, Bo; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Wu, Ziyin; Zhang, Wenjuan; Yang, Xiaoyan; Gong, Fukai; Li, Yuerong; Chen, Xiaoyu; Gao, Shuo; Chen, Xuetong; Li, Yan; Lu, Aiping; Wang, Yonghua
2016-02-25
The development of modern omics technology has not significantly improved the efficiency of drug development. Rather precise and targeted drug discovery remains unsolved. Here a large-scale cross-species molecular network association (CSMNA) approach for targeted drug screening from natural sources is presented. The algorithm integrates molecular network omics data from humans and 267 plants and microbes, establishing the biological relationships between them and extracting evolutionarily convergent chemicals. This technique allows the researcher to assess targeted drugs for specific human diseases based on specific plant or microbe pathways. In a perspective validation, connections between the plant Halliwell-Asada (HA) cycle and the human Nrf2-ARE pathway were verified and the manner by which the HA cycle molecules act on the human Nrf2-ARE pathway as antioxidants was determined. This shows the potential applicability of this approach in drug discovery. The current method integrates disparate evolutionary species into chemico-biologically coherent circuits, suggesting a new cross-species omics analysis strategy for rational drug development.
An, Songzhu Michael; Ding, Qiang Peter; Li, Ling-song
2013-06-01
One of the most exciting fields in biomedical research over the past few years is stem cell biology, and therapeutic application of stem cells to replace the diseased or damaged tissues is also an active area in development. Although stem cell therapy has a number of technical challenges and regulatory hurdles to overcome, the use of stem cells as tools in drug discovery supported by mature technologies and established regulatory paths is expected to generate more immediate returns. In particular, the targeting of stem cell signaling pathways is opening up a new avenue for drug discovery. Aberrations in these pathways result in various diseases, including cancer, fibrosis and degenerative diseases. A number of drug targets in stem cell signaling pathways have been identified. Among them, WNT and Hedgehog are two most important signaling pathways, which are the focus of this review. A hedgehog pathway inhibitor, vismodegib (Erivedge), has recently been approved by the US FDA for the treatment of skin cancer, while several drug candidates for the WNT pathway are entering clinical trials. We have discovered that the stem cell signaling pathways respond to traditional Chinese medicines. Substances isolated from herbal medicine may act specifically on components of stem cell signaling pathways with high affinities. As many of these events can be explained through molecular interactions, these phenomena suggest that discovery of stem cell-targeting drugs from natural products may prove to be highly successful.
Adverse outcome pathways (AOPs) are conceptual frameworks that portray causal and predictive linkages between key events at multiple scales of biological organization that connect molecular initiating events and early cellular perturbations (e.g., initiation of toxicity pathways)...
Search Pathways: Modeling GeoData Search Behavior to Support Usable Application Development
NASA Astrophysics Data System (ADS)
Yarmey, L.; Rosati, A.; Tressel, S.
2014-12-01
Recent technical advances have enabled development of new scientific data discovery systems. Metadata brokering, linked data, and other mechanisms allow users to discover scientific data of interes across growing volumes of heterogeneous content. Matching this complex content with existing discovery technologies, people looking for scientific data are presented with an ever-growing array of features to sort, filter, subset, and scan through search returns to help them find what they are looking for. This paper examines the applicability of available technologies in connecting searchers with the data of interest. What metrics can be used to track success given shifting baselines of content and technology? How well do existing technologies map to steps in user search patterns? Taking a user-driven development approach, the team behind the Arctic Data Explorer interdisciplinary data discovery application invested heavily in usability testing and user search behavior analysis. Building on earlier library community search behavior work, models were developed to better define the diverse set of thought processes and steps users took to find data of interest, here called 'search pathways'. This research builds a deeper understanding of the user community that seeks to reuse scientific data. This approach ensures that development decisions are driven by clearly articulated user needs instead of ad hoc technology trends. Initial results from this research will be presented along with lessons learned for other discovery platform development and future directions for informatics research into search pathways.
Comment on "drug discovery: turning the titanic".
Lesterhuis, W Joost; Bosco, Anthony; Lake, Richard A
2014-03-26
The pathobiology-based approach to research and development has been the dominant paradigm for successful drug discovery over the last decades. We propose that the molecular and cellular events that govern a resolving, rather than an evolving, disease may reveal new druggable pathways.
2016-01-01
Covering: 2003 to 2016 The last decade has seen the first major discoveries regarding the genomic basis of plant natural product biosynthetic pathways. Four key computationally driven strategies have been developed to identify such pathways, which make use of physical clustering, co-expression, evolutionary co-occurrence and epigenomic co-regulation of the genes involved in producing a plant natural product. Here, we discuss how these approaches can be used for the discovery of plant biosynthetic pathways encoded by both chromosomally clustered and non-clustered genes. Additionally, we will discuss opportunities to prioritize plant gene clusters for experimental characterization, and end with a forward-looking perspective on how synthetic biology technologies will allow effective functional reconstitution of candidate pathways using a variety of genetic systems. PMID:27321668
Discovery and process development of a novel TACE inhibitor for the topical treatment of psoriasis.
Boiteau, Jean-Guy; Ouvry, Gilles; Arlabosse, Jean-Marie; Astri, Stéphanie; Beillard, Audrey; Bhurruth-Alcor, Yushma; Bonnary, Laetitia; Bouix-Peter, Claire; Bouquet, Karine; Bourotte, Marilyne; Cardinaud, Isabelle; Comino, Catherine; Deprez, Benoît; Duvert, Denis; Féret, Angélique; Hacini-Rachinel, Feriel; Harris, Craig S; Luzy, Anne-Pascale; Mathieu, Arnaud; Millois, Corinne; Orsini, Nicolas; Pascau, Jonathan; Pinto, Artur; Piwnica, David; Polge, Gaëlle; Reitz, Arnaud; Reversé, Kevin; Rodeville, Nicolas; Rossio, Patricia; Spiesse, Delphine; Tabet, Samuel; Taquet, Nathalie; Tomas, Loïc; Vial, Emmanuel; Hennequin, Laurent F
2018-02-15
Targeting the TNFα pathway is a validated approach to the treatment of psoriasis. In this pathway, TACE stands out as a druggable target and has been the focus of in-house research programs. In this article, we present the discovery of clinical candidate 26a. Starting from hits plagued with poor solubility or genotoxicity, 26a was identified through thorough multiparameter optimisation. Showing robust in vivo activity in an oxazolone-mediated inflammation model, the compound was selected for development. Following a polymorph screen, the hydrochloride salt was selected and the synthesis was efficiently developed to yield the API in 47% overall yield. Copyright © 2017. Published by Elsevier Ltd.
Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander
2016-01-01
Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894
Ethnobotany and Medicinal Plant Biotechnology: From Tradition to Modern Aspects of Drug Development.
Kayser, Oliver
2018-05-24
Secondary natural products from plants are important drug leads for the development of new drug candidates for rational clinical therapy and exhibit a variety of biological activities in experimental pharmacology and serve as structural template in medicinal chemistry. The exploration of plants and discovery of natural compounds based on ethnopharmacology in combination with high sophisticated analytics is still today an important drug discovery to characterize and validate potential leads. Due to structural complexity, low abundance in biological material, and high costs in chemical synthesis, alternative ways in production like plant cell cultures, heterologous biosynthesis, and synthetic biotechnology are applied. The basis for any biotechnological process is deep knowledge in genetic regulation of pathways and protein expression with regard to todays "omics" technologies. The high number genetic techniques allowed the implementation of combinatorial biosynthesis and wide genome sequencing. Consequently, genetics allowed functional expression of biosynthetic cascades from plants and to reconstitute low-performing pathways in more productive heterologous microorganisms. Thus, de novo biosynthesis in heterologous hosts requires fundamental understanding of pathway reconstruction and multitude of genes in a foreign organism. Here, actual concepts and strategies are discussed for pathway reconstruction and genome sequencing techniques cloning tools to bridge the gap between ethnopharmaceutical drug discovery to industrial biotechnology. Georg Thieme Verlag KG Stuttgart · New York.
Discovery of Host Factors and Pathways Utilized in Hantaviral Infection
2016-09-01
AWARD NUMBER: W81XWH-14-1-0204 TITLE: Discovery of Host Factors and Pathways Utilized in Hantaviral Infection PRINCIPAL INVESTIGATOR: Paul...Aug 2016 4. TITLE AND SUBTITLE Discovery of Host Factors and Pathways Utilized in Hantaviral Infection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...after significance values were calculated and corrected for false discovery rate. The top hit is ATP6V0A1, a gene encoding a subunit of a vacuolar
Proteomics for Adverse Outcome Pathway Discovery using Human Kidney Cells?
An Adverse Outcome Pathway (AOP) is a conceptual framework that applies molecular-based data for use in risk assessment and regulatory decision support. AOP development is based on effects data of chemicals on biological processes (i.e., molecular initiating events, key intermedi...
Trehalose pathway as an antifungal target.
Perfect, John R; Tenor, Jennifer L; Miao, Yi; Brennan, Richard G
2017-02-17
With an increasing immunocompromised population which is linked to invasive fungal infections, it is clear that our present 3 classes of antifungal agents may not be sufficient to provide optimal management to these fragile patients. Furthermore, with widespread use of antifungal agents, drug-resistant fungal infections are on the rise. Therefore, there is some urgency to develop the antifungal pipeline with the goal of new antifungal agent discovery. In this review, a simple metabolic pathway, which forms the disaccharide, trehalose, will be characterized and its potential as a focus for antifungal target(s) explained. It possesses several important features for development of antifungal agents. First, it appears to have fungicidal characteristics and second, it is broad spectrum with importance across both ascomycete and basidiomycete species. Finally, this pathway is not found in mammals so theoretically specific inhibitors of the trehalose pathway and its enzymes in fungi should be relatively non-toxic for mammals. The trehalose pathway and its critical enzymes are now in a position to have directed antifungal discovery initiated in order to find a new class of antifungal drugs.
Bering, Luis; Paulussen, Felix M; Antonchick, Andrey P
2018-04-06
The nitrosonium ion-catalyzed dehydrogenative coupling of heteroarenes under mild reaction conditions is reported. The developed method utilizes ambient molecular oxygen as a terminal oxidant, and only water is produced as byproduct. Dehydrogenative coupling of heteroarenes translated into the rapid discovery of novel hedgehog signaling pathway inhibitors, emphasizing the importance of the developed methodology.
Lung development: orchestrating the generation and regeneration of a complex organ
Herriges, Michael; Morrisey, Edward E.
2014-01-01
The respiratory system, which consists of the lungs, trachea and associated vasculature, is essential for terrestrial life. In recent years, extensive progress has been made in defining the temporal progression of lung development, and this has led to exciting discoveries, including the derivation of lung epithelium from pluripotent stem cells and the discovery of developmental pathways that are targets for new therapeutics. These discoveries have also provided new insights into the regenerative capacity of the respiratory system. This Review highlights recent advances in our understanding of lung development and regeneration, which will hopefully lead to better insights into both congenital and acquired lung diseases. PMID:24449833
Kieburtz, Karl; Olanow, C Warren
2007-04-01
In the past decade, there has been an increasing emphasis on laboratory-based translational research. This has led to significant scientific advances in our understanding of disease mechanisms and in the development of novel approaches to therapy such as gene therapy, RNA interference, and stem cells. However, the translation of these remarkable scientific achievements into new and effective disease-modifying therapies has lagged behind these scientific accomplishments. We use the term "translational experimental therapeutics" to describe the pathway between the discovery of a basic disease mechanism or novel therapeutic approach and its translation into an effective treatment for patients with a specific disease. In this article, we review the components of this pathway, and discuss issues that might impede this process. Only by optimizing this pathway can we realize the full therapeutic potential of current scientific discoveries and translate the astounding advances that have been accomplished in the laboratory into effective treatments for our patients. Copyright (c) 2007 Mount Sinai School of Medicine.
A Guided Discovery Approach for Learning Glycolysis.
ERIC Educational Resources Information Center
Schultz, Emeric
1997-01-01
Argues that more attention should be given to teaching students how to learn the rudiments of specific metabolic pathways. This approach describes a unique way of learning the glycolytic pathway in stepwise fashion. The pedagogy involves clear rote components that are connected to a set of generalizations that develop and enhance important…
Drawnel, Faye Marie; Zhang, Jitao David; Küng, Erich; Aoyama, Natsuyo; Benmansour, Fethallah; Araujo Del Rosario, Andrea; Jensen Zoffmann, Sannah; Delobel, Frédéric; Prummer, Michael; Weibel, Franziska; Carlson, Coby; Anson, Blake; Iacone, Roberto; Certa, Ulrich; Singer, Thomas; Ebeling, Martin; Prunotto, Marco
2017-05-18
Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discovery of new enzymes and metabolic pathways by using structure and genome context.
Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W; Wood, B McKay; Brown, Shoshana; Bonanno, Jeffery B; Hillerich, Brandan S; Seidel, Ronald D; Babbitt, Patricia C; Almo, Steven C; Sweedler, Jonathan V; Gerlt, John A; Cronan, John E; Jacobson, Matthew P
2013-10-31
Assigning valid functions to proteins identified in genome projects is challenging: overprediction and database annotation errors are the principal concerns. We and others are developing computation-guided strategies for functional discovery with 'metabolite docking' to experimentally derived or homology-based three-dimensional structures. Bacterial metabolic pathways often are encoded by 'genome neighbourhoods' (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by 'predicting' the intermediates in the glycolytic pathway in Escherichia coli. Metabolite docking to multiple binding proteins and enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. Here we report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and also the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt concentrations was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guided functional predictions to enable the discovery of new metabolic pathways.
Aging Biology and Novel Targets for Drug Discovery
McLachlan, Andrew J.; Quinn, Ronald J.; Simpson, Stephen J.; de Cabo, Rafael
2012-01-01
Despite remarkable technological advances in genetics and drug screening, the discovery of new pharmacotherapies has slowed and new approaches to drug development are needed. Research into the biology of aging is generating many novel targets for drug development that may delay all age-related diseases and be used long term by the entire population. Drugs that successfully delay the aging process will clearly become “blockbusters.” To date, the most promising leads have come from studies of the cellular pathways mediating the longevity effects of caloric restriction (CR), particularly target of rapamycin and the sirtuins. Similar research into pathways governing other hormetic responses that influence aging is likely to yield even more targets. As aging becomes a more attractive target for drug development, there will be increasing demand to develop biomarkers of aging as surrogate outcomes for the testing of the effects of new agents on the aging process. PMID:21693687
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano; Fontana, Paolo
2017-02-01
Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact:paolo.fontana@fmach.it
Causal discovery in the geosciences-Using synthetic data to learn how to interpret results
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, Imme; Deng, Yi
2017-02-01
Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. The lack of ground truth is a typical problem when using causal discovery in the geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we encountered one type of connection for which no explanation was found. To address both of these issues we developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the previously unexplained connections.
Adverse outcome pathways (AOP) research is a relatively new concept in human systems biology for assessing the molecular level linkage from an initiating (chemical) event that could lead to a disease state. Although most implementations of AOPs are based on liquids analyses, the...
Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...
Pleiotropic Functions of Glutathione S-Transferase P
Zhang, Jie; Grek, Christina; Ye, Zhi-Wei; Manevich, Yefim; Tew, Kenneth D.; Townsend, Danyelle M.
2016-01-01
Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform. PMID:24974181
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano
2017-01-01
Abstract Summary: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Availability and Implementation: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact: paolo.fontana@fmach.it PMID:28158604
The Hippo Pathway: Immunity and Cancer.
Taha, Zaid; J Janse van Rensburg, Helena; Yang, Xiaolong
2018-03-28
Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.
Comparative Aspects of BRAF Mutations in Canine Cancers
Mochizuki, Hiroyuki; Breen, Matthew
2015-01-01
Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. The characterization and discovery of BRAF mutations in a variety of human cancers has led to the development of specific inhibitors targeting the BRAF/MAPK pathway and dramatically changed clinical outcomes in BRAF-mutant melanoma patients. Recent discovery of BRAF mutation in canine cancers underscores the importance of MAPK pathway activation as an oncogenic molecular alteration evolutionarily conserved between species. A comparative approach using the domestic dog as a spontaneous cancer model will provide new insights into the dysregulation of BRAF/MAPK pathway in carcinogenesis and facilitate in vivo studies to evaluate therapeutic strategies targeting this pathway’s molecules for cancer therapy. The BRAF mutation in canine cancers may also represent a molecular marker and therapeutic target in veterinary oncology. This review article summarizes the current knowledge on BRAF mutations in human and canine cancers and discusses the potential applications of this abnormality in veterinary oncology. PMID:29061943
Recent trends in spin-resolved photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Okuda, Taichi
2017-12-01
Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.
Strategy of Daiichi Sankyo discovery research in oncology.
Akahane, Kouichi; Hirokawa, Kazunori
2014-02-01
We would like to introduce Daiichi Sankyo's approach to developing cancer targeted medicines with special reference to the drug discovery strategy, global discovery activities and external research collaboration leading to generation of innovative drugs for cancer patients. We are developing 14 clinical projects for cancer treatment and three of them have been previously approved. These are mostly targeted for growth and survival signals of cancer cells. To overcome the drug resistance mechanism derived from the heterogeneous nature of cancer, we are developing selective inhibitors in three major clusters of signal pathways which may allow future rational combinations of oncology products. In addition to the main research facility in Japan, research sites in the EU and the USA provide us with different technical expertise and diversified ideas of drug discovery. To access novel drug targets, we are facilitating research collaboration with leading academia and successful cancer research scientists. In conclusion, we intend to focus more on developing innovative personalized medicines for better treatment of cancer.
Leverson, Joel D; Sampath, Deepak; Souers, Andrew J; Rosenberg, Saul H; Fairbrother, Wayne J; Amiot, Martine; Konopleva, Marina; Letai, Anthony
2017-12-01
Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high-priority goal for cancer therapy. After decades of effort, drug-discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL2 biology, were essential to the development of BH3 mimetics such as the BCL2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL2 biology and facilitated the clinical development of venetoclax. Significance: Basic research into the pathways governing programmed cell death have paved the way for the discovery of apoptosis-inducing agents such as venetoclax, a BCL2-selective inhibitor that was recently approved by the FDA and the European Medicines Agency. Preclinical studies aimed at identifying BCL2-dependent tumor types have translated well into the clinic thus far and will likely continue to inform the clinical development of venetoclax and other BCL2 family inhibitors. Cancer Discov; 7(12); 1376-93. ©2017 AACR. ©2017 American Association for Cancer Research.
Mining disease fingerprints from within genetic pathways.
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.
Mining Disease Fingerprints From Within Genetic Pathways
Nabhan, Ahmed Ragab; Sarkar, Indra Neil
2012-01-01
Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411
Targeting the proteasome pathway.
Tsukamoto, Sachiko; Yokosawa, Hideyoshi
2009-05-01
The ubiquitin-proteasome pathway functions as a main pathway in intracellular protein degradation and plays a vital role in almost all cellular events. Various inhibitors of this pathway have been developed for research purposes. The recent approval of bortezomib (PS-341, Velcade, a proteasome inhibitor, for the treatment of multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and other components of the ubiquitin-proteasome pathway. We review the current understanding of the ubiquitin-proteasome pathway and inhibitors targeting this pathway, including proteasome inhibitors, as candidate drugs for chemical therapy. Preclinical and clinical data for inhibitors of the proteasome and the ubiquitin-proteasome pathway are discussed. The proteasome and other members in the ubiquitin-proteasome pathway have emerged as novel therapeutic targets.
Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle
Littlejohn, Mathew D.; Henty, Kristen M.; Tiplady, Kathryn; Johnson, Thomas; Harland, Chad; Lopdell, Thomas; Sherlock, Richard G.; Li, Wanbo; Lukefahr, Steven D.; Shanks, Bruce C.; Garrick, Dorian J.; Snell, Russell G.; Spelman, Richard J.; Davis, Stephen R.
2014-01-01
Lactation, hair development and homeothermy are characteristic evolutionary features that define mammals from other vertebrate species. Here we describe the discovery of two autosomal dominant mutations with antagonistic, pleiotropic effects on all three of these biological processes, mediated through the prolactin signalling pathway. Most conspicuously, mutations in prolactin (PRL) and its receptor (PRLR) have an impact on thermoregulation and hair morphology phenotypes, giving prominence to this pathway outside of its classical roles in lactation. PMID:25519203
Hippo Pathway: An Emerging Regulator of Craniofacial and Dental Development.
Wang, J; Martin, J F
2017-10-01
The evolutionarily conserved Hippo signaling pathway is a vital regulator of organ size that fine-tunes cell proliferation, apoptosis, and differentiation. A number of important studies have revealed critical roles of Hippo signaling and its effectors Yap (Yes-associated protein) and Taz (transcriptional coactivator with PDZ binding motif) in tissue development, homeostasis, and regeneration, as well as in tumorigenesis. In addition, recent studies have shown evidence of crosstalk between the Hippo pathway and other key signaling pathways, such as Wnt signaling, that not only regulates developmental processes but also contributes to disease pathogenesis. In this review, we summarize the major discoveries in the field of Hippo signaling and what has been learned about its regulation and crosstalk with other signaling pathways, with a particular focus on recent findings involving the Hippo-Yap pathway in craniofacial and tooth development. New and exciting studies of the Hippo pathway are anticipated that will significantly improve our understanding of the molecular mechanisms of human craniofacial and tooth development and disease and will ultimately lead to the development of new therapies.
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2013-02-01
based assays for lead inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of MEP pathway...inhibitors. • On-demand production and delivery of recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple
Asthma pharmacogenetics and the development of genetic profiles for personalized medicine
Ortega, Victor E; Meyers, Deborah A; Bleecker, Eugene R
2015-01-01
Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. PMID:25691813
Serendipity in Cancer Drug Discovery: Rational or Coincidence?
Prasad, Sahdeo; Gupta, Subash C; Aggarwal, Bharat B
2016-06-01
Novel drug development leading to final approval by the US FDA can cost as much as two billion dollars. Why the cost of novel drug discovery is so expensive is unclear, but high failure rates at the preclinical and clinical stages are major reasons. Although therapies targeting a given cell signaling pathway or a protein have become prominent in drug discovery, such treatments have done little in preventing or treating any disease alone because most chronic diseases have been found to be multigenic. A review of the discovery of numerous drugs currently being used for various diseases including cancer, diabetes, cardiovascular, pulmonary, and autoimmune diseases indicates that serendipity has played a major role in the discovery. In this review we provide evidence that rational drug discovery and targeted therapies have minimal roles in drug discovery, and that serendipity and coincidence have played and continue to play major roles. The primary focus in this review is on cancer-related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaiser, Rachel; Taylor, Kimberly E; Deng, Yun; Zhao, Jian; Li, Yonghong; Nititham, Joanne; Chang, Monica; Catanese, Joseph; Begovich, Ann B; Brown, Elizabeth E; Edberg, Jeffrey C; McGwin, Gerald; Alarcón, Graciela S; Ramsey-Goldman, Rosalind; Reveille, John D; Vila, Luis M; Petri, Michelle; Kimberly, Robert P; Feng, Xuebing; Sun, Lingyun; Shen, Nan; Li, Wei; Lu, Jian-Xin; Wakeland, Edward K; Li, Quan-Zhen; Yang, Wanling; Lau, Yu-Lung; Liu, Fei-Lan; Chang, Deh-Ming; Yu, Chack-Yung; Song, Yeong W; Tsao, Betty P; Criswell, Lindsey A
2013-01-01
The increased risk of thrombosis in systemic lupus erythematosus (SLE) may be partially explained by interrelated genetic pathways for thrombosis and SLE. The present study was undertaken to investigate whether 33 established and novel single-nucleotide polymorphisms (SNPs) in 20 genes involved in hemostasis pathways that have been associated with deep venous thrombosis (DVT) in the general population are risk factors for SLE among Asian subjects. Patients in the discovery cohort were enrolled in 1 of 2 North American SLE cohorts. Patients in the replication cohort were enrolled in 1 of 4 Asian or 2 North American cohorts. We first genotyped 263 Asian patients with SLE and 357 healthy Asian control subjects for 33 SNPs in the discovery phase, and then genotyped 5 SNPs in up to an additional 1,496 patients and 993 controls in the replication phase. Patients were compared to controls for bivariate association with minor alleles. Principal components analysis was used to control for intra-Asian ancestry in the replication cohort. Two genetic variants in the gene VKORC1 were highly significant in both the discovery and replication cohorts: rs9934438 (in the discovery cohort, odds ratio [OR] 2.45, P=2×10(-9); in the replication cohort, OR 1.54, P=4×10(-6)) and rs9923231 (in the discovery cohort, OR 2.40, P=6×10(-9); in the replication cohort, OR 1.53, P=5×10(-6)). These associations were significant in the replication cohort after adjustment for intra-Asian ancestry: for rs9934438, OR 1.34, P=0.0029; for rs9923231, OR 1.34, P=0.0032. Genetic variants in VKORC1, which are involved in vitamin K reduction and associated with DVT, correlate with SLE development in Asian subjects. These results suggest that there may be intersecting genetic pathways for the development of SLE and thrombosis. Copyright © 2013 by the American College of Rheumatology.
The β-cyanoalanine synthase pathway: beyond cyanide detoxification.
Machingura, Marylou; Salomon, Eitan; Jez, Joseph M; Ebbs, Stephen D
2016-10-01
Production of cyanide through biological and environmental processes requires the detoxification of this metabolic poison. In the 1960s, discovery of the β-cyanoalanine synthase (β-CAS) pathway in cyanogenic plants provided the first insight on cyanide detoxification in nature. Fifty years of investigations firmly established the protective role of the β-CAS pathway in cyanogenic plants and its role in the removal of cyanide produced from ethylene synthesis in plants, but also revealed the importance of this pathway for plant growth and development and the integration of nitrogen and sulfur metabolism. This review describes the β-CAS pathway, its distribution across and within higher plants, and the diverse biological functions of the pathway in cyanide assimilation, plant growth and development, stress tolerance, regulation of cyanide and sulfide signalling, and nitrogen and sulfur metabolism. The collective roles of the β-CAS pathway highlight its potential evolutionary and ecological importance in plants. © 2016 John Wiley & Sons Ltd.
The Hippo Pathway: Immunity and Cancer
J. Janse van Rensburg, Helena
2018-01-01
Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work. PMID:29597279
Alam, Fahmida; Islam, Md Asiful; Kamal, M A; Gan, Siew Hua
2016-08-13
Over the years, natural products have shown success as antidiabetics in vitro, in vivo and in clinical trials. Because natural product-derived drugs are more affordable and effective with fewer side-effects compared to conventional therapies, pharmaceutical research is increasingly leaning towards the discovery of new antidiabetic drugs from natural products targeting pathways or components associated with type 2 diabetes mellitus (T2DM) pathophysiology. However, the drug discovery process is very lengthy and costly with significant challenges. Therefore, various techniques are currently being developed for the preclinical research phase of drug discovery with the aim of drug development with less time and efforts from natural products. In this review, we have provided an update on natural products including fruits, vegetables, spices, nuts, beverages and mushrooms with potential antidiabetic activities from in vivo, in vitro and clinical studies. Synergistic interactions between natural products and antidiabetic drugs; and potential antidiabetic active compounds from natural products are also documented to pave the way for combination treatment and new drug discovery, respectively. Additionally, a brief idea of the drug discovery process along with the challenges that arise during drug development from natural products and the methods to conquer those challenges are discussed to create a more convenient future drug discovery process.
Strategies for bringing drug delivery tools into discovery.
Kwong, Elizabeth; Higgins, John; Templeton, Allen C
2011-06-30
The past decade has yielded a significant body of literature discussing approaches for development and discovery collaboration in the pharmaceutical industry. As a result, collaborations between discovery groups and development scientists have increased considerably. The productivity of pharma companies to deliver new drugs to the market, however, has not increased and development costs continue to rise. Inability to predict clinical and toxicological response underlies the high attrition rate of leads at every step of drug development. A partial solution to this high attrition rate could be provided by better preclinical pharmacokinetics measurements that inform PD response based on key pathways that drive disease progression and therapeutic response. A critical link between these key pharmacology, pharmacokinetics and toxicology studies is the formulation. The challenges in pre-clinical formulation development include limited availability of compounds, rapid turn-around requirements and the frequent un-optimized physical properties of the lead compounds. Despite these challenges, this paper illustrates some successes resulting from close collaboration between formulation scientists and discovery teams. This close collaboration has resulted in development of formulations that meet biopharmaceutical needs from early stage preclinical in vivo model development through toxicity testing and development risk assessment of pre-clinical drug candidates. Published by Elsevier B.V.
CNS Anticancer Drug Discovery and Development: 2016 conference insights
Levin, Victor A; Abrey, Lauren E; Heffron, Timothy P; Tonge, Peter J; Dar, Arvin C; Weiss, William A; Gallo, James M
2017-01-01
CNS Anticancer Drug Discovery and Development, 16-17 November 2016, Scottsdale, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669–286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points. PMID:28718326
Recent advances in cancer metabolism: a technological perspective.
Kang, Yun Pyo; Ward, Nathan P; DeNicola, Gina M
2018-04-16
Cancer cells are highly dependent on metabolic pathways to sustain both their proliferation and adaption to harsh microenvironments. Thus, understanding the metabolic reprogramming that occurs in tumors can provide critical insights for the development of therapies targeting metabolism. In this review, we will discuss recent advancements in metabolomics and other multidisciplinary techniques that have led to the discovery of novel metabolic pathways and mechanisms in diverse cancer types.
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2014-05-01
discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of the MEP pathway enzymes MEP synthase and...recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes • A manuscript detailing the characterization of the Y. pestis MEP...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang, Chung, Oldenburg (1999) A Simple Statistical
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2015-03-01
inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of the MEP pathway enzymes MEP...recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes Haymond A, Johny C, Dowdy T, Schweibenz B, Villarroel K, Young R, Mantooth...journal.pone.0020884. 9 3. Zhang, Chung, Oldenburg (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening
Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes.
Lee, Erinna F; Clarke, Oliver B; Evangelista, Marco; Feng, Zhiping; Speed, Terence P; Tchoubrieva, Elissaveta B; Strasser, Andreas; Kalinna, Bernd H; Colman, Peter M; Fairlie, W Douglas
2011-04-26
Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.
Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes
Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas
2011-01-01
Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with “BH3 mimetic” drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment. PMID:21444803
Modulation of the Kynurenine Pathway for the Potential Treatment of Neurodegenerative Diseases
NASA Astrophysics Data System (ADS)
Courtney, Stephen; Scheel, Andreas
Modulation of tryptophan metabolism and in particular the kynurenine pathway is of considerable interest in the discovery of potential new treatments for neurodegenerative diseases. A number of small molecule inhibitors of the kynurenine metabolic pathway enzymes have been identified over recent years; a summary of these and their utility has been reviewed in this chapter. In particular, inhibitors of kynurenine monooxygenase represent an opportunity to develop a therapy for Huntington's disease; progress in the optimization of small molecule inhibitors of this enzyme is also described.
Masini, Tiziana; Hirsch, Anna K H
2014-12-11
Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl diphosphate (2), the universal precursors of isoprenoids, while humans exclusively utilize the alternative mevalonate pathway for the synthesis of 1 and 2. This distinct distribution, together with the fact that the MEP pathway is essential in numerous organisms, makes the enzymes of the MEP pathway attractive drug targets for the development of anti-infective agents and herbicides. Herein, we review the inhibitors reported over the past 2 years, in the context of the most important older developments and with a particular focus on the results obtained against enzymes of pathogenic organisms. We will also discuss new discoveries in terms of structural and mechanistic features, which can help to guide a rational development of inhibitors.
O'Reilly, Linda P; Benson, Joshua A; Cummings, Erin E; Perlmutter, David H; Silverman, Gary A; Pak, Stephen C
2014-09-01
Many human diseases result from a failure of a single protein to achieve the correct folding and tertiary conformation. These so-called 'conformational diseases' involve diverse proteins and distinctive cellular pathologies. They all engage the proteostasis network (PN), to varying degrees in an attempt to mange cellular stress and restore protein homeostasis. The insulin/insulin-like growth factor signaling (IIS) pathway is a master regulator of cellular stress response, which is implicated in regulating components of the PN. This review focuses on novel approaches to target conformational diseases. The authors discuss the evidence supporting the involvement of the IIS pathway in modulating the PN and regulating proteostasis in Caenorhabditis elegans. Furthermore, they review previous PN and IIS drug screens and explore the possibility of using C. elegans for whole organism-based drug discovery for modulators of IIS-proteostasis pathways. An alternative approach to develop individualized therapy for each conformational disease is to modulate the global PN. The involvement of the IIS pathway in regulating longevity and response to a variety of stresses is well documented. Increasing data now provide evidence for the close association between the IIS and the PN pathways. The authors believe that high-throughput screening campaigns, which target the C. elegans IIS pathway, may identify drugs that are efficacious in treating numerous conformational diseases.
Genetically Encoded Biosensors in Plants: Pathways to Discovery.
Walia, Ankit; Waadt, Rainer; Jones, Alexander M
2018-04-29
Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.
Developing regulatory strategy for microbicides.
Nardi, Ronald; Arterburn, Linda; Carlton, Lisa
2014-01-01
Ever since the discovery that a virus was responsible for AIDS, prevention of HIV infection has been a drug/vaccine development target in therapeutic research. Microbicide products are a viable, globally applicable option; however, to date, no product has been approved anywhere in the world. Development of such a product will need to account for the changing disease landscape and will need to leverage available regulatory pathways to gain approvals in the developed world and emerging markets. In countries where the regulatory pathway is not clear which is the case in several emerging markets, sponsors will need to employ a flexible approach to gather and meet local regulatory requirements and ultimately gain product approvals.
Hippo signaling: growth control and beyond
Halder, Georg; Johnson, Randy L.
2011-01-01
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration. PMID:21138973
2015-08-01
AWARD NUMBER: W81XWH-13-1-0113 TITLE: Discovery of Novel Drugs To Improve Bone Health in Neurofibromatosis Type 1: The Wnt/Beta-Catenin...Discovery of Novel Drugs To Improve Bone Health in Neurofibromatosis Type 1: The Wnt/Beta-Catenin Pathway in Fracture Repair and Pseudarthrosis 5a...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Patients with Neurofibromatosis (NF1
2014-06-01
Bone Health in Neurofibromatosis Type 1: The Wnt/Beta-Catenin Pathway in Fracture Repair and Pseudarthrosis PRINCIPAL INVESTIGATOR...Award Number: W81XWH-13-1-0113 TITLE: Discovery of Novel Drugs To Improve Bone Health in Neurofibromatosis Type 1: The Wnt/Beta-Catenin...31 May 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Discovery of Novel Drugs To Improve Bone Health in Neurofibromatosis Type 1: The Wnt/Beta
[Synthetic biology toward microbial secondary metabolites and pharmaceuticals].
Wu, Lin-Zhuan; Hong, Bin
2013-02-01
Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.
Novel Directions for Diabetes Mellitus Drug Discovery
Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui
2012-01-01
Introduction Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. Areas Covered We examine novel directions for drug discovery that involve the β-nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide, the cytokine erythropoietin, the NAD+-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival are presented. Expert Opinion Nicotinamide, erythropoietin, and the downstram pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder. PMID:23092114
WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data
Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M
2006-01-01
Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281
Lötsch, Jörn; Lippmann, Catharina; Kringel, Dario; Ultsch, Alfred
2017-01-01
Genes causally involved in human insensitivity to pain provide a unique molecular source of studying the pathophysiology of pain and the development of novel analgesic drugs. The increasing availability of “big data” enables novel research approaches to chronic pain while also requiring novel techniques for data mining and knowledge discovery. We used machine learning to combine the knowledge about n = 20 genes causally involved in human hereditary insensitivity to pain with the knowledge about the functions of thousands of genes. An integrated computational analysis proposed that among the functions of this set of genes, the processes related to nervous system development and to ceramide and sphingosine signaling pathways are particularly important. This is in line with earlier suggestions to use these pathways as therapeutic target in pain. Following identification of the biological processes characterizing hereditary insensitivity to pain, the biological processes were used for a similarity analysis with the functions of n = 4,834 database-queried drugs. Using emergent self-organizing maps, a cluster of n = 22 drugs was identified sharing important functional features with hereditary insensitivity to pain. Several members of this cluster had been implicated in pain in preclinical experiments. Thus, the present concept of machine-learned knowledge discovery for pain research provides biologically plausible results and seems to be suitable for drug discovery by identifying a narrow choice of repurposing candidates, demonstrating that contemporary machine-learned methods offer innovative approaches to knowledge discovery from available evidence. PMID:28848388
Cell Survival Signaling in Neuroblastoma
Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.
2013-01-01
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706
Bioinformatics in protein kinases regulatory network and drug discovery.
Chen, Qingfeng; Luo, Haiqiong; Zhang, Chengqi; Chen, Yi-Ping Phoebe
2015-04-01
Protein kinases have been implicated in a number of diseases, where kinases participate many aspects that control cell growth, movement and death. The deregulated kinase activities and the knowledge of these disorders are of great clinical interest of drug discovery. The most critical issue is the development of safe and efficient disease diagnosis and treatment for less cost and in less time. It is critical to develop innovative approaches that aim at the root cause of a disease, not just its symptoms. Bioinformatics including genetic, genomic, mathematics and computational technologies, has become the most promising option for effective drug discovery, and has showed its potential in early stage of drug-target identification and target validation. It is essential that these aspects are understood and integrated into new methods used in drug discovery for diseases arisen from deregulated kinase activity. This article reviews bioinformatics techniques for protein kinase data management and analysis, kinase pathways and drug targets and describes their potential application in pharma ceutical industry. Copyright © 2015 Elsevier Inc. All rights reserved.
Zebrafish models in neuropsychopharmacology and CNS drug discovery.
Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J
2017-07-01
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.
Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts.
Ng; Wong
1999-01-01
We are entering a new era of research where the latest scientific discoveries are often first reported online and are readily accessible by scientists worldwide. This rapid electronic dissemination of research breakthroughs has greatly accelerated the current pace in genomics and proteomics research. The race to the discovery of a gene or a drug has now become increasingly dependent on how quickly a scientist can scan through voluminous amount of information available online to construct the relevant picture (such as protein-protein interaction pathways) as it takes shape amongst the rapidly expanding pool of globally accessible biological data (e.g. GENBANK) and scientific literature (e.g. MEDLINE). We describe a prototype system for automatic pathway discovery from on-line text abstracts, combining technologies that (1) retrieve research abstracts from online sources, (2) extract relevant information from the free texts, and (3) present the extracted information graphically and intuitively. Our work demonstrates that this framework allows us to routinely scan online scientific literature for automatic discovery of knowledge, giving modern scientists the necessary competitive edge in managing the information explosion in this electronic age.
Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases.
Bertacine Dias, Marcio V; Santos, Jademilson C; Libreros-Zúñiga, Gerardo A; Ribeiro, João A; Chavez-Pacheco, Sair M
2018-04-01
Folate pathway is a key target for the development of new drugs against infectious diseases since the discovery of sulfa drugs and trimethoprim. The knowledge about this pathway has increased in the last years and the catalytic mechanism and structures of all enzymes of the pathway are fairly understood. In addition, differences among enzymes from prokaryotes and eukaryotes could be used for the design of specific inhibitors. In this review, we show a panorama of progress that has been achieved within the folate pathway obtained in the last years. We explored the structure and mechanism of enzymes, several genetic features, strategies, and approaches used in the design of new inhibitors that have been used as targets in pathogen chemotherapy.
Lessons from Toxicology: Developing a 21st-Century Paradigm for Medical Research
Austin, Christopher P.; Balapure, Anil K.; Birnbaum, Linda S.; Bucher, John R.; Fentem, Julia; Fitzpatrick, Suzanne C.; Fowle, John R.; Kavlock, Robert J.; Kitano, Hiroaki; Lidbury, Brett A.; Muotri, Alysson R.; Peng, Shuang-Qing; Sakharov, Dmitry; Seidle, Troy; Trez, Thales; Tonevitsky, Alexander; van de Stolpe, Anja; Whelan, Maurice; Willett, Catherine
2015-01-01
Summary Biomedical developments in the 21st century provide an unprecedented opportunity to gain a dynamic systems-level and human-specific understanding of the causes and pathophysiologies of disease. This understanding is a vital need, in view of continuing failures in health research, drug discovery, and clinical translation. The full potential of advanced approaches may not be achieved within a 20th-century conceptual framework dominated by animal models. Novel technologies are being integrated into environmental health research and are also applicable to disease research, but these advances need a new medical research and drug discovery paradigm to gain maximal benefits. We suggest a new conceptual framework that repurposes the 21st-century transition underway in toxicology. Human disease should be conceived as resulting from integrated extrinsic and intrinsic causes, with research focused on modern human-specific models to understand disease pathways at multiple biological levels that are analogous to adverse outcome pathways in toxicology. Systems biology tools should be used to integrate and interpret data about disease causation and pathophysiology. Such an approach promises progress in overcoming the current roadblocks to understanding human disease and successful drug discovery and translation. A discourse should begin now to identify and consider the many challenges and questions that need to be solved. PMID:26523530
Secretion and extracellular space travel of Wnt proteins.
Gross, Julia Christina; Boutros, Michael
2013-08-01
Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel opportunities for computational biology and sociology in drug discovery
Yao, Lixia
2009-01-01
Drug discovery today is impossible without sophisticated modeling and computation. In this review we touch on previous advances in computational biology and by tracing the steps involved in pharmaceutical development, we explore a range of novel, high value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy-industry ties for scientific and human benefit. Attention to these opportunities could promise punctuated advance, and will complement the well-established computational work on which drug discovery currently relies. PMID:19674801
Genetics of pheochromocytoma and paraganglioma: new developments.
Pigny, P; Cardot-Bauters, C
2010-03-01
Since 2000, several new susceptibility genes for hereditary pheochromocytoma or paraganglioma have been discovered. The aim of this review is to highlight how these discoveries have improved our knowledge on the mode of inheritance of these tumors and also on their molecular pathogenesis. Concerning this specific point, we will show that the different key players of tumorigenesis can converge on two pathways, the first being the hypoxia/angiogenesis pathway and the second being the control of neural crest cell development pathway. Finally, practical issues are considered; for us, it would be preferable to apply easy-to-identify clinical predictors to preselect patients eligible for molecular testing in order to improve the efficiency of these high-cost tests. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
Role of growth differentiation factor 11 in development, physiology and disease
Zhang, Yonghui; Wei, Yong; Liu, Dan; Liu, Feng; Li, Xiaoshan; Pan, Lianhong; Pang, Yi; Chen, Dilong
2017-01-01
Growth differentiation factor (GDF11) is a member of TGF-β/BMP superfamily that activates Smad and non-Smad signaling pathways and regulates expression of its target nuclear genes. Since its discovery in 1999, studies have shown the involvement of GDF11 in normal physiological processes, such as embryonic development and erythropoiesis, as well as in the pathophysiology of aging, cardiovascular disease, diabetes mellitus, and cancer. In addition, there are contradictory reports regarding the role of GDF11 in aging, cardiovascular disease, diabetes mellitus, osteogenesis, skeletal muscle development, and neurogenesis. In this review, we describe the GDF11 signaling pathway and its potential role in development, physiology and disease. PMID:29113418
Drug target inference through pathway analysis of genomics data
Ma, Haisu; Zhao, Hongyu
2013-01-01
Statistical modeling coupled with bioinformatics is commonly used for drug discovery. Although there exist many approaches for single target based drug design and target inference, recent years have seen a paradigm shift to system-level pharmacological research. Pathway analysis of genomics data represents one promising direction for computational inference of drug targets. This article aims at providing a comprehensive review on the evolving issues is this field, covering methodological developments, their pros and cons, as well as future research directions. PMID:23369829
Leverson, Joel D.; Sampath, Deepak; Souers, Andrew J.; Rosenberg, Saul H.; Fairbrother, Wayne J.; Amiot, Martine; Konopleva, Marina; Letai, Anthony
2017-01-01
Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high priority goal for cancer therapy. After decades of effort, drug discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL-2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL-2 biology, were essential to the development of BH3 mimetics such as the BCL-2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL-2 biology and facilitated the clinical development of venetoclax. PMID:29146569
VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera)
Naithani, Sushma; Raja, Rajani; Waddell, Elijah N.; Elser, Justin; Gouthu, Satyanarayana; Deluc, Laurent G.; Jaiswal, Pankaj
2014-01-01
We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to (i) search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, (ii) compare grapevine metabolic networks with other publicly available plant metabolic networks, and (iii) upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera “Pinot Noir” cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related pathways and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant's immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu. PMID:25538713
Recent advances in analytical methods, biomarker discovery, cell-based assay development, computational tools, sensor/monitor, and omics technology have enabled new streams of exposure and toxicity data to be generated at higher volumes and speed. These new data offer the opport...
2016-01-01
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography. PMID:28004573
Kourtesi, Christina; Ball, Anthony R; Huang, Ying-Ying; Jachak, Sanjay M; Vera, D Mariano A; Khondkar, Proma; Gibbons, Simon; Hamblin, Michael R; Tegos, George P
2013-01-01
Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches. PMID:23569468
Challenges of the information age: the impact of false discovery on pathway identification.
Rog, Colin J; Chekuri, Srinivasa C; Edgerton, Mary E
2012-11-21
Pathways with members that have known relevance to a disease are used to support hypotheses generated from analyses of gene expression and proteomic studies. Using cancer as an example, the pitfalls of searching pathways databases as support for genes and proteins that could represent false discoveries are explored. The frequency with which networks could be generated from 100 instances each of randomly selected five and ten genes sets as input to MetaCore, a commercial pathways database, was measured. A PubMed search enumerated cancer-related literature published for any gene in the networks. Using three, two, and one maximum intervening step between input genes to populate the network, networks were generated with frequencies of 97%, 77%, and 7% using ten gene sets and 73%, 27%, and 1% using five gene sets. PubMed reported an average of 4225 cancer-related articles per network gene. This can be attributed to the richly populated pathways databases and the interest in the molecular basis of cancer. As information sources become enriched, they are more likely to generate plausible mechanisms for false discoveries.
Llorach-Pares, Laura; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Avila, Conxita
2017-11-27
Computer-aided drug discovery/design (CADD) techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A-G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium , against various protein kinases involved in Alzheimer's disease (AD), a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT). Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP) binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β) and Casein kinase 1 delta (CK1δ, CK1D or KC1D), and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A) and cdc2-like kinases (CLK1). This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.
BioPAX – A community standard for pathway data sharing
Demir, Emek; Cary, Michael P.; Paley, Suzanne; Fukuda, Ken; Lemer, Christian; Vastrik, Imre; Wu, Guanming; D’Eustachio, Peter; Schaefer, Carl; Luciano, Joanne; Schacherer, Frank; Martinez-Flores, Irma; Hu, Zhenjun; Jimenez-Jacinto, Veronica; Joshi-Tope, Geeta; Kandasamy, Kumaran; Lopez-Fuentes, Alejandra C.; Mi, Huaiyu; Pichler, Elgar; Rodchenkov, Igor; Splendiani, Andrea; Tkachev, Sasha; Zucker, Jeremy; Gopinath, Gopal; Rajasimha, Harsha; Ramakrishnan, Ranjani; Shah, Imran; Syed, Mustafa; Anwar, Nadia; Babur, Ozgun; Blinov, Michael; Brauner, Erik; Corwin, Dan; Donaldson, Sylva; Gibbons, Frank; Goldberg, Robert; Hornbeck, Peter; Luna, Augustin; Murray-Rust, Peter; Neumann, Eric; Reubenacker, Oliver; Samwald, Matthias; van Iersel, Martijn; Wimalaratne, Sarala; Allen, Keith; Braun, Burk; Whirl-Carrillo, Michelle; Dahlquist, Kam; Finney, Andrew; Gillespie, Marc; Glass, Elizabeth; Gong, Li; Haw, Robin; Honig, Michael; Hubaut, Olivier; Kane, David; Krupa, Shiva; Kutmon, Martina; Leonard, Julie; Marks, Debbie; Merberg, David; Petri, Victoria; Pico, Alex; Ravenscroft, Dean; Ren, Liya; Shah, Nigam; Sunshine, Margot; Tang, Rebecca; Whaley, Ryan; Letovksy, Stan; Buetow, Kenneth H.; Rzhetsky, Andrey; Schachter, Vincent; Sobral, Bruno S.; Dogrusoz, Ugur; McWeeney, Shannon; Aladjem, Mirit; Birney, Ewan; Collado-Vides, Julio; Goto, Susumu; Hucka, Michael; Le Novère, Nicolas; Maltsev, Natalia; Pandey, Akhilesh; Thomas, Paul; Wingender, Edgar; Karp, Peter D.; Sander, Chris; Bader, Gary D.
2010-01-01
BioPAX (Biological Pathway Exchange) is a standard language to represent biological pathways at the molecular and cellular level. Its major use is to facilitate the exchange of pathway data (http://www.biopax.org). Pathway data captures our understanding of biological processes, but its rapid growth necessitates development of databases and computational tools to aid interpretation. However, the current fragmentation of pathway information across many databases with incompatible formats presents barriers to its effective use. BioPAX solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. BioPAX was created through a community process. Through BioPAX, millions of interactions organized into thousands of pathways across many organisms, from a growing number of sources, are available. Thus, large amounts of pathway data are available in a computable form to support visualization, analysis and biological discovery. PMID:20829833
Early Probe and Drug Discovery in Academia: A Minireview.
Roy, Anuradha
2018-02-09
Drug discovery encompasses processes ranging from target selection and validation to the selection of a development candidate. While comprehensive drug discovery work flows are implemented predominantly in the big pharma domain, early discovery focus in academia serves to identify probe molecules that can serve as tools to study targets or pathways. Despite differences in the ultimate goals of the private and academic sectors, the same basic principles define the best practices in early discovery research. A successful early discovery program is built on strong target definition and validation using a diverse set of biochemical and cell-based assays with functional relevance to the biological system being studied. The chemicals identified as hits undergo extensive scaffold optimization and are characterized for their target specificity and off-target effects in in vitro and in animal models. While the active compounds from screening campaigns pass through highly stringent chemical and Absorption, Distribution, Metabolism, and Excretion (ADME) filters for lead identification, the probe discovery involves limited medicinal chemistry optimization. The goal of probe discovery is identification of a compound with sub-µM activity and reasonable selectivity in the context of the target being studied. The compounds identified from probe discovery can also serve as starting scaffolds for lead optimization studies.
Advancing Biological Understanding and Therapeutics Discovery with Small Molecule Probes
Schreiber, Stuart L.; Kotz, Joanne D.; Li, Min; Aubé, Jeffrey; Austin, Christopher P.; Reed, John C.; Rosen, Hugh; White, E. Lucile; Sklar, Larry A.; Lindsley, Craig W.; Alexander, Benjamin R.; Bittker, Joshua A.; Clemons, Paul A.; de Souza, Andrea; Foley, Michael A.; Palmer, Michelle; Shamji, Alykhan F.; Wawer, Mathias J.; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E.; Schoenen, Frank J.; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R.; Pinkerton, Anthony B.; Chung, Thomas D.Y.; Griffin, Patrick R.; Cravatt, Benjamin F.; Hodder, Peter S.; Roush, William R.; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B.; Noah, James W.; Severson, William E.; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I.; Conn, P. Jeffrey; Hopkins, Corey R.; Wood, Michael R.; Stauffer, Shaun R.; Emmitte, Kyle A.
2015-01-01
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436
2015-01-01
Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora’s promising secondary metabolome. PMID:25382643
Bonet, Bailey; Teufel, Robin; Crüsemann, Max; Ziemert, Nadine; Moore, Bradley S
2015-03-27
Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora's promising secondary metabolome.
Current progress in orchid flowering/flower development research
Wang, Hsin-Mei; Tong, Chii-Gong
2017-01-01
ABSTRACT Genetic pathways relevant to flowering of Arabidopsis are under the control of environmental cues such as day length and temperatures, and endogenous signals including phytohormones and developmental aging. However, genes and even regulatory pathways for flowering identified in crops show divergence from those of Arabidopsis and often do not have functional equivalents to Arabidopsis and/or existing species- or genus-specific regulators and show modified or novel pathways. Orchids are the largest, most highly evolved flowering plants, and form an extremely peculiar group of plants. Here, we briefly summarize the flowering pathways of Arabidopsis, rice and wheat and present them alongside recent discoveries/progress in orchid flowering and flower developmental processes including our transgenic Phalaenopsis orchids for LEAFY overexpression. Potential biotechnological applications in flowering/flower development of orchids with potential target genes are also discussed from an interactional and/or comparative viewpoint. PMID:28448202
Inhibitors targeting on cell wall biosynthesis pathway of MRSA.
Hao, Haihong; Cheng, Guyue; Dai, Menghong; Wu, Qinghua; Yuan, Zonghui
2012-11-01
Methicillin resistant Staphylococcus aureus (MRSA), widely known as a type of new superbug, has aroused world-wide concern. Cell wall biosynthesis pathway is an old but good target for the development of antibacterial agents. Peptidoglycan and wall teichoic acids (WTAs) biosynthesis are two main processes of the cell wall biosynthesis pathway (CWBP). Other than penicillin-binding proteins (PBPs), some key factors (Mur enzymes, lipid I or II precursor, etc.) in CWBP are becoming attractive molecule targets for the discovery of anti-MRSA compounds. A number of new compounds, with higher affinity for PBPs or with inhibitory activity on such molecule targets in CWBP of MRSA, have been in the pipeline recently. This review concludes recent research achievements and provides a complete picture of CWBP of MRSA, including the peptidoglycan and wall teichoic acids synthesis pathway. The potential inhibitors targeting on CWBP are subsequently presented to improve development of novel therapeutic strategies for MRSA.
Celedon, J M; Bohlmann, J
2016-01-01
Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Long, Wen; Xu, Wenwei
The Salish Sea consisting of Puget Sound and Georgia Basin in U.S and Canadian waters has been the subject of several independent data collection and modeling studies. However, these interconnected basins and their hydrodynamic interactions have not received attention as a contiguous unit. The Strait of Juan de Fuca is the primary pathway through which Pacific Ocean water enters the Salish Sea but the role played by Johnstone Strait and the complex channels northeast of Vancouver Island, connecting the Salish Sea and the Pacific Ocean, on overall Salish Sea circulation has not been characterized. In this paper we present amore » modeling-based assessment of the two-layer circulation and transport through the multiple interconnected sub-basins within the Salish Sea including the effect of exchange via Johnstone Strait and Discovery Islands. The Salish Sea Model previously developed using the finite volume community ocean model (FVCOM) was expanded over the continental shelf for this assessment encircling Vancouver Island, including Discovery Islands, Johnstone Strait, Broughton Archipelago and the associated waterways. A computational technique was developed to allow summation of volume fluxes across arbitrary transects through unstructured finite volume cells. Tidally averaged volume fluxes were computed at multiple transects. The results were used to validate the classic model of Circulation in Embracing Sills for Puget Sound and to provide quantitative estimates of the lateral distribution of tidally averaged transport through the system. Sensitivity tests with and without exchanges through Johnstone Strait demonstrate that it is a pathway for Georgia Basin runoff and Fraser River water to exit the Salish Sea and for Pacific Ocean inflow. However the relative impact of this exchange on circulation and flushing in Puget Sound Basin is small.« less
Genome-Wide Methylation Analyses in Glioblastoma Multiforme
Lai, Rose K.; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E.; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M.; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill
2014-01-01
Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal. PMID:24586730
ERIC Educational Resources Information Center
Glade, Matthias; Prediger, Susanne
2017-01-01
According to the design principle of progressive schematization, learning trajectories towards procedural rules can be organized as independent discoveries when the learning arrangement invites the students first to develop models for mathematical concepts and model-based informal strategies; then to explore the strategies and to discover pattern…
Xiao, Kunhong; Sun, Jinpeng
2018-01-01
The discovery of β-arrestin-dependent GPCR signaling has led to an exciting new field in GPCR pharmacology: to develop "biased agonists" that can selectively target a specific downstream signaling pathway that elicits beneficial therapeutic effects without activating other pathways that elicit negative side effects. This new trend in GPCR drug discovery requires us to understand the structural and molecular mechanisms of β-arrestin-biased agonism, which largely remain unclear. We have used cutting-edge mass spectrometry (MS)-based proteomics, combined with systems, chemical and structural biology to study protein function, macromolecular interaction, protein expression and posttranslational modifications in the β-arrestin-dependent GPCR signaling. These high-throughput proteomic studies have provided a systems view of β-arrestin-biased agonism from several perspectives: distinct receptor phosphorylation barcode, multiple receptor conformations, distinct β-arrestin conformations, and ligand-specific signaling. The information obtained from these studies offers new insights into the molecular basis of GPCR regulation by β-arrestin and provides a potential platform for developing novel therapeutic interventions through GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.
Kazi, Abid A.; Yee, Rosemary K.
2013-01-01
Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805
Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K
2013-06-01
Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.
Nam, Seungyoon
2017-04-01
Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.
Hellerstein, Marc K
2008-01-01
Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.
An overview of bioinformatics methods for modeling biological pathways in yeast
Hou, Jie; Acharya, Lipi; Zhu, Dongxiao
2016-01-01
The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein–protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae. In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways in S. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. PMID:26476430
Novel opportunities for computational biology and sociology in drug discovery☆
Yao, Lixia; Evans, James A.; Rzhetsky, Andrey
2013-01-01
Current drug discovery is impossible without sophisticated modeling and computation. In this review we outline previous advances in computational biology and, by tracing the steps involved in pharmaceutical development, explore a range of novel, high-value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy–industry links for scientific and human benefit. Attention to these opportunities could promise punctuated advance and will complement the well-established computational work on which drug discovery currently relies. PMID:20349528
Synthetic biology strategies toward heterologous phytochemical production.
Kotopka, Benjamin J; Li, Yanran; Smolke, Christina D
2018-06-13
Covering: 2006 to 2018Phytochemicals are important sources for the discovery and development of agricultural and pharmaceutical compounds, such as pesticides and medicines. However, these compounds are typically present in low abundance in nature, and the biosynthetic pathways for most phytochemicals are not fully elucidated. Heterologous production of phytochemicals in plant, bacterial, and yeast hosts has been pursued as a potential approach to address sourcing issues associated with many valuable phytochemicals, and more recently has been utilized as a tool to aid in the elucidation of plant biosynthetic pathways. Due to the structural complexity of certain phytochemicals and the associated biosynthetic pathways, reconstitution of plant pathways in heterologous hosts can encounter numerous challenges. Synthetic biology approaches have been developed to address these challenges in areas such as precise control over heterologous gene expression, improving functional expression of heterologous enzymes, and modifying central metabolism to increase the supply of precursor compounds into the pathway. These strategies have been applied to advance plant pathway reconstitution and phytochemical production in a wide variety of heterologous hosts. Here, we review synthetic biology strategies that have been recently applied to advance complex phytochemical production in heterologous hosts.
Liseron-Monfils, Christophe; Lewis, Tim; Ashlock, Daniel; McNicholas, Paul D; Fauteux, François; Strömvik, Martina; Raizada, Manish N
2013-03-15
The discovery of genetic networks and cis-acting DNA motifs underlying their regulation is a major objective of transcriptome studies. The recent release of the maize genome (Zea mays L.) has facilitated in silico searches for regulatory motifs. Several algorithms exist to predict cis-acting elements, but none have been adapted for maize. A benchmark data set was used to evaluate the accuracy of three motif discovery programs: BioProspector, Weeder and MEME. Analysis showed that each motif discovery tool had limited accuracy and appeared to retrieve a distinct set of motifs. Therefore, using the benchmark, statistical filters were optimized to reduce the false discovery ratio, and then remaining motifs from all programs were combined to improve motif prediction. These principles were integrated into a user-friendly pipeline for motif discovery in maize called Promzea, available at http://www.promzea.org and on the Discovery Environment of the iPlant Collaborative website. Promzea was subsequently expanded to include rice and Arabidopsis. Within Promzea, a user enters cDNA sequences or gene IDs; corresponding upstream sequences are retrieved from the maize genome. Predicted motifs are filtered, combined and ranked. Promzea searches the chosen plant genome for genes containing each candidate motif, providing the user with the gene list and corresponding gene annotations. Promzea was validated in silico using a benchmark data set: the Promzea pipeline showed a 22% increase in nucleotide sensitivity compared to the best standalone program tool, Weeder, with equivalent nucleotide specificity. Promzea was also validated by its ability to retrieve the experimentally defined binding sites of transcription factors that regulate the maize anthocyanin and phlobaphene biosynthetic pathways. Promzea predicted additional promoter motifs, and genome-wide motif searches by Promzea identified 127 non-anthocyanin/phlobaphene genes that each contained all five predicted promoter motifs in their promoters, perhaps uncovering a broader co-regulated gene network. Promzea was also tested against tissue-specific microarray data from maize. An online tool customized for promoter motif discovery in plants has been generated called Promzea. Promzea was validated in silico by its ability to retrieve benchmark motifs and experimentally defined motifs and was tested using tissue-specific microarray data. Promzea predicted broader networks of gene regulation associated with the historic anthocyanin and phlobaphene biosynthetic pathways. Promzea is a new bioinformatics tool for understanding transcriptional gene regulation in maize and has been expanded to include rice and Arabidopsis.
Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael
2016-07-01
Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
Formation of crystal-like structures and branched networks from nonionic spherical micelles
NASA Astrophysics Data System (ADS)
Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.
2015-12-01
Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.
2014-10-20
three possiblities: AKR , B6, and BALB_B) and MUP Protein (containing two possibilities: Intact and Denatured), then you can view a plot of the Strain...the tags for the last two labels. Again, if the attribute Strain has three tags: AKR , B6, 74 Distribution A . Approved for public release...AFRL-RH-WP-TR-2014-0131 A COMPREHENSIVE TOOL AND ANALYTICAL PATHWAY FOR DIFFERENTIAL MOLECULAR PROFILING AND BIOMARKER DISCOVERY
Signal transduction networks in rheumatoid arthritis
Hammaker, D; Sweeney, S; Firestein, G
2003-01-01
Signal transduction pathways regulate cellular responses to stress and play a critical role in inflammation. The complexity and specificity of signalling mechanisms represent major hurdles for developing effective, safe therapeutic interventions that target specific molecules. One approach is to dissect the pathways methodically to determine their hierarchy in various cell types and diseases. This approach contributed to the identification and prioritisation of specific kinases that regulate NF-κB and the mitogen activated protein (MAP) kinase cascade as especially attractive targets. Although significant issues remain with regard to the discovery of truly selective kinase inhibitors, the risks that accompany inhibition of fundamental signal transduction mechanisms can potentially be decreased by careful dissection of the pathways and rational target selection. PMID:14532158
Recent Progress of Marine Polypeptides as Anticancer Agents
Zheng, Lanhong; Xua, Yixin; Lin, Xiukun; Yuan, Zhixin; Liu, Minghua; Cao, Shousong; Zhang, Fuming; Linhardt, Robert J
2018-04-29
Marine environment constitutes an almost infinite resource for novel anticancer drugs discovery. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer peptides in the treatment of human cancer. Marine peptides represent a new opportunity to obtain lead compounds in biomedical field, particularly for cancer therapy. Providing an insight of the recent progress of patented marine peptides and presenting information about the structures and mechanistic mode of anticancer activities of these marine peptides. We reviewed recent progress on the patented anticancer peptides from marine organisms according to their targets on different signal pathways. This work focuses on relevant recent patents (2010-2018) that entail the anticancer activity with associated mechanism and related molecular diversity of marine peptides. The related cellular signaling pathways for novel peptides that induce apoptosis and affect tubulin-microtubule equilibrium, angiogenesis and kinase activity that are related to the anticancer and related pharmacological properties are also discussed. The recent patents (2010-2018) of marine peptides with anticancer activity were reviewed, and the anticancer activity of marine peptides with associated mechanism and related molecular diversity of marine peptides were also discussed. Marine peptides possess chemical diversity and displays potent anticancer activity via targeting different signal pathways. Some of the marine peptides are promising to be developed as novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Inhibition of Retinoblastoma Protein Inactivation
2016-09-01
Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY CLASSIFICATION OF: 17...developed a method to perform fragment based screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor...cancer, cell-cycle inhibition, activation, modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography
ERIC Educational Resources Information Center
Feiring, Candice; Simon, Valerie A.; Cleland, Charles M.
2009-01-01
Potential pathways from childhood sexual abuse (CSA) to subsequent romantic intimacy problems were examined in a prospective longitudinal study of 160 ethnically diverse youth with confirmed CSA histories. Participants were interviewed at the time of abuse discovery, when they were 8-15 years of age, and again 1-6 years later. Stigmatization…
Soleilhac, Emmanuelle; Nadon, Robert; Lafanechere, Laurence
2010-02-01
Screening compounds with cell-based assays and microscopy image-based analysis is an approach currently favored for drug discovery. Because of its high information yield, the strategy is called high-content screening (HCS). This review covers the application of HCS in drug discovery and also in basic research of potential new pathways that can be targeted for treatment of pathophysiological diseases. HCS faces several challenges, however, including the extraction of pertinent information from the massive amount of data generated from images. Several proposed approaches to HCS data acquisition and analysis are reviewed. Different solutions from the fields of mathematics, bioinformatics and biotechnology are presented. Potential applications and limits of these recent technical developments are also discussed. HCS is a multidisciplinary and multistep approach for understanding the effects of compounds on biological processes at the cellular level. Reliable results depend on the quality of the overall process and require strong interdisciplinary collaborations.
Thorne, Natasha; Malik, Nasir; Shah, Sonia; Zhao, Jean; Class, Bradley; Aguisanda, Francis; Southall, Noel; Xia, Menghang; McKew, John C; Rao, Mahendra; Zheng, Wei
2016-05-01
Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell-derived astrocytes and an optimized astrocyte differentiation protocol, it was possible to screen approximately 4,100 compounds in titration to identify 22 that are cytoprotective of astrocytes. This study is the largest-scale high-throughput screen conducted using human astrocytes, with a total of 17,536 data points collected in the primary screen. The results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. ©AlphaMed Press.
Activity-based protein profiling for biochemical pathway discovery in cancer
Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.
2011-01-01
Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252
Small-molecule pheromones and hormones controlling nematode development.
Butcher, Rebecca A
2017-05-17
The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.
Antituberculosis activity of the molecular libraries screening center network library.
Maddry, Joseph A; Ananthan, Subramaniam; Goldman, Robert C; Hobrath, Judith V; Kwong, Cecil D; Maddox, Clinton; Rasmussen, Lynn; Reynolds, Robert C; Secrist, John A; Sosa, Melinda I; White, E Lucile; Zhang, Wei
2009-09-01
There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.
High Throughput Screening for Inhibitors of Mycobacterium tuberculosis H37Rv
ANANTHAN, SUBRAMANIAM; FAALEOLEA, ELLEN R.; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; LAUGHON, BARBARA E.; MADDRY, JOSEPH A.; MEHTA, ALKA; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SHINDO, NICE; SHOWE, DUSTIN N.; SOSA, MELINDA I.; SULING, WILLIAM J.; WHITE, E. LUCILE
2009-01-01
SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target new biochemical pathways and treat drug resistant forms of the disease. One approach to addressing this need is through high throughput screening of medicinally relevant libraries against the whole bacterium in order to discover a variety of new, active scaffolds that will stimulate new biological research and drug discovery. Through the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (www.taacf.org), a large, medicinally relevant chemical library was screened against M. tuberculosis strain H37Rv. The screening methods and a medicinal chemistry analysis of the results are reported herein. PMID:19758845
Genetic screening and diagnosis in epilepsy?
Sisodiya, Sanjay M
2015-04-01
Genetic discovery has been extremely rapid over the last year, with many new discoveries illuminating novel mechanisms and pathways. In particular, the application of whole exome and whole genome sequencing has identified many new genetic causes of the epilepsies. As such methods become increasingly available, it will be critical for practicing neurologists to be acquainted with them. This review surveys some important developments over the last year. The range of tests available to the clinician is wide, and likely soon to be dominated by whole exome and whole genome sequencing. Both whole exome and whole genome sequencing have usually proven to be more powerful than most existing tests. Many new genes have been implicated in the epilepsies, with emerging evidence of the involvement of particular multigene pathways. For the practicing clinician, it will be important to appreciate progress in the field, and to prepare for the application of novel genetic testing in clinical practice, as genetic data are likely to contribute importantly for many people with epilepsy.
A review of multi-threat medical countermeasures against chemical warfare and terrorism.
Cowan, Fred M; Broomfield, Clarence A; Stojiljkovic, Milos P; Smith, William J
2004-11-01
The Multi-Threat Medical Countermeasure (MTMC) hypothesis has been proposed with the aim of developing a single countermeasure drug with efficacy against different pathologies caused by multiple classes of chemical warfare agents. Although sites and mechanisms of action and the pathologies caused by different chemical insults vary, common biochemical signaling pathways, molecular mediators, and cellular processes provide targets for MTMC drugs. This article will review the MTMC hypothesis for blister and nerve agents and will expand the scope of the concept to include other chemicals as well as briefly consider biological agents. The article will also consider how common biochemical signaling pathways, molecular mediators, and cellular processes that contribute to clinical pathologies and syndromes may relate to the toxicity of threat agents. Discovery of MTMC provides the opportunity for the integration of diverse researchers and clinicians, and for the exploitation of cutting-edge technologies and drug discovery. The broad-spectrum nature of MTMC can augment military and civil defense to combat chemical warfare and chemical terrorism.
Streit, W R; Entcheva, P
2003-03-01
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.
Accessing Nature’s diversity through metabolic engineering and synthetic biology
King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory
2016-01-01
In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481
Modeling Emergence in Neuroprotective Regulatory Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.
2013-01-05
The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatorymore » networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.« less
Efficient discovery of bioactive scaffolds by activity-directed synthesis
NASA Astrophysics Data System (ADS)
Karageorgis, George; Warriner, Stuart; Nelson, Adam
2014-10-01
The structures and biological activities of natural products have often provided inspiration in drug discovery. The functional benefits of natural products to the host organism steers the evolution of their biosynthetic pathways. Here, we describe a discovery approach—which we term activity-directed synthesis—in which reactions with alternative outcomes are steered towards functional products. Arrays of catalysed reactions of α-diazo amides, whose outcome was critically dependent on the specific conditions used, were performed. The products were assayed at increasingly low concentration, with the results informing the design of a subsequent reaction array. Finally, promising reactions were scaled up and, after purification, submicromolar ligands based on two scaffolds with no previous annotated activity against the androgen receptor were discovered. The approach enables the discovery, in tandem, of both bioactive small molecules and associated synthetic routes, analogous to the evolution of biosynthetic pathways to yield natural products.
Yang, Zhimin; Liu, Hui; Pan, Botao; He, Fengli; Pan, Zhengying
2018-05-21
As an important kinase in multiple signal transduction pathways, GSK-3β has been an attractive target for chemical probe discovery and drug development. Compared to numerous reversible inhibitors that have been developed, covalent inhibitors of GSK-3β are noticeably lacking. Here, we report the discovery of a series of covalent GSK-3β inhibitors by optimizing both non-covalent interactions and reactive groups. Among these covalent inhibitors, compound 38b with a mild α-fluoromethyl amide reactive group emerges as a selective and covalent inhibitor against GSK-3β, effectively inhibits the phosphorylation of glycogen synthase and tau protein, and increases β-catenin's levels in living cells. In addition, compound 38b is highly permeable and not a substrate of P-glycoprotein.
An overview of bioinformatics methods for modeling biological pathways in yeast.
Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin
2016-03-01
The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Planar cell polarity in moving cells: think globally, act locally
Davey, Crystal F.
2017-01-01
ABSTRACT The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors. PMID:28096212
Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.
2015-01-01
Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925
Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines
McKeague, Maureen; Wang, Yen-Hsiang; Cravens, Aaron; Win, Maung Nyan; Smolke, Christina D.
2016-01-01
Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives. PMID:27519552
Momentous discoveries on Mars: science outside MEP pathways
NASA Technical Reports Server (NTRS)
Easter, R. W.; Delitsky, M. I.; Lamassoure, E.; Marshall, M. F.; Matthews, J. B.; Palkovic, L. A.; Wilson, T. J.
2003-01-01
The Mars Outpost Team seeks further input from the Mars community about other possible momentous discoveries that could be made, as well as ways to respond to them (types of missions, instruments, spacecraft-orbiters, landers, rovers, airplanes, etc.).
Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators.
Jamsai, Duangporn; O'Bryan, Moira K
2010-06-01
The completion of genome sequencing projects has provided an extensive knowledge of the contents of the genomes of human, mouse, and many other organisms. Despite this, the function of most of the estimated 25,000 human genes remains largely unknown. Attention has now turned to elucidating gene function and identifying biological pathways that contribute to human diseases, including male infertility. Our understanding of the genetic regulation of male fertility has been accelerated through the use of genetically modified mouse models including knockout, knock-in, gene-trapped, and transgenic mice. Such reverse genetic approaches however, require some fore-knowledge of a gene's function and, as such, bias against the discovery of completely novel genes and biological pathways. To facilitate high throughput gene discovery, genome-wide mouse mutagenesis via the use of a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU), has been developed over the past decade. This forward genetic, or phenotype-driven, approach relies upon observing a phenotype first, then subsequently defining the underlining genetic defect. Mutations are randomly introduced into the mouse genome via ENU exposure. Through a controlled breeding scheme, mutations causing a phenotype of interest (e.g., male infertility) are then identified by linkage analysis and candidate gene sequencing. This approach allows for the possibility of revealing comprehensive phenotype-genotype relationships for a range of genes and pathways i.e. in addition to null alleles, mice containing partial loss of function or gain-of-function mutations, can be recovered. Such point mutations are likely to be more reflective of those that occur within the human population. Many research groups have successfully used this approach to generate infertile mouse lines and some novel male fertility genes have been revealed. In this review, we focus on the utility of ENU mutagenesis for the discovery of novel male fertility regulators.
Guo, Liang; Eldridge, Sandy; Furniss, Mike; Mussio, Jodie; Davis, Myrtle
2015-09-01
There is a need to develop mechanism-based assays to better inform risk of cardiotoxicity. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are rapidly gaining acceptance as a biologically relevant in vitro model for use in drug discovery and cardiotoxicity screens. Utilization of hiPSC-CMs for mechanistic investigations would benefit from confirmation of the expression and activity of cellular pathways that are known to regulate cardiac myocyte viability and function. This unit describes an approach to demonstrate the presence and function of signaling pathways in hiPSC-CMs and the effects of treatments on these pathways. We present a workflow that employs protocols to demonstrate protein expression and functional integrity of signaling pathway(s) of interest and to characterize biological consequences of signaling modulation. These protocols utilize a unique combination of structural, functional, and biochemical endpoints to interrogate compound effects on cardiomyocytes. Copyright © 2015 John Wiley & Sons, Inc.
The re-emerging role of microbial natural products in antibiotic discovery.
Genilloud, Olga
2014-07-01
New classes of antibacterial compounds are urgently needed to respond to the high frequency of occurrence of resistances to all major classes of known antibiotics. Microbial natural products have been for decades one of the most successful sources of drugs to treat infectious diseases but today, the emerging unmet clinical need poses completely new challenges to the discovery of novel candidates with the desired properties to be developed as antibiotics. While natural products discovery programs have been gradually abandoned by the big pharma, smaller biotechnology companies and research organizations are taking over the lead in the discovery of novel antibacterials. Recent years have seen new approaches and technologies being developed and integrated in a multidisciplinary effort to further exploit microbial resources and their biosynthetic potential as an untapped source of novel molecules. New strategies to isolate novel species thought to be uncultivable, and synthetic biology approaches ranging from genome mining of microbial strains for cryptic biosynthetic pathways to their heterologous expression have been emerging in combination with high throughput sequencing platforms, integrated bioinformatic analysis, and on-site analytical detection and dereplication tools for novel compounds. These different innovative approaches are defining a completely new framework that is setting the bases for the future discovery of novel chemical scaffolds that should foster a renewed interest in the identification of novel classes of natural product antibiotics from the microbial world.
Waagmeester, Andra; Pico, Alexander R.
2016-01-01
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457
Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R
2016-06-01
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.
Carter, Edward P; Fearon, Abbie E; Grose, Richard P
2015-04-01
Since its discovery 40 years ago, fibroblast growth factor (FGF) receptor (FGFR) signalling has been found to regulate fundamental cellular behaviours in a wide range of cell types. FGFRs regulate development, homeostasis, and repair and are implicated in many disorders and diseases; and indeed, there is extensive potential for severe consequences, be they developmental, homeostatic, or oncogenic, should FGF-FGFR signalling go awry, so careful control of the pathway is critically important. In this review, we discuss the recent developments in the FGF field, highlighting how FGFR signalling works in normal cells, how it can go wrong, how frequently it is compromised, and how it is being targeted therapeutically. Copyright © 2014 Elsevier Ltd. All rights reserved.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Discovering chemistry with an ab initio nanoreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Boesenbergia rotunda: From Ethnomedicine to Drug Discovery
Eng-Chong, Tan; Yean-Kee, Lee; Chin-Fei, Chee; Choon-Han, Heh; Sher-Ming, Wong; Li-Ping, Christina Thio; Gen-Teck, Foo; Khalid, Norzulaani; Abd Rahman, Noorsaadah; Karsani, Saiful Anuar; Othman, Shatrah; Othman, Rozana; Yusof, Rohana
2012-01-01
Boesenbergia rotunda is a herb from the Boesenbergia genera under the Zingiberaceae family. B. rotunda is widely found in Asian countries where it is commonly used as a food ingredient and in ethnomedicinal preparations. The popularity of its ethnomedicinal usage has drawn the attention of scientists worldwide to further investigate its medicinal properties. Advancement in drug design and discovery research has led to the development of synthetic drugs from B. rotunda metabolites via bioinformatics and medicinal chemistry studies. Furthermore, with the advent of genomics, transcriptomics, proteomics, and metabolomics, new insights on the biosynthetic pathways of B. rotunda metabolites can be elucidated, enabling researchers to predict the potential bioactive compounds responsible for the medicinal properties of the plant. The vast biological activities exhibited by the compounds obtained from B. rotunda warrant further investigation through studies such as drug discovery, polypharmacology, and drug delivery using nanotechnology. PMID:23243448
Streptomyces species: Ideal chassis for natural product discovery and overproduction.
Liu, Ran; Deng, Zixin; Liu, Tiangang
2018-05-28
There is considerable interest in mining organisms for new natural products (NPs) and in improving methods to overproduce valuable NPs. Because of the rapid development of tools and strategies for metabolic engineering and the markedly increased knowledge of the biosynthetic pathways and genetics of NP-producing organisms, genome mining and overproduction of NPs can be dramatically accelerated. In particular, Streptomyces species have been proposed as suitable chassis organisms for NP discovery and overproduction because of their many unique characteristics not shared with yeast, Escherichia coli, or other microorganisms. In this review, we summarize the methods for genome sequencing, gene cluster prediction, and gene editing in Streptomyces, as well as metabolic engineering strategies for NP overproduction and approaches for generating new products. Finally, two strategies for utilizing Streptomyces as the chassis for NP discovery and overproduction are emphasized. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Mitochondrial dynamics and Parkinson's disease: focus on parkin.
Lim, Kah-Leong; Ng, Xiao-Hui; Grace, Lim Gui-Yin; Yao, Tso-Pang
2012-05-01
Parkinson's disease (PD) is a prevalent neurodegenerative disease affecting millions of individuals worldwide. Despite intensive efforts devoted to drug discovery, the disease remains incurable. To provide more effective medical therapy for PD, better understanding of the underlying causes of the disease is clearly necessary. A broad range of studies conducted over the past few decades have collectively implicated aberrant mitochondrial homeostasis as a key contributor to the development of PD. Supporting this, mutations in several PD-linked genes are directly or indirectly linked to mitochondrial dysfunction. In particular, recent discoveries have identified parkin, whose mutations are causative of recessive parkinsonism, as a key regulator of mitochondrial homeostasis. Parkin appears to be involved in the entire spectrum of mitochondrial dynamics, including organelle biogenesis, fusion/fission, and clearance via mitophagy. How a single protein can regulate such diverse mitochondrial events is as intriguing as it is amazing; the mechanism underlying this is currently under intense research. Here, we provide an overview of mitochondrial dynamics and its relationship with neurodegenerative diseases and discuss current evidence and controversies surrounding the role of parkin in mitochondrial quality control and its relevance to PD pathogenesis. Although the emerging field of parkin-mediated mitochondrial quality control has proven to be exciting, it is important to recognize that PD pathogenesis is likely to involve an intricate network of interacting pathways. Elucidating the reciprocity of pathways, particularly how other PD-related pathways potentially influence mitochondrial homeostasis, may hold the key to therapeutic development.
Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei
2013-01-01
The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055
Peng, Bin; Zhu, Dianwen; Ander, Bradley P; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R; Yang, Xiaowei
2013-01-01
The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.
Animal models for acute radiation syndrome drug discovery.
Singh, Vijay K; Newman, Victoria L; Berg, Allison N; MacVittie, Thomas J
2015-05-01
Although significant scientific advances have been made over the past six decades in developing safe, nontoxic and effective radiation/medical countermeasures (MCMs) for acute radiation syndrome (ARS), no drug has been approved by the US FDA. The availability of adequate animal models is a prime requisite under the criteria established by the FDA 'animal rule' for the development of novel MCMs for ARS and the discovery of biomarkers for radiation exposure. This article reviews the developments of MCMs to combat ARS, with particular reference to the various animal models (rodents: mouse and rat; canine: beagle; minipigs and nonhuman primates [NHPs]) utilized for the in-depth evaluation. The objective, pathways and challenges of the FDA Animal Efficacy Rule are also discussed. There are a number of well-defined animal models, the mouse, canine and NHP, that are being used for the development of MCMs. Additional animal models, such as the minipig, are under development to further assist in the identification, efficacy testing and approval of MCMs under the FDA Animal Efficacy Rule.
Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria.
Moss, Nathan A; Leao, Tiago; Glukhov, Evgenia; Gerwick, Lena; Gerwick, William H
2018-01-01
Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics. Here, we describe workflows, procedures, and commentary on sample collection, cultivation, genomic DNA generation, bioinformatics tools, and biosynthetic pathway analysis concerning filamentous cyanobacteria. © 2018 Elsevier Inc. All rights reserved.
Emerging principles in protease-based drug discovery
Drag, Marcin; Salvesen, Guy S.
2010-01-01
Proteases have an important role in many signalling pathways, and represent potential drug targets for diseases ranging from cardiovascular disorders to cancer, as well as for combating many parasites and viruses. Although inhibitors of well-established protease targets such as angiotensin-converting enzyme and HIV protease have shown substantial therapeutic success, developing drugs for new protease targets has proved challenging in recent years. This in part could be due to issues such as the difficulty of achieving selectivity when targeting protease active sites. This Perspective discusses the general principles in protease-based drug discovery, highlighting the lessons learned and the emerging strategies, such as targeting allosteric sites, which could help harness the therapeutic potential of new protease targets. PMID:20811381
On the Nature of Expansion of Paget’s Disease of Bone
2012-10-01
signaling pathway. Gene expression normalized to normal adjacent bone samples. 5 Global expression analysis revealed genes downstream of the Hedgehog ... Hedgehog (Hh) signaling pathway (Figure 5). Again, as in the TLR signaling pathway, specific elements of the Hh signaling pathway showed increased...mutations upregulated expression of genes in the Hedgehog signaling pathway. 7. Discovery that an osteoblastic cell line (PSV10) derived from a PDB
Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens.
Gimenez-Ibanez, Selena; Solano, Roberto
2013-01-01
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.
Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens
Gimenez-Ibanez, Selena; Solano, Roberto
2013-01-01
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease. PMID:23577014
Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways.
Higgins, Gerald A; Allyn-Feuer, Ari; Georgoff, Patrick; Nikolian, Vahagn; Alam, Hasan B; Athey, Brian D
2017-07-01
The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS. Copyright © 2017. Published by Elsevier Inc.
1998-03-01
Discovery of Novel Enzymatic Reactions and Determination of Biodegradation Mechanisms and Pathways. b. Phytoremediation of Explosives Contaminated...Groundwater using Wetlands and Aquatic Plants. c. Phytoremediation of Munitions Contaminated Soils. d. Enhanced TNT Biodegradation Through Genetic Manipulation...Microbial Communities Active in the Enhanced Aerobic Treatment of Chlorinated Ethenes. c. Phytoremediation of Shallow Chlorinated Solvent Plumes
Genetics and genomics of Parkinson’s disease
2014-01-01
Parkinson’s disease (PD) is a progressively debilitating neurodegenerative syndrome. Although best described as a movement disorder, the condition has prominent autonomic, cognitive, psychiatric, sensory and sleep components. Striatal dopaminergic innervation and nigral neurons are progressively lost, with associated Lewy pathology readily apparent on autopsy. Nevertheless, knowledge of the molecular events leading to this pathophysiology is limited. Current therapies offer symptomatic benefit but they fail to slow progression and patients continue to deteriorate. Recent discoveries in sporadic, Mendelian and more complex forms of parkinsonism provide novel insight into disease etiology; 28 genes, including those encoding alpha-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2) and microtubule-associated protein tau (MAPT), have been linked and/or associated with PD. A consensus regarding the affected biological pathways and molecular processes has also started to emerge. In early-onset and more a typical PD, deficits in mitophagy pathways and lysosomal function appear to be prominent. By contrast, in more typical late-onset PD, chronic, albeit subtle, dysfunction in synaptic transmission, early endosomal trafficking and receptor recycling, as well as chaperone-mediated autophagy, provide a unifying synthesis of the molecular pathways involved. Disease-modification (neuroprotection) is no longer such an elusive goal given the unparalleled opportunity for diagnosis, translational neuroscience and therapeutic development provided by genetic discovery. PMID:25061481
Ramamoorthy, Divya; Turos, Edward; Guida, Wayne C
2013-05-24
FabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs. However, currently there are no clinical drugs that selectively target FabH, and known inhibitors of FabH all act within the active site. FabH exerts its catalytic function as a dimer, which could potentially be exploited in developing new strategies for inhibitor design. The aim of this study was to elucidate structural details of the dimer interface region by means of computational modeling, including molecular dynamics (MD) simulations, in order to derive information for the structure-based design of new FabH inhibitors. The dimer interface region was analyzed by MD simulations, trajectory snapshots were collected for further analyses, and docking studies were performed with potential small molecule disruptors. Alanine mutation and docking studies strongly suggest that the dimer interface could be a potential target for anti-infection drug discovery.
Suleimanov, Yury V; Green, William H
2015-09-08
We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.
Valenzuela-Muñoz, V; Gallardo-Escárate, C
2014-02-01
The Toll and IMD signaling pathways represent one of the first lines of innate immune defense in invertebrates like Drosophila. However, for crustaceans like Caligus rogercresseyi, there is very little genomic information and, consequently, understanding of immune mechanisms. Massive sequencing data obtained for three developmental stages of C. rogercresseyi were used to evaluate in silico the expression patterns and presence of SNPs variants in genes involved in the Toll and IMD pathways. Through RNA-seq analysis, which used 20 contigs corresponding to relevant genes of the Toll and IMD pathways, an overexpression of genes linked to the Toll pathway, such as toll3 and Dorsal, were observed in the copepod stage. For the chalimus and adult stages, overexpression of genes in both pathways, such as Akirin and Tollip and IAP and Toll9, respectively, were observed. On the other hand, PCA statistical analysis inferred that in the chalimus and adult stages, the immune response mechanism was more developed, as evidenced by a relation between these two stages and the genes of both pathways. Moreover, 136 SNPs were identified for 20 contigs in genes of the Toll and IMD pathways. This study provides transcriptomic information about the immune response mechanisms of Caligus, thus providing a foundation for the development of new control strategies through blocking the innate immune response. Copyright © 2013 Elsevier Ltd. All rights reserved.
Present and future contraception: does discovery of targets lead to new contraceptives?
Jensen, Jeffrey T
2015-01-01
Although many highly effective methods of reversible contraception are available, high rates of unintended pregnancy and abortion provide evidence that current methods do not meet the needs of all couples. In recent years, a number of highly specific targets have been identified in key pathways that regulate the development of male and female gametes. Support for development of novel approaches has moved from industry to governmental and foundation funders. Continued public funding will be needed to move promising leads into clinical trials.
ER Stress: A Therapeutic Target in Rheumatoid Arthritis?
Rahmati, Marveh; Moosavi, Mohammad Amin; McDermott, Michael F
2018-04-22
Diverse physiological and pathological conditions that impact on protein folding of the endoplasmic reticulum (ER) cause ER stress. The unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway are activated to cope with ER stress. In rheumatoid arthritis (RA), inflammation and ER stress work in parallel by driving inflammatory cells to release cytokines that induce chronic ER stress pathways. This chronic ER stress may contribute to the pathogenesis of RA through synoviocyte proliferation and proinflammatory cytokine production. Therefore, ER stress pathways and their constituent elements are attractive targets for RA drug development. In this review, we integrate current knowledge of the contribution of ER stress to the overall pathogenesis of RA, and suggest some therapeutic implications of these discoveries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regulation of the Hippo Pathway Transcription Factor TEAD.
Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang
2017-11-01
The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Life in hot acid: Pathway analyses in extremely thermoacidophilic archaea
Auernik, Kathryne S.; Cooper, Charlotte R.; Kelly, Robert M.
2013-01-01
SUMMARY The extremely thermoacidophilic archaea are a particularly intriguing group of microorganisms that must simultaneously cope with biologically extreme pHs (≤ 4) and temperatures (Topt ≥ 60°C) in their natural environments. Their expandi ng biotechnological significance relates to their role in biomining of base and precious metals and their unique mechanisms of survival in hot acid, at both the cellular and biomolecular levels. Recent developments, such as advances in understanding of heavy metal tolerance mechanisms, implementation of a genetic system, and discovery of a new carbon fixation pathway, have been facilitated by availability of genome sequence data and molecular genetic systems. As a result, new insights into the metabolic pathways and physiological features that define extreme thermoacidophily have been obtained, in some cases suggesting prospects for biotechnological opportunities. PMID:18760359
Crosstalk between Hippo signalling and miRNAs in tumour progression.
Li, Nianshuang; Xie, Chuan; Lu, Nonghua
2017-04-01
The Hippo signalling pathway co-ordinately modulates cell regeneration and organ size, and its deregulation contributes to tumorigenesis through many cellular processes, including overproliferation, apoptosis resistance and cell migration. Recent discoveries have shed new light on how microRNAs (miRNAs) are closely linked to the Hippo pathway in tumour progression. Hippo signalling has been reported to affect widespread miRNA biogenesis. In turn, several miRNAs regulate Hippo signalling, which contributes to carcinogenesis. This article will provide an overview of the crosstalk between Hippo signalling and miRNAs in the development of cancer and further appraise potential targets for therapeutic intervention. © 2016 Federation of European Biochemical Societies.
Fragile X syndrome neurobiology translates into rational therapy.
Braat, Sien; Kooy, R Frank
2014-04-01
Causal genetic defects have been identified for various neurodevelopmental disorders. A key example in this respect is fragile X syndrome, one of the most frequent genetic causes of intellectual disability and autism. Since the discovery of the causal gene, insights into the underlying pathophysiological mechanisms have increased exponentially. Over the past years, defects were discovered in pathways that are potentially amendable by pharmacological treatment. These findings have inspired the initiation of clinical trials in patients. The targeted pathways converge in part with those of related neurodevelopmental disorders raising hopes that the treatments developed for this specific disorder might be more broadly applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hawaii natural compounds are promising to reduce ovarian cancer deaths.
Fei-Zhang, David J; Li, Chunshun; Cao, Shugeng
2016-07-02
The low survival rate of patients with ovarian cancer largely results from the advanced ovarian tumors as well as tumor resistance to chemotherapy, leading to metastasis and recurrence. However, it is missing as to an effective therapeutic approach that focuses on these aspects to prolong progression-free survival and to decrease mortality in ovarian cancer patients. Here, based on our cancer drug discovery studies, we provide prospective insights into the development of a future line of drugs to effectively reduce ovarian cancer deaths. Pathways that increase the probability of cancer, such as the defective Fanconi anemia (FA) pathway, may render cancer cells more sensitive to new drug targeting.
[Is endometriosis a precancerous lesion? Perspectives and clinical implications].
Chene, G; Caloone, J; Moret, S; Le Bail-Carval, K; Chabert, P; Beaufils, E; Mellier, G; Lamblin, G
2016-02-01
Epidemiological studies have shown a relationship between endometriosis and clear cell/endometrioid ovarian cancers (named "Endometriosis Associated Ovarian Cancer" or EAOC). The recent discovery of signaling pathways (especially the SWI/SNF and PI3K/AKT/mTOR pathways) that linked endometriosis and EAOC could lead to the development of specific biomarkers as ARID1A to screen benign to premalignant endometriosis and to new targeted treatment. Moreover, the better understanding of the pathogenesis of the epithelial ovarian cancer arising from the Fallopian tube could allow new early prevention strategies that will be described in this review. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Algorithms on Flag Manifolds for Knowledge Discovery in N-way Arrays
2015-11-20
that three of 18 subjects will become symptomatic after only 8 hours. Host pathway analysis of a human endotoxin gene expression data set revealed a 14...pathway analysis of a human endotoxin gene expression data set revealed a 14 pathway signature that identified symptomatic subjects within 2-3 hours post
HEx: A heterologous expression platform for the discovery of fungal natural products
Schlecht, Ulrich; Horecka, Joe; Lin, Hsiao-Ching; Naughton, Brian; Miranda, Molly; Li, Yong Fuga; Hennessy, James R.; Vandova, Gergana A.; Steinmetz, Lars M.; Sattely, Elizabeth; Khosla, Chaitan; Hillenmeyer, Maureen E.
2018-01-01
For decades, fungi have been a source of U.S. Food and Drug Administration–approved natural products such as penicillin, cyclosporine, and the statins. Recent breakthroughs in DNA sequencing suggest that millions of fungal species exist on Earth, with each genome encoding pathways capable of generating as many as dozens of natural products. However, the majority of encoded molecules are difficult or impossible to access because the organisms are uncultivable or the genes are transcriptionally silent. To overcome this bottleneck in natural product discovery, we developed the HEx (Heterologous EXpression) synthetic biology platform for rapid, scalable expression of fungal biosynthetic genes and their encoded metabolites in Saccharomyces cerevisiae. We applied this platform to 41 fungal biosynthetic gene clusters from diverse fungal species from around the world, 22 of which produced detectable compounds. These included novel compounds with unexpected biosynthetic origins, particularly from poorly studied species. This result establishes the HEx platform for rapid discovery of natural products from any fungal species, even those that are uncultivable, and opens the door to discovery of the next generation of natural products. PMID:29651464
Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery
Bertin, Matthew J.; Kleigrewe, Karin; Leão, Tiago F.; Gerwick, Lena
2016-01-01
Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313
Genetic variants in the PIWI-piRNA pathway gene DCP1A predict melanoma disease-specific survival.
Zhang, Weikang; Liu, Hongliang; Yin, Jieyun; Wu, Wenting; Zhu, Dakai; Amos, Christopher I; Fang, Shenying; Lee, Jeffrey E; Li, Yi; Han, Jiali; Wei, Qingyi
2016-12-15
The Piwi-piRNA pathway is important for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control and thus may be involved in cancer development. In this study, we comprehensively analyzed prognostic roles of 3,116 common SNPs in PIWI-piRNA pathway genes in melanoma disease-specific survival. A published genome-wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used to identify associated SNPs, which were later validated by another GWAS from the Harvard Nurses' Health Study and Health Professionals Follow-up Study. After multiple testing correction, we found that there were 27 common SNPs in two genes (PIWIL4 and DCP1A) with false discovery rate < 0.2 in the discovery dataset. Three tagSNPs (i.e., rs7933369 and rs508485 in PIWIL4; rs11551405 in DCP1A) were replicated. The rs11551405 A allele, located at the 3' UTR microRNA binding site of DCP1A, was associated with an increased risk of melanoma disease-specific death in both discovery dataset [adjusted Hazards ratio (HR) = 1.66, 95% confidence interval (CI) = 1.21-2.27, p =1.50 × 10 -3 ] and validation dataset (HR = 1.55, 95% CI = 1.03-2.34, p = 0.038), compared with the C allele, and their meta-analysis showed an HR of 1.62 (95% CI, 1.26-2.08, p =1.55 × 10 -4 ). Using RNA-seq data from the 1000 Genomes Project, we found that DCP1A mRNA expression levels increased significantly with the A allele number of rs11551405. Additional large, prospective studies are needed to validate these findings. © 2016 UICC.
Winpenny, David; Clark, Mellissa
2016-01-01
Background and Purpose Biased GPCR ligands are able to engage with their target receptor in a manner that preferentially activates distinct downstream signalling and offers potential for next generation therapeutics. However, accurate quantification of ligand bias in vitro is complex, and current best practice is not amenable for testing large numbers of compound. We have therefore sought to apply ligand bias theory to an industrial scale screening campaign for the identification of new biased μ receptor agonists. Experimental Approach μ receptor assays with appropriate dynamic range were developed for both Gαi‐dependent signalling and β‐arrestin2 recruitment. Δlog(Emax/EC50) analysis was validated as an alternative for the operational model of agonism in calculating pathway bias towards Gαi‐dependent signalling. The analysis was applied to a high throughput screen to characterize the prevalence and nature of pathway bias among a diverse set of compounds with μ receptor agonist activity. Key Results A high throughput screening campaign yielded 440 hits with greater than 10‐fold bias relative to DAMGO. To validate these results, we quantified pathway bias of a subset of hits using the operational model of agonism. The high degree of correlation across these biased hits confirmed that Δlog(Emax/EC50) was a suitable method for identifying genuine biased ligands within a large collection of diverse compounds. Conclusions and Implications This work demonstrates that using Δlog(Emax/EC50), drug discovery can apply the concept of biased ligand quantification on a large scale and accelerate the deliberate discovery of novel therapeutics acting via this complex pharmacology. PMID:26791140
Blaylock, Russell L.
2015-01-01
Since President Nixon officially declared a war on cancer with the National Cancer Act, billions of dollars have been spent on research in hopes of finding a cure for cancer. Recent reviews have pointed out that over the ensuing 42 years, cancer death rates have barely changed for the major cancers. Recently, several researchers have questioned the prevailing cancer paradigm based on recent discoveries concerning the mechanism of carcinogenesis and the origins of cancer. Over the past decade we have learned a great deal concerning both of these central issues. Cell signaling has taken center stage, particularly as regards the links between chronic inflammation and cancer development. It is now evident that the common factor among a great number of carcinogenic agents is activation of genes controlling inflammation cell-signaling pathways and that these signals control all aspects of the cancer process. Of these pathways, the most important and common to all cancers is the NFκB and STAT3 pathways. The second discovery of critical importance is that mutated stem cells appear to be in charge of the cancer process. Most chemotherapy agents and radiotherapy kill daughter cells of the cancer stem cell, many of which are not tumorigenic themselves. Most cancer stem cells are completely resistant to conventional treatments, which explain dormancy and the poor cure rate with metastatic tumors. A growing number of studies are finding that several polyphenol extracts can kill cancer stem cells as well as daughter cells and can enhance the effectiveness and safety of conventional treatments. These new discoveries provide the clinician with a whole new set of targets for cancer control and cure. PMID:26097771
DNA Repair in Drosophila: Mutagens, Models, and Missing Genes
Sekelsky, Jeff
2017-01-01
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster. Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations. PMID:28154196
Clinical implications of hedgehog signaling pathway inhibitors
Liu, Hailan; Gu, Dongsheng; Xie, Jingwu
2011-01-01
Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and Carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated Carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications. PMID:21192841
The Hedgehog Signal Transduction Network
Robbins, David J.; Fei, Dennis Liang; Riobo, Natalia A.
2013-01-01
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called “canonical” Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as “noncanonical” signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network. PMID:23074268
Biological therapy targeting the IL-23/IL-17 axis in inflammatory bowel disease.
Verstockt, Bram; Van Assche, Gert; Vermeire, Séverine; Ferrante, Marc
2017-01-01
As many inflammatory bowel disease (IBD) patients do not benefit from long-term anti-tumour necrosis factor treatment, new anti-inflammatories are urgently needed. After the discovery of the interleukin (IL) 23/17 axis being pivotal in IBD pathogenesis, many different compounds were developed, targeting different components within this pathway. Areas covered: A literature search to March 2016 was performed to identify the most relevant reports on the role of the IL-23/IL-17 axis in IBD and on the different molecules targeting this pathway. First, the authors briefly summarize the immunology of the IL-23/IL-17 pathway to elucidate the mode of action of all different agents. Second, they describe all different molecules targeting this pathway. Besides discussing efficacy and safety data, they also explore immunogenicity, exposure during pregnancy and pharmacokinetics. Expert opinion: A new era in IBD treatment has recently been initiated: besides immunomodulators and TNF-antagonists, anti-adhesion molecules and monoclonal antibodies targeting the IL-23/IL-17 pathway have been developed. Biomarkers for personalized medicine are urgently needed. This therapeutic (r)evolution will further improve disease-related and patient-reported outcome, though a lot of questions should still be addressed in future years.
Targeted Therapies for Brain Metastases from Breast Cancer.
Venur, Vyshak Alva; Leone, José Pablo
2016-09-13
The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.
NASA Astrophysics Data System (ADS)
Huang, Lu; Jiang, Yuyang; Chen, Yuzong
2017-01-01
Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.
Juraeva, Dilafruz; Haenisch, Britta; Zapatka, Marc; Frank, Josef; Witt, Stephanie H; Mühleisen, Thomas W; Treutlein, Jens; Strohmaier, Jana; Meier, Sandra; Degenhardt, Franziska; Giegling, Ina; Ripke, Stephan; Leber, Markus; Lange, Christoph; Schulze, Thomas G; Mössner, Rainald; Nenadic, Igor; Sauer, Heinrich; Rujescu, Dan; Maier, Wolfgang; Børglum, Anders; Ophoff, Roel; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Mattheisen, Manuel; Brors, Benedikt
2014-06-01
In the present study, an integrated hierarchical approach was applied to: (1) identify pathways associated with susceptibility to schizophrenia; (2) detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3) annotate the functional consequences of such single-nucleotide polymorphisms (SNPs) in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database. Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level) in both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest. Application of the present hierarchical approach thus allowed: (1) identification of novel biological gene-sets or pathways with potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2) detection of genes of interest for future follow-up studies; and (3) the highlighting of novel genes in previously reported candidate regions for schizophrenia.
Protein Folding—How and Why: By Hydrogen Exchange, Fragment Separation, and Mass Spectrometry
Englander, S. Walter; Mayne, Leland; Kan, Zhong-Yuan; Hu, Wenbing
2017-01-01
Advanced hydrogen exchange (HX) methodology can now determine the structure of protein folding intermediates and their progression in folding pathways. Key developments over time include the HX pulse labeling method with nuclear magnetic resonance analysis, development of the fragment separation method, the addition to it of mass spectrometric (MS) analysis, and recent improvements in the HX MS technique and data analysis. Also, the discovery of protein foldons and their role supplies an essential interpretive link. Recent work using HX pulse labeling with HX MS analysis finds that a number of proteins fold by stepping through a reproducible sequence of native-like intermediates in an ordered pathway. The stepwise nature of the pathway is dictated by the cooperative foldon unit construction of the protein. The pathway order is determined by a sequential stabilization principle; prior native-like structure guides the formation of adjacent native-like structure. This view does not match the funneled energy landscape paradigm of a very large number of folding tracks, which was framed before foldons were known. PMID:27145881
Stevens, David Cole; Conway, Kyle R.; Pearce, Nelson; Villegas-Peñaranda, Luis Roberto; Garza, Anthony G.; Boddy, Christopher N.
2013-01-01
Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products. PMID:23724102
Song, Zhenhua; Zhang, Chi; He, Lingxiao; Sui, Yanfang; Lin, Xiafei; Pan, Jingjing
2018-06-12
Osteoarthritis (OA) is the most common form of joint disease. The development of inflammation have been considered to play a key role during the progression of OA. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, deciphering these risk regulatory pathways is critical for elucidating the mechanisms underlying OA. We constructed an OA-specific regulatory network by integrating comprehensive curated transcription and post-transcriptional resource involving transcription factor (TF) and microRNA (miRNA). To deepen our understanding of underlying molecular mechanisms of OA, we developed an integrated systems approach to identify OA-specific risk regulatory pathways. In this study, we identified 89 significantly differentially expressed genes between normal and inflamed areas of OA patients. We found the OA-specific regulatory network was a standard scale-free network with small-world properties. It significant enriched many immune response-related functions including leukocyte differentiation, myeloid differentiation and T cell activation. Finally, 141 risk regulatory pathways were identified based on OA-specific regulatory network, which contains some known regulator of OA. The risk regulatory pathways may provide clues for the etiology of OA and be a potential resource for the discovery of novel OA-associated disease genes. Copyright © 2018 Elsevier Inc. All rights reserved.
Discovery of Regulators of Receptor Internalization with High-Throughput Flow Cytometry
Tapia, Phillip H.; Fisher, Gregory W.; Simons, Peter C.; Strouse, J. Jacob; Foutz, Terry; Waggoner, Alan S.; Jarvik, Jonathan; Sklar, Larry A.
2012-01-01
We developed a platform combining fluorogen-activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform facilitates drug discovery for trafficking receptors such as G protein-coupled receptors and was validated with the β2-adrenergic receptor (β2AR) system. When a chemical library containing ∼1200 off-patent drugs was screened against cells expressing FAP-tagged β2ARs, all 33 known β2AR-active ligands in the library were successfully identified, together with a number of compounds that might regulate receptor internalization in a nontraditional manner. Results indicated that the platform identified ligands of target proteins regardless of the associated signaling pathway; therefore, this approach presents opportunities to search for biased receptor modulators and is suitable for screening of multiplexed targets for improved efficiency. The results revealed that ligands may be biased with respect to the rate or duration of receptor internalization and that receptor internalization may be independent of activation of the mitogen-activated protein kinase pathway. PMID:22767611
Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S
2015-01-01
Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes. DOI: http://dx.doi.org/10.7554/eLife.08261.001 PMID:26218223
Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities
Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran
2014-01-01
GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081
Bellinger, Andrew M.; Arteaga, Carlos L.; Force, Thomas; Humphreys, Benjamin D.; Demetri, George D.; Druker, Brian J.; Moslehi, Javid
2016-01-01
Cardio-Oncology (the cardiovascular care of cancer patients) has developed as a new translational and clinical field based on the expanding repertoire of mechanism-based cancer therapies. While these therapies have changed the natural course of many cancers, several may also lead to cardiovascular complications. Many new anti-cancer drugs approved over the past decade are “targeted” kinase inhibitors that interfere with intracellular signaling contributing to tumor progression. Unexpected cardiovascular and cardio-metabolic effects following patient treatment with these inhibitors have provided unique insights into the role of kinases in human cardiovascular biology. Today, an ever-expanding number of cancer therapies targeting novel kinases as well as other specific cellular and metabolic pathways are being developed and tested in oncology clinical trials. Some of these drugs may impact the cardiovascular system in detrimental and others perhaps in beneficial ways. We propose that the numerous ongoing oncology clinical trials are an opportunity for closer collaboration between cardiologists and oncologists to study the cardiovascular and cardio-metabolic changes due to modulation of these pathways in patients. In this regard, cardio-oncology represents an opportunity and a novel platform for basic and translational investigation and can serve as a potential avenue for optimization of anti-cancer therapies as well as for cardiovascular research and drug discovery. PMID:26644247
Becnel, Lauren B; Ochsner, Scott A; Darlington, Yolanda F; McOwiti, Apollo; Kankanamge, Wasula H; Dehart, Michael; Naumov, Alexey; McKenna, Neil J
2017-04-25
We previously developed a web tool, Transcriptomine, to explore expression profiling data sets involving small-molecule or genetic manipulations of nuclear receptor signaling pathways. We describe advances in biocuration, query interface design, and data visualization that enhance the discovery of uncharacterized biology in these pathways using this tool. Transcriptomine currently contains about 45 million data points encompassing more than 2000 experiments in a reference library of nearly 550 data sets retrieved from public archives and systematically curated. To make the underlying data points more accessible to bench biologists, we classified experimental small molecules and gene manipulations into signaling pathways and experimental tissues and cell lines into physiological systems and organs. Incorporation of these mappings into Transcriptomine enables the user to readily evaluate tissue-specific regulation of gene expression by nuclear receptor signaling pathways. Data points from animal and cell model experiments and from clinical data sets elucidate the roles of nuclear receptor pathways in gene expression events accompanying various normal and pathological cellular processes. In addition, data sets targeting non-nuclear receptor signaling pathways highlight transcriptional cross-talk between nuclear receptors and other signaling pathways. We demonstrate with specific examples how data points that exist in isolation in individual data sets validate each other when connected and made accessible to the user in a single interface. In summary, Transcriptomine allows bench biologists to routinely develop research hypotheses, validate experimental data, or model relationships between signaling pathways, genes, and tissues. Copyright © 2017, American Association for the Advancement of Science.
Drug discovery strategies to outer membrane targets in Gram-negative pathogens.
Brown, Dean G
2016-12-15
This review will cover selected recent examples of drug discovery strategies which target the outer membrane (OM) of Gram-negative bacteria either by disruption of outer membrane function or by inhibition of essential gene products necessary for outer membrane assembly. Significant advances in pathway elucidation, structural biology and molecular inhibitor designs have created new opportunities for drug discovery within this target-class space. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei
2017-08-16
Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J
2017-02-01
Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbohydrates in diversity-oriented synthesis: challenges and opportunities.
Lenci, E; Menchi, G; Trabocchi, A
2016-01-21
Over the last decade, Diversity-Oriented Synthesis (DOS) has become a new paradigm for developing large collections of structurally diverse small molecules as probes to investigate biological pathways, and to provide a larger array of the chemical space. Drug discovery and chemical biology are taking advantage of DOS approaches to exploit highly-diverse and complex molecular platforms, producing advances in both target and ligand discovery. In this view, carbohydrates are attractive building blocks for DOS libraries, due to their stereochemical diversity and high density of polar functional groups, thus offering many possibilities for chemical manipulation and scaffold decoration. This review will discuss research contributions and perspectives on the application of carbohydrate chemistry to explore the accessible chemical space through appendage, stereochemical and scaffold diversity.
Schlatzer, Daniela M.; Dazard, Jean-Eudes; Ewing, Rob M.; Ilchenko, Serguei; Tomcheko, Sara E.; Eid, Saada; Ho, Vincent; Yanik, Greg; Chance, Mark R.; Cooke, Kenneth R.
2012-01-01
Allogeneic hematopoietic stem cell transplantation (SCT) is the only curative therapy for many malignant and nonmalignant conditions. Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication that limits successful outcomes. Preclinical models suggest that IPS represents an immune mediated attack on the lung involving elements of both the adaptive and the innate immune system. However, the etiology of IPS in humans is less well understood. To explore the disease pathway and uncover potential biomarkers of disease, we performed two separate label-free, proteomics experiments defining the plasma protein profiles of allogeneic SCT patients with IPS. Samples obtained from SCT recipients without complications served as controls. The initial discovery study, intended to explore the disease pathway in humans, identified a set of 81 IPS-associated proteins. These data revealed similarities between the known IPS pathways in mice and the condition in humans, in particular in the acute phase response. In addition, pattern recognition pathways were judged to be significant as a function of development of IPS, and from this pathway we chose the lipopolysaccaharide-binding protein (LBP) protein as a candidate molecular diagnostic for IPS, and verified its increase as a function of disease using an ELISA assay. In a separately designed study, we identified protein-based classifiers that could predict, at day 0 of SCT, patients who: 1) progress to IPS and 2) respond to cytokine neutralization therapy. Using cross-validation strategies, we built highly predictive classifier models of both disease progression and therapeutic response. In sum, data generated in this report confirm previous clinical and experimental findings, provide new insights into the pathophysiology of IPS, identify potential molecular classifiers of the condition, and uncover a set of markers potentially of interest for patient stratification as a basis for individualized therapy. PMID:22337588
JAKs and STATs in Immunoregulation and Immune-Mediated Disease
O’Shea, John J.; Plenge, Robert
2012-01-01
Summary A landmark in cell biology, the discovery of the JAK-STAT pathway provided a simple mechanism for gene regulation that dramatically advanced our understanding of the action of hormones, interferons, colony stimulating factors, and interleukins. As we learn more about the complexities of immune responses, new insights into the functions of this pathway continue to be revealed, aided by technology that permits genomewide views. As we celebrate the 20th anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this knowledge has rapidly been translated to human immune disease. Not only have genomewide association studies demonstrated that this pathway is highly relevant to human autoimmunity but targeting JAKs is now a reality in immune-mediated disease. PMID:22520847
The Endoplasmic Reticulum-Associated Degradation Pathways of Budding Yeast
Thibault, Guillaume; Ng, Davis T.W.
2012-01-01
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast. PMID:23209158
Sarkar, Sovan
2013-01-01
Autophagy is a cellular degradation process involved in the clearance of aggregate-prone proteins associated with neurodegenerative diseases. While the mTOR pathway has been known to be the major regulator of autophagy, recent advancements into the regulation of autophagy have identified mTOR-independent autophagy pathways that are amenable to chemical perturbations. Several chemical and genetic screens have been undertaken to identify small molecule and genetic regulators of autophagy, respectively. The small molecule autophagy enhancers offer great potential as therapeutic candidates not only for neurodegenerative diseases, but also for diverse human diseases where autophagy acts as a protective pathway. This review highlights the various chemical screening platforms for autophagy drug discovery pertinent for the treatment of neurodegenerative diseases.
Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.
Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph
2018-06-01
The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.
Rittirsch, Daniel; Schoenborn, Veit; Lindig, Sandro; Wanner, Elisabeth; Sprengel, Kai; Günkel, Sebastian; Blaess, Markus; Schaarschmidt, Barbara; Sailer, Patricia; Märsmann, Sonja; Simmen, Hans-Peter; Cinelli, Paolo; Bauer, Michael; Claus, Ralf A; Wanner, Guido A
2016-12-01
The present study was aimed to identify mechanisms linked to complicated courses and adverse events after severe trauma by a systems biology approach. In severe trauma, overwhelming systemic inflammation can result in additional damage and the development of complications, including sepsis. In a prospective, longitudinal single-center study, RNA samples from circulating leukocytes from patients with multiple injury (injury severity score ≥17 points; n = 81) were analyzed for dynamic changes in gene expression over a period of 21 days by whole-genome screening (discovery set; n = 10 patients; 90 samples) and quantitative RT-PCR (validation set; n = 71 patients, 517 samples). Multivariate correlational analysis of transcripts and clinical parameters was used to identify mechanisms related to sepsis. Transcriptome profiling of the discovery set revealed the strongest changes between patients with either systemic inflammation or sepsis in gene expression of the heme degradation pathway. Using quantitative RT-PCR analyses (validation set), the key components haptoglobin (HP), cluster of differentiation (CD) 163, heme oxygenase-1 (HMOX1), and biliverdin reductase A (BLVRA) showed robust changes following trauma. Upregulation of HP was associated with the severity of systemic inflammation and the development of sepsis. Patients who received allogeneic blood transfusions had a higher incidence of nosocomial infections and sepsis, and the amount of blood transfusion as source of free heme correlated with the expression pattern of HP. These findings indicate that the heme degradation pathway is associated with increased susceptibility to septic complications after trauma, which is indicated by HP expression in particular.
How Parkinsonian Toxins Dysregulate the Autophagy Machinery
Dagda, Ruben K.; Das Banerjee, Tania; Janda, Elzbieta
2013-01-01
Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone) have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD). Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD. PMID:24217228
Remon, Jordi; Besse, Benjamin
2016-01-01
The discovery of activating epidermal growth factor receptor (EGFR) mutations has opened up a new era in the development of more effective treatments for patients with non-small cell lung cancer (NSCLC). However, patients with EGFR-activating mutated NSCLC treated with EGFR tyrosine kinase inhibitors (TKIs) ultimately develop acquired resistance (AR). Among known cases of patients with AR, 70% of the mechanisms involved in the development of AR to EGFR TKI have been identified and may be categorised as either secondary EGFR mutations such as the T790M mutation, activation of bypass track signalling pathways such as MET amplification, or histologic transformation. EGFR-mutant NSCLC tumours maintain oncogenic addiction to the EGFR pathway beyond progression with EGFR TKI. Clinical strategies that can be implemented in daily clinical practice to potentially overcome this resistance and prolong the outcome in this subgroup of patients are presented. PMID:27843631
Kao, Chung-Feng; Chen, Hui-Wen; Chen, Hsi-Chung; Yang, Jenn-Hwai; Huang, Ming-Chyi; Chiu, Yi-Hang; Lin, Shih-Ku; Lee, Ya-Chin; Liu, Chih-Min; Chuang, Li-Chung; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Lu, Ru-Band; Kuo, Po-Hsiu
2016-12-01
This study aimed to identify susceptible loci and enriched pathways for bipolar disorder subtype II. We conducted a genome-wide association scan in discovery samples with 189 bipolar disorder subtype II patients and 1773 controls, and replication samples with 283 bipolar disorder subtype II patients and 500 controls in a Taiwanese Han population using Affymetrix Axiom Genome-Wide CHB1 Array. We performed single-marker and gene-based association analyses, as well as calculated polygeneic risk scores for bipolar disorder subtype II. Pathway enrichment analyses were employed to reveal significant biological pathways. Seven markers were found to be associated with bipolar disorder subtype II in meta-analysis combining both discovery and replication samples (P<5.0×10 -6 ), including markers in or close to MYO16, HSP90AB3P, noncoding gene LOC100507632, and markers in chromosomes 4 and 10. A novel locus, ETF1, was associated with bipolar disorder subtype II (P<6.0×10 -3 ) in gene-based association tests. Results of risk evaluation demonstrated that higher genetic risk scores were able to distinguish bipolar disorder subtype II patients from healthy controls in both discovery (P=3.9×10 -4 ~1.0×10 -3 ) and replication samples (2.8×10 -4 ~1.7×10 -3 ). Genetic variance explained by chip markers for bipolar disorder subtype II was substantial in the discovery (55.1%) and replication (60.5%) samples. Moreover, pathways related to neurodevelopmental function, signal transduction, neuronal system, and cell adhesion molecules were significantly associated with bipolar disorder subtype II. We reported novel susceptible loci for pure bipolar subtype II disorder that is less addressed in the literature. Future studies are needed to confirm the roles of these loci for bipolar disorder subtype II. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases
Frijters, Raoul; van Vugt, Marianne; Smeets, Ruben; van Schaik, René; de Vlieg, Jacob; Alkema, Wynand
2010-01-01
The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs. PMID:20885778
Adverse Outcome Pathways – Organizing Toxicological Information to Improve Decision Making
The number of chemicals for which environmental regulatory decisions are required far exceeds the current capacity for toxicity testing. High throughput screening (HTS) commonly used for drug discovery has the potential to increase this capacity. The adverse outcome pathway (AOP)...
Khalil, Hilal S; Mitev, Vanio; Vlaykova, Tatyana; Cavicchi, Laura; Zhelev, Nikolai
2015-05-20
Seliciclib (R-Roscovitine) was identified as an inhibitor of CDKs and has undergone drug development and clinical testing as an anticancer agent. In this review, the authors describe the discovery of Seliciclib and give a brief summary of the biology of the CDKs Seliciclib inhibits. An overview of the published in vitro and in vivo work supporting the development as an anti-cancer agent, from in vitro experiments to animal model studies ending with a summary of the clinical trial results and trials underway is presented. In addition some potential non-oncology applications are explored and the potential mode of action of Seliciclib in these areas is described. Finally the authors argue that optimisation of the therapeutic effects of kinase inhibitors such as Seliciclib could be enhanced using a systems biology approach involving mathematical modelling of the molecular pathways regulating cell growth and division. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Gomes, Elisângela Soares; Schuch, Viviane; de Macedo Lemos, Eliana Gertrudes
2013-01-01
The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the “goose that laid the golden egg,” the potential of this wealth is still inexorable: simply adjust the focus from “micro” to “nano”, that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms. PMID:24688489
Bechard, Allison R.; Cacodcar, Nadia; King, Michael A.; Lewis, Mark H.
2015-01-01
Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g. autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495
Synthetic biology of antimicrobial discovery
Zakeri, Bijan; Lu, Timothy K.
2012-01-01
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251
Synthetic biology of antimicrobial discovery.
Zakeri, Bijan; Lu, Timothy K
2013-07-19
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid
2017-02-02
Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.
Davies, Shelley L; Ferrer, Elisa; Moral, Maria Angels
2006-06-01
Chronicles in Drug Discovery features special interest reports on advances in drug discovery. This month we highlight new options to prevent oral mucositis, a treatment-limiting adverse effect of chemotherapy. Studies are currently focusing on mechanism-based therapies to prevent or repair DNA damage to epithelial and submucosal cells and the cascade or events that follow to cause tissue damage or analgesics to ease the associated oral cavity pain. Therapeutic limitations also exist for the use of the highly effective antibiotic gentamicin, as it evokes acute renal failure. Mechanistic investigations have shed some light on potential targets: the kallikreins, peroxynitrite-related pathways, superoxide production and the accumulation of aminoglycosides. New antibiotic strategies for trachoma, the leading cause of preventable blindness, are also explored along with studies to aid the development of vaccine candidates. Finally, we discuss the utility of allosteric-potentiating ligands to modulate nicotinic acetylcholine receptors, mimicking the reward/addictive effects of nicotine, as potential strategies for smoking cessation. (c) 2006 Prous Science. All rights reserved.
Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators
Greenberger, Joel S.; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S.; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W.
2011-01-01
Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254
The p38α mitogen-activated protein kinase as a central nervous system drug discovery target
Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin
2008-01-01
Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38α MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in neurodegenerative disorders. PMID:19090985
The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.
Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin
2008-12-03
Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.
Structure, inhibition, and regulation of essential lipid A enzymes.
Zhou, Pei; Zhao, Jinshi
2017-11-01
The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.
Designing Safer Analgesics via μ-Opioid Receptor Pathways.
Chan, H C Stephen; McCarthy, Dillon; Li, Jianing; Palczewski, Krzysztof; Yuan, Shuguang
2017-11-01
Pain is both a major clinical and economic problem, affecting more people than diabetes, heart disease, and cancer combined. While a variety of prescribed or over-the-counter (OTC) medications are available for pain management, opioid medications, especially those acting on the μ-opioid receptor (μOR) and related pathways, have proven to be the most effective, despite some serious side effects including respiration depression, pruritus, dependence, and constipation. It is therefore imperative that both academia and industry develop novel μOR analgesics which retain their opioid analgesic properties but with fewer or no adverse effects. In this review we outline recent progress towards the discovery of safer opioid analgesics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Designing Safer Analgesics via μ-Opioid Receptor Pathways
Chan, H.C. Stephen; McCarthy, Dillon; Li, Jianing; Palczewski, Krzysztof; Yuan, Shuguang
2017-01-01
Pain is both a major clinical and economic problem, affecting more people than diabetes, heart disease, and cancer combined. While a variety of prescribed or over-the-counter (OTC) medications are available for pain management, opioid medications, especially those acting on the μ-opioid receptor (μOR) and related pathways, have proven to be the most effective, despite some serious side effects including respiration depression, pruritus, dependence, and constipation. It is therefore imperative that both academia and industry develop novel μOR analgesics which retain their opioid analgesic properties but with fewer or no adverse effects. In this review we outline recent progress towards the discovery of safer opioid analgesics. PMID:28935293
Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle
2018-01-01
Drug discovery and development (DDD) is a collaborative, dynamic process of great interest to researchers, but an area where there is a lack of formal training. The Drug Development Educational Program (DDEP) at New York University was created in 2012 to stimulate an improved, multidisciplinary DDD workforce by educating early stage scientists as well as a variety of other like-minded students. The first course of the program emphasizes post-compounding aspects of DDD; the second course focuses on molecular signaling pathways. In five years, 196 students (candidates for PhD, MD, Master’s degree, and post-doctoral MD/PhD) from different schools (Medicine, Biomedical Sciences, Dentistry, Engineering, Business, and Education) completed the course(s). Pre/post surveys demonstrate knowledge gain across all course topics. 26 students were granted career development awards (73% women, 23% underrepresented minorities). Some graduates of their respective degree-granting/post-doctoral programs embarked on DDD related careers. This program serves as a framework for other academic institutions to develop compatible programs designed to train a more informed DDD workforce. PMID:29657854
Le Feuvre, Rosalind A; Scrutton, Nigel S
2018-06-01
Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.
Ratnam, Joseline; Zdrazil, Barbara; Digles, Daniela; Cuadrado-Rodriguez, Emiliano; Neefs, Jean-Marc; Tipney, Hannah; Siebes, Ronald; Waagmeester, Andra; Bradley, Glyn; Chau, Chau Han; Richter, Lars; Brea, Jose; Evelo, Chris T.; Jacoby, Edgar; Senger, Stefan; Loza, Maria Isabel; Ecker, Gerhard F.; Chichester, Christine
2014-01-01
Integration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge. The Open Pharmacological Concepts Triple Store (Open PHACTS) is an Innovative Medicines Initiative project that uses semantic web technology approaches to enable scientists to easily access and process data from multiple sources to solve real-world drug discovery problems. The project draws together sources of publicly-available pharmacological, physicochemical and biomolecular data, represents it in a stable infrastructure and provides well-defined information exploration and retrieval methods. Here, we highlight the utility of this platform in conjunction with workflow tools to solve pharmacological research questions that require interoperability between target, compound, and pathway data. Use cases presented herein cover 1) the comprehensive identification of chemical matter for a dopamine receptor drug discovery program 2) the identification of compounds active against all targets in the Epidermal growth factor receptor (ErbB) signaling pathway that have a relevance to disease and 3) the evaluation of established targets in the Vitamin D metabolism pathway to aid novel Vitamin D analogue design. The example workflows presented illustrate how the Open PHACTS Discovery Platform can be used to exploit existing knowledge and generate new hypotheses in the process of drug discovery. PMID:25522365
Integrated omics analysis of specialized metabolism in medicinal plants.
Rai, Amit; Saito, Kazuki; Yamazaki, Mami
2017-05-01
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Photoreactive Stapled BH3 Peptides to Dissect the BCL-2 Family Interactome
Braun, Craig R.; Mintseris, Julian; Gavathiotis, Evripidis; Bird, Gregory H.; Gygi, Steven P.; Walensky, Loren D.
2010-01-01
SUMMARY Defining protein interactions forms the basis for discovery of biological pathways, disease mechanisms, and opportunities for therapeutic intervention. To harness the robust binding affinity and selectivity of structured peptides for interactome discovery, we engineered photoreactive stapled BH3 peptide helices that covalently capture their physiologic BCL-2 family targets. The crosslinking α-helices covalently trap both static and dynamic protein interactors, and enable rapid identification of interaction sites, providing a critical link between interactome discovery and targeted drug design. PMID:21168768
Searching for ‘omic’ biomarkers
Lin, David; Hollander, Zsuzsanna; Meredith, Anna; McManus, Bruce M
2009-01-01
Cardiovascular diseases impose enormous social and economic burdens on both individual citizens and on society as a whole. Clinical indicators such as high blood pressure, blood cholesterol and obesity have had some utility in identifying those who are at increased risk of cardiovascular events. However, there remains an urgent need for sensitive and specific indicators, preferably acquired through minimally invasive means, to help stratify patients for more personalized health care. As such, there has been a steadily growing interest in searching for ‘omic’ biomarkers of cardiovascular diseases. Historically, the transition of cardiac biomarker discovery to implementation has been a lengthy and somewhat unregulated process. Recent technological advancements, as well as concurrent efforts by regulatory agencies such as the Food and Drug Administration (United States) and Health Canada to establish policies and guidelines in the ‘omic’ arena, have helped propel the discovery and validation of biomarkers forward. The present paper provides perspective on current strategies in the bio-marker development pathway, as well as the potential limitations associated with each step from discovery to clinical uptake. Canadian biomarker studies now underway illustrate the possibilities for assessment of risk, diagnosis, prognosis and response to therapy, and for the drug discovery process. PMID:19521568
Ouyang, Liang; Cai, Haoyang; Liu, Bo
2016-01-01
Autophagy (macroautophagy) is well known as an evolutionarily conserved lysosomal degradation process for long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed a series of small-molecule compounds that may activate or inhibit autophagy for therapeutic potential on human diseases. However, targeting autophagy for drug discovery still remains in its infancy. In this study, we developed a webserver called Autophagic Compound-Target Prediction (ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant pathways for a given compound. The flexible docking of submitted small-molecule compound (s) to potential autophagic targets could be performed by backend reverse docking. The webpage would return structure-based scores and relevant pathways for each predicted target. Thus, these results provide a basis for the rapid prediction of potential targets/pathways of possible autophagy-activating or autophagy-inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be helpful to shed light on identifying more novel autophagy-activating or autophagy-inhibiting compounds for future therapeutic implications. PMID:26824420
Oxidative Stress, Redox Regulation and Diseases of Cellular Differentiation
Ye, Zhi-Wei; Zhang, Jie; Townsend, Danyelle M.; Tew, Kenneth D.
2015-01-01
Background Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. Scope of review We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. Primary conclusions Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. General Significance The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. PMID:25445706
Bioinformatics approach reveals systematic mechanism underlying lung adenocarcinoma.
Wu, Xiya; Zhang, Wei; Hu, Yunhua; Yi, Xianghua
2015-01-01
The purpose of this work was to explore the systematic molecular mechanism of lung adenocarcinoma and gain a deeper insight into it. Comprehensive bioinformatics methods were applied. Initially, significant differentially expressed genes (DEGs) were analyzed from the Affymetrix microarray data (GSE27262) deposited in the Gene Expression Omnibus (GEO). Subsequently, gene ontology (GO) analysis was performed using online Database for Annotation, Visualization and Integration Discovery (DAVID) software. Finally, significant pathway crosstalk was investigated based on the information derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. According to our results, the N-terminal globular domain of the type X collagen (COL10A1) gene and transmembrane protein 100 (TMEM100) gene were identified to be the most significant DEGs in tumor tissue compared with the adjacent normal tissues. The main GO categories were biological process, cellular component and molecular function. In addition, the crosstalk was significantly different between non-small cell lung cancer pathways and inositol phosphate metabolism pathway, focal adhesion signal pathway, vascular smooth muscle contraction signal pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway and calcium signaling pathway in tumor. Dysfunctional genes and pathways may play key roles in the progression and development of lung adenocarcinoma. Our data provide a systematic perspective for understanding this mechanism and may be helpful in discovering an effective treatment for lung adenocarcinoma.
A review of parameters and heuristics for guiding metabolic pathfinding.
Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E
2017-09-15
Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.
McCormick, Frank
2015-04-15
KRAS proteins play a major role in human cancer, but have not yielded to therapeutic attack. New technologies in drug discovery and insights into signaling pathways that KRAS controls have promoted renewed efforts to develop therapies through direct targeting of KRAS itself, new ways of blocking KRAS processing, or by identifying targets that KRAS cancers depend on for survival. Although drugs that block the well-established downstream pathways, RAF-MAPK and PI3K, are being tested in the clinic, new efforts are under way to exploit previously unrecognized vulnerabilities, such as altered metabolic networks, or novel pathways identified through synthetic lethal screens. Furthermore, new ways of suppressing KRAS gene expression and of harnessing the immune system offer further hope that new ways of treating KRAS are finally coming into view. These issues are discussed in this edition of CCR Focus. ©2015 American Association for Cancer Research.
Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis
NASA Astrophysics Data System (ADS)
Stevanović, Vladan; Trottier, Ryan; Musgrave, Charles; Therrien, Félix; Holder, Aaron; Graf, Peter
2018-03-01
To extend materials design and discovery into the space of metastable polymorphs, rapid and reliable assessment of transformation kinetics to lower energy structures is essential. Herein we focus on diffusionless polymorphic transformations and investigate routes to assess their kinetics using solely crystallographic arguments. As part of this investigation we developed a general algorithm to map crystal structures onto each other, and ascertain the low-energy (fast-kinetics) transformation pathways between them. Pathways with minimal dissociation of chemical bonds, along which the number of bonds (in ionic systems the first-shell coordination) does not decrease below that in the end structures, are shown to always be the fast-kinetics pathways. These findings enable the rapid assessment of the kinetics of polymorphic transformation and the identification of long-lived metastable structures. The utility is demonstrated on a number of transformations including those between high-pressure SnO2 phases, which lack a detailed atomic-level understanding.
Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J
2014-04-25
Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunology of age-related macular degeneration
Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.
2014-01-01
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979
Immunology of age-related macular degeneration.
Ambati, Jayakrishna; Atkinson, John P; Gelfand, Bradley D
2013-06-01
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population.
A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.
Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong
2015-01-01
Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.
Hentemann, Martin F.; Rowley, R. Bruce; Bull, Cathy O.; Jenkins, Susan; Bullion, Ann M.; Johnson, Jeffrey; Redman, Anikó; Robbins, Arthur H.; Esler, William; Fracasso, R. Paul; Garrison, Timothy; Hamilton, Mark; Michels, Martin; Wood, Jill E.; Wilkie, Dean P.; Xiao, Hong; Levy, Joan; Stasik, Enrico; Liu, Ningshu; Schaefer, Martina; Brands, Michael
2016-01-01
Abstract The phosphoinositide 3‐kinase (PI3K) pathway is aberrantly activated in many disease states, including tumor cells, either by growth factor receptor tyrosine kinases or by the genetic mutation and amplification of key pathway components. A variety of PI3K isoforms play differential roles in cancers. As such, the development of PI3K inhibitors from novel compound classes should lead to differential pharmacological and pharmacokinetic profiles and allow exploration in various indications, combinations, and dosing regimens. A screening effort aimed at the identification of PI3Kγ inhibitors for the treatment of inflammatory diseases led to the discovery of the novel 2,3‐dihydroimidazo[1,2‐c]quinazoline class of PI3K inhibitors. A subsequent lead optimization program targeting cancer therapy focused on inhibition of PI3Kα and PI3Kβ. Herein, initial structure–activity relationship findings for this class and the optimization that led to the identification of copanlisib (BAY 80‐6946) as a clinical candidate for the treatment of solid and hematological tumors are described. PMID:27310202
Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring.
Freestone, Todd S; Ju, Kou-San; Wang, Bin; Zhao, Huimin
2017-02-17
The activation of silent natural product gene clusters is a synthetic biology problem of great interest. As the rate at which gene clusters are identified outpaces the discovery rate of new molecules, this unknown chemical space is rapidly growing, as too are the rewards for developing technologies to exploit it. One class of natural products that has been underrepresented is phosphonic acids, which have important medical and agricultural uses. Hundreds of phosphonic acid biosynthetic gene clusters have been identified encoding for unknown molecules. Although methods exist to elicit secondary metabolite gene clusters in native hosts, they require the strain to be amenable to genetic manipulation. One method to circumvent this is pathway refactoring, which we implemented in an effort to discover new phosphonic acids from a gene cluster from Streptomyces sp. strain NRRL F-525. By reengineering this cluster for expression in the production host Streptomyces lividans, utility of refactoring is demonstrated with the isolation of a novel phosphonic acid, O-phosphonoacetic acid serine, and the characterization of its biosynthesis. In addition, a new biosynthetic branch point is identified with a phosphonoacetaldehyde dehydrogenase, which was used to identify additional phosphonic acid gene clusters that share phosphonoacetic acid as an intermediate.
The molecular biology of soft-tissue sarcomas and current trends in therapy.
Quesada, Jorge; Amato, Robert
2012-01-01
Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.
A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus
Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong
2015-01-01
Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180
Khatri, Jibran; Mills, Charlotte Elizabeth; Maskell, Perry; Odongerel, Chimed
2016-01-01
Dietary nitrate (found in green leafy vegetables, such as rocket, and in beetroot) is now recognized to be an important source of nitric oxide (NO), via the nitrate–nitrite–NO pathway. Dietary nitrate confers several cardiovascular beneficial effects on blood pressure, platelets, endothelial function, mitochondrial efficiency and exercise. While this pathway may now seem obvious, its realization followed a rather tortuous course over two decades. Early steps included the discovery that nitrite was a source of NO in the ischaemic heart but this appeared to have deleterious effects. In addition, nitrate‐derived nitrite provided a gastric source of NO. However, residual nitrite was not thought to be absorbed systemically. Nitrite was also considered to be physiologically inert but potentially carcinogenic, through N‐nitrosamine formation. In Part 1 of a two‐part Review on the nitrate‐nitrite‐NO pathway we describe key twists and turns in the elucidation of the pathway and the underlying mechanisms. This provides the critical foundation for the more recent developments in the nitrate–nitrite–NO pathway which are covered in Part 2. PMID:26896747
Dimitrova, N; Nagaraj, A B; Razi, A; Singh, S; Kamalakaran, S; Banerjee, N; Joseph, P; Mankovich, A; Mittal, P; DiFeo, A; Varadan, V
2017-04-27
Characterizing the complex interplay of cellular processes in cancer would enable the discovery of key mechanisms underlying its development and progression. Published approaches to decipher driver mechanisms do not explicitly model tissue-specific changes in pathway networks and the regulatory disruptions related to genomic aberrations in cancers. We therefore developed InFlo, a novel systems biology approach for characterizing complex biological processes using a unique multidimensional framework integrating transcriptomic, genomic and/or epigenomic profiles for any given cancer sample. We show that InFlo robustly characterizes tissue-specific differences in activities of signalling networks on a genome scale using unique probabilistic models of molecular interactions on a per-sample basis. Using large-scale multi-omics cancer datasets, we show that InFlo exhibits higher sensitivity and specificity in detecting pathway networks associated with specific disease states when compared to published pathway network modelling approaches. Furthermore, InFlo's ability to infer the activity of unmeasured signalling network components was also validated using orthogonal gene expression signatures. We then evaluated multi-omics profiles of primary high-grade serous ovarian cancer tumours (N=357) to delineate mechanisms underlying resistance to frontline platinum-based chemotherapy. InFlo was the only algorithm to identify hyperactivation of the cAMP-CREB1 axis as a key mechanism associated with resistance to platinum-based therapy, a finding that we subsequently experimentally validated. We confirmed that inhibition of CREB1 phosphorylation potently sensitized resistant cells to platinum therapy and was effective in killing ovarian cancer stem cells that contribute to both platinum-resistance and tumour recurrence. Thus, we propose InFlo to be a scalable and widely applicable and robust integrative network modelling framework for the discovery of evidence-based biomarkers and therapeutic targets.
Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells
Scoville, Steven D.; Freud, Aharon G.; Caligiuri, Michael A.
2017-01-01
Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development. PMID:28396671
Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.
Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A
2017-01-01
Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.
NASA Astrophysics Data System (ADS)
Stone, S.; Parker, M. S.; Howe, B.; Lazowska, E.
2015-12-01
Rapid advances in technology are transforming nearly every field from "data-poor" to "data-rich." The ability to extract knowledge from this abundance of data is the cornerstone of 21st century discovery. At the University of Washington eScience Institute, our mission is to engage researchers across disciplines in developing and applying advanced computational methods and tools to real world problems in data-intensive discovery. Our research team consists of individuals with diverse backgrounds in domain sciences such as astronomy, oceanography and geology, with complementary expertise in advanced statistical and computational techniques such as data management, visualization, and machine learning. Two key elements are necessary to foster careers in data science: individuals with cross-disciplinary training in both method and domain sciences, and career paths emphasizing alternative metrics for advancement. We see persistent and deep-rooted challenges for the career paths of people whose skills, activities and work patterns don't fit neatly into the traditional roles and success metrics of academia. To address these challenges the eScience Institute has developed training programs and established new career opportunities for data-intensive research in academia. Our graduate students and post-docs have mentors in both a methodology and an application field. They also participate in coursework and tutorials to advance technical skill and foster community. Professional Data Scientist positions were created to support research independence while encouraging the development and adoption of domain-specific tools and techniques. The eScience Institute also supports the appointment of faculty who are innovators in developing and applying data science methodologies to advance their field of discovery. Our ultimate goal is to create a supportive environment for data science in academia and to establish global recognition for data-intensive discovery across all fields.
Dang, Thu‐Thuy T.; Franke, Jakob; Tatsis, Evangelos
2017-01-01
Abstract Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant‐derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti‐arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non‐oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. PMID:28654178
Dang, Thu-Thuy T; Franke, Jakob; Tatsis, Evangelos; O'Connor, Sarah E
2017-08-01
Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant-derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti-arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non-oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
iCOSSY: An Online Tool for Context-Specific Subnetwork Discovery from Gene Expression Data
Saha, Ashis; Jeon, Minji; Tan, Aik Choon; Kang, Jaewoo
2015-01-01
Pathway analyses help reveal underlying molecular mechanisms of complex biological phenotypes. Biologists tend to perform multiple pathway analyses on the same dataset, as there is no single answer. It is often inefficient for them to implement and/or install all the algorithms by themselves. Online tools can help the community in this regard. Here we present an online gene expression analytical tool called iCOSSY which implements a novel pathway-based COntext-specific Subnetwork discoverY (COSSY) algorithm. iCOSSY also includes a few modifications of COSSY to increase its reliability and interpretability. Users can upload their gene expression datasets, and discover important subnetworks of closely interacting molecules to differentiate between two phenotypes (context). They can also interactively visualize the resulting subnetworks. iCOSSY is a web server that finds subnetworks that are differentially expressed in two phenotypes. Users can visualize the subnetworks to understand the biology of the difference. PMID:26147457
Bown, James L; Shovman, Mark; Robertson, Paul; Boiko, Andrei; Goltsov, Alexey; Mullen, Peter; Harrison, David J
2017-05-02
Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualization toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery.
Brown, Samuel M.; Grissom, Colin K.; Rondina, Matthew T.; Hoidal, John R.; Scholand, Mary Beth; Wolff, Roger K.; Morris, Alan H.; Paine, Robert
2015-01-01
Purpose/Aim Acute Respiratory Distress Syndrome (ARDS) is an important clinical and public health problem. Why some at-risk individuals develop ARDS and others do not is unclear but may be related to differences in inflammatory and cell signaling systems. The Receptor for Advanced Glycation Endproducts (RAGE) and Granulocyte-Monocyte Stimulating Factor (GM-CSF) pathways have recently been implicated in pulmonary pathophysiology; whether genetic variation within these pathways contributes to ARDS risk or outcome is unknown. Materials and Methods We studied 842 patients from three centers in Utah and 14 non-Utah ARDS Network centers. We studied patients at risk for ARDS and patients with ARDS to determine whether Single Nucleotide Polymorphisms (SNPs) in the RAGE and GM-CSF pathways were associated with development of ARDS. We studied 29 SNPs in 5 genes within the two pathways and controlled for age, sepsis as ARDS risk factor, and severity of illness, while targeting a false discovery rate of ≤5%. In a secondary analysis we evaluated associations with mortality. Results Of 842 patients, 690 had ARDS, and 152 were at-risk. Sepsis was the risk factor for ARDS in 250 (30%) patients. When controlling for age, APACHE III score, sepsis as risk factor, and multiple comparisons, no SNPs were significantly associated with ARDS. In a secondary analysis, only rs743564 in CSF2 approached significance with regard to mortality (OR 2.17, unadjusted p = 0.005, adjusted p = 0.15). Conclusions Candidate SNPs within 5 genes in the RAGE and GM-CSF pathways were not significantly associated with development of ARDS in this multi-centric cohort. PMID:25513711
Metabolic engineering with plants for a sustainable biobased economy.
Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V
2013-01-01
Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.
Hedgehog and Resident Vascular Stem Cell Fate
Mooney, Ciaran J.; Hakimjavadi, Roya; Fitzpatrick, Emma; Kennedy, Eimear; Walls, Dermot; Morrow, David; Redmond, Eileen M.; Cahill, Paul A.
2015-01-01
The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs) during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall. PMID:26064136
Rho Chi lecture. Pharmaceutical sciences in the next millennium.
Triggle, D J
1999-02-01
Even a cursory survey of this article suggests that the pharmaceutical sciences are being rapidly transformed under the influence of both the new technologies and sciences and the economic imperatives. Of particular importance are scientific and technological advances that may greatly accelerate the critical process of discovery. The possibility of a drug discovery process built around the principles of directed diversity, self-reproduction, evolution, and self-targeting suggests a new paradigm of lead discovery, one based quite directly on the paradigms of molecular biology. Coupled with the principles of nanotechnology, we may contemplate miniature molecular machines containing directed drug factories, circulating the body and capable of self-targeting against defective cells and pathways -- the ultimate "drug delivery machine." However, science and technology are not the only factors that will transform the pharmaceutical sciences in the next century. The necessary reductions in the costs of drug discovery brought about by the rapidly increasing costs of the current drug discovery paradigms means that efforts to decrease the discovery phase and to make drug development part of drug discovery will become increasingly important. This is likely to involve increasing numbers of "alliances," as well as the creation of pharmaceutical research cells -- highly mobile and entrepreneurial groups within or outside of a pharmaceutical company that are formed to carry out specific discovery processes. Some of these will be in the biotechnology industry, but an increasing number will be in universities. The linear process from basic science to applied technology that has been the Western model since Vannevar Bush's Science: The Endless Frontier has probably never been particularly linear and, in any event, is likely to be rapidly supplanted by models where science, scientific development, and technology are more intimately linked. The pharmaceutical sciences have always been an example of use-directed basic research, but the relationships between the pharmaceutical industry, small and large, and the universities seems likely to become increasingly developed in the next century. This may serve as a significant catalyst for the continued transformation of universities into the "knowledge factories" of the 21st century. Regardless, we may expect to see major changes in the research organizational structure in the pharmaceutical sciences even as pharmaceutical companies enjoy record prosperity. And this is in anticipation of tough times to come.
How rare bone diseases have informed our knowledge of complex diseases.
Johnson, Mark L
2016-01-01
Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.
Biochemical Basis of Sestrin Physiological Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Allison; Cho, Chun-Seok; Namkoong, Sim
Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate agingmore » and age-associated diseases.« less
Cohen Freue, Gabriela V.; Meredith, Anna; Smith, Derek; Bergman, Axel; Sasaki, Mayu; Lam, Karen K. Y.; Hollander, Zsuzsanna; Opushneva, Nina; Takhar, Mandeep; Lin, David; Wilson-McManus, Janet; Balshaw, Robert; Keown, Paul A.; Borchers, Christoph H.; McManus, Bruce; Ng, Raymond T.; McMaster, W. Robert
2013-01-01
Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies. PMID:23592955
ERIC Educational Resources Information Center
Grados, Marco A.
2010-01-01
Objective: To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). Method: A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. Results: Genome-wide association studies (GWAS) are now in progress in OCD…
Transforming exoelectrogens for biotechnology using synthetic biology.
TerAvest, Michaela A; Ajo-Franklin, Caroline M
2016-04-01
Extracellular electron transfer pathways allow certain bacteria to transfer energy between intracellular chemical energy stores and extracellular solids through redox reactions. Microorganisms containing these pathways, exoelectrogens, are a critical part of microbial electrochemical technologies that aim to impact applications in bioenergy, biosensing, and biocomputing. However, there are not yet any examples of economically viable microbial electrochemical technologies due to the limitations of naturally occurring exoelectrogens. Here we first briefly summarize recent discoveries in understanding extracellular electron transfer pathways, then review in-depth the creation of customized and novel exoelectrogens for biotechnological applications. We analyze engineering efforts to increase current production in native exoelectrogens, which reveals that modulating certain processes within extracellular electron transfer are more effective than others. We also review efforts to create new exoelectrogens and highlight common challenges in this work. Lastly, we summarize work utilizing engineered exoelectrogens for biotechnological applications and the key obstacles to their future development. Fueled by the development of genetic tools, these approaches will continue to expand and genetically modified organisms will continue to improve the outlook for microbial electrochemical technologies. © 2015 Wiley Periodicals, Inc.
Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery
Iqbal, Iram Khan; Bajeli, Sapna; Akela, Ajit Kumar
2018-01-01
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail. PMID:29473841
Martí-Arbona, Ricardo; Mu, Fangping; Nowak-Lovato, Kristy L.; ...
2014-12-18
In this study, the clustering of genes in a pathway and the co-location of functionally related genes is widely recognized in prokaryotes. We used these characteristics to predict the metabolic involvement for a Transcriptional Regulator (TR) of unknown function, identified and confirmed its biological activity. software tool that identifies the genes encoded within a defined genomic neighborhood for the subject TR and its homologs was developed. The output lists of genes in the genetic neighborhoods, their annotated functions, the reactants/products, and identifies the metabolic pathway in which the encoded-proteins function. When a set of TRs of known function was analyzed,more » we observed that their homologs frequently had conserved genomic neighborhoods that co-located the metabolically related genes regulated by the subject TR. We postulate that TR effectors are metabolites in the identified pathways; indeed the known effectors were present. We analyzed Bxe_B3018 from Burkholderia xenovorans, a TR of unknown function and predicted that this TR was related to the glycine, threonine and serine degradation. We tested the binding of metabolites in these pathways and for those that bound, their ability to modulate TR binding to its specific DNA operator sequence. Using rtPCR, we confirmed that methylglyoxal was an effector of Bxe_3018. These studies provide the proof of concept and validation of a systematic approach to the discovery of the biological activity for proteins of unknown function, in this case a TR. Bxe_B3018 is a methylglyoxal responsive TR that controls the expression of an operon composed of a putative efflux system.« less
Potential for pharmacological manipulation of human embryonic stem cells
Atkinson, Stuart P; Lako, Majlinda; Armstrong, Lyle
2013-01-01
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22515554
Progress in understanding the immunopathogenesis of psoriasis
Mak, R.K.H.; Hundhausen, C.; Nestle, F.O.
2010-01-01
This review emphasizes how translation from bench research to clinical knowledge and vice versa has resulted in considerable progress in understanding the immunopathogenesis of psoriasis. First, the journey in understanding the pathogenic mechanisms behind psoriasis is described. The roles of different components of the adaptive and innate immune systems involved in driving the inflammatory response are explained. Discovery of new immune pathways i.e. the IL23/Th17 axis and its subsequent impact on the development of novel biological therapies is highlighted. Identification of potential targets warranting further research for future therapeutic development are also discussed. PMID:20096156
Heterologous Expression of the Oxytetracycline Biosynthetic Pathway in Myxococcus xanthus▿
Stevens, D. Cole; Henry, Michael R.; Murphy, Kimberly A.; Boddy, Christopher N.
2010-01-01
New natural products for drug discovery may be accessed by heterologous expression of bacterial biosynthetic pathways in metagenomic DNA libraries. However, a “universal” host is needed for this experiment. Herein, we show that Myxococcus xanthus is a potential “universal” host for heterologous expression of polyketide biosynthetic gene clusters. PMID:20208031
Probing HER2-PUMA and EGFR-PUMA Crosstalks in Aggressive Breast Cancer
2012-09-01
phosphorylation on PUMA properties. REPORTABLE OUTCOMES Peer-reviewed publications: Carpenter, RL. and Lo, H.-W. Hedgehog Pathway and GLI1 Isoforms in...Carpenter R, Lo HW. Hedgehog Pathway and GLI1 Isoforms in Human Cancer. Discovery Medicine 13. 2012. 7. Han W, Lo H-W. Landscape of EGFR signaling
Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes
2013-01-01
HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials. PMID:23773282
Cazzanelli, Giulia; Francisco, Rita; Azevedo, Luísa; Carvalho, Patrícia Dias; Almeida, Ana; Côrte-Real, Manuela; Oliveira, Maria José; Lucas, Cândida; Sousa, Maria João
2018-01-01
The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy. PMID:29463063
Epigenetic Regulation in Plants
Pikaard, Craig S.; Mittelsten Scheid, Ortrun
2014-01-01
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments. PMID:25452385
Metabolomics: beyond biomarkers and towards mechanisms
Johnson, Caroline H.; Ivanisevic, Julijana; Siuzdak, Gary
2017-01-01
Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases. PMID:26979502
Clinical Neurogenetics: Amyotrophic Lateral Sclerosis
Harms, Matthew B.; Baloh, Robert H.
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, about which our understanding is expanding rapidly as its genetic causes are uncovered. The pace of new gene discovery over the last 5 years has accelerated, providing new insights into the pathogenesis of disease and highlighting biological pathways for target for therapeutic development. This article reviews our current understanding of the heritability of ALS, provides an overview of each of the major ALS genes, highlighting their phenotypic characteristics and frequencies as a guide for clinicians evaluating patients with ALS. PMID:24176417
Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M
2014-01-01
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210
Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao
2014-04-01
During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges. Copyright © 2013 Elsevier B.V. All rights reserved.
Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.
Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi
2016-04-01
Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.
Merging chemical ecology with bacterial genome mining for secondary metabolite discovery.
Vizcaino, Maria I; Guo, Xun; Crawford, Jason M
2014-02-01
The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host-bacteria interactions.
Gerlt, John A
2017-08-22
The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of "genomic enzymology" web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence-function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.
2017-01-01
The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of “genomic enzymology” web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence–function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems. PMID:28826221
Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.
Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens
2014-08-05
The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.
New approaches to the prevention of organ allograft rejection and tolerance induction.
Bagley, Jessamyn; Tian, Chaorui; Iacomini, John
2007-07-15
The therapeutic use of organ allograft transplantation is dependent on the discovery and clinical application of immunologic strategies to blunt the immune response and prevent graft rejection. It was the discovery of powerful immunotherapeutics such as cyclosporine A and rapamycin that has allowed for the widespread use of organ transplantation to treat organ failure. However, despite the attainment of impressive survival rates 1 year after organ transplantation, a significant number of organ allografts are lost to immune-mediated chronic rejection. Furthermore, significant morbidity and mortality can be associated with the use of currently available immunosuppressive regimens. Thus, the development of novel approaches to prevent of organ allograft rejection remains extremely important. Here we discuss two promising and novel avenues of research. First, the discovery and characterization of naturally occurring immune inhibitory signals have led to recent research aimed at exploiting these pathways to induce peripheral tolerance to alloantigen. Furthermore, we discuss new approaches to the induction of donor-specific tolerance by induction of molecular chimerism and the transfer of alloantigen-expressing mature T cells.
Engelberg, David; Perlman, Riki; Levitzki, Alexander
2014-12-01
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grambow, Colin A.; Jamal, Adeel; Li, Yi -Pei
Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The presentmore » joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).« less
Grambow, Colin A.; Jamal, Adeel; Li, Yi -Pei; ...
2017-12-22
Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The presentmore » joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).« less
Gardell, Stephen J; Roth, Gregory P; Kelly, Daniel P
2010-10-01
The flow of innovative, effective, and safe new drugs from pharmaceutical laboratories for the treatment and prevention of cardiovascular disease has slowed to a trickle. While the need for breakthrough cardiovascular disease drugs is still paramount, the incentive to develop these agents has been blunted by burgeoning clinical development costs coupled with a heightened risk of failure due to the unprecedented nature of the emerging drug targets and increasingly challenging regulatory environment. A fuller understanding of the drug targets and employing novel biomarker strategies in clinical trials should serve to mitigate the risk. In any event, these current challenges have evoked changing trends in the pharmaceutical industry, which have created an opportunity for non-profit biomedical research institutions to play a pivotal partnering role in early stage drug discovery. The obvious strengths of academic research institutions is the breadth of their scientific programs and the ability and motivation to "go deep" to identify and characterize new target pathways that unlock the specific mysteries of cardiovascular diseases--leading to a bounty of novel therapeutic targets and prescient biomarkers. However, success in the drug discovery arena within the academic environment is contingent upon assembling the requisite infrastructure, annexing the talent to interrogate and validate the drug targets, and building translational bridges with pharmaceutical organizations and patient-oriented researchers.
2010-01-01
Background Plasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level. Results Morphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies. PMID:20385001
Drug Repositioning for Effective Prostate Cancer Treatment.
Turanli, Beste; Grøtli, Morten; Boren, Jan; Nielsen, Jens; Uhlen, Mathias; Arga, Kazim Y; Mardinoglu, Adil
2018-01-01
Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.
2015-01-01
Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products. PMID:24484381
Integrating genomics and proteomics data to predict drug effects using binary linear programming.
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be used to elucidate potential mechanisms of a compound's efficacy.
TNF-related apoptosis-inducing ligand (TRAIL): A new path to anti-cancer therapies
Holoch, Peter A.; Griffith, Thomas S.
2009-01-01
Since its discovery in 1995, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor super family, has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. Consequently, activation of the apoptotic signaling pathway from the death-inducing TRAIL receptors provides an attractive, biologically-targeted approach to cancer therapy. A great deal of research has focused on deciphering the TRAIL receptor signaling cascade and intracellular regulation of this pathway, as many human tumor cells possess mechanisms of resistance to TRAIL-induced apoptosis. This review focuses on the currently state of knowledge regarding TRAIL signaling and resistance, the preclinical development of therapies targeted at TRAIL receptors and modulators of the pathway, and the results of clinical trials for cancer treatment that have emerged from this base of knowledge. TRAIL-based approaches to cancer therapy vary from systemic administration of recombinant, soluble TRAIL protein with or without the combination of traditional chemotherapy, radiation or novel anticancer agents to agonistic monoclonal antibodies directed against functional TRAIL receptors to TRAIL gene transfer therapy. A better understanding of TRAIL resistance mechanisms may allow for the development of more effective therapies that exploit this cell-mediated pathway to apoptosis. PMID:19836385
The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases.
Cuda, Carla M; Pope, Richard M; Perlman, Harris
2016-08-23
Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.
Moulos, Panagiotis; Samiotaki, Martina; Panayotou, George; Dedos, Skarlatos G.
2016-01-01
The cells of prothoracic glands (PG) are the main site of synthesis and secretion of ecdysteroids, the biochemical products of cholesterol conversion to steroids that shape the morphogenic development of insects. Despite the availability of genome sequences from several insect species and the extensive knowledge of certain signalling pathways that underpin ecdysteroidogenesis, the spectrum of signalling molecules and ecdysteroidogenic cascades is still not fully comprehensive. To fill this gap and obtain the complete list of cell membrane receptors expressed in PG cells, we used combinatory bioinformatic, proteomic and transcriptomic analysis and quantitative PCR to annotate and determine the expression profiles of genes identified as putative cell membrane receptors of the model insect species, Bombyx mori, and subsequently enrich the repertoire of signalling pathways that are present in its PG cells. The genome annotation dataset we report here highlights modules and pathways that may be directly involved in ecdysteroidogenesis and aims to disseminate data and assist other researchers in the discovery of the role of such receptors and their ligands. PMID:27576083
Wnt7a interaction with Fzd5 and detection of signaling activation using a split eGFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmon, Kendra S.; Loose, David S.
2008-04-04
Wnts are secreted glycoproteins that regulate important cellular processes including proliferation, differentiation, and cell fate. In the {beta}-catenin/canonical pathway, Wnt interacts with Fzd receptors to inhibit degradation of {beta}-catenin and promote its translocation into the nucleus where it regulates transcription of a number of genes. Dysregulation of this pathway has been attributed to a host of diseases including cancer. As a result, components of the {beta}-catenin/canonical pathway have been gaining recognition as promising targets for the discovery of novel therapeutic agents. Here, we show, using an ELISA-based protein-protein binding assay that purified Wnt7a binds to the extracellular cysteine-rich domain ofmore » Fzd5 in the nanomolar range. We have developed a novel split eGFP complementation assay to visually detect Wnt7a-Fzd5 interactions and subsequent pathway activation in cells. These biological tools could help lead to a better understanding of Wnt-Fzd interactions and the identification of new modulators of Wnt signaling.« less
Investigating the Metastability of Clathrate Hydrates for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Carolyn Ann
2014-11-18
Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathratemore » hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate hydrate systems are pivotal in the fundamental understanding of crystalline clathrate hydrates and the discovery of new clathrate hydrate properties and novel materials for a broad spectrum of energy applications, including: energy storage (hydrogen, natural gas); carbon dioxide sequestration; controlling hydrate formation in oil/gas transportation in subsea pipelines. The Project has also enabled the training of undergraduate, graduate and postdoctoral students in computational methods, molecular spectroscopy and diffraction, and measurement methods at extreme conditions of high pressure and low temperature.« less
High content live cell imaging for the discovery of new antimalarial marine natural products
2012-01-01
Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. PMID:22214291
High content live cell imaging for the discovery of new antimalarial marine natural products.
Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G
2012-01-03
The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.
Regulation of Metastasis and DNA Damage Resistance Pathways by Transposable Elements
2014-10-01
Innes AM, Boycott KM, Moreau LA, Moilanen JS, Greenberg RA: Biallelic Mutations in BRCA1 Cause a New Fanconi Anemia Subtype. Cancer Discov 2014 in...corresponding authors. Highlighted in Cancer Discovery 2013: D’Andrea AD. BRCA1: A Missing Link in the Fanconi /BRCA Pathway. 5. Tang J, Cho NW, Cui G, Manion EM
Unusual flavoenzyme catalysis in marine bacteria
Teufel, Robin; Agarwal, Vinayak; Moore, Bradley S.
2016-01-01
Ever since the discovery of the flavin cofactor more than 80 years ago, flavin-dependent enzymes have emerged as ubiquitous and versatile redox catalysts in primary metabolism. Yet, the recent advances in the discovery and characterization of secondary metabolic pathways exposed new roles for flavin-mediated catalysis in the generation of structurally complex natural products. Here, we review a selection of key biosynthetic flavoenzymes from marine bacterial secondary metabolism and illustrate how their functional and mechanistic investigation expanded our view of the cofactor's chemical repertoire and led to the discovery of a previously unknown flavin redox state. PMID:26803009
Bhattacharjee, Biplab; Simon, Rose Mary; Gangadharaiah, Chaithra; Karunakar, Prashantha
2013-06-28
Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an antileptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.
Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus.
Toris, Carol B; Gelfman, Claire; Whitlock, Andy; Sponsel, William E; Rowe-Rendleman, Cheryl L
2017-09-01
Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.
Discovery of cancer common and specific driver gene sets
2017-01-01
Abstract Cancer is known as a disease mainly caused by gene alterations. Discovery of mutated driver pathways or gene sets is becoming an important step to understand molecular mechanisms of carcinogenesis. However, systematically investigating commonalities and specificities of driver gene sets among multiple cancer types is still a great challenge, but this investigation will undoubtedly benefit deciphering cancers and will be helpful for personalized therapy and precision medicine in cancer treatment. In this study, we propose two optimization models to de novo discover common driver gene sets among multiple cancer types (ComMDP) and specific driver gene sets of one certain or multiple cancer types to other cancers (SpeMDP), respectively. We first apply ComMDP and SpeMDP to simulated data to validate their efficiency. Then, we further apply these methods to 12 cancer types from The Cancer Genome Atlas (TCGA) and obtain several biologically meaningful driver pathways. As examples, we construct a common cancer pathway model for BRCA and OV, infer a complex driver pathway model for BRCA carcinogenesis based on common driver gene sets of BRCA with eight cancer types, and investigate specific driver pathways of the liquid cancer lymphoblastic acute myeloid leukemia (LAML) versus other solid cancer types. In these processes more candidate cancer genes are also found. PMID:28168295
Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy.
Kirk, Jon; Shah, Nirav; Noll, Braxton; Stevens, Craig B; Lawler, Marshall; Mougeot, Farah B; Mougeot, Jean-Luc C
2018-08-01
Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.
Horii, Ikuo
2016-01-01
Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision medicine are to be addressed for the new aspect of efficacy and safety evaluation.
Use of eQTL Analysis for the Discovery of Target Genes Identified by GWAS
2013-04-01
the biologic pathways affected by these inherited factors, and ultimately to identify targets for disease prediction, risk stratification and...quality using an Agilent chip technology. Cases having a RIN number of 7.0 or greater were considered good quality. Once completed, the optimum set of...AD_________________ Award Number: W81XWH-11-1-0261 TITLE: Use of eQTL Analysis for the Discovery of
Czarny, T. L.; Perri, A. L.; French, S.
2014-01-01
The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489
Vestibular pathways involved in cognition
Hitier, Martin; Besnard, Stephane; Smith, Paul F.
2014-01-01
Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projection areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: (1) the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; (2) the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of head direction; (3) the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and (4) a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex), which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition. PMID:25100954
Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation
Ragsdale, Stephen W.; Pierce, Elizabeth
2008-01-01
I. Summary Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Wood-Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that have led to the identification of the key components and steps of this usual mechanism of CO and CO2 fixation. In this historical perspective, we have included reflections that hopefully will sketch the landscape of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then describe the properties of the genes and enzymes involved in the pathway and conclude with a section describing some major questions that remain unanswered. PMID:18801467
Huang, Yolanda Y; Martínez-Del Campo, Ana; Balskus, Emily P
2018-02-06
The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ 1 -pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.
Transcriptomic profile of leg muscle during early growth in chicken
Zhang, Genxi; Li, Tingting; Ling, Jiaojiao; Zhang, Xiangqian; Wang, Jinyu
2017-01-01
The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development. PMID:28291821
Bronchopulmonary Dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases
McEvoy, Cindy T.; Jain, Lucky; Schmidt, Barbara; Abman, Steven; Bancalari, Eduardo
2014-01-01
Bronchopulmonary dysplasia (BPD) is the most common complication of extreme preterm birth. Infants who develop BPD manifest aberrant or arrested pulmonary development and can experience lifelong alterations in cardiopulmonary function. Despite decades of promising research, primary prevention of BPD has proven elusive. This workshop report identifies current barriers to the conduct of primary prevention studies for BPD and causal pathways implicated in BPD pathogenesis. Throughout, we highlight promising areas for research to improve understanding of normal and aberrant lung development, distinguish BPD endotypes, and ascertain biomarkers for more targeted therapeutic approaches to prevention. We conclude with research recommendations and priorities to accelerate discovery and promote lung health in infants born preterm. PMID:24754823
Homeodomains, Hedgehogs, and Happiness.
Scott, Matthew P
2016-01-01
Developmental biologists have had a spectacular quarter century of discoveries, building on many decades of work earlier, discovering molecular, cellular, and genetic mechanisms that underlie the magical process by which an egg becomes a plant or animal. Among the discoveries were homeodomains, DNA-binding domains that allow transcription factors to recognize their target genes, and the Hedgehog signaling pathway, which is used in many organs and tissues for communication among cells. The experience of unveiling the mechanisms and molecules connected to both of these findings has been remarkable, joyful, difficult, and a time of great teamwork and collaboration within and between laboratory groups. More than ever it is possible to discern the evolutionary processes, and their mechanisms, that led to the diversity of life on earth. A huge amount of work remains to be done to obtain a broad understanding of what happened and how development works. © 2016 Elsevier Inc. All rights reserved.
Hypothalamic neurones governing glucose homeostasis.
Coppari, R
2015-06-01
The notion that the brain directly controls the level of glucose in the blood (glycaemia) independent of its known action on food intake and body weight has been known ever since 1849. That year, the French physiologist Dr Claude Bernard reported that physical puncture of the floor of the fourth cerebral ventricle rapidly leads to an increased level of sugar in the blood (and urine) in rabbits. Despite this important discovery, it took approximately 150 years before significant efforts aimed at understanding the underlying mechanism of brain-mediated control of glucose metabolism were made. Technological developments allowing for genetically-mediated manipulation of selected molecular pathways in a neurone-type-specific fashion unravelled the importance of specific molecules in specific neuronal populations. These neuronal pathways govern glucose metabolism in the presence and even in the absence of insulin. Also, a peculiarity of these pathways is that certain biochemically-defined neurones govern glucose metabolism in a tissue-specific fashion. © 2015 British Society for Neuroendocrinology.
A novel role of cytosolic protein synthesis inhibition in aminoglycoside ototoxicity
Francis, Shimon P.; Katz, Joshua; Fanning, Kathryn D.; Harris, Kimberly A.; Nicholas, Brian D.; Lacy, Michael; Pagana, James; Agris, Paul F.; Shin, Jung-Bum
2013-01-01
Ototoxicity is a main dose-limiting factor in the clinical application of aminoglycoside antibiotics. Despite longstanding research efforts, our understanding of the mechanisms underlying aminoglycoside ototoxicity remains limited. Here we report the discovery of a novel stress pathway that contributes to aminoglycoside-induced hair cell degeneration. Modifying the recently developed bioorthogonal noncanonical amino acid tagging (BONCAT) method, we used click-chemistry to study the role of protein synthesis activity in aminoglycoside-induced hair cell stress. We demonstrate that aminoglycosides inhibit protein synthesis in hair cells and activate a signaling pathway similar to ribotoxic stress response, contributing to hair cell degeneration. The ability of a particular aminoglycoside to inhibit protein synthesis and to activate the c-Jun N-terminal kinase (JNK) pathway correlated well with its ototoxic potential. Finally, we report that a FDA-approved drug known to inhibit ribotoxic stress response also prevents JNK activation and improves hair cell survival, opening up novel strategies to prevent and treat aminoglycoside ototoxicity. PMID:23407963
Developing models for cachexia and their implications in drug discovery.
Konishi, Masaaki; Ebner, Nicole; von Haehling, Stephan; Anker, Stefan D; Springer, Jochen
2015-07-01
Cachexia is a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of fat mass. Systemic inflammation plays a central role in its pathophysiology. As millions of patients are in a cachectic state of chronic disease, cachexia is one of the major causes of death worldwide. Difficulties in the recruitment and follow-up of clinical trials mean that well-characterized animal models are of great importance in developing cachexia therapies. However, some of the widely used animal models have limitations in procedural reproducibility or in recapitulating in the cachectic phenotype, which has warranted the development of novel models for cachexia. This review focuses on some of the currently developing rodent models designed to mimic each co-morbidity in cachexia. Through developing cancer models, researchers have been seeking more targets for intervention. In cardiac cachexia, technical issues have been overcome by transgenic models. Furthermore, the development of new animal models has enabled the elucidation of the roles of inflammation, anabolism/catabolism in muscle/fat tissue and anorexia on cachexia. As metabolic and inflammatory pathways in cachexia may compromise cardiac muscle, the analysis of cardiac function/tissue in non-cardiac cachexia may be a useful component of cachexia assessment common to different underlying diseases and pave the way for novel drug discovery.
Zur Biosynthese von Phenylalanin und Tyrosin
NASA Astrophysics Data System (ADS)
Lingens, F.; Keller, E.
1983-03-01
With the discovery of arogenic acid two new pathways for the biosynthesis of phenylalanine and tyrosine have been revealed. The occurrence of two, three, or four pathways for the biosynthesis of phenylalanine and tyrosine in microorganisms and plants may be a useful tool for taxonomic classifications. Investigations on enterobacteriaceae, pseudomonads, flavobacteria, streptomycetes, archaebacteria, and on Sphaerotilus, Trichococcus and Leptothrix species from bulking sludge are described. The possible role of arogenate in the evolution of the pathways for tyrosine and phenylalanine biosynthesis is discussed.
DNA repair variants and breast cancer risk.
Grundy, Anne; Richardson, Harriet; Schuetz, Johanna M; Burstyn, Igor; Spinelli, John J; Brooks-Wilson, Angela; Aronson, Kristan J
2016-05-01
A functional DNA repair system has been identified as important in the prevention of tumour development. Previous studies have hypothesized that common polymorphisms in DNA repair genes could play a role in breast cancer risk and also identified the potential for interactions between these polymorphisms and established breast cancer risk factors such as physical activity. Associations with breast cancer risk for 99 single nucleotide polymorphisms (SNPs) from genes in ten DNA repair pathways were examined in a case-control study including both Europeans (644 cases, 809 controls) and East Asians (299 cases, 160 controls). Odds ratios in both additive and dominant genetic models were calculated separately for participants of European and East Asian ancestry using multivariate logistic regression. The impact of multiple comparisons was assessed by correcting for the false discovery rate within each DNA repair pathway. Interactions between several breast cancer risk factors and DNA repair SNPs were also evaluated. One SNP (rs3213282) in the gene XRCC1 was associated with an increased risk of breast cancer in the dominant model of inheritance following adjustment for the false discovery rate (P < 0.05), although no associations were observed for other DNA repair SNPs. Interactions of six SNPs in multiple DNA repair pathways with physical activity were evident prior to correction for FDR, following which there was support for only one of the interaction terms (P < 0.05). No consistent associations between variants in DNA repair genes and breast cancer risk or their modification by breast cancer risk factors were observed. © 2016 Wiley Periodicals, Inc.
Padmanabhan, Sandosh; Aman, Alisha; Dominiczak, Anna F
2018-06-07
Hypertension is recognised as the biggest contributor to the global burden of disease, but it is controlled in less than a fifth of patients worldwide, despite being relatively easy to detect and the availability of inexpensive safe generic drugs. Blood pressure is regulated by a complex network of physiologic pathways with currently available drugs targeting key receptors or enzymes in the top pathways. Major advances in the dissection of both monogenic and polygenic determinants of blood pressure regulation and variation have not resulted in rapid translation of these discoveries into clinical applications or precision medicine. Uromodulin is an example of a novel gene for hypertension identified from genome-wide association studies, currently the basis of a clinical trial to reposition loop diuretics in hypertension management. Gene-editing studies have established a genome-wide association studies (GWAS) SNP in chromosome 6p24, implicated in six conditions including hypertension, as a distal regulator of the endothelin-1 gene around 3000 base pairs away. Genomics of aldosterone-producing adenomas bring to focus the paradox in genomic medicine where availability of cheap generic drugs may render precision medicine uneconomical. The speed of technology-driven genomic discoveries and the sluggish traditional pathways of drug development and translation need harmonisation to make a timely and early impact on global public health. This requires a directed collaborative effort for which we propose a hypertension moonshot to make a quantum leap in hypertension management and cardiovascular risk reduction by bringing together traditional bioscience, omics, engineering, digital technology and data science.
Alternative ways of modulating JAK-STAT pathway
2012-01-01
Most attempts to develop inhibitors of STAT transcription factors target either activating phosphorylation of tyrosine residue or SH2 domains. However, all six domains of STATs are highly conserved between the species and play important roles in the function of this family of transcription factors. STATs are involved in numerous protein-protein interactions that are likely to regulate and fine tune transcriptional activity. Targeting these interactions can provide plentiful opportunities for the discovery of novel drug candidates and powerful chemical biology tools. Using N-terminal domains as an example we describe alternative rational approaches to the development of modulators of JAK-STAT signaling. PMID:24058784
USDA-ARS?s Scientific Manuscript database
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl-phosphate (IPP) in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisi...
Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E
2015-10-15
Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.
Allosteric Tuning of Caspase-7: A Fragment-Based Drug Discovery Approach.
Vance, Nicholas R; Gakhar, Lokesh; Spies, M Ashley
2017-11-13
The caspase family of cysteine proteases are highly sought-after drug targets owing to their essential roles in apoptosis, proliferation, and inflammation pathways. High-throughput screening efforts to discover inhibitors have gained little traction. Fragment-based screening has emerged as a powerful approach for the discovery of innovative drug leads. This method has become a central facet of drug discovery campaigns in the pharmaceutical industry and academia. A fragment-based drug discovery campaign against human caspase-7 resulted in the discovery of a novel series of allosteric inhibitors. An X-ray crystal structure of caspase-7 bound to a fragment hit and a thorough kinetic characterization of a zymogenic form of the enzyme were used to investigate the allosteric mechanism of inhibition. This work further advances our understanding of the mechanisms of allosteric control of this class of pharmaceutically relevant enzymes, and provides a new path forward for drug discovery efforts. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Melatonin effects on Plasmodium life cycle: new avenues for therapeutic approach.
Srinivasan, Venkataramanujam; Ahmad, Asma H; Mohamed, Mahaneem; Zakaria, Rahimah
2012-05-01
Malaria remains a global health problem affecting more than 515 million people all over the world including Malaysia. It is on the rise, even within unknown regions that previous to this were free of malaria. Although malaria eradication programs carried out by vector control programs are still effective, anti-malarial drugs are also used extensively for curtailing this disease. But resistance to the use of anti-malarial drugs is also increasing on a daily basis. With an increased understanding of mechanisms that cause growth, differentiation and development of malarial parasites in rodents and humans, new avenues of therapeutic approaches for controlling the growth, synchronization and development of malarial parasites are essential. Within this context, the recent discoveries related to IP3 interconnected signalling pathways, the release of Ca2+ from intracellular stores of Plasmodium, ubiquitin protease systems as a signalling pathway, and melatonin influencing the growth and differentiation of malarial parasites by its effects on these signalling pathways have opened new therapeutic avenues for arresting the growth and differentiation of malarial parasites. Indeed, the use of melatonin antagonist, luzindole, has inhibited the melatonin's effect on these signalling pathways and thereby has effectively reduced the growth and differentiation of malarial parasites. As Plasmodium has effective sensors which detect the nocturnal plasma melatonin concentrations, suppression of plasma melatonin levels with the use of bright light during the night or by anti-melatonergic drugs and by using anti-kinase drugs will help in eradicating malaria on a global level. A number of patients have been admitted with regards to the control and management of malarial growth. Patents related to the discovery of serpentine receptors on Plasmodium, essential for modulating intra parasitic melatonin levels, procedures for effective delivery of bright light to suppress plasma melatonin levels and thereby arresting the growth and elimination of malarial parasites from the blood of the host are all cited in the paper. The purpose of the paper is to highlight the importance of melatonin acting as a cue for Plasmodium faciparum growth and to discuss the ways of curbing the effects of melatonin on Plasmodium growth and for arresting its life cycle, as a method of eliminating the parasite from the host.
The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma
Kim, Alex; Cohen, Mark S.
2016-01-01
Introduction In the era of precision medicine and sophisticated modern genetics, the discovery of the BRAFV600 inhibitor, vemurafenib, quickly became the model for targeted therapy in melanomas. As early as 2002, the majority of metastatic melanomas were described to harbor the BRAFV600 mutation, setting the stage for an explosion of interest for targeting this protein as a novel therapeutic strategy. The highly selective BRAFV600 inhibitor, vemurafenib, was identified initially through a large-scale drug screen. Areas Covered Here we examine vemurafenib's journey from discovery to clinical use in metastatic melanoma. Topics covered include preclinical data, single agent Phase 1,2 and 3 clinical trials, resistance issues and mechanisms, adverse effects including the development of squamous cell cancers, and combination trials. Expert Opinion Due to its tolerance, low toxicity profile, rapid tumor response, and improved outcomes in melanoma patients with BRAFV600 mutations, vemurafenib was advanced rapidly through clinical trials to receive FDA approval in 2011. While its efficacy is well documented, durability has become an issue for most patients who experience therapeutic resistance in approximately 6-8 months. In addition, a concerning toxicity observed in patients taking the drug include development of localized cutaneous squamous cell carcinomas (SCCs). It is hypothesized that drug resistance and SCC development result from a similar paradoxical activation of protein signaling pathways, specifically MAPK. Identification of these mechanisms has led to additional treatment strategies involving new combination therapies. PMID:27327499
Eswaran, Jeyanthy; Li, Da-Qiang; Shah, Anil; Kumar, Rakesh
2012-07-15
The evolution of cancer cells involves deregulation of highly regulated fundamental pathways that are central to normal cellular architecture and functions. p21-activated kinase 1 (PAK1) was initially identified as a downstream effector of the GTPases Rac and Cdc42. Subsequent studies uncovered a variety of new functions for this kinase in growth factor and steroid receptor signaling, cytoskeleton remodeling, cell survival, oncogenic transformation, and gene transcription, largely through systematic discovery of its direct, physiologically relevant substrates. PAK1 is widely upregulated in several human cancers, such as hormone-dependent cancer, and is intimately linked to tumor progression and therapeutic resistance. These exciting developments combined with the kinase-independent role of PAK1-centered phenotypic signaling in cancer cells elevated PAK1 as an attractive drug target. Structural and biochemical studies revealed the precise mechanism of PAK1 activation, offering the possibility to develop PAK1-targeted cancer therapeutic approaches. In addition, emerging reports suggest the potential of PAK1 and its specific phosphorylated substrates as cancer prognostic markers. Here, we summarize recent findings about the PAK1 molecular pathways in human cancer and discuss the current status of PAK1-targeted anticancer therapies.
Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling
2015-01-01
Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035
Beck, Joseph Thaddeus; Ismail, Amen; Tolomeo, Christina
2014-09-01
Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haro von Mogel, Karl J.
Carbohydrate metabolism is a biologically, economically, and culturally important process in crop plants. Humans have selected many crop species such as maize (Zea mays L.) in ways that have resulted in changes to carbohydrate metabolic pathways, and understanding the underlying genetics of this pathway is therefore exceedingly important. A previously uncharacterized starch metabolic pathway mutant, sugary enhancer1 (se1), is a recessive modifier of sugary1 (su1) sweet corn that increases the sugar content while maintaining an appealing creamy texture. This allele has been incorporated into many sweet corn varieties since its discovery in the 1970s, however, testing for the presence of this allele has been difficult. A genetic stock was developed that allowed the presence of se1 to be visually scored in segregating ears, which were used to genetically map se1 to the deletion of a single gene model located on the distal end of the long arm of chromosome 2. An analysis of homology found that this gene is specific to monocots, and the gene is expressed in the endosperm and developing leaf. The se1 allele increased water soluble polysaccharide (WSP) and decreased amylopectin in maize endosperm, but there was no overall effect on starch content in mature leaves due to se1. This discovery will lead to a greater understanding of starch metabolism, and the marker developed will assist in breeding. There is a present need for increased training for plant breeders to meet the growing needs of the human population. To raise the profile of plant breeding among young students, a series of videos called Fields of Study was developed. These feature interviews with plant breeders who talk about what they do as plant breeders and what they enjoy about their chosen profession. To help broaden the education of students in college biology courses, and assist with the training of plant breeders, a second video series, Pollination Methods was developed. Each video focuses on one or two major crops, their genetics, and shows how to make controlled crosses with these plants. Both video series have already made contributions to the recruitment and training of future plant breeders.
Neurofibromatosis as a gateway to better treatment for a variety of malignancies.
Bakker, Annette C; La Rosa, Salvatore; Sherman, Larry S; Knight, Pamela; Lee, Hyerim; Pancza, Patrice; Nievo, Marco
2017-05-01
The neurofibromatoses (NF) are a group of rare genetic disorders that can affect all races equally at an incidence from 1:3000 (NF1) to a log unit lower for NF2 and schwannomatosis. Since the research community is reporting an increasing number of malignant cancers that carry mutations in the NF genes, the general interest of both the research and pharma community is increasing and the authors saw an opportunity to present a novel, fresh approach to drug discovery in NF. The aim of the paper is to challenge the current drug discovery approach to NF, whereby existing targeted therapies that are either in the clinic or on the market for other disease indications are repurposed for NF. We offer a suggestion for an alternative drug discovery approach. In the new approach, selective and tolerable targeted therapies would be developed for NF and later expanded to patients with more complex diseases such as malignant cancer in which the NF downstream pathways are deregulated. The Children's Tumor Foundation, together with some other major NF funders, is playing a key role in funding critical initiatives that will accelerate the development of better targeted therapies for NF patients, while these novel, innovative treatments could potentially be beneficial to molecularly characterized cancer patients in which NF mutations have been identified. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery
Park, Soo-Jin; Im, Dong-Soon
2017-01-01
Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, S1P1–5. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn’s disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications. PMID:28035084
Fujimoto, Takuya; Imaeda, Yasuhiro; Konishi, Noriko; Hiroe, Katsuhiko; Kawamura, Masaki; Textor, Garret P; Aertgeerts, Kathleen; Kubo, Keiji
2010-05-13
Coagulation enzyme factor Xa (FXa) is a particularly promising target for the development of new anticoagulant agents. We previously reported the imidazo[1,5-c]imidazol-3-one derivative 1 as a potent and orally active FXa inhibitor. However, it was found that 1 predominantly undergoes hydrolysis upon incubation with human liver microsomes, and the human specific metabolic pathway made it difficult to predict the human pharmacokinetics. To address this issue, our synthetic efforts were focused on modification of the imidazo[1,5-c]imidazol-3-one moiety of the active metabolite 3a, derived from 1, which resulted in the discovery of the tetrahydropyrimidin-2(1H)-one derivative 5k as a highly potent and selective FXa inhibitor. Compound 5k showed no detectable amide bond cleavage in human liver microsomes, exhibited a good pharmacokinetic profile in monkeys, and had a potent antithrombotic efficacy in a rabbit model without prolongation of bleeding time. Compound 5k is currently under clinical development with the code name TAK-442.
Shackleford, Jessica P.; Shen, Bo; Johnston, Jeffrey N.
2012-01-01
The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of 18O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O2) to deliver the amide oxygen from O2. This understanding was used to develop a straightforward protocol for the preparation of 18O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of . PMID:22184227
One-Carbon Metabolism in Health and Disease
Ducker, Gregory S.; Rabinowitz, Joshua D.
2017-01-01
One-carbon (1C) metabolism, mediated by the folate cofactor, supports multiple physiological processes. These include biosynthesis (purines and thymidine), amino acid homeostasis (glycine, serine, and methionine), epigenetic maintenance, and redox defense. Both within eukaryotic cells and across organs, 1C metabolic reactions are compartmentalized. Here we review the fundamentals of mammalian 1C metabolism, including the pathways active in different compartments, cell types, and biological states. Emphasis is given to recent discoveries enabled by modern genetics, analytical chemistry, and isotope tracing. An emerging theme is the biological importance of mitochondrial 1C reactions, both for producing 1C units that are exported to the cytosol and for making additional products, including glycine and NADPH. Increased clarity regarding differential folate pathway usage in cancer, stem cells, development, and adult physiology is reviewed and highlights new opportunities for selective therapeutic intervention. PMID:27641100
Neutrophils and the Inflammatory Tissue Microenvironment in the Mucosa
Campbell, Eric L.; Kao, Daniel J.; Colgan, Sean P.
2016-01-01
The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation. PMID:27558331
Fakhry, Carl Tony; Kulkarni, Prajna; Chen, Ping; Kulkarni, Rahul; Zarringhalam, Kourosh
2017-08-22
Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class. In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based features to train machine-learning models for the discovery of bacterial sRNAs. We show that features derived from recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with high accuracy. We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sRNAs that bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sRNAs regulated by the master regulator of virulence, ToxT, in Vibrio cholerae. The involvement of sRNAs in bacterial adaptation to changing environments is an increasingly recurring theme in current research in microbiology. It is likely that future research, combining experimental and computational approaches, will discover many more examples of sRNAs as components of critical regulatory pathways in bacteria. We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This approach can be applied to specific classes of sRNAs for which several members have been identified and the challenge is to identify additional sRNAs.
Improving Upon String Methods for Transition State Discovery.
Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker
2012-02-14
Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.
Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry.
Hsieh, Yunsheng; Chen, Jiwen; Korfmacher, Walter A
2007-01-01
During drug discovery and development stage, often the question is raised as to whether the drug can reach the site of action which helps researchers better assess the potential value of that compound as a pharmaceutical product and toxicological outcomes. High performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) has totally replaced HPLC methods that use UV or other detectors for most drug analysis applications. However, HPLC-MS/MS approaches are not able to provide the answer to certain questions regarding the distribution of a drug in various organs or tissues from laboratory animal experiments. Whole body radioautography (WBA) normally provides a standard means to answer this question on the time course of the drug candidates. However, the major disadvantage in this radioautographic technique is to allow for visualization of total drug-related materials but to image the distribution of the administrated drugs and their metabolites in all tissues. In addition, the availability of radiolabeled compounds at drug discovery stage is another concern. To overcome these issues, matrix-assisted laser desorption/ionization-mass spectrometric method (MALDI-MS) has been developed to directly determine the distribution of pharmaceuticals in tissue sections which might unravel their disposition or biotransformation pathway for new drug development.
Macias, Hector
2012-01-01
The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial/mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development – pubertal growth, pregnancy, lactation and involution – occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone and estrogen, as well as IGF1, to create a ductal tree that fills the fat pad. Upon pregnancy the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its pre-pregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease. PMID:22844349
Signaling molecules involved in the transition of growth to development of Dictyostelium discoideum.
Mir, Hina A; Rajawat, Jyotika; Pradhan, Shalmali; Begum, Rasheedunnisa
2007-03-01
The social amoeba Dictyostelium discoideum, a powerful paradigm provides clear insights into the regulation of growth and development. In addition to possessing complex individual cellular functions like a unicellular eukaryote, D. discoideum cells face the challenge of multicellular development. D. discoideum undergoes a relatively simple differentiation process mainly by cAMP mediated pathway. Despite this relative simplicity, the regulatory signaling pathways are as complex as those seen in metazoan development. However, the introduction of restriction-enzyme-mediated integration (REMI) technique to produce developmental gene knockouts has provided novel insights into the discovery of signaling molecules and their role in D. discoideum development. Cell cycle phase is an important aspect for differentiation of D. discoideum, as cells must reach a specific stage to enter into developmental phase and specific cell cycle regulators are involved in arresting growth phase genes and inducing the developmental genes. In this review, we present an overview of the signaling molecules involved in the regulation of growth to differentiation transition (GDT), molecular mechanism of early developmental events leading to generation of cAMP signal and components of cAMP relay system that operate in this paradigm.
MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics.
Yamamoto, Hirofumi; Mori, Masaki
The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC.
Yue, Zongliang; Zheng, Qi; Neylon, Michael T; Yoo, Minjae; Shin, Jimin; Zhao, Zhiying; Tan, Aik Choon
2018-01-01
Abstract Integrative Gene-set, Network and Pathway Analysis (GNPA) is a powerful data analysis approach developed to help interpret high-throughput omics data. In PAGER 1.0, we demonstrated that researchers can gain unbiased and reproducible biological insights with the introduction of PAGs (Pathways, Annotated-lists and Gene-signatures) as the basic data representation elements. In PAGER 2.0, we improve the utility of integrative GNPA by significantly expanding the coverage of PAGs and PAG-to-PAG relationships in the database, defining a new metric to quantify PAG data qualities, and developing new software features to simplify online integrative GNPA. Specifically, we included 84 282 PAGs spanning 24 different data sources that cover human diseases, published gene-expression signatures, drug–gene, miRNA–gene interactions, pathways and tissue-specific gene expressions. We introduced a new normalized Cohesion Coefficient (nCoCo) score to assess the biological relevance of genes inside a PAG, and RP-score to rank genes and assign gene-specific weights inside a PAG. The companion web interface contains numerous features to help users query and navigate the database content. The database content can be freely downloaded and is compatible with third-party Gene Set Enrichment Analysis tools. We expect PAGER 2.0 to become a major resource in integrative GNPA. PAGER 2.0 is available at http://discovery.informatics.uab.edu/PAGER/. PMID:29126216
Clouse, Steven D.
2011-01-01
Brassinosteroids (BRs) are endogenous plant hormones essential for the proper regulation of multiple physiological processes required for normal plant growth and development. Since their discovery more than 30 years ago, extensive research on the mechanisms of BR action using biochemistry, mutant studies, proteomics and genome-wide transcriptome analyses, has helped refine the BR biosynthetic pathway, identify the basic molecular components required to relay the BR signal from perception to gene regulation, and expand the known physiological responses influenced by BRs. These mechanistic advances have helped answer the intriguing question of how BRs can have such dramatic pleiotropic effects on a broad range of diverse developmental pathways and have further pointed to BR interactions with other plant hormones and environmental cues. This chapter briefly reviews historical aspects of BR research and then summarizes the current state of knowledge on BR biosynthesis, metabolism and signal transduction. Recent studies uncovering novel phosphorelays and gene regulatory networks through which BR influences both vegetative and reproductive development are examined and placed in the context of known BR physiological responses including cell elongation and division, vascular differentiation, flowering, pollen development and photomorphogenesis. PMID:22303275
Drusano, G L
2016-12-15
Because of our current crisis of resistance, particularly in nosocomial pathogens, the discovery and development of new antimicrobial agents has become a societal imperative. Changes in regulatory pathways by the Food and Drug Administration and the European Medicines Agency place great emphasis on the use of preclinical models coupled with pharmacokinetic/pharmacodynamic analysis to rapidly and safely move new molecular entities with activity against multi-resistant pathogens through the approval process and into the treatment of patients. In this manuscript, the use of the murine pneumonia system and the Hollow Fiber Infection Model is displayed and the way in which the mathematical analysis of the data arising from these models contributes to the robust choice of dose and schedule for Phase 3 clinical trials is shown. These data and their proper analysis act to de-risk the conduct of Phase 3 trials for anti-infective agents. These trials are the most expensive part of drug development. Further, given the seriousness of the infections treated, they represent the riskiest element for patients. Consequently, these preclinical model systems and their proper analysis have become a central part of accelerated anti-infective development. A final contention of this manuscript is that it is possible to embed these models and in particular, the Hollow Fiber Infection Model earlier in the drug discovery/development process. Examples of 'dynamic driver switching' and the impact of this phenomenon on clinical trial outcome are provided. Identifying dynamic drivers early in drug discovery may lead to improved decision making in the lead optimization process, resulting in the best molecules transitioning to clinical development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex
2015-01-01
For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fang; Zhang, Yu; Liu, Shizhong
Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less
Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets
Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent
2014-01-01
By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711
Lu, Fang; Zhang, Yu; Liu, Shizhong; ...
2017-05-11
Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less
A history of the DNA repair and mutagenesis field: The discovery of base excision repair.
Friedberg, Errol C
2016-01-01
This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. Copyright © 2015. Published by Elsevier B.V.
Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis.
Zhang, Zhi-guo; Niu, Xu-yan; Lu, Ai-ping; Xiao, Gary Guishan
2015-02-01
To re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin. Microarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis. A total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway. Genes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.
Czarny, T L; Perri, A L; French, S; Brown, E D
2014-06-01
The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
DAPD: A Knowledgebase for Diabetes Associated Proteins.
Gopinath, Krishnasamy; Jayakumararaj, Ramaraj; Karthikeyan, Muthusamy
2015-01-01
Recent advancements in genomics and proteomics provide a solid foundation for understanding the pathogenesis of diabetes. Proteomics of diabetes associated pathways help to identify the most potent target for the management of diabetes. The relevant datasets are scattered in various prominent sources which takes much time to select the therapeutic target for the clinical management of diabetes. However, additional information about target proteins is needed for validation. This lacuna may be resolved by linking diabetes associated genes, pathways and proteins and it will provide a strong base for the treatment and planning management strategies of diabetes. Thus, a web source "Diabetes Associated Proteins Database (DAPD)" has been developed to link the diabetes associated genes, pathways and proteins using PHP, MySQL. The current version of DAPD has been built with proteins associated with different types of diabetes. In addition, DAPD has been linked to external sources to gain the access to more participatory proteins and their pathway network. DAPD will reduce the time and it is expected to pave the way for the discovery of novel anti-diabetic leads using computational drug designing for diabetes management. DAPD is open accessed via following url www.mkarthikeyan.bioinfoau.org/dapd.
Samanta, Subhasis; Thakur, Jitendra K
2015-01-01
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Samanta, Subhasis; Thakur, Jitendra K.
2015-01-01
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes. PMID:26442070
The potential of targeting Ras proteins in lung cancer.
McCormick, Frank
2015-04-01
The Ras pathway is a major driver in lung adenocarcinoma: over 75% of all cases harbor mutations that activate this pathway. While spectacular clinical successes have been achieved by targeting activated receptor tyrosine kinases in this pathway, little, if any, significant progress has been achieved targeting Ras proteins themselves or cancers driven by oncogenic Ras mutants. New approaches to drug discovery, new insights into Ras function, new ways of attacking undruggable proteins through RNA interference and new ways of harnessing the immune system could change this landscape in the relatively near future.
Small silencing RNAs: an expanding universe.
Ghildiyal, Megha; Zamore, Phillip D
2009-02-01
Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.
The ALK receptor in sympathetic neuron development and neuroblastoma.
Janoueix-Lerosey, Isabelle; Lopez-Delisle, Lucille; Delattre, Olivier; Rohrer, Hermann
2018-05-01
The ALK gene encodes a tyrosine kinase receptor characterized by an expression pattern mainly restricted to the developing central and peripheral nervous systems. In 2008, the discovery of ALK activating mutations in neuroblastoma, a tumor of the sympathetic nervous system, represented a breakthrough in the understanding of the pathogenesis of this pediatric cancer and established mutated ALK as a tractable therapeutic target for precision medicine. Subsequent studies addressed the identity of ALK ligands, as well as its physiological function in the sympathoadrenal lineage, its role in neuroblastoma development and the signaling pathways triggered by mutated ALK. This review focuses on these different aspects of the ALK biology and summarizes the various therapeutic strategies relying on ALK inhibition in neuroblastoma, either as monotherapies or combinatory treatments.
Development and application of PI3K assays for novel drug discovery.
Yanamandra, Mahesh; Mitra, Sayan; Giri, Archana
2015-02-01
Phosphoinositide 3-kinases (PI3Ks) constitute one of the most important signaling pathways, playing a vital role in cellular differentiation and proliferation with a key function in cellular receptor triggered signal transduction downstream of tyrosine kinase receptors and/or G-protein coupled receptors. PI3K promotes cell survival proliferation, protein synthesis and glucose metabolism by generating secondary messengers phospholipid phosphatidyl 3,4,5-triphosphate and signaling via AKT/mTOR regulation. Deregulation of PI3K pathways have been observed in cancer, diabetes, neurological and inflammatory diseases and is an attractive target for pharmaceutical industries. In this review, the authors explain different PI3K assay methodologies. Furthermore, the authors summarize the techno-scientific principles and their utility in profiling novel chemical entities against PI3Ks. Specifically, the authors compare different PI3K assay formats explaining their mode of detection as well as their advantages and limitations for drug discovery efforts. Developing lipid (PI3K) kinase assays involves significant effort and a rational understanding is needed due to the intrinsic lipidic nature of phospholipid phosphatidyl 4,5-biphosphate, which is used as an in vitro substrate for assays with PI3K isoforms. The assay of choice should be versatile, homogenous and definitely adaptable for high-throughput screening campaigns. Additionally, these assays are expected to dissect the mechanism of action of novel compounds (inhibitor characterization) against PI3K. Existing methods provide the versatility to medicinal chemists such that they can choose one or more assay platform to progress their compounds while profiling and/or inhibitor characterization.
Using the zebrafish to understand tendon development and repair
Chen, Jessica W.; Galloway, Jenna L.
2017-01-01
Tendons are important components of our musculoskeletal system. Injuries to these tissues are very common, resulting from occupational-related injuries, sports-related trauma, and age-related degeneration. Unfortunately, there are few treatment options, and current therapies rarely restore injured tendons to their original function. An improved understanding of the pathways regulating their development and repair would have significant impact in stimulating the formulation of regenerative-based approaches for tendon injury. The zebrafish provides an ideal system in which to perform genetic and chemical screens to identify new pathways involved in tendon biology. Until recently, there had been few descriptions of tendons and ligaments in the zebrafish and their similarity to mammalian tendon tissues. In this chapter, we describe the development of the zebrafish tendon and ligament tissues in the context of their gene expression, structure, and interactions with neighboring musculoskeletal tissues. We highlight the similarities with tendon development in higher vertebrates, showing that the craniofacial tendons and ligaments in zebrafish morphologically, molecularly, and structurally resemble mammalian tendons and ligaments from embryonic to adult stages. We detail methods for fluorescent in situ hybridization and immunohistochemistry as an assay to examine morphological changes in the zebrafish musculoskeleton. Staining assays such as these could provide the foundation for screen-based approaches to identify new regulators of tendon development, morphogenesis, and repair. These discoveries would provide new targets and pathways to study in the context of regenerative medicine-based approaches to improve tendon healing. PMID:28129848
Emerging therapeutic targets for treatment of leishmaniasis.
Sundar, Shyam; Singh, Bhawana
2018-06-01
Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Abed, Dhulfiqar Ali; Goldstein, Melanie; Albanyan, Haifa; Jin, Huijuan; Hu, Longqin
2015-07-01
The Keap1-Nrf2-ARE pathway is an important antioxidant defense mechanism that protects cells from oxidative stress and the Keap1-Nrf2 protein-protein interaction (PPI) has become an important drug target to upregulate the expression of ARE-controlled cytoprotective oxidative stress response enzymes in the development of therapeutic and preventive agents for a number of diseases and conditions. However, most known Nrf2 activators/ARE inducers are indirect inhibitors of Keap1-Nrf2 PPI and they are electrophilic species that act by modifying the sulfhydryl groups of Keap1׳s cysteine residues. The electrophilicity of these indirect inhibitors may cause "off-target" side effects by reacting with cysteine residues of other important cellular proteins. Efforts have recently been focused on the development of direct inhibitors of Keap1-Nrf2 PPI. This article reviews these recent research efforts including the development of high throughput screening assays, the discovery of peptide and small molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the target Keap1 Kelch domain protein. These non-covalent direct inhibitors of Keap1-Nrf2 PPI could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions.
Investigative safety science as a competitive advantage for Pharma.
Moggs, Jonathan; Moulin, Pierre; Pognan, Francois; Brees, Dominique; Leonard, Michele; Busch, Steve; Cordier, Andre; Heard, David J; Kammüller, Michael; Merz, Michael; Bouchard, Page; Chibout, Salah-Dine
2012-09-01
Following a US National Academy of Sciences report in 2007 entitled "Toxicity Testing of the 21st Century: a Vision and a Strategy," significant advances within translational drug safety sciences promise to revolutionize drug discovery and development. The purpose of this review is to outline why investigative safety science is a competitive advantage for the pharmaceutical industry. The article discusses the essential goals for modern investigative toxicologists including: cross-species target biology; molecular pathways of toxicity; and development of predictive tools, models and biomarkers that allow discovery researchers and clinicians to anticipate safety problems and plan ways to address them, earlier than ever before. Furthermore, the article emphasizes the importance of investigating unanticipated clinical safety signals through a combination of mechanistic preclinical studies and/or molecular characterization of clinical samples from affected organs. The traditional boundaries between pharma industry teams focusing on safety/efficacy and preclinical/clinical development are rapidly disappearing in favor of translational safety science-centric organizations with a vision of bringing more effective medicines forward safely and quickly. Comparative biology and mechanistic toxicology approaches facilitate: i) identifying translational safety biomarkers; ii) identifying new drug targets/indications; and iii) mitigating off-target toxicities. These value-adding safety science contributions will change traditional toxicologists from side-effect identifiers to drug development enablers.
Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott
2013-01-01
WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.
Ensemble-based docking: From hit discovery to metabolism and toxicity predictions.
Evangelista, Wilfredo; Weir, Rebecca L; Ellingson, Sally R; Harris, Jason B; Kapoor, Karan; Smith, Jeremy C; Baudry, Jerome
2016-10-15
This paper describes and illustrates the use of ensemble-based docking, i.e., using a collection of protein structures in docking calculations for hit discovery, the exploration of biochemical pathways and toxicity prediction of drug candidates. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feng, Yan; Mitchison, Timothy J; Bender, Andreas; Young, Daniel W; Tallarico, John A
2009-07-01
Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.
Shim, Unjin; Kim, Han-Na; Sung, Yeon-Ah; Kim, Hyung-Lae
2014-12-01
Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, 52.2 ± 8.9 years; body mass index, 24.6 ± 3.2 kg/m(2)). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < 5 × 10(-6)), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < 1.38 × 10(-7), Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.
2015-01-01
JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile. PMID:26288683
Discovering novel subsystems using comparative genomics
Ferrer, Luciana; Shearer, Alexander G.; Karp, Peter D.
2011-01-01
Motivation: Key problems for computational genomics include discovering novel pathways in genome data, and discovering functional interaction partners for genes to define new members of partially elucidated pathways. Results: We propose a novel method for the discovery of subsystems from annotated genomes. For each gene pair, a score measuring the likelihood that the two genes belong to a same subsystem is computed using genome context methods. Genes are then grouped based on these scores, and the resulting groups are filtered to keep only high-confidence groups. Since the method is based on genome context analysis, it relies solely on structural annotation of the genomes. The method can be used to discover new pathways, find missing genes from a known pathway, find new protein complexes or other kinds of functional groups and assign function to genes. We tested the accuracy of our method in Escherichia coli K-12. In one configuration of the system, we find that 31.6% of the candidate groups generated by our method match a known pathway or protein complex closely, and that we rediscover 31.2% of all known pathways and protein complexes of at least 4 genes. We believe that a significant proportion of the candidates that do not match any known group in E.coli K-12 corresponds to novel subsystems that may represent promising leads for future laboratory research. We discuss in-depth examples of these findings. Availability: Predicted subsystems are available at http://brg.ai.sri.com/pwy-discovery/journal.html. Contact: lferrer@ai.sri.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21775308
Systemic Acquired Resistance and Salicylic Acid: Past, Present and Future.
Klessig, Daniel F; Choi, Hyong Woo; Dempsey, D'Maris Amick
2018-05-21
Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development, as well as the activation of defenses against biotic and abiotic stress. Here we present a historical overview of the progress that has been made to date in elucidating SA's role in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this time-frame, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets/receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself, but rather as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself, as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on identity of the attacking pathogen.
Synthetic biology approaches to fluorinated polyketides
Thuronyi, Benjamin W.; Chang, Michelle C. Y.
2016-01-01
Conspectus The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides. PMID:25719427
Delineation of metabolic gene clusters in plant genomes by chromatin signatures
Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T.; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J.; Kumar, S. Vinod; Freemont, Paul S.; Osbourn, Anne
2016-01-01
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. PMID:26895889
Azuaje, Francisco; Zheng, Huiru; Camargo, Anyela; Wang, Haiying
2011-08-01
The discovery of novel disease biomarkers is a crucial challenge for translational bioinformatics. Demonstration of both their classification power and reproducibility across independent datasets are essential requirements to assess their potential clinical relevance. Small datasets and multiplicity of putative biomarker sets may explain lack of predictive reproducibility. Studies based on pathway-driven discovery approaches have suggested that, despite such discrepancies, the resulting putative biomarkers tend to be implicated in common biological processes. Investigations of this problem have been mainly focused on datasets derived from cancer research. We investigated the predictive and functional concordance of five methods for discovering putative biomarkers in four independently-generated datasets from the cardiovascular disease domain. A diversity of biosignatures was identified by the different methods. However, we found strong biological process concordance between them, especially in the case of methods based on gene set analysis. With a few exceptions, we observed lack of classification reproducibility using independent datasets. Partial overlaps between our putative sets of biomarkers and the primary studies exist. Despite the observed limitations, pathway-driven or gene set analysis can predict potentially novel biomarkers and can jointly point to biomedically-relevant underlying molecular mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.
[Various pathways leading to the progression of chronic liver diseases].
Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina
2016-02-21
As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression.
Minireview: The Roles of Small RNA Pathways in Reproductive Medicine
Buchold, Gregory M.
2011-01-01
The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated investigation into the functional roles and therapeutic potential of these small RNA pathways. Current data indicate that small RNA play significant roles in normal development and physiology and pathological conditions of the reproductive tracts of females and males. Biologically plausible mRNA targets for these microRNA are aggressively being discovered. The next phase of research will focus on elucidating the clinical utility of small RNA-selective agonists and antagonists. PMID:21546411
Arthropod toxins and their antinociceptive properties: From venoms to painkillers.
Monge-Fuentes, Victoria; Arenas, Claudia; Galante, Priscilla; Gonçalves, Jacqueline Coimbra; Mortari, Márcia Renata; Schwartz, Elisabeth Ferroni
2018-03-29
The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development. Copyright © 2018 Elsevier Inc. All rights reserved.
Epigenomics, Pharmacoepigenomics, and Personalized Medicine in Cervical Cancer.
Kabekkodu, Shama Prasada; Chakrabarty, Sanjiban; Ghosh, Supriti; Brand, Angela; Satyamoorthy, Kapaettu
2017-01-01
Epigenomics encompasses the study of genome-wide changes in DNA methylation, histone modifications and noncoding RNAs leading to altered transcription, chromatin structure, and posttranscription RNA processing, respectively, resulting in an altered rate of gene expression. The role of epigenetic modifications facilitating human diseases is well established. Previous studies have identified histone and cytosine code during normal and pathological conditions with special emphasis on how these modifications regulate transcriptional events. Recent studies have also mapped these epigenetic modification and pathways leading to carcinogenesis. Discovery of drugs that target proteins/enzymes in the epigenetic pathways may provide better therapeutic opportunities, and identification of such modulators for DNA methylation, histone modifications, and expression of noncoding RNAs for several cancer types is underway. In this review, we provide a detailed description of recent developments in the field of epigenetics and its impact on personalized medicine to manage cervical cancer. © 2017 S. Karger AG, Basel.
Biomarker-guided translation of brain imaging into disease pathway models
Younesi, Erfan; Hofmann-Apitius, Martin
2013-01-01
The advent of state-of-the-art brain imaging technologies in recent years and the ability of such technologies to provide high-resolution information at both structural and functional levels has spawned large efforts to introduce novel non-invasive imaging biomarkers for early prediction and diagnosis of brain disorders; however, their utility in both clinic and drug development at their best resolution remains limited to visualizing and monitoring disease progression. Given the fact that efficient translation of valuable information embedded in brain scans into clinical application is of paramount scientific and public health importance, a strategy is needed to bridge the current gap between imaging and molecular biology, particularly in neurodegenerative diseases. As an attempt to address this issue, we present a novel computational method to link readouts of imaging biomarkers to their underlying molecular pathways with the aim of guiding clinical diagnosis, prognosis and even target identification in drug discovery for Alzheimer's disease. PMID:24287435
Conventional and Non-Conventional Drosophila Toll Signaling
Lindsay, Scott A.; Wasserman, Steven A.
2013-01-01
The discovery of Toll in Drosophila and of the remarkable conservation in pathway composition and organization catalyzed a transformation in our understanding of innate immune recognition and response. At the center of that picture is a cascade of interactions in which specific microbial cues activate Toll receptors, which then transmit signals driving transcription factor nuclear localization and activity. Experiments gave substance to the vision of pattern recognition receptors, linked phenomena in development, gene regulation, and immunity into a coherent whole, and revealed a rich set of variations for identifying non-self and responding effectively. More recently, research in Drosophila has illuminated the positive and negative regulation of Toll activation, the organization of signaling events at and beneath membranes, the sorting of information flow, and the existence of non-conventional signaling via Toll-related receptors. Here, we provide an overview of the Toll pathway of flies and highlight these ongoing realms of research. PMID:23632253
14-3-3ζ: A numbers game in adipocyte function?
Lim, Gareth E.; Johnson, James D.
2016-01-01
ABSTRACT Molecular scaffolds are often viewed as passive signaling molecules that facilitate protein-protein interactions. However, new evidence gained from the use of loss-of-function or gain-of-function models is dispelling this notion. Our own recent discovery of 14-3-3ζ as an essential regulator of adipogenesis highlights the complex roles of this member of the 14-3-3 protein family. Depletion of the 14-3-3ζ isoform affected parallel pathways that drive adipocyte development, including pathways controlling the stability of key adipogenic transcription factors and cell cycle progression. Going beyond adipocyte differentiation, this study opens new avenues of research in the context of metabolism, as 14-3-3ζ binds to a variety of well-established metabolic proteins that harbor its canonical phosphorylation binding motifs. This suggests that 14-3-3ζ may contribute to key metabolic signaling pathways, such as those that facilitate glucose uptake and fatty acid metabolism. Herein, we discuss these novel areas of research, which will undoubtedly shed light onto novel roles of 14-3-3ζ, and perhaps its related family members, on glucose homeostasis. PMID:27386155
Neuroinflammatory targets and treatments for epilepsy validated in experimental models.
Aronica, Eleonora; Bauer, Sebastian; Bozzi, Yuri; Caleo, Matteo; Dingledine, Raymond; Gorter, Jan A; Henshall, David C; Kaufer, Daniela; Koh, Sookyong; Löscher, Wolfgang; Louboutin, Jean-Pierre; Mishto, Michele; Norwood, Braxton A; Palma, Eleonora; Poulter, Michael O; Terrone, Gaetano; Vezzani, Annamaria; Kaminski, Rafal M
2017-07-01
A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Bullova, Petra; Nölting, Svenja; Turkova, Hana; Powers, James F.; Liu, Qingsong; Guichard, Sylvie; Tischler, Arthur S.; Grossman, Ashley B.
2013-01-01
Several lines of evidence, including the recent discovery of novel susceptibility genes, point out an important role for the mammalian target of rapamycin (mTOR) signaling pathway in the development of pheochromocytoma. Analyzing a set of pheochromocytomas from patients with different genetic backgrounds, we observed and confirmed a significant overexpression of key mTOR complex (mTORC) signaling mediators. Using selective ATP-competitive inhibitors targeting both mTORC1 and mTORC2, we significantly arrested the in vitro cell proliferation and blocked migration of pheochromocytoma cells as a result of the pharmacological suppression of the Akt/mTOR signaling pathway. Moreover, AZD8055, a selective ATP-competitive dual mTORC1/2 small molecular inhibitor, significantly reduced the tumor burden in a model of metastatic pheochromocytoma using female athymic nude mice. This study suggests that targeting both mTORC1 and mTORC2 is a potentially rewarding strategy and supports the application of selective inhibitors in combinatorial drug regimens for metastatic pheochromocytoma. PMID:23307788
Bell, Danielle; Ranganathan, Sarangarajan; Tao, Junyan; Monga, Satdarshan P
2017-02-10
Hepatoblastoma is the most common pediatric liver malignancy, typically striking children within the first 3 years of their young lives. While advances in chemotherapy and newer surgical techniques have improved survival in patients with localized disease, unfortunately, for the 25% of patients with metastasis, the overall survival remains poor. These tumors, which are thought to arise from hepatic progenitors or hepatoblasts, hence the name hepatoblastoma, can be categorized by histological subtyping based on their level of cell differentiation. Genomic and histological analysis of human tumor samples has shown exon-3 deletions or missense mutations in gene coding for β-catenin, a downstream effector of the Wnt signaling pathway, in up to 90% of hepatoblastoma cases. The current article will review key aberrations in molecular pathways that are implicated in various subtypes of hepatoblastoma with an emphasis on Wnt signaling. It will also discuss cooperation among components of pathways such as β-catenin and Yes-associated protein in cancer development. Understanding the complex network of molecular signaling in oncogenesis will undoubtedly aid in the discovery of new therapeutics to help combat hepatoblastoma.
Bell, Danielle; Ranganathan, Sarangarajan; Tao, Junyan; Monga, Satdarshan P. S.
2017-01-01
Hepatoblastoma is the most common pediatric liver malignancy, typically striking children within the first 3 years of their young lives. While advances in chemotherapy and newer surgical techniques have improved survival in patients with localized disease, unfortunately, for the 25% of patients with metastasis, the overall survival remains poor. These tumors, which are thought to arise from hepatic progenitors or hepatoblasts, hence the name hepatoblastoma, can be categorized by histological subtyping based on their level of cell differentiation. Genomic and histological analysis of human tumor samples has shown exon-3 deletions or missense mutations in gene coding for β-catenin, a downstream effector of the Wnt signaling pathway, in up to 90% of hepatoblastoma cases. The current article will review key aberrations in molecular pathways that are implicated in various subtypes of hepatoblastoma with an emphasis on Wnt signaling. It will also discuss cooperation among components of pathways such as β-catenin and Yes-associated protein in cancer development. Understanding the complex network of molecular signaling in oncogenesis will undoubtedly aid in the discovery of new therapeutics to help combat hepatoblastoma. PMID:27938502
Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G.; Daiber, Andreas
2015-01-01
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease. PMID:26079210
Patil, Pradnya D; Burotto, Mauricio; Velcheti, Vamsidhar
2018-03-01
Immune checkpoint pathways are key immune regulatory pathways that play a physiologic role in maintaining immune-homeostasis and are often co-opted by cancer cells to evade the host immune system. Recent developments in cancer immunotherapy, mainly drugs blocking the immune checkpoint pathways, have revolutionized the treatment paradigm for many solid tumors. A wide spectrum of immune-related adverse events (irAEs) have been described with the use of these agents which necessitate treatment with immunosuppression, lead to disruption of therapy and can on occasion be life-threatening. There are currently no clinically validated biomarkers to predict the risk of irAEs. Areas covered: In this review, the authors describe the current progress in identifying biomarkers for irAEs and potential future directions. Literature search was conducted using PubMed-MEDLINE, Embase and Scopus. In addition, abstracts from major conference proceedings were reviewed for relevant content. Expert commentary: The discovery of biomarkers for irAEs is currently in its infancy, however there are a lot of promising candidate biomarkers that are currently being investigated. Biomarkers that can identify patients at a higher risk of developing irAEs or lead to early detection of autoimmune toxicities are crucial to optimize patient selection for immune-oncology agents and to minimize toxicity with their use.
Duan, Xinle; Wang, Kang; Su, Sha; Tian, Ruizheng; Li, Yuting; Chen, Maohua
2017-01-01
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.
Mechanisms of fatty acid synthesis in marine fungus-like protists.
Xie, Yunxuan; Wang, Guangyi
2015-10-01
Thraustochytrids are unicellular fungus-like protists and are well known for their ability to produce interesting nutraceutical compounds. Significant efforts have been made to improve their efficient production of important fatty acids (FAs), mostly by optimizing fermentation conditions and selecting highly productive thraustochytrid strains. Furthermore, noticeable improvements have been made in understanding the mechanism of FA biosynthesis, allowing for a better understanding of how thraustochytrids assemble these unique metabolites and how their biosynthesis is coupled with other related pathways. This review summarizes recent achievements on two major FA biosynthesis pathways, the standard pathway and the polyketide synthase pathway, and detail features of individual enzymes involved in FA biosynthesis, biotechnological advances in pathway engineering and enzyme characterization, and the discovery of other pathways that affect the efficiency of FA accumulation. Perspectives of biotechnological potential application of thraustochytrids are also discussed.
Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Sy, Jamie Bernadette A; Clavio, Nina Abigail B; Macalino, Stephani Joy Y; Emnacen, Inno A; Lee, Alexandra P; Ko, Paul Kenny L; Concepcion, Gisela P
2017-01-01
Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in Mycobacterium tuberculosis ( Mtb ), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 (( Z )- N -(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)cyclohexyl)amino)acetimidic acid) displayed inhibitory activity up to 83% at 10 μg/mL concentration against the growth of the Mtb H37Ra strain.
Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Sy, Jamie Bernadette A; Clavio, Nina Abigail B; Macalino, Stephani Joy Y; Emnacen, Inno A; Lee, Alexandra P; Ko, Paul Kenny L; Concepcion, Gisela P
2017-01-01
Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in Mycobacterium tuberculosis (Mtb), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 ((Z)-N-(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)cyclohexyl)amino)acetimidic acid) displayed inhibitory activity up to 83% at 10 μg/mL concentration against the growth of the Mtb H37Ra strain. PMID:28280303
Mycotoxins: A Fungal Genomics Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daren W.; Baker, Scott E.
The chemical and enzymatic diversity in the fungal kingdom is staggering. Large-scale fungal genome sequencing projects are generating a massive catalog of secondary metabolite biosynthetic genes and pathways. Fungal natural products are a boon and bane to man as valuable pharmaceuticals and harmful toxins. Understanding how these chemicals are synthesized will aid the development of new strategies to limit mycotoxin contamination of food and feeds as well as expand drug discovery programs. A survey of work focused on the fumonisin family of mycotoxins highlights technological advances and provides a blueprint for future studies of other fungal natural products. Expressed sequencemore » tags led to the discovery of new fumonisin genes (FUM) and hinted at a role for alternatively spliced transcripts in regulation. Phylogenetic studies of FUM genes uncovered a complex evolutionary history of the FUM cluster, as well as fungi with the potential to synthesize fumonisin or fumonisin-like chemicals. The application of new technologies (e.g., CRISPR) could substantially impact future efforts to harness fungal resources.« less
Gene signature critical to cancer phenotype as a paradigm for anti-cancer drug discovery
Sampson, Erik R.; McMurray, Helene R.; Hassane, Duane C.; Newman, Laurel; Salzman, Peter; Jordan, Craig T.; Land, Hartmut
2013-01-01
Malignant cell transformation commonly results in the deregulation of thousands of cellular genes, an observation that suggests a complex biological process and an inherently challenging scenario for the development of effective cancer interventions. To better define the genes/pathways essential to regulating the malignant phenotype, we recently described a novel strategy based on the cooperative nature of carcinogenesis that focuses on genes synergistically deregulated in response to cooperating oncogenic mutations. These so-called “cooperation response genes” (CRGs) are highly enriched for genes critical for the cancer phenotype, thereby suggesting their causal role in the malignant state. Here we show that CRGs play an essential role in drug-mediated anti-cancer activity and that anti-cancer agents can be identified through their ability to antagonize the CRG expression profile. These findings provide proof-of-concept for the use of the CRG signature as a novel means of drug discovery with relevance to underlying anti-cancer drug mechanisms. PMID:22964631
Generation of transgenic mouse model using PTTG as an oncogene.
Kakar, Sham S; Kakar, Cohin
2015-01-01
The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.
Systems analysis of arrestin pathway functions.
Maudsley, Stuart; Siddiqui, Sana; Martin, Bronwen
2013-01-01
To fully appreciate the diversity and specificity of complex cellular signaling events, such as arrestin-mediated signaling from G protein-coupled receptor activation, a complex systems-level investigation currently appears to be the best option. A rational combination of transcriptomics, proteomics, and interactomics, all coherently integrated with applied next-generation bioinformatics, is vital for the future understanding of the development, translation, and expression of GPCR-mediated arrestin signaling events in physiological contexts. Through a more nuanced, systems-level appreciation of arrestin-mediated signaling, the creation of arrestin-specific molecular response "signatures" should be made simple and ultimately amenable to drug discovery processes. Arrestin-based signaling paradigms possess important aspects, such as its specific temporal kinetics and ability to strongly affect transcriptional activity, that make it an ideal test bed for next-generation of drug discovery bioinformatic approaches such as multi-parallel dose-response analysis, data texturization, and latent semantic indexing-based natural language data processing and feature extraction. Copyright © 2013 Elsevier Inc. All rights reserved.
DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue.
Wang, QuanQiu; Xu, Rong
2015-01-01
Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue.
Zhang, Lei; Shi, Lei; Soars, Shafer; Kamps, Joshua; Yin, Hang Hubert
2018-06-05
Excessive NF-κB activation contributes to the pathogenesis of numerous diseases. Small-molecule inhibitors of NF-κB signaling have significant therapeutic potential especially in treating inflammatory diseases and cancers. In this study, we performed a cell-based high-throughput screening to discover novel agents capable of inhibiting NF-κB signaling. Based on two hit scaffolds from the screening, we synthesized 69 derivatives to optimize the potency for inhibition of NF-κB activation, leading to successful discovery of the most potent compound Z9j with over 170-fold enhancement of inhibitory activity. Preliminary mechanistic studies revealed that Z9j inhibited NF-κB signaling via suppression of Src/Syk, PI3K/Akt and IKK/IκB pathways. This novel compound also demonstrated anti-inflammatory and anti-cancer activities, warranting its further development as a potential multifunctional agent to treat inflammatory diseases and cancers.
Azam, Syed Sikander; Shamim, Amen
2014-09-01
The discovery of novel drug targets of a genome that can bind with high affinity to drug-like compounds is a significant challenge in drug development. Streptococcus gordonii initiates dental plaque formation and endocarditis by entering into the blood stream, usually after oral trauma. The prolonged use of antibiotics is raising a problem of multi-drug resistance and lack of an optimal therapeutic regime that necessitates the drug discovery of vital importance in curing various infections. To overcome this dilemma, the in silico approach paves the way for identification and qualitative characterization of promising drug targets for S. gordonii that encompass three phases of analyses. The present study deciphers drug target genomes of S. gordonii in which 93 proteins were identified as potential drug targets and 16 proteins were found to be involved in unique metabolic pathways. Highlighted information will convincingly render to facilitate selection of S. gordonii proteins for successful entry into drug design pipelines. Copyright © 2014 Elsevier Inc. All rights reserved.
Synthetic biology approaches in drug discovery and pharmaceutical biotechnology.
Neumann, Heinz; Neumann-Staubitz, Petra
2010-06-01
Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology.
Amur, S; LaVange, L; Zineh, I; Buckman-Garner, S; Woodcock, J
2015-07-01
The discovery, development, and use of biomarkers for a variety of drug development purposes are areas of tremendous interest and need. Biomarkers can become accepted for use through submission of biomarker data during the drug approval process. Another emerging pathway for acceptance of biomarkers is via the biomarker qualification program developed by the Center for Drug Evaluation and Research (CDER, US Food and Drug Administration). Evidentiary standards are needed to develop and evaluate various types of biomarkers for their intended use and multiple stakeholders, including academia, industry, government, and consortia must work together to help develop this evidence. The article describes various types of biomarkers that can be useful in drug development and evidentiary considerations that are important for qualification. A path forward for coordinating efforts to identify and explore needed biomarkers is proposed for consideration. © 2015 American Society for Clinical Pharmacology and Therapeutics.
Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin
2016-01-01
ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic from Streptomyces rochei Sal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery. PMID:27451447
Approaches and advances in the genetic causes of autoimmune disease and their implications.
Inshaw, Jamie R J; Cutler, Antony J; Burren, Oliver S; Stefana, M Irina; Todd, John A
2018-06-20
Genome-wide association studies are transformative in revealing the polygenetic basis of common diseases, with autoimmune diseases leading the charge. Although the field is just over 10 years old, advances in understanding the underlying mechanistic pathways of these conditions, which result from a dense multifactorial blend of genetic, developmental and environmental factors, have already been informative, including insights into therapeutic possibilities. Nevertheless, the challenge of identifying the actual causal genes and pathways and their biological effects on altering disease risk remains for many identified susceptibility regions. It is this fundamental knowledge that will underpin the revolution in patient stratification, the discovery of therapeutic targets and clinical trial design in the next 20 years. Here we outline recent advances in analytical and phenotyping approaches and the emergence of large cohorts with standardized gene-expression data and other phenotypic data that are fueling a bounty of discovery and improved understanding of human physiology.
Mamrak, Nicholas E; Shimamura, Akiko; Howlett, Niall G
2017-05-01
Fanconi anemia (FA) is a rare autosomal and X-linked genetic disease characterized by congenital abnormalities, progressive bone marrow failure (BMF), and increased cancer risk during early adulthood. The median lifespan for FA patients is approximately 33years. The proteins encoded by the FA genes function together in the FA-BRCA pathway to repair DNA damage and to maintain genome stability. Within the past two years, five new FA genes have been identified-RAD51/FANCR, BRCA1/FANCS, UBE2T/FANCT, XRCC2/FANCU, and REV7/FANCV-bringing the total number of disease-causing genes to 21. This review summarizes the discovery of these new FA genes and describes how these proteins integrate into the FA-BRCA pathway to maintain genome stability and critically prevent early-onset BMF and cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jacoby, Edgar; Schuffenhauer, Ansgar; Popov, Maxim; Azzaoui, Kamal; Havill, Benjamin; Schopfer, Ulrich; Engeloch, Caroline; Stanek, Jaroslav; Acklin, Pierre; Rigollier, Pascal; Stoll, Friederike; Koch, Guido; Meier, Peter; Orain, David; Giger, Rudolph; Hinrichs, Jürgen; Malagu, Karine; Zimmermann, Jürg; Roth, Hans-Joerg
2005-01-01
The NIBR (Novartis Institutes for BioMedical Research) compound collection enrichment and enhancement project integrates corporate internal combinatorial compound synthesis and external compound acquisition activities in order to build up a comprehensive screening collection for a modern drug discovery organization. The main purpose of the screening collection is to supply the Novartis drug discovery pipeline with hit-to-lead compounds for today's and the future's portfolio of drug discovery programs, and to provide tool compounds for the chemogenomics investigation of novel biological pathways and circuits. As such, it integrates designed focused and diversity-based compound sets from the synthetic and natural paradigms able to cope with druggable and currently deemed undruggable targets and molecular interaction modes. Herein, we will summarize together with new trends published in the literature, scientific challenges faced and key approaches taken at NIBR to match the chemical and biological spaces.
Griffith, Rachel M; Li, Hu; Zhang, Nan; Favazza, Tara L; Fulton, Anne B; Hansen, Ronald M; Akula, James D
2013-08-01
The purpose of this study was to identify the genes, biochemical signaling pathways, and biological themes involved in the pathogenesis of retinopathy of prematurity (ROP). Next-generation sequencing (NGS) was performed on the RNA transcriptome of rats with the Penn et al. (Pediatr Res 36:724-731, 1994) oxygen-induced retinopathy model of ROP at the height of vascular abnormality, postnatal day (P) 19, and normalized to age-matched, room-air-reared littermate controls. Eight custom-developed pathways with potential relevance to known ROP sequelae were evaluated for significant regulation in ROP: The three major Wnt signaling pathways, canonical, planar cell polarity (PCP), and Wnt/Ca(2+); two signaling pathways mediated by the Rho GTPases RhoA and Cdc42, which are, respectively, thought to intersect with canonical and non-canonical Wnt signaling; nitric oxide signaling pathways mediated by two nitric oxide synthase (NOS) enzymes, neuronal (nNOS) and endothelial (eNOS); and the retinoic acid (RA) signaling pathway. Regulation of other biological pathways and themes was detected by gene ontology using the Kyoto Encyclopedia of Genes and Genomes and the NIH's Database for Annotation, Visualization, and Integrated Discovery's GO terms databases. Canonical Wnt signaling was found to be regulated, but the non-canonical PCP and Wnt/Ca(2+) pathways were not. Nitric oxide signaling, as measured by the activation of nNOS and eNOS, was also regulated, as was RA signaling. Biological themes related to protein translation (ribosomes), neural signaling, inflammation and immunity, cell cycle, and cell death were (among others) highly regulated in ROP rats. These several genes and pathways identified by NGS might provide novel targets for intervention in ROP.
Griffith, Rachel M.; Li, Hu; Zhang, Nan; Favazza, Tara L.; Fulton, Anne B.; Hansen, Ronald M.; Akula, James D.
2013-01-01
Purpose To identify the genes, biochemical signaling pathways and biological themes involved in the pathogenesis of retinopathy of prematurity (ROP). Methods Next-generation sequencing (NGS) was performed on the RNA transcriptome of rats with the Penn et al. (1994) oxygen-induced retinopathy (OIR) model of ROP at the height of vascular abnormality, postnatal day (P) 19, and normalized to age-matched, room-air-reared littermate controls. Eight custom developed pathways with potential relevance to known ROP sequelae were evaluated for significant regulation in ROP: The three major Wnt signaling pathways, canonical, planar cell polarity (PCP), and Wnt/Ca2+, two signaling pathways mediated by the Rho GTPases RhoA and Cdc42, which are respectively thought to intersect with canonical and noncanonical Wnt signaling, nitric oxide signaling pathways mediated by two nitrox oxide synthase (NOS) enzymes, neuronal (nNOS) and endothelial (eNOS), and the retinoic acid (RA) signaling pathway. Regulation of other biological pathways and themes were detected by gene ontology using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the NIH's Database for Annotation, Visualization and Integrated Discovery (DAVID)'s GO terms databases. Results Canonical Wnt signaling was found to be regulated, but the non-canonical PCP and Wnt/Ca2+ pathways were not. Nitric oxide (NO) signaling, as measured by the activation of nNOS eNOS, was also regulated, as was RA signaling. Biological themes related to protein translation (ribosomes), neural signaling, inflammation and immunity, cell cycle and cell death, were (among others) highly regulated in ROP rats. Conclusions These several genes and pathways identified by NGS might provide novel targets for intervention in ROP. PMID:23775346
tRNA biology charges to the front
Phizicky, Eric M.; Hopper, Anita K.
2010-01-01
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis. PMID:20810645
Cell Death in C. elegans Development.
Malin, Jennifer Zuckerman; Shaham, Shai
2015-01-01
Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.
[Chemical libraries dedicated to protein-protein interactions].
Sperandio, Olivier; Villoutreix, Bruno O; Morelli, Xavier; Roche, Philippe
2015-03-01
The identification of complete networks of protein-protein interactions (PPI) within a cell has contributed to major breakthroughs in understanding biological pathways, host-pathogen interactions and cancer development. As a consequence, PPI have emerged as a new class of promising therapeutic targets. However, they are still considered as a challenging class of targets for drug discovery programs. Recent successes have allowed the characterization of structural and physicochemical properties of protein-protein interfaces leading to a better understanding of how they can be disrupted with small molecule compounds. In addition, characterization of the profiles of PPI inhibitors has allowed the development of PPI-focused libraries. In this review, we present the current efforts at developing chemical libraries dedicated to these innovative targets. © 2015 médecine/sciences – Inserm.
Chen, L; Yue, J; Han, X; Li, J; Hu, Y
2016-02-01
Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.
Rab proteins: The key regulators of intracellular vesicle transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in
2014-10-15
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less
Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A
2014-01-01
Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate expression changes at a pathway level. Although many statistical and computational methods have been proposed for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed. Among different related data sets collected for the same or similar study purposes, it is important to identify pathways or gene sets with concordant enrichment. We categorize the underlying true states of differential expression into three representative categories: no change, positive change and negative change. Due to data noise, what we observe from experiments may not indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and calculate its related probability based on a three-component multivariate normal mixture model. The related false discovery rate can be calculated and used to rank different gene sets. We used three published lung cancer microarray gene expression data sets to illustrate our proposed method. One analysis based on the first two data sets was conducted to compare our result with a previous published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates. A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway collection showed that a majority of these pathways could be identified by our proposed method. This study illustrates that we can improve detection power and discovery consistency through a concordant integrative analysis of multiple large-scale two-sample gene expression data sets.
Logue, Mark W.; Smith, Alicia K.; Baldwin, Clinton; Wolf, Erika J.; Guffanti, Guia; Ratanatharathorn, Andrew; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald; Binder, Elisabeth B.; Arloth, Janine; Menke, Andreas; Uddin, Monica; Wildman, Derek; Galea, Sandro; Aiello, Allison E.; Koenen, Karestan C.; Miller, Mark W.
2015-01-01
We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls. PMID:25867994
Risbrough, Victoria B; Glenn, Daniel E; Baker, Dewleen G
The use of quantitative, laboratory-based measures of threat in humans for proof-of-concept studies and target development for novel drug discovery has grown tremendously in the last 2 decades. In particular, in the field of posttraumatic stress disorder (PTSD), human models of fear conditioning have been critical in shaping our theoretical understanding of fear processes and importantly, validating findings from animal models of the neural substrates and signaling pathways required for these complex processes. Here, we will review the use of laboratory-based measures of fear processes in humans including cued and contextual conditioning, generalization, extinction, reconsolidation, and reinstatement to develop novel drug treatments for PTSD. We will primarily focus on recent advances in using behavioral and physiological measures of fear, discussing their sensitivity as biobehavioral markers of PTSD symptoms, their response to known and novel PTSD treatments, and in the case of d-cycloserine, how well these findings have translated to outcomes in clinical trials. We will highlight some gaps in the literature and needs for future research, discuss benefits and limitations of these outcome measures in designing proof-of-concept trials, and offer practical guidelines on design and interpretation when using these fear models for drug discovery.
ScreenCube: A 3D Printed System for Rapid and Cost-Effective Chemical Screening in Adult Zebrafish.
Monstad-Rios, Adrian T; Watson, Claire J; Kwon, Ronald Y
2018-02-01
Phenotype-based small molecule screens in zebrafish embryos and larvae have been successful in accelerating pathway and therapeutic discovery for diverse biological processes. Yet, the application of chemical screens to adult physiologies has been relatively limited due to additional demands on cost, space, and labor associated with screens in adult animals. In this study, we present a 3D printed system and methods for intermittent drug dosing that enable rapid and cost-effective chemical administration in adult zebrafish. Using prefilled screening plates, the system enables dosing of 96 fish in ∼3 min, with a 10-fold reduction in drug quantity compared to that used in previous chemical screens in adult zebrafish. We characterize water quality kinetics during immersion in the system and use these kinetics to rationally design intermittent dosing regimens that result in 100% fish survival. As a demonstration of system fidelity, we show the potential to identify two known chemical inhibitors of adult tail fin regeneration, cyclopamine and dorsomorphin. By developing methods for rapid and cost-effective chemical administration in adult zebrafish, this study expands the potential for small molecule discovery in postembryonic models of development, disease, and regeneration.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data
Colaprico, Antonio; Silva, Tiago C.; Olsen, Catharina; Garofano, Luciano; Cava, Claudia; Garolini, Davide; Sabedot, Thais S.; Malta, Tathiane M.; Pagnotta, Stefano M.; Castiglioni, Isabella; Ceccarelli, Michele; Bontempi, Gianluca; Noushmehr, Houtan
2016-01-01
The Cancer Genome Atlas (TCGA) research network has made public a large collection of clinical and molecular phenotypes of more than 10 000 tumor patients across 33 different tumor types. Using this cohort, TCGA has published over 20 marker papers detailing the genomic and epigenomic alterations associated with these tumor types. Although many important discoveries have been made by TCGA's research network, opportunities still exist to implement novel methods, thereby elucidating new biological pathways and diagnostic markers. However, mining the TCGA data presents several bioinformatics challenges, such as data retrieval and integration with clinical data and other molecular data types (e.g. RNA and DNA methylation). We developed an R/Bioconductor package called TCGAbiolinks to address these challenges and offer bioinformatics solutions by using a guided workflow to allow users to query, download and perform integrative analyses of TCGA data. We combined methods from computer science and statistics into the pipeline and incorporated methodologies developed in previous TCGA marker studies and in our own group. Using four different TCGA tumor types (Kidney, Brain, Breast and Colon) as examples, we provide case studies to illustrate examples of reproducibility, integrative analysis and utilization of different Bioconductor packages to advance and accelerate novel discoveries. PMID:26704973
Structure, production and signaling of leptin
Münzberg, Heike; Morrison, Christopher D.
2014-01-01
The cloning of leptin in 1994 was an important milestone in obesity research. In those days obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause morbid obesity, and it is now appreciated that obesity is caused by a dysregulation of central neuronal circuits. From the first discovery of the leptin deficient obese mouse (ob/ob), to the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, much has been learned about leptin and its action in the central nervous system. The initial high hopes that leptin would cure obesity were quickly dampened by the discovery that most obese humans have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint for distinct neuronal circuits that control energy homeostasis. A better understanding of the regulation and interconnection of these circuits will further guide and improve the development of safe and effective interventions to treat obesity. This review will highlight our current knowledge about the hormone leptin, its signaling pathways and its central actions to mediate distinct physiological functions. PMID:25305050
Yan, Xiuqin; Zhang, Xue; Lu, Min; He, Yong; An, Huaming
2015-04-25
Rosa roxburghii Tratt. is a well-known ornamental rose species native to China. In addition, the fruits of this species are valued for their nutritional and medicinal characteristics, especially their high ascorbic acid (AsA) levels. Nevertheless, AsA biosynthesis in R. roxburghii fruit has not been explored in detail because of a lack of genomic resources for this species. High-throughput transcriptomic sequencing generating large volumes of transcript sequence data can aid in gene discovery and molecular marker development. In this study, we generated more than 53 million clean reads using Illumina paired-end sequencing technology. De novo assembly yielded 106,590 unigenes, with an average length of 343 bp. On the basis of sequence similarity to known proteins, 9301 and 2393 unigenes were classified into Gene Ontology and Clusters of Orthologous Group categories, respectively. There were 7480 unigenes assigned to 124 pathways in the Kyoto Encyclopedia of Gene and Genome pathway database. BLASTx searches identified 498 unique putative transcripts encoding various transcription factors, some known to regulate fruit development. qRT-PCR validated the expressions of most of the genes encoding the main enzymes involved in ascorbate biosynthesis. In addition, 9131 potential simple sequence repeat (SSR) loci were identified among the unigenes. One hundred and two primer pairs were synthesized and 71 pairs produced an amplification product during initial screening. Among the amplified products, 30 were polymorphic in the 16 R. roxburghii germplasms tested. Our study was the first to produce a large volume of transcriptome data from R. roxburghii. The resulting sequence collection is a valuable resource for gene discovery and marker-assisted selective breeding in this rose species. Copyright © 2015 Elsevier B.V. All rights reserved.
Hartuti, Endah Dwi; Inaoka, Daniel Ken; Komatsuya, Keisuke; Miyazaki, Yukiko; Miller, Russell J; Xinying, Wang; Sadikin, Mohamad; Prabandari, Erwahyuni Endang; Waluyo, Danang; Kuroda, Marie; Amalia, Eri; Matsuo, Yuichi; Nugroho, Nuki B; Saimoto, Hiroyuki; Pramisandi, Amila; Watanabe, Yoh-Ichi; Mori, Mihoko; Shiomi, Kazuro; Balogun, Emmanuel Oluwadare; Shiba, Tomoo; Harada, Shigeharu; Nozaki, Tomoyoshi; Kita, Kiyoshi
2018-03-01
Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc 1 complex inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.
Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Bussell, John Desmond; Schwambach, Joseli; Pop, Tiberia Ioana; Kowalczyk, Mariusz; Gutierrez, Laurent; Cavel, Emilie; Chaabouni, Salma; Ljung, Karin; Fett-Neto, Arthur Germano; Pamfil, Doru; Bellini, Catherine
2014-04-01
The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.
Jasin, Maria; Haber, James E
2016-08-01
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution. Copyright © 2016. Published by Elsevier B.V.
FR171456 is a specific inhibitor of mammalian NSDHL and yeast Erg26p
Helliwell, Stephen B.; Karkare, Shantanu; Bergdoll, Marc; Rahier, Alain; Leighton-Davis, Juliet R.; Fioretto, Celine; Aust, Thomas; Filipuzzi, Ireos; Frederiksen, Mathias; Gounarides, John; Hoepfner, Dominic; Hofmann, Andreas; Imbert, Pierre-Eloi; Jeker, Rolf; Knochenmuss, Richard; Krastel, Philipp; Margerit, Anais; Memmert, Klaus; Miault, Charlotte V.; Rao Movva, N.; Muller, Alban; Naegeli, Hans-Ulrich; Oberer, Lukas; Prindle, Vivian; Riedl, Ralph; Schuierer, Sven; Sexton, Jessica A.; Tao, Jianshi; Wagner, Trixie; Yin, Hong; Zhang, Juan; Roggo, Silvio; Reinker, Stefan; Parker, Christian N.
2015-01-01
FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae—Erg26p, Homo sapiens—NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound. PMID:26456460
Jasin, Maria; Haber, James E.
2017-01-01
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occur by homologous recombination that relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution. PMID:27261202
Modeling chemical reactions for drug design.
Gasteiger, Johann
2007-01-01
Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.
Protecting and Diversifying the Germline
Gleason, Ryan J.; Anand, Amit; Kai, Toshie; Chen, Xin
2018-01-01
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development—a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development. PMID:29378808
Novel HDL-directed pharmacotherapeutic strategies
deGoma, Emil M.; Rader, Daniel J.
2011-01-01
The burden of atherothrombotic cardiovascular disease remains high despite currently available optimum medical therapy. To address this substantial residual risk, the development of novel therapies that attempt to harness the atheroprotective functions of HDL is a major goal. These functions include the critical role of HDL in reverse cholesterol transport, and its anti-inflammatory, antithrombotic, and antioxidant activities. Discoveries in the past decade have shed light on the complex metabolic and antiatherosclerotic pathways of HDL. These insights have fueled the development of HDL-targeted drugs, which can be classified among four different therapeutic approaches: directly augmenting apolipoprotein A-I (apo A-I) levels, such as with apo A-I infusions and upregulators of endogenous apo A-I production; indirectly augmenting apo A-I and HDL-cholesterol levels, such as through inhibition of cholesteryl ester transfer protein or endothelial lipase, or through activation of the high-affinity niacin receptor GPR109A; mimicking the functionality of apo A-I with apo A-I mimetic peptides; and enhancing steps in the reverse cholesterol transport pathway, such as via activation of the liver X receptor or of lecithin–cholesterol acyltransferase. PMID:21243009
Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances
Lionta, Evanthia; Spyrou, George; Vassilatis, Demetrios K.; Cournia, Zoe
2014-01-01
Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and applications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the initial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of topscoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, induced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that enable the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional proteins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to inhibit the mutant H1047R PI3Kα kinase. Second, we discuss a strategy for the identification of selective binders for the RXRα nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein target through the SBVS process. PMID:25262799
Carbonetto, Peter; Stephens, Matthew
2013-01-01
Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study. PMID:24098138
Tariq, Mansoor; Chen, Rong; Yuan, Hongyu; Liu, Yanjie; Wu, Yanan; Wang, Junya; Xia, Chun
2015-01-01
Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful tools to understand the goose immune system. PMID:25816068
Replication protein A: directing traffic at the intersection of replication and repair.
Oakley, Greg G; Patrick, Steve M
2010-06-01
Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.
Li, Xihong; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen; Shi, Guohui
2013-01-01
Background The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq) technology provides a powerful and efficient method for transcript analysis and immune gene discovery. Methods/Principal Findings A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL−1) was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr) database. For function classification and pathway assignment, 18,734 (36.00%) unigenes were categorized to three Gene Ontology (GO) categories, 12,243 (23.51%) were classified to 25 Clusters of Orthologous Groups (COG), and 8,983 (17.25%) were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. Conclusions/Significance This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab. PMID:23874555
Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.
Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei
2015-05-09
A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.
Vetting, Matthew W.; Al-Obaidi, Nawar; Zhao, Suwen; ...
2014-12-25
The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. Here in this paper, we describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of themore » library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of D-Ala-D-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.« less
Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth
2010-01-01
Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.
Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian
2014-01-01
Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies. PMID:24800251
Electrophysiological experiments in microgravity: lessons learned and future challenges.
Wuest, Simon L; Gantenbein, Benjamin; Ille, Fabian; Egli, Marcel
2018-01-01
Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.
Eldeeb, Mohamed A; Leitao, Luana C A; Fahlman, Richard P
2018-06-01
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.
Otto, Markus; Bowser, Robert; Turner, Martin; Berry, James; Brettschneider, Johannes; Connor, James; Costa, Júlia; Cudkowicz, Merit; Glass, Jonathan; Jahn, Olaf; Lehnert, Stefan; Malaspina, Andrea; Parnetti, Lucilla; Petzold, Axel; Shaw, Pamela; Sherman, Alexander; Steinacker, Petra; Süssmuth, Sigurd; Teunissen, Charlotte; Tumani, Hayrettin; Wuolikainen, Anna; Ludolph, Albert
2012-01-01
Despite major advances in deciphering the neuropathological hallmarks of amyotrophic lateral sclerosis (ALS), validated neurochemical biomarkers for monitoring disease activity, earlier diagnosis, defining prognosis and unlocking key pathophysiological pathways are lacking. Although several candidate biomarkers exist, translation into clinical application is hindered by small sample numbers, especially longitudinal, for independent verification. This review considers the potential routes to the discovery of neurochemical markers in ALS, and provides a consensus statement on standard operating procedures that will facilitate multicenter collaboration, validation and ultimately clinical translation.
Ensemble-based docking: From hit discovery to metabolism and toxicity predictions
Evangelista, Wilfredo; Weir, Rebecca; Ellingson, Sally; ...
2016-07-29
The use of ensemble-based docking for the exploration of biochemical pathways and toxicity prediction of drug candidates is described. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials.
Sinha, Shriprakash
2017-12-04
Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway. Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous study of these issues. This manuscript ∙ explores the strength of contributing factors in the signaling pathway, ∙ analyzes the existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological knowledge and ∙ investigates the deviations in fold changes in the recently found prevalence of psychophysical laws working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear responses between the factors obtained from static and time series expression profiles using the density (Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices. The results show the advantage of using density based indices over variance based indices mainly due to the former's employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In time series data, using these indices it is now possible to observe where in time, which factors get influenced & contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based administration of target therapeutic drugs & reveal hidden biological information within colorectal cancer samples.
Pathway-based discovery of genetic interactions in breast cancer
Xu, Zack Z.; Boone, Charles; Lange, Carol A.
2017-01-01
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314
Evans, Erica K; Tester, Richland; Aslanian, Sharon; Karp, Russell; Sheets, Michael; Labenski, Matthew T; Witowski, Steven R; Lounsbury, Heather; Chaturvedi, Prasoon; Mazdiyasni, Hormoz; Zhu, Zhendong; Nacht, Mariana; Freed, Martin I; Petter, Russell C; Dubrovskiy, Alex; Singh, Juswinder; Westlin, William F
2013-08-01
Targeted therapies that suppress B cell receptor (BCR) signaling have emerged as promising agents in autoimmune disease and B cell malignancies. Bruton's tyrosine kinase (Btk) plays a crucial role in B cell development and activation through the BCR signaling pathway and represents a new target for diseases characterized by inappropriate B cell activity. N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide (CC-292) is a highly selective, covalent Btk inhibitor and a sensitive and quantitative assay that measures CC-292-Btk engagement has been developed. This translational pharmacodynamic assay has accompanied CC-292 through each step of drug discovery and development. These studies demonstrate the quantity of Btk bound by CC-292 correlates with the efficacy of CC-292 in vitro and in the collagen-induced arthritis model of autoimmune disease. Recently, CC-292 has entered human clinical trials with a trial design that has provided rapid insight into safety, pharmacokinetics, and pharmacodynamics. This first-in-human healthy volunteer trial has demonstrated that a single oral dose of 2 mg/kg CC-292 consistently engaged all circulating Btk protein and provides the basis for rational dose selection in future clinical trials. This targeted covalent drug design approach has enabled the discovery and early clinical development of CC-292 and has provided support for Btk as a valuable drug target for B-cell mediated disorders.
Phenotypic Screening Approaches to Develop Aurora Kinase Inhibitors: Drug Discovery Perspectives.
Marugán, Carlos; Torres, Raquel; Lallena, María José
2015-01-01
Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins, such as Aurora-A and -B. Current drugs, which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules), have several side effects (neutropenia, alopecia, and emesis). Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype. We will briefly describe two multiplexing technologies [high-content imaging (HCI) and flow cytometry] and two key processes for drug discovery research (assay development and validation) following our own published industry quality standards. We will further focus on HCI as a useful tool for phenotypic screening and will provide a concrete example of HCI assay to detect Aurora-A or -B selective inhibitors discriminating the off-target effects related to the inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.
Predicting the points of interaction of small molecules in the NF-κB pathway
2011-01-01
Background The similarity property principle has been used extensively in drug discovery to identify small compounds that interact with specific drug targets. Here we show it can be applied to identify the interactions of small molecules within the NF-κB signalling pathway. Results Clusters that contain compounds with a predominant interaction within the pathway were created, which were then used to predict the interaction of compounds not included in the clustering analysis. Conclusions The technique successfully predicted the points of interactions of compounds that are known to interact with the NF-κB pathway. The method was also shown to be successful when compounds for which the interaction points were unknown were included in the clustering analysis. PMID:21342508
A common pathway for charge transport through voltage-sensing domains.
Chanda, Baron; Bezanilla, Francisco
2008-02-07
Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.
Sarmady, Mahdi; Dampier, William; Tozeren, Aydin
2011-01-01
Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584
Ji, Zhiwei; Wang, Bing; Yan, Ke; Dong, Ligang; Meng, Guanmin; Shi, Lei
2017-12-21
In recent years, the integration of 'omics' technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc. In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds' treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound's efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound's treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds. In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets.
Open innovation for phenotypic drug discovery: The PD2 assay panel.
Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M
2011-07-01
Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.
The impact of genetics on future drug discovery in schizophrenia.
Matsumoto, Mitsuyuki; Walton, Noah M; Yamada, Hiroshi; Kondo, Yuji; Marek, Gerard J; Tajinda, Katsunori
2017-07-01
Failures of investigational new drugs (INDs) for schizophrenia have left huge unmet medical needs for patients. Given the recent lackluster results, it is imperative that new drug discovery approaches (and resultant drug candidates) target pathophysiological alterations that are shared in specific, stratified patient populations that are selected based on pre-identified biological signatures. One path to implementing this paradigm is achievable by leveraging recent advances in genetic information and technologies. Genome-wide exome sequencing and meta-analysis of single nucleotide polymorphism (SNP)-based association studies have already revealed rare deleterious variants and SNPs in patient populations. Areas covered: Herein, the authors review the impact that genetics have on the future of schizophrenia drug discovery. The high polygenicity of schizophrenia strongly indicates that this disease is biologically heterogeneous so the identification of unique subgroups (by patient stratification) is becoming increasingly necessary for future investigational new drugs. Expert opinion: The authors propose a pathophysiology-based stratification of genetically-defined subgroups that share deficits in particular biological pathways. Existing tools, including lower-cost genomic sequencing and advanced gene-editing technology render this strategy ever more feasible. Genetically complex psychiatric disorders such as schizophrenia may also benefit from synergistic research with simpler monogenic disorders that share perturbations in similar biological pathways.
Delineation of metabolic gene clusters in plant genomes by chromatin signatures.
Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J; Kumar, S Vinod; Freemont, Paul S; Osbourn, Anne
2016-03-18
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Haymond, Amanda; Johny, Chinchu; Dowdy, Tyrone; Schweibenz, Brandon; Villarroel, Karen; Young, Richard; Mantooth, Clark J.; Patel, Trishal; Bases, Jessica; Jose, Geraldine San; Jackson, Emily R.; Dowd, Cynthia S.; Couch, Robin D.
2014-01-01
The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KM DXP = 252 µM and KM NADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development. PMID:25171339
Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-06-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.
Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai
2016-01-01
Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418
Pollen Acceptance or Rejection: A Tale of Two Pathways.
Doucet, Jennifer; Lee, Hyun Kyung; Goring, Daphne R
2016-12-01
While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp.
He, Yi; Wang, Bin; Chen, Wanping; Cox, Russell J; He, Jingren; Chen, Fusheng
High throughput genome sequencing has revealed a multitude of potential secondary metabolites biosynthetic pathways that remain cryptic. Pathway reconstruction coupled with genetic engineering via heterologous expression enables discovery of novel compounds, elucidation of biosynthetic pathways, and optimization of product yields. Apart from Escherichia coli and yeast, fungi, especially Aspergillus spp., are well known and efficient heterologous hosts. This review summarizes recent advances in heterologous expression of microbial secondary metabolite biosynthesis in Aspergillus spp. We also discuss the technological challenges and successes in regard to heterologous host selection and DNA assembly behind the reconstruction of microbial secondary metabolite biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.
GDC-0449-a potent inhibitor of the hedgehog pathway.
Robarge, Kirk D; Brunton, Shirley A; Castanedo, Georgette M; Cui, Yong; Dina, Michael S; Goldsmith, Richard; Gould, Stephen E; Guichert, Oivin; Gunzner, Janet L; Halladay, Jason; Jia, Wei; Khojasteh, Cyrus; Koehler, Michael F T; Kotkow, Karen; La, Hank; Lalonde, Rebecca L; Lau, Kevin; Lee, Leslie; Marshall, Derek; Marsters, James C; Murray, Lesley J; Qian, Changgeng; Rubin, Lee L; Salphati, Laurent; Stanley, Mark S; Stibbard, John H A; Sutherlin, Daniel P; Ubhayaker, Savita; Wang, Shumei; Wong, Susan; Xie, Minli
2009-10-01
SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.
Cordell, Heather J; Han, Younghun; Mells, George F; Li, Yafang; Hirschfield, Gideon M; Greene, Casey S; Xie, Gang; Juran, Brian D; Zhu, Dakai; Qian, David C; Floyd, James A B; Morley, Katherine I; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Gershwin, M Eric; Anderson, Carl A; Lazaridis, Konstantinos N; Invernizzi, Pietro; Seldin, Michael F; Sandford, Richard N; Amos, Christopher I; Siminovitch, Katherine A
2015-09-22
Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist.
Luo, Dan; Møller, Birger Lindberg; Pateraki, Irini
2017-12-01
Diterpenoids are high value compounds characterized by high structural complexity. They constitute the largest class of specialized metabolites produced by plants. Diterpenoids are flexible molecules able to engage in specific binding to drug targets like receptors and transporters. In this review we provide an account on how the complex pathways for diterpenoids may be elucidated. Following plant pathway discovery, the compounds may be produced in heterologous hosts like yeasts and E. coli. Environmentally contained production in photosynthetic cells like cyanobacteria, green algae or mosses are envisioned as the ultimate future production system.
Molecular and comparative genetics of mental retardation.
Inlow, Jennifer K; Restifo, Linda L
2004-01-01
Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the approximately 700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR. PMID:15020472
Discovery of Pyrazolopyrimidine Derivatives as Novel Dual Inhibitors of BTK and PI3Kδ.
Pujala, Brahmam; Agarwal, Anil K; Middya, Sandip; Banerjee, Monali; Surya, Arjun; Nayak, Anjan K; Gupta, Ashu; Khare, Sweta; Guguloth, Rambabu; Randive, Nitin A; Shinde, Bharat U; Thakur, Anamika; Patel, Dhananjay I; Raja, Mohd; Green, Michael J; Alfaro, Jennifer; Avila, Patricio; Pérez de Arce, Felipe; Almirez, Ramona G; Kanno, Stacy; Bernales, Sebastián; Hung, David T; Chakravarty, Sarvajit; McCullagh, Emma; Quinn, Kevin P; Rai, Roopa; Pham, Son M
2016-12-08
The aberrant activation of B-cells has been implicated in several types of cancers and hematological disorders. BTK and PI3Kδ are kinases responsible for B-cell signal transduction, and inhibitors of these enzymes have demonstrated clinical benefit in certain types of lymphoma. Simultaneous inhibition of these pathways could result in more robust responses or overcome resistance as observed in single agent use. We report a series of novel compounds that have low nanomolar potency against both BTK and PI3Kδ as well as acceptable PK properties that could be useful in the development of treatments against B-cell related diseases.
Molecular techniques and genetic alterations in head and neck cancer
Ha, Patrick K; Chang, Steven S; Glazer, Chad A; Califano, Joseph A; Sidransky, David
2009-01-01
It is well known that cellular DNA alterations can lead to the formation of cancer, and there has been much discovery in the pathways involved in the development of head and neck squamous cell carcinoma (HNSCC). With novel genome-wide molecular assays, our ability to detect these abnormalities has increased. We now have a better understanding of the molecular complexity of HNSCC, but there is still much research to be done. In this review, we discuss the well described genetic alterations and touch on the newer findings, as well as some of the future directions of head and neck cancer research. PMID:18674960
Recent Advances Towards The Discovery Of Drug-Like Peptides De Novo
NASA Astrophysics Data System (ADS)
Goldflam, Michael; Ullman, Christopher
2015-12-01
Peptides are important natural molecules that possess functions as diverse as antibiotics, toxins, venoms and hormones, for example. However, whilst these peptides have useful properties, there are many targets and pathways that are not addressed through the activities of natural peptidic compounds. In these circumstances, directed evolution techniques, such as phage display, have been developed to sample the diverse chemical and structural repertoire of small peptides for useful means. In this review, we consider recent concepts that relate peptide structure to drug-like attributes and how these are incorporated within display technologies to deliver peptides de novo with valuable pharmaceutical properties.
Informatics Approaches for Predicting, Understanding, and Testing Cancer Drug Combinations.
Tang, Jing
2017-01-01
Making cancer treatment more effective is one of the grand challenges in our health care system. However, many drugs have entered clinical trials but so far showed limited efficacy or induced rapid development of resistance. We urgently need multi-targeted drug combinations, which shall selectively inhibit the cancer cells and block the emergence of drug resistance. The book chapter focuses on mathematical and computational tools to facilitate the discovery of the most promising drug combinations to improve efficacy and prevent resistance. Data integration approaches that leverage drug-target interactions, cancer molecular features, and signaling pathways for predicting, understanding, and testing drug combinations are critically reviewed.
Discovery of Pyrazolopyrimidine Derivatives as Novel Dual Inhibitors of BTK and PI3Kδ
2016-01-01
The aberrant activation of B-cells has been implicated in several types of cancers and hematological disorders. BTK and PI3Kδ are kinases responsible for B-cell signal transduction, and inhibitors of these enzymes have demonstrated clinical benefit in certain types of lymphoma. Simultaneous inhibition of these pathways could result in more robust responses or overcome resistance as observed in single agent use. We report a series of novel compounds that have low nanomolar potency against both BTK and PI3Kδ as well as acceptable PK properties that could be useful in the development of treatments against B-cell related diseases. PMID:27994757
Overcoming obstacles to repurposing for neurodegenerative disease
Shineman, Diana W; Alam, John; Anderson, Margaret; Black, Sandra E; Carman, Aaron J; Cummings, Jeffrey L; Dacks, Penny A; Dudley, Joel T; Frail, Donald E; Green, Allan; Lane, Rachel F; Lappin, Debra; Simuni, Tanya; Stefanacci, Richard G; Sherer, Todd; Fillit, Howard M
2014-01-01
Repurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer’s Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson’s Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases. Here, we present opportunities on how philanthropy, industry, and government can begin to address these challenges, promote policy changes, and develop targeted funding strategies to accelerate the potential of FDA-approved repurposed drugs. PMID:25356422
Pharmacological approaches to restore mitochondrial function
Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan
2014-01-01
Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487
The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene dependency, between sensitive and non-sensitive cell lines.
Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.
Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F
2015-01-01
This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.
Alanazi, Ibrahim O; Ebrahimie, Esmaeil
2016-07-01
Novel computational systems biology tools such as common targets analysis, common regulators analysis, pathway discovery, and transcriptomic-based hotspot discovery provide new opportunities in understanding of apoptosis molecular mechanisms. In this study, after measuring the global contribution of microRNAs in the course of apoptosis by Affymetrix platform, systems biology tools were utilized to obtain a comprehensive view on the role of microRNAs in apoptosis process. Network analysis and pathway discovery highlighted the crosstalk between transcription factors and microRNAs in apoptosis. Within the transcription factors, PRDM1 showed the highest upregulation during the course of apoptosis, with more than 9-fold expression increase compared to non-apoptotic condition. Within the microRNAs, MIR1208 showed the highest expression in non-apoptotic condition and downregulated by more than 6 fold during apoptosis. Common regulators algorithm showed that TNF receptor is the key upstream regulator with a high number of regulatory interactions with the differentially expressed microRNAs. BCL2 and AKT1 were the key downstream targets of differentially expressed microRNAs. Enrichment analysis of the genomic locations of differentially expressed microRNAs led us to the discovery of chromosome bands which were highly enriched (p < 0.01) with the apoptosis-related microRNAs, such as 13q31.3, 19p13.13, and Xq27.3 This study opens a new avenue in understanding regulatory mechanisms and downstream functions in the course of apoptosis as well as distinguishing genomic-enriched hotspots for apoptosis process.
Heterogeneous Organo-Catalysis: Sustainable Pathways to Furanics from Biomass
Glucose and fructose are among the most abundant plant-derived materials1 and have been converted into useful building units often used in the drug discovery and polymer architecture.2 Unfortunately, most of these conversions require mineral acids and complex heterogeneous cataly...
2014-01-01
Background Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. Methods We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. Results Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. Conclusions We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability. PMID:24965703
Kimple, Adam J; Bosch, Dustin E; Giguère, Patrick M; Siderovski, David P
2011-09-01
Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.
The NCAR Research Data Archive's Hybrid Approach for Data Discovery and Access
NASA Astrophysics Data System (ADS)
Schuster, D.; Worley, S. J.
2013-12-01
The NCAR Research Data Archive (RDA http://rda.ucar.edu) maintains a variety of data discovery and access capabilities for it's 600+ dataset collections to support the varying needs of a diverse user community. In-house developed and standards-based community tools offer services to more than 10,000 users annually. By number of users the largest group is external and access the RDA through web based protocols; the internal NCAR HPC users are fewer in number, but typically access more data volume. This paper will detail the data discovery and access services maintained by the RDA to support both user groups, and show metrics that illustrate how the community is using the services. The distributed search capability enabled by standards-based community tools, such as Geoportal and an OAI-PMH access point that serves multiple metadata standards, provide pathways for external users to initially discover RDA holdings. From here, in-house developed web interfaces leverage primary discovery level metadata databases that support keyword and faceted searches. Internal NCAR HPC users, or those familiar with the RDA, may go directly to the dataset collection of interest and refine their search based on rich file collection metadata. Multiple levels of metadata have proven to be invaluable for discovery within terabyte-sized archives composed of many atmospheric or oceanic levels, hundreds of parameters, and often numerous grid and time resolutions. Once users find the data they want, their access needs may vary as well. A THREDDS data server running on targeted dataset collections enables remote file access through OPENDAP and other web based protocols primarily for external users. In-house developed tools give all users the capability to submit data subset extraction and format conversion requests through scalable, HPC based delayed mode batch processing. Users can monitor their RDA-based data processing progress and receive instructions on how to access the data when it is ready. External users are provided with RDA server generated scripts to download the resulting request output. Similarly they can download native dataset collection files or partial files using Wget or cURL based scripts supplied by the RDA server. Internal users can access the resulting request output or native dataset collection files directly from centralized file systems.
Improving and Accelerating Drug Development for Nervous System Disorders
Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.
2014-01-01
Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933
Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials
Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I
2015-01-01
Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218
Lu, Wenfeng; Zhang, Dihua; Ma, Haikuo; Tian, Sheng; Zheng, Jiyue; Wang, Qin; Luo, Lusong; Zhang, Xiaohu
2018-05-23
The Hedgehog (Hh) signaling pathway plays a critical role in controlling patterning, growth and cell migration during embryonic development. Aberrant activation of Hh signaling has been linked to tumorigenesis in various cancers, such as basal cell carcinoma (BCC) and medulloblastoma. As a key member of the Hh pathway, the Smoothened (Smo) receptor, a member of the G protein-coupled receptor (GPCR) family, has emerged as an attractive therapeutic target for the treatment and prevention of human cancers. The recent determination of several crystal structures of Smo in complex with different antagonists offers the possibility to perform structure-based virtual screening for discovering potent Smo antagonists with distinct chemical scaffolds. In this study, based on the two Smo crystal complexes with the best capacity to distinguish the known Smo antagonists from decoys, the molecular docking-based virtual screening was conducted to identify promising Smo antagonists from ChemDiv library. A total of 21 structurally novel and diverse compounds were selected for experimental testing, and six of them exhibited significant inhibitory activity against the Hh pathway activation (IC 50 < 10 μM) in a GRE (Gli-responsive element) reporter gene assay. Specifically, the most potent compound (compound 20: 47 nM) showed comparable Hh signaling inhibition to vismodegib (46 nM). Compound 20 was further confirmed to be a potent Smo antagonist in a fluorescence based competitive binding assay. Optimization using substructure searching method led to the discovery of 12 analogues of compound 20 with decent Hh pathway inhibition activity, including four compounds with IC 50 lower than 1 μM. The important residues uncovered by binding free energy calculation (MM/GBSA) and binding free energy decomposition were highlighted and discussed. These findings suggest that the novel scaffold afforded by compound 20 can be used as a good starting point for further modification/optimization and the clarified interaction patterns may also guide us to find more potent Smo antagonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Shankar, Jata; Tiwari, Shraddha; Shishodia, Sonia K.; Gangwar, Manali; Hoda, Shanu; Thakur, Raman; Vijayaraghavan, Pooja
2018-01-01
Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus, and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers. PMID:29896454
Shankar, Jata; Tiwari, Shraddha; Shishodia, Sonia K; Gangwar, Manali; Hoda, Shanu; Thakur, Raman; Vijayaraghavan, Pooja
2018-01-01
Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus , and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers.
The history of aerobic ammonia oxidizers: from the first discoveries to today.
Monteiro, Maria; Séneca, Joana; Magalhães, Catarina
2014-07-01
Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.
Evolution of the NASA/IPAC Extragalactic Database (NED) into a Data Mining Discovery Engine
NASA Astrophysics Data System (ADS)
Mazzarella, Joseph M.; NED Team
2017-06-01
We review recent advances and ongoing work in evolving the NASA/IPAC Extragalactic Database (NED) beyond an object reference database into a data mining discovery engine. Updates to the infrastructure and data integration techniques are enabling more than a 10-fold expansion; NED will soon contain over a billion objects with their fundamental attributes fused across the spectrum via cross-identifications among the largest sky surveys (e.g., GALEX, SDSS, 2MASS, AllWISE, EMU), and over 100,000 smaller but scientifically important catalogs and journal articles. The recent discovery of super-luminous spiral galaxies exemplifies the opportunities for data mining and science discovery directly from NED's rich data synthesis. Enhancements to the user interface, including new APIs, VO protocols, and queries involving derived physical quantities, are opening new pathways for panchromatic studies of large galaxy samples. Examples are shown of graphics characterizing the content of NED, as well as initial steps in exploring the database via interactive statistical visualizations.
Ligand Receptor-Mediated Regulation of Growth in Plants.
Haruta, Miyoshi; Sussman, Michael R
2017-01-01
Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase family (approximately 5% of the protein coding genes), although the specific function for only a few dozen of these kinases is clearly established. Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes. With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions. © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ganong, William F.
1987-01-01
The present goal is to determine by the production of discrete lesions the parts of the hypothalamus and brainstem that are involved in serotonin-mediated increases in renin secretion. A variety of stimuli which act in different ways to increase renin stimuli were developed and standardized. The experiments with p-chloroamphetamine (PCA) demonstrated that there is a serotonergic pathway which projects from the dorsal raphe nuclei to the paraventricular nuclei and the vetromedial nuclei of the hypothalamus; that projection from paraventricular nuclei to the brainstem and spinal cord may be oxytocinergic; and that the pathway from the spinal cord to the renin secreting cells is sympathetic. The demonstration that paraventicular lesions lower circulating renin substrate is important because it raises the possibility that substrate secretion is under neural control, either via the pituitary or by direct neural pathways. The discovery that lesions of the ventromedial nuclei appear to abolish the increase in renin secretion produced by many different stimuli without affecting the concentration of renin substrate in the plasma makes the position of the hypothalamus in the regulation of fluid and electrolyte balance more prominent than previously suspected.
Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M
2018-01-01
Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.
Hormone-controlled UV-B responses in plants.
Vanhaelewyn, Lucas; Prinsen, Els; Van Der Straeten, Dominique; Vandenbussche, Filip
2016-08-01
Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Central obesity, type 2 diabetes and insulin: exploring a pathway full of thorns
Papakyriakou, Panagiotis; Panagiotou, Themistoklis N.
2015-01-01
The prevalence of type 2 diabetes (T2D) is rapidly increasing. This is strongly related to the contemporary lifestyle changes that have resulted in increased rates of overweight individuals and obesity. Central (intra-abdominal) obesity is observed in the majority of patients with T2D. It is associated with insulin resistance, mainly at the level of skeletal muscle, adipose tissue and liver. The discovery of macrophage infiltration in the abdominal adipose tissue and the unbalanced production of adipocyte cytokines (adipokines) was an essential step towards novel research perspectives for a better understanding of the molecular mechanisms governing the development of insulin resistance. Furthermore, in an obese state, the increased cellular uptake of non-esterified fatty acids is exacerbated without any subsequent β-oxidation. This in turn contributes to the accumulation of intermediate lipid metabolites that cause defects in the insulin signaling pathway. This paper examines the possible cellular mechanisms that connect central obesity with defects in the insulin pathway. It discusses the discrepancies observed from studies organized in cell cultures, animal models and humans. Finally, it emphasizes the need for therapeutic strategies in order to achieve weight reduction in overweight and obese patients with T2D. PMID:26170839
Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions.
Ashraf, Asma; Pervaiz, Shazib
2015-12-01
Meticulous and precise control of organ size is undoubtedly one of the most pivotal processes in mammalian development and regeneration along with cell differentiation, morphogenesis and programmed cell death. These processes are strictly regulated by complex and highly coordinated mechanisms to maintain a steady growth state. There are a number of extrinsic and intrinsic factors that dictate the total number and/or size of cells by influencing growth, proliferation, differentiation and cell death. Multiple pathways, such as those involved in promoting organ size and others that restrict disproportionate tissue growth act simultaneously to maintain cellular and tissue homeostasis. Aberrations at any level in these organ size-regulating processes can lead to various pathological states with cancers being the most formidable one (Yin and Zhang, 2011). Extensive research in the realm of growth control has led to the identification of the Hippo-signaling pathway as a critical network in modulating tissue growth via its effect on multiple signaling pathways and through intricate crosstalk with proteins that regulate cell polarity, adhesion and cell-cell interactions (Zhao et al., 2011b). The Hippo pathway controls cell number and organ size by transducing signals from the plasma membrane to the nucleus to regulate the expression of genes involved in cell fate determination (Shi et al., 2015). In this review, we summarize the recent discoveries concerning Hippo pathway, its diversiform regulation in mammals as well as its implications in cancers, and highlight the possible role of oxidative stress in Hippo pathway regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leveraging the use of biorepository samples for genomic analyses holds huge implications for human health, including applications in pathway identification, biomarker discovery, and tumor profiling for precision medicine. However, there is a need for better ways to reduce nucleic...
Liberating Leadership Capacity: Pathways to Educational Wisdom
ERIC Educational Resources Information Center
Lambert, Linda; Zimmerman, Diane P.; Gardner, Mary E.
2016-01-01
During the past quarter century, conceptions of leadership have evolved in concert with breakthrough discoveries in science and generative learning. "Liberating Leadership Capacity" captures these new ideas through the integration of the authors' earlier works in constructivist leadership and leadership capacity. What emerges is a…
Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia
2012-05-13
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Synthetic biology to access and expand nature’s chemical diversity
Smanski, Michael J.; Zhou, Hui; Claesen, Jan; Shen, Ben; Fischbach, Michael; Voigt, Christopher A.
2016-01-01
Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Economically accessing the potential encoded within sequenced genomes promises to reinvigorate waning drug discovery pipelines and provide novel routes to intricate chemicals. This is a tremendous undertaking, as the pathways often comprise dozens of genes spanning as much as 100+ kiliobases of DNA, are controlled by complex regulatory networks, and the most interesting molecules are made by non-model organisms. Advances in synthetic biology address these issues, including DNA construction technologies, genetic parts for precision expression control, synthetic regulatory circuits, computer aided design, and multiplexed genome engineering. Collectively, these technologies are moving towards an era when chemicals can be accessed en mass based on sequence information alone. This will enable the harnessing of metagenomic data and massive strain banks for high-throughput molecular discovery and, ultimately, the ability to forward design pathways to complex chemicals not found in nature. PMID:26876034
EML4-ALK Variants: Biological and Molecular Properties, and the Implications for Patients
Yeoh, Sharon; Jackson, George
2017-01-01
Since the discovery of the fusion between EML4 (echinoderm microtubule associated protein-like 4) and ALK (anaplastic lymphoma kinase), EML4-ALK, in lung adenocarcinomas in 2007, and the subsequent identification of at least 15 different variants in lung cancers, there has been a revolution in molecular-targeted therapy that has transformed the outlook for these patients. Our recent focus has been on understanding how and why the expression of particular variants can affect biological and molecular properties of cancer cells, as well as identifying the key signalling pathways triggered, as a result. In the clinical setting, this understanding led to the discovery that the type of variant influences the response of patients to ALK therapy. Here, we discuss what we know so far about the EML4-ALK variants in molecular signalling pathways and what questions remain to be answered. In the longer term, this analysis may uncover ways to specifically treat patients for a better outcome. PMID:28872581
EML4-ALK Variants: Biological and Molecular Properties, and the Implications for Patients.
Sabir, Sarah R; Yeoh, Sharon; Jackson, George; Bayliss, Richard
2017-09-05
Since the discovery of the fusion between EML4 (echinoderm microtubule associated protein-like 4) and ALK (anaplastic lymphoma kinase), EML4-ALK, in lung adenocarcinomas in 2007, and the subsequent identification of at least 15 different variants in lung cancers, there has been a revolution in molecular-targeted therapy that has transformed the outlook for these patients. Our recent focus has been on understanding how and why the expression of particular variants can affect biological and molecular properties of cancer cells, as well as identifying the key signalling pathways triggered, as a result. In the clinical setting, this understanding led to the discovery that the type of variant influences the response of patients to ALK therapy. Here, we discuss what we know so far about the EML4-ALK variants in molecular signalling pathways and what questions remain to be answered. In the longer term, this analysis may uncover ways to specifically treat patients for a better outcome.
McDonald, Paige Green; O’Connell, Mary; Lutgendorf, Susan K.
2013-01-01
This article introduces the supplemental issue of “Cancer, Brain, Behavior, and Immunity” and outlines important discoveries, paradigm shifts, and methodological innovations that have emerged in the past decade to advance mechanistic and translational understanding of biobehavioral influences on tumor biology, cancer treatment-related sequelae, and cancer outcomes. We offer a heuristic framework for research on biobehavioral pathways in cancer. The shifting survivorship landscape is highlighted and we propose that the changing demographics suggest prudent adoption of a life course perspective of cancer and cancer survivorship. We note opportunities for psychoneuroimmunology (PNI) research to ameliorate the long-term, unintended consequences of aggressive curative intent and call attention to the critical role of reciprocal translational pathways between animal and human studies. Lastly, we briefly summarize the articles included in this compilation and offer our perspectives on future research directions. HighlightsThis article introduces the National Cancer Institute sponsored special issue Cancer, Brain, Behavior, and Immunity and highlights the last decade of PNI-cancer research. PMID:23333846
The roles of ubiquitin modifying enzymes in neoplastic disease.
Kumari, Nishi; Jaynes, Patrick William; Saei, Azad; Iyengar, Prasanna Vasudevan; Richard, John Lalith Charles; Eichhorn, Pieter Johan Adam
2017-12-01
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy. Copyright © 2017 Elsevier B.V. All rights reserved.
Valgepea, Kaspar; Loi, Kim Q; Behrendorff, James B; Lemgruber, Renato de S P; Plan, Manuel; Hodson, Mark P; Köpke, Michael; Nielsen, Lars K; Marcellin, Esteban
2017-05-01
Acetogens are attractive organisms for the production of chemicals and fuels from inexpensive and non-food feedstocks such as syngas (CO, CO 2 and H 2 ). Expanding their product spectrum beyond native compounds is dictated by energetics, particularly ATP availability. Acetogens have evolved sophisticated strategies to conserve energy from reduction potential differences between major redox couples, however, this coupling is sensitive to small changes in thermodynamic equilibria. To accelerate the development of strains for energy-intensive products from gases, we used a genome-scale metabolic model (GEM) to explore alternative ATP-generating pathways in the gas-fermenting acetogen Clostridium autoethanogenum. Shadow price analysis revealed a preference of C. autoethanogenum for nine amino acids. This prediction was experimentally confirmed under heterotrophic conditions. Subsequent in silico simulations identified arginine (ARG) as a key enhancer for growth. Predictions were experimentally validated, and faster growth was measured in media containing ARG (t D ~4h) compared to growth on yeast extract (t D ~9h). The growth-boosting effect of ARG was confirmed during autotrophic growth. Metabolic modelling and experiments showed that acetate production is nearly abolished and fast growth is realised by a three-fold increase in ATP production through the arginine deiminase (ADI) pathway. The involvement of the ADI pathway was confirmed by metabolomics and RNA-sequencing which revealed a ~500-fold up-regulation of the ADI pathway with an unexpected down-regulation of the Wood-Ljungdahl pathway. The data presented here offer a potential route for supplying cells with ATP, while demonstrating the usefulness of metabolic modelling for the discovery of native pathways for stimulating growth or enhancing energy availability. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Metabolomic strategies to map functions of metabolic pathways
Mulvihill, Melinda M.
2014-01-01
Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200
NASA Astrophysics Data System (ADS)
Vedavyas
A Multi-disciplinary Research into the Chronologies of Ancient Nations -- like the Vedas of India Rishies, the Chaldeans, Babylonians, Egyptians and the Chinese. Which traces how the "Measurement of Time" -- which began with the observations of sunrise and Sunset, Full-Moons, eclipses, the movement of stars and the Discovery of the Zodiac that starry pathway of sun in his annual Cycle of the 12-Zodiacal months, the Measurement of Time by planetary Cycles the Discovery of Astronomy and Symbolic or Kabalistic Astrology of the Bible's Old Testament; the Epics of Babylonians and 'Cosmic Cycles' of Chaldeans and Egyptians also the Ancient "Four Yugas" or Hindu Vedic Cycles.
Stress transgenerationally programs metabolic pathways linked to altered mental health.
Kiss, Douglas; Ambeskovic, Mirela; Montina, Tony; Metz, Gerlinde A S
2016-12-01
Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1 H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.
Designed multiple ligands in metabolic disease research: from concept to platform.
Gattrell, W; Johnstone, C; Patel, S; Smith, C Sambrook; Scheel, A; Schindler, M
2013-08-01
Type 2 diabetes mellitus (T2DM) is a multifactorial disease, and drug monotherapy typically results in unsatisfactory treatment outcomes for patients. Even when used in combination, existing therapies lack efficacy in the long term. Designed multiple ligands (DMLs) are compounds developed to modulate multiple targets relevant to a disease. DMLs offer the potential to yield greater efficacy over monotherapies, either by modulating different biological pathways, or by boosting a single one. However, examples of DMLs progressing into clinical trials, or onto the market are rare; DML drug discovery is challenging, and perceived by some to be almost impossible. Nevertheless, with the judicious selection of biological targets, both from a biological and chemical perspective, it is possible to develop drug-like DMLs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Metabolomics and Diabetes: Analytical and Computational Approaches
Sas, Kelli M.; Karnovsky, Alla; Michailidis, George
2015-01-01
Diabetes is characterized by altered metabolism of key molecules and regulatory pathways. The phenotypic expression of diabetes and associated complications encompasses complex interactions between genetic, environmental, and tissue-specific factors that require an integrated understanding of perturbations in the network of genes, proteins, and metabolites. Metabolomics attempts to systematically identify and quantitate small molecule metabolites from biological systems. The recent rapid development of a variety of analytical platforms based on mass spectrometry and nuclear magnetic resonance have enabled identification of complex metabolic phenotypes. Continued development of bioinformatics and analytical strategies has facilitated the discovery of causal links in understanding the pathophysiology of diabetes and its complications. Here, we summarize the metabolomics workflow, including analytical, statistical, and computational tools, highlight recent applications of metabolomics in diabetes research, and discuss the challenges in the field. PMID:25713200
Matrix metalloproteinase proteomics: substrates, targets, and therapy.
Morrison, Charlotte J; Butler, Georgina S; Rodríguez, David; Overall, Christopher M
2009-10-01
Proteomics encompasses powerful techniques termed 'degradomics' for unbiased high-throughput protease substrate discovery screens that have been applied to an important family of extracellular proteases, the matrix metalloproteinases (MMPs). Together with the data generated from genetic deletion and transgenic mouse models and genomic profiling, these screens can uncover the diverse range of MMP functions, reveal which MMPs and MMP-mediated pathways exacerbate pathology, and which are involved in protection and the resolution of disease. This information can be used to identify and validate candidate drug targets and antitargets, and is critical for the development of new inhibitors of MMP function. Such inhibitors may target either the MMP directly in a specific manner or pathways upstream and downstream of MMP activity that are mediating deleterious effects in disease. Since MMPs do not operate alone but are part of the 'protease web', it is necessary to use system-wide approaches to understand MMP proteolysis in vivo, to discover new biological roles and their potential for therapeutic modification.
Chen, Z; Lönnberg, T; Lahesmaa, R
2013-08-01
Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions. © 2013 John Wiley & Sons Ltd.
Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, Misty; Martinez, Raquel; Ali, Hind
2006-06-23
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC{sub 5} {approx} 20 {mu}M). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositolmore » 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.« less
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
Femara® and the future: tailoring treatment and combination therapies with Femara
Ma, Cynthia
2007-01-01
Long-term estrogen deprivation treatment for breast cancer can, in some patients, lead to the activation of alternate cellular pathways, resulting in the re-emergence of the disease. This is a distressing scenario for oncologists and patients, but recent intensive molecular and biochemical studies are beginning to unravel these pathways, revealing opportunities for new targeted treatments. Far from making present therapies redundant, these new discoveries open the door to novel combination therapies that promise to provide enhanced efficacy or overcome treatment resistance. Letrozole, one of the most potent aromatase inhibitors, is the ideal candidate for combination therapy; indeed, it is one of the most intensively studied aromatase inhibitors in the evolving combinatorial setting. Complementary to the use of combination therapy is the development of molecular tools to identify patients who will benefit the most from these new treatments. Microarray gene profiling studies, designed to detect letrozole-responsive targets, are currently under way to understand how the use of the drug can be tailored more efficiently to specific patient needs. PMID:17912640
Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas.
Lhermitte, B; Blandin, A F; Coca, A; Guerin, E; Durand, A; Entz-Werlé, N
2018-05-15
Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N.; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
Integrating computational methods to retrofit enzymes to synthetic pathways.
Brunk, Elizabeth; Neri, Marilisa; Tavernelli, Ivano; Hatzimanikatis, Vassily; Rothlisberger, Ursula
2012-02-01
Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate. Copyright © 2011 Wiley Periodicals, Inc.
Radiosyntheses using Fluorine-18: the Art and Science of Late Stage Fluorination
Cole, Erin L.; Stewart, Megan N.; Littich, Ryan; Hoareau, Raphael; Scott, Peter J. H.
2014-01-01
Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings. PMID:24484425
Cavill, Rachel; Kamburov, Atanas; Ellis, James K; Athersuch, Toby J; Blagrove, Marcus S C; Herwig, Ralf; Ebbels, Timothy M D; Keun, Hector C
2011-03-01
Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response.
Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex
Chow, Keng-See; Mat-Isa, Mohd.-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd.-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian
2012-01-01
The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees. PMID:22162870
Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex.
Chow, Keng-See; Mat-Isa, Mohd-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian
2012-03-01
The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees.
Fruitful research: drug target discovery for neurodegenerative diseases in Drosophila.
Konsolaki, Mary
2013-12-01
Although vertebrate model systems have obvious advantages in the study of human disease, invertebrate organisms have contributed enormously to this field as well. The conservation of genome structure and physiology among organisms poses unexpected peculiarities, and the redundancy in certain gene families or the presence of polymorphisms that can slightly alter gene expression can, in certain instances, bring invertebrate systems, such as Drosophila, closer to humans than mice and vice versa. This necessitates the analysis of disease pathways in multiple model organisms. The author highlights findings from Drosophila models of neurodegenerative diseases that have occurred in the past few years. She also highlights and discusses various molecular, genetic and genomic tools used in flies, as well as methods for generating disease models. Finally, the author describes Drosophila models of Alzheimer's, Parkinson's tri-nucleotide repeat diseases, and Fragile X syndrome and summarizes insights in disease mechanisms that have been discovered directly in fly models. Full genome genetic screens in Drosophila can lead to the rapid identification of drug target candidates that can be subsequently validated in a vertebrate system. In addition, the Drosophila models of neurodegeneration may often show disease phenotypes that are absent in equivalent mouse models. The author believes that the extensive contribution of Drosophila to both new disease drug target discovery, in addition to target validation, makes them indispensible to drug discovery and development.
Determining conserved metabolic biomarkers from a million database queries.
Kurczy, Michael E; Ivanisevic, Julijana; Johnson, Caroline H; Uritboonthai, Winnie; Hoang, Linh; Fang, Mingliang; Hicks, Matthew; Aldebot, Anthony; Rinehart, Duane; Mellander, Lisa J; Tautenhahn, Ralf; Patti, Gary J; Spilker, Mary E; Benton, H Paul; Siuzdak, Gary
2015-12-01
Metabolite databases provide a unique window into metabolome research allowing the most commonly searched biomarkers to be catalogued. Omic scale metabolite profiling, or metabolomics, is finding increased utility in biomarker discovery largely driven by improvements in analytical technologies and the concurrent developments in bioinformatics. However, the successful translation of biomarkers into clinical or biologically relevant indicators is limited. With the aim of improving the discovery of translatable metabolite biomarkers, we present search analytics for over one million METLIN metabolite database queries. The most common metabolites found in METLIN were cross-correlated against XCMS Online, the widely used cloud-based data processing and pathway analysis platform. Analysis of the METLIN and XCMS common metabolite data has two primary implications: these metabolites, might indicate a conserved metabolic response to stressors and, this data may be used to gauge the relative uniqueness of potential biomarkers. METLIN can be accessed by logging on to: https://metlin.scripps.edu siuzdak@scripps.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chow, Maggie; Boheler, Kenneth R; Li, Ronald A
2013-08-14
Heart diseases remain a major cause of mortality and morbidity worldwide. However, terminally differentiated human adult cardiomyocytes (CMs) possess a very limited innate ability to regenerate. Directed differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into CMs has enabled clinicians and researchers to pursue the novel therapeutic paradigm of cell-based cardiac regeneration. In addition to tissue engineering and transplantation studies, the need for functional CMs has also prompted researchers to explore molecular pathways and develop strategies to improve the quality, purity and quantity of hESC-derived and iPSC-derived CMs. In this review, we describe various approaches in directed CM differentiation and driven maturation, and discuss potential limitations associated with hESCs and iPSCs, with an emphasis on the role of epigenetic regulation and chromatin remodeling, in the context of the potential and challenges of using hESC-CMs and iPSC-CMs for drug discovery and toxicity screening, disease modeling, and clinical applications.