Sample records for discoverys payloads include

  1. KSC-06pd0857

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett

  2. KSC-06pd0858

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett

  3. KSC-06pd0856

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads is lifted toward the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett

  4. STS-105 MPLM is moved into the PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The payload canister is lifted up the Rotating Service Structure on Launch Pad 39A. At right is Space Shuttle Discovery. Inside the canister are the primary payloads on mission STS-105, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room and then moved into the Discoverys payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.

  5. KSC-2009-4560

    NASA Image and Video Library

    2009-08-09

    CAPE CANAVERAL, Fla. – On Launch Pad 39A, the payload ground-handling mechanism moves back after placing the multi-purpose logistics module Leonardo in space shuttle Discovery's payload bay. Leonardo is the primary payload on Discovery's STS-128 mission to the International Space Station. Beneath the module is the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jack Pfaller

  6. STS-85 crew Tryggvason and Robinson during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Payload Specialist Bjarni V. Tryggvason and Mission Specialist Stephen K. Robinson go through countdown procedures aboard the Space Shuttle orbiter Discovery during Terminal Countdown Demonstration Test (TCDT) activities for that mission. The TCDT includes a simulation of the final launch countdown. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS- 2). Other STS-85 payloads include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  7. STS-105 MPLM is moved into the PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Just before sunrise the payload canister arrives at Launch Pad 39A. In the background is Space Shuttle Discovery, waiting to launch on mission STS-105. Inside the canister are the primary payloads on the mission, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room on the Rotation Service Structure where they will be moved into the Discoverys payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.

  8. KSC-2009-4354

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  9. KSC-2009-4352

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-4355

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  11. KSC-2009-4353

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  12. KSC-06pd0924

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  13. KSC-06pd0927

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is lowered into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  14. KSC-01pp1390

    NASA Image and Video Library

    2001-07-25

    KENNEDY SPACE CENTER, Fla. -- The payload canister is lifted up the Rotating Service Structure on Launch Pad 39A. At right is Space Shuttle Discovery. Inside the canister are the primary payloads on mission STS-105, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room and then moved into the Discovery’s payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9

  15. STS-105 MPLM is moved into the PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers on Launch Pad 39A move the Multi-Purpose Logistics Module Leonardo out of the payload canister into the payload changeout room. The MPLM is the primary payload on mission STS-105 to the International Space Station. The mission includes a crew changeover on the Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.

  16. STS-105 MPLM is moved into the PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the payload changeout room on Launch Pad 39A keep watch as they move the Multi-Purpose Logistics Module Leonardo out of the payload canister. The MPLM is the primary payload on mission STS-105 to the International Space Station. The mission includes a crew changeover on the Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9.

  17. KSC-06pd0926

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, workers maneuver the multi-purpose logistics module Leonardo into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  18. KSC-06pd0925

    NASA Image and Video Library

    2006-05-23

    KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller

  19. KSC-01pp1389

    NASA Image and Video Library

    2001-07-25

    KENNEDY SPACE CENTER, Fla. -- Just before sunrise the payload canister arrives at Launch Pad 39A. In the background is Space Shuttle Discovery, waiting to launch on mission STS-105. Inside the canister are the primary payloads on the mission, the Multi-Purpose Logistics Module Leonardo and the Integrated Cargo Carrier. The ICC holds several smaller payloads, the Early Ammonia Servicer and two experiment containers. The Early Ammonia Servicer consists of two nitrogen tanks that provide compressed gaseous nitrogen to pressurize the ammonia tank and replenish it in the thermal control subsystems of the Space Station. The ICC and MPLM will be lifted into the payload changeout room on the Rotation Service Structure where they will be moved into the Discovery’s payload bay. The STS-105 mission includes a crew changeover on the International Space Station. Expedition Three will be traveling on Discovery to replace Expedition Two, who will return to Earth on board Discovery. Launch of STS-105 is scheduled for Aug. 9

  20. KSC-01pp1337

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  1. KSC-01pp1328

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  2. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  3. KSC-97PC1208

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  4. KSC-97PC1206

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  5. KSC-97PC1209

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  6. KSC-97PC1204

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  7. KSC-97PC1202

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  8. KSC-97PC1203

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  9. KSC-97PC1210

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  10. KSC-97pc1205

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  11. KSC-97PC1207

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  12. KSC-2009-4294

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – The payload canister rolls onto Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.

  13. KSC-2009-4292

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – The payload canister rolls to Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.

  14. KSC-2009-4293

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – The payload canister rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Jack Pfaller.

  15. The Expedition Three crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  16. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  17. KSC-2009-1096

    NASA Image and Video Library

    2009-01-11

    CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss. Photo credit: NASA/Jim Grossmann

  18. KSC-2009-1097

    NASA Image and Video Library

    2009-01-11

    CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss Photo credit: NASA/Jim Grossmann

  19. KSC-2009-1098

    NASA Image and Video Library

    2009-01-11

    CAPE CANAVERAL, Fla. -- With red umbilical lines attached, the payload containing space shuttle Discovery's S6 truss and solar arrays is lifted up to the Payload Changeout Room, or PCR, on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The payload will be transferred inside the PCR where it will wait until Discovery rolls out to the pad. Then the payload will be installed in the shuttle's payload bay. Launch of Discovery on the STS-119 mission is scheduled for Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss Photo credit: NASA/Jim Grossmann

  20. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  1. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew is composed of Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  2. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  3. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. KENNEDY SPACE CENTER, FLA. - Seen in the photo is one end of the airlock that is installed in the payload bay of orbiter Discovery. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - Seen in the photo is one end of the airlock that is installed in the payload bay of orbiter Discovery. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  5. KSC-01pp1330

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001

  6. KSC-01pp1336

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  7. KSC-01pp1329

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin, a cosmonaut with the Russian Aviation and Space Agency, checks out the slidewire basket at Launch Pad 39A. At right is STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  8. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  9. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tree branches on the Space Coast frame Space Shuttle Discovery's liftoff from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  10. STS-85 Mission Specialist Robinson prepares to enter Discovery

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson prepares to enter the Space Shuttle orbiter Discovery at Launch Complex 39A just prior to launch, scheduled for 10:41 a.m. EDT. The primary payload on this mission is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  11. The Z1 truss is prepped in the PCR for transfer to Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers prepare to move the Integrated Truss Structure Z1 out of the payload canister. Once inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  12. The Z1 truss is ready to be moved into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), a worker makes sure the Integrated Truss Structure Z1 is ready to be moved into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  13. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  14. KSC-01pp1326

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  15. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  16. STS-85 crew walks out of the O&C Building during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-85 flight crew walks out of the Operations and Checkout (O&C) Building during Terminal Countdown Demonstration Test (TCDT) activities for that mission to board the Astrovan for the ride to the Space Shuttle Discovery on Launch Pad 39A. Waving to the crowd is Commander Curtis L. Brown, Jr. (right). Directly behind him are Payload Commander N. Jan Davis and Mission Specialist Stephen K. Robinson. Pilot Kent V. Rominger (to Browns right) is leading the second row, followed by Payload Specialist Bjarni V. Tryggvason and Mission Specialist Robert L. Curbeam, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11- day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  17. STS-41 Ulysses Breakfast, Suit-up, C-7 Exit, Launch and ISOS Cam Views

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Live footage shows the crewmembers of STS-41, Commander Richard N. Richards, Pilot Robert D. Cabana, Mission Specialists William M. Shepherd, Bruce E. Melnick, and Thomas D. Akers, participating in the traditional activities the day of their flight. The crew are seen eating breakfast, suiting-up, walking out to the Astronaut-Van, putting on life vests in the 'White Room' area, and entering the crew module of the Discovery Orbiter. Footage also includes preparation of the Ulysses Payload. Engineers are seen loading Ulysses to the upper stage, transferring Discovery to an upright position, bolting Discovery to the external tank, rolling Discovery out to the launch pad, and finally installing the Ulysses Payload inside Discovery. Also shown are both night and morning panoramic shots of the shuttle on the pad, main engine start, ignition, liftoff, booster separation, and various camera views of the launch.

  18. STS-85 Payload Specialist Tryggvason at LC 39A during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Payload Specialist Bjarni V. Tryggvason stands ready for questions at a news briefing at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11- day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  19. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  20. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  1. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  2. STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - In the Payload Changeout Room, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready to be transferred into Space Shuttle Discovery'''s payload bay. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  3. STS-105 crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  4. KSC-98PC1017

    NASA Image and Video Library

    1998-09-02

    During the Crew Equipment Interface Test (CEIT) in the payload bay of Discovery, STS-95 Mission Specialist Stephen K. Robinson (right) checks a cable that can be used to close a hatch on the orbiter. Looking over his shoulder are Mission Specialist Pedro Duque (center), of the European Space Agency, and Keith Johnson (left), United Space Alliance-Houston. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment they will be using on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  5. KSC-01pp1332

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, Expedition Three Commander Frank Culbertson responds to a question during a media interview. With him are cosmonauts Vladimir Nikolaevich Dezhurov (center) and Mikhail Tyurin (right), who are with the Russian Aviation and Space Agency. They and the STS-105 crew are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  6. STS-26 Discovery, OV-103, OASIS equipment is mounted in payload bay (PLB)

    NASA Image and Video Library

    1988-04-18

    S88-37764 (18 April 1988) --- OASIS, instrumentation which will record the environment experienced by Discovery during the STS-26 Space Shuttle mission, is lowered into position for attachment to the orbiter's aft port sill. Instrumentation sensors in the payload bay which are connected to the tape recorder module will document a variety of environmental measurements during various phases of the flight including temperature, pressure, vibration, sounds, acceleration, stress, and strain. OASIS will also record data during the Flight Readiness Firing. NASA is flying OASIS aboard Discovery in support of the Inertial Upper Stage (IUS) program office of the Air Force Space Division. The system was developed by Lockheed under a NASA contract, funded by the Air Force.

  7. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During emergency egress training on Launch Pad 39A, Expedition Three cosmonaut Vladimir Nikolaevich Dezhurov, STS-105 Mission Specialist Patrick Forrester, and cosmonaut Mikhail Tyurin watch while other crew members descend in a slidewire basket. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  8. STS-29 tracking and data relay satellite (TDRS) in OV-103's payload bay (PLB)

    NASA Image and Video Library

    1989-03-13

    STS029-71-000AE (13-18 March 1989) --- STS-29 onboard view shows Space Shuttle Discovery's payload bay with tracking and data relay satellite D (TDRS-D) in stowed, pre-deployment position. In this head-on view, TDRS-D stowed components including single access #1 and #2, solar cell panels, SGL, S-Band omni antenna, and C-Band antenna are visible. TDRS-D rests in airborne support equipment (ASE) forward cradle and aft frame tilt actuator (AFTA). Discovery's aft bulkhead and orbital maneuvering system (OMS) pods are visible in the background.

  9. KSC-08pd1144

    NASA Image and Video Library

    2008-05-05

    CAPE CANAVERAL, Fla. -- Inside space shuttle Discovery's payload bay can be seen the red rain gutters, which prevent leaks into the bay from rain while the shuttle is on the pad. The STS-124 mission payload, the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System (below the gutters), is being transferred from the Payload Changeout Room into the payload bay. Launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  10. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Before dawn, the payload canister (left) with the Integrated Truss Structure Z1 moves slowly up the crawlerway ramp on Launch Pad 39A toward Space Shuttle Discovery in the background. The canister will be lifted up the Rotating Service Structure to the Payload Changeout Room where the Z1 will be removed and transferred to Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  11. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister at left draws closer to the Rotating Service Structure where it will be lifted to the Payload Changeout Room. There its cargo, the Integrated Truss Structure Z1, will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  12. KSC-98pc1555

    NASA Image and Video Library

    1998-11-07

    After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  13. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  14. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  15. Expedition Three Commander Culbertson talks to media at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, Expedition Three Commander Frank Culbertson responds to a question during a media interview. With him are cosmonauts Vladimir Nikolaevich Dezhurov (center) and Mikhail Tyurin (right), who are with the Russian Aviation and Space Agency. They and the STS-105 crew are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  16. KSC-01pp1302

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov gets ready to drive the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other crew members taking part are the STS-105 crew, Commander Scott Horowitz, Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester; and the rest of Expedition Three, Commander Frank Culbertson and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  17. KSC-01pp1309

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in front of the M-113 armored personnel carrier that is part of emergency egress training at the pad. From left to right, they are STS-105 Commander Scott Horowitz, Mission Specialist Daniel Barry, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  18. KSC-01pp1306

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson is behind the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  19. KSC-01pp1310

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  20. KSC-01pp1344

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Pilot Rick Sturckow waits for his helmet during suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  1. KSC-01pp1345

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz finishes with suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities includes emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  2. STS-114 Discovery Return to Flight: International Space Station Processing Overview

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bruce Buckingham, NASA Public Affairs, introduces Scott Higgenbotham, STS-114 Payload Manager. Higgenbotham gives a power point presentation on the hardware that is going to fly in the Discovery Mission to the International Space Station. He presents a layout of the hardware which includes The Logistics Flight 1 (LF1) launch package configuration Multipurpose Logistics Module (MPLM), External Stowage Platform-2 (ESP-2) and the Lightweight Mission Peculiar Equipment Support Structure Carrier (LMC). He explains these payloads in detail. The LF-1 team is also shown in the International Space Station Processing Facility. This presentation ends with a brief question and answer period.

  3. KSC-05PD-1449

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Pad 39B, the Orbiter Boom Sensor System (OBSS) sensor package is viewed before the orbiter's payload bay doors are closed for launch. Payload bay door closure is a significant milestone in the preparations of Discovery for the first Return to Flight mission, STS-114. This sensor package will provide surface area and depth defect inspection for all the surfaces of the orbiter. It includes an intensified television camera (ITVC) and a laser dynamic range imager, which are mounted on a pan and tilt unit, and a laser camera system (LCS) mounted on a stationary bracket. The package is part of the new safety measures added for all future Space Shuttle missions. During its 12-day mission, Discoverys seven- person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discoverys payloads include the Multi-Purpose Logistics Module Raffaello, the Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC), and the External Stowage Platform-2 (ESP-2). Raffaello will deliver supplies to the International Space Station including food, clothing and research equipment. The LMC supports a replacement Control Moment Gyroscope and a tile repair sample box. The ESP-2 is outfitted with replacement parts. Launch of mission STS-114 was set for July 13 at the conclusion of the Flight Readiness Review yesterday.

  4. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister with the Integrated Truss Structure Z1 inside arrives at the spot under the Rotating Service Structure where the canister can be lifted to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  5. KSC-97PC1008

    NASA Image and Video Library

    1997-07-07

    The Technology Applications and Science-1 (TAS-1) payload for the STS-85 mission rests in a payload canister in the Space Station Processing Facility prior to its trip out to Launch Pad 39A for installation into the payload bay of the Space Shuttle Orbiter Discovery. The TAS-1 holds seven separate experiments that will provide data on the Earth’s topography and atmosphere, study the sun’s energy, and test new thermal control devices, as well as several student-developed experiments. Other STS-85 payloads include the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2). The CRISTA is a system of three telescopes and four spectrometers to measure infrared radiation emitted by the Earth’s middle atmosphere. During the 11-day mission, the CRISTA-SPAS-2 free-flying satellite will be deployed from Discovery and retrieved later in the flight. Also onboard the satellite will be the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) to measure ultraviolet radiation emitted and scattered by the Earth’s atmosphere. The International Extreme Ultraviolet Hitchhiker-2 (IEH-2) will also be in the payload bay. The IEH-2 experiments will study ultraviolet radiation from stars, the sun and in the solar system

  6. STS-85 Tryggvason and Robinson at slidewire basket (TCDT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson (left) and Payload Specialist Bjarni V. Tryggvason check out an emergency egress slidewire basket at the 195-foot level of Launch Pad 39A during Terminal Countdown Demonstration Test (TCDT) activities for that mission. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other STS-85 payloads include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2).

  7. KSC-98pc1553

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  8. KSC-98pc1551

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  9. KSC-98pc1549

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery startles a great white egret (below) next to runway 33 as it touches down at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  10. KSC-98pc1552

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  11. KSC-98pc1550

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery smokes its tires as it touches down on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai,M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  12. KSC-98pc1554

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  13. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Seen from across the creek bordering runway 33 at the Shuttle Landing Facility, orbiter Discovery touches down after a successful mission of nine days and 3.6 million miles. Flying above it (left) is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  14. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  15. The Z1 truss is moved into the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  16. KSC-07pd2596

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister containing the Italian-built U.S. Node 2 module, called Harmony, is lifted up toward the payload changeout room on Launch Pad 39A. The canister will be lifted to the payload changeout room and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  17. STS-42 Discovery, OV-103, official crew portrait

    NASA Image and Video Library

    1999-11-24

    STS042-S-002 (November 1991) --- Payload specialists representing Canada and the European Space Agency (CSA - ESA) join five NASA astronauts for the January 1992 scheduled STS-42 mission. Left to right are astronauts Stephen S. Oswald, pilot; Roberta L. Bondar, payload specialist; Norman E. Thagard, payload commander; Ronald J. Grabe, mission commander; David C. Hilmers, mission specialist; Ulf Merbold, payload specialist; and William F. Readdy, mission specialist. The STS-42 mission will utilize the Space Shuttle Discovery to carry out experiments for the International Microgravity Laboratory (IML-1).

  18. Payload canister for Discovery is lifted in place for transfer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure (FSS), is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar- observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process. At the top of the FSS can be seen the 80-foot lightning mast . The 4- foot-high lightning rod on top helps prevent lightning current from passing directly through the Space Shuttle and the structures on the pad.

  19. KSC-01pp1308

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Daniel T. Barry is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  20. KSC-01pp1333

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  1. KSC-01pp1312

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson gives a thumbs up before taking the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  2. KSC-01pp1305

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov . Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  3. STS-105 Mission Specialists in slidewire basket during TCDT at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialists Daniel Barry (left) and Patrick Forrester (right) wait in the slidewire basket that is part of the emergency egress system. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  4. STS-51 Discovery launch

    NASA Image and Video Library

    1993-09-12

    STS051-S-108 (12 Sept. 1993) --- The Space Shuttle Discovery soars toward a nine-day stay in Earth-orbit to support the mission. Launch occurred at 7:45 a.m. (EDT) September 12, 1993. Note the diamond shock effect coming from the thrust of the three main engines. Onboard the shuttle were astronauts Frank L. Culbertson, Jr., William F. Readdy, Daniel W. Bursch, James H. Newman and Carl E. Walz, along with a number of payloads. The payloads included the Advanced Communications Technology Satellite (ACTS) with its Transfer Orbit Stage (TOS), the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) and its Shuttle Pallet Satellite (SPAS) carrier. This photograph was taken with a 35mm camera.

  5. KSC-01pp1352

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialists Daniel Barry (left) and Patrick Forrester (right) wait in the slidewire basket that is part of the emergency egress system. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  6. KSC-01pp1354

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  7. KSC-01pp1350

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- Expedition Three cosmonaut Mikhail Tyurin (left), Commander Frank Culbertson (center) and cosmonaut Vladimir Nikolaevich Dezhurov (right) pose for a photo inside the slidewire basket that is part of the emergency egress system. They and the STS-105 crew are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  8. Closeup view of the payload bay side of the aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the payload bay side of the aft crew compartment bulkhead of the Orbiter Discovery. Showing the airlock, the beam-truss attach structure supporting it and its attach points to the payload bay sill longerons. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. STS-85 crew poses at LC 39A during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-85 flight crew poses at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (back row, from left): Pilot Kent V. Rominger; Payload Commander N. Jan Davis; Mission Specialist Stephen K. Robinson; Payload Specialist Bjarni V. Tryggvason; Mission Specialist Robert L. Curbeam, Jr.; and Commander Curtis L. Brown, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11- day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  10. KSC-07pd2593

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Italian-built U.S. Node 2 module, called Harmony, begins taking its cargo to Launch Pad 39A. At the pad, the canister will be lifted to the payload changeout room and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  11. KSC-07pd2594

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- The payload canister containing the Italian-built U.S. Node 2 module, called Harmony, arrives on Launch Pad 39A. The canister will be lifted to the payload changeout room, seen at the top center, and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  12. KSC-00pp1357

    NASA Image and Video Library

    2000-09-13

    Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  13. STS-105 and Expedition Three crews talk to media at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, STS-105 Mission Specialist Daniel Barry responds to a question during a media interview. With him are (left to right) Mission Specialist Patrick Forrester, Pilot Rick Sturckow and Commander Scott Horowitz; with the Expedition Three crew Commander Frank Culbertson and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, who are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  14. STS-105 and Expedition Three crews pose for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  15. KSC-01pp1304

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. Behind him on the left is George Hoggard, of the KSC/CCAS Fire Department, who supervises the driving. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Daniel Barry; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  16. STS-105 and Expedition Three crews in White Room at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  17. KSC-01pp1334

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  18. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  19. KSC-97PC1009

    NASA Image and Video Library

    1997-07-07

    The International Extreme Ultraviolet Hitchhiker-2 (IEH-2) payload rests in a work stand in the Space Station Processing Facility prior to its trip out to Launch Pad 39A for installation into the payload bay of the Space Shuttle Orbiter Discovery for the STS-85 mission. The IEH-2 experiments will study ultraviolet radiation from stars, the sun and in the solar system. The Technology Applications and Science-1 (TAS-1) payload is another series of experiments that will be conducted during the 11-day mission in Discovery’s payload bay. The TAS-1 holds seven separate experiments that will provide data on the Earth’s topography and atmosphere, study the sun’s energy, and test new thermal control devices, as well as several student-developed experiments. Other STS-85 payloads include the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2). The CRISTA is a system of three telescopes and four spectrometers to measure infrared radiation emitted by the Earth’s middle atmosphere. The CRISTA-SPAS-2 free-flying satellite will be deployed from Discovery and retrieved later in the flight. Also onboard the satellite will be the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) to measure ultraviolet radiation emitted and scattered by the Earth’s atmosphere

  20. Space Shuttle Projects

    NASA Image and Video Library

    1991-11-01

    The STS-42 crew portrait includes from left to right: Stephen S. Oswald, pilot; Roberta L. Bondar, payload specialist 1; Norman E. Thagard, mission specialist 1; Ronald J. Grabe, commander; David C. Hilmers, mission specialist 2; Ulf D. Merbold, payload specialist 2; and William F. Readdy, mission specialist 3. Launched aboard the Space Shuttle Discovery on January 22, 1992 at 9:52:33 am (EST), the STS-42 served as the International Microgravity Laboratory-1 (ML-1 ) mission.

  1. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery smokes its tires as it touches down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after a successful mission STS-95 lasting nearly nine days and 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  2. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery startles a great white egret next to runway 33 as it touches down at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after a successful mission STS-95 lasting nearly nine days and 3.6 million miles. The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1990-10-06

    Launched aboard the Space Shuttle Discovery on October 6, 1990 at 7:47:15 am (EDT), the STS-41 mission consisted of 5 crew members. Included were Richard N. Richards, commander; Robert D. Cabana, pilot; and Bruce E. Melnick, Thomas D. Akers, and William M. Shepherd, all mission specialists. The primary payload for the mission was the European Space Agency (ESA) built Ulysses Space Craft made to explore the polar regions of the Sun. Other main payloads and experiments included the Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment and the INTELSAT Solar Array Coupon (ISAC).

  4. Space Shuttle Projects

    NASA Image and Video Library

    1990-11-16

    The 5 member crew of the STS-41 mission included (left to right): Bruce E. Melnick, mission specialist 2; Robert D. Cabana, pilot; Thomas D. Akers, mission specialist 3; Richard N. Richards, commander; and William M. Shepherd, mission specialist 1. Launched aboard the Space Shuttle Discovery on October 6, 1990 at 7:47:15 am (EDT), the primary payload for the mission was the ESA built Ulysses Space Craft made to explore the polar regions of the Sun. Other main payloads and experiments included the Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment and the INTELSAT Solar Array Coupon (ISAC).

  5. STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The Multi-Purpose Logistics Module Leonardo is moved into Space Shuttle Discovery'''s payload bay. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station.

  6. Expedition Three crew poses for photo on Fixed Service structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses on the Fixed Service Structure at Launch Pad 39A. From left are cosmonaut Mikhail Tyurin, commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  7. Expedition Three crew clasp hands for photo at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  8. Expedition Three crew poses for photo at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  9. The Z1 truss is lifted up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  10. KSC-07pd2599

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- In full light of day, the payload canister containing the Italian-built U.S. Node 2 module, called Harmony, is in place next to the payload changeout room on Launch Pad 39A. The canister will be opened and the module transferred inside. The payload will be installed in space shuttle Discovery's payload bay after the vehicle rolls out to the pad. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. Photo credit: NASA/George Shelton

  11. STS-85 crew poses in the white room at LC 39A during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-85 flight crew poses in the white room at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (from left): Payload Commander N. Jan Davis; Payload Specialist Bjarni V. Tryggvason; Commander Curtis L. Brown, Jr.; Mission Specialist Stephen K. Robinson; Pilot Kent V. Rominger; and Mission Specialist Robert L. Curbeam, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH- 2) experiments.

  12. Mars Missions Using Emerging Commercial Space Transportation Capabilities

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.

    2016-01-01

    New Discoveries regarding the Martian Environment may impact Mars mission planning. Transportation of investigation payloads can be facilitated by Commercial Space Transportation options. The development of Commercial Space Transportation. Capabilities anticipated from various commercial entities are examined objectively. The potential for one of these options, in the form of a Mars Sample Return mission, described in the results of previous work, is presented to demonstrate a high capability potential. The transportation needs of the Mars Environment Team Project at ISU 2016 may fit within the payload capabilities of a Mars Sample Return mission, but the payload elements may or may not differ. Resource Modules will help you develop a component of a strategy to address the Implications of New Discoveries in the Martian Environment using the possibility of efficient, commercial space transportation options. Opportunities for open discussions as appropriate during the team project formulation period at the end of each Resource Module. The objective is to provide information that can be incorporated into your work in the Team Project including brainstorming.

  13. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery prepares to touch down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Flying above it is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  14. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  15. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, STS-91 Pilot Dominic Gorie, Boeing SPACEHAB Program Principal Engineer Lynn Ashby, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  16. KSC-08pd1108

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At Launch Pad 39A at NASA's Kennedy Space Center, the payload for the STS-124 mission, secured in the payload changeout room on the rotating service structure, at left, awaits installation into the payload bay of space shuttle Discovery. Discovery's 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  17. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking from a low angle up and aft from approximately behind the commander's station. In the view you can see the overhead aft observation windows, the payload operations work area and in this view the payload bay observation windows have protective covers on them. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. KSC-06pd0840

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Kim Shiflett

  19. KSC-06pd0845

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/Troy Cryder

  20. KSC-06pd0841

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- The payload canister passes NASA's Vehicle Assembly Building and Launch Control Center on its way to Launch Pad 39B. Inside are the payloads for mission STS-121: the multi-purpose logistics module Leonardo, with supplies and equipment for the International Space Station; the lightweight multi-purpose experiment support structure carrier; and the integrated cargo carrier, with the mobile transporter reel assembly and a spare pump module. The payload will be transferred from the canister to Space Shuttle Discovery's payload bay at the pad. Discovery is scheduled to launch on mission STS-121 from Launch Pad 39B in a window that opens July 1 and extends to July 19. Photo credit: NASA/George Shelton

  1. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With the onset of dawn, the payload canister (left) with the Integrated Truss Structure Z1 inside begins its journey up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  2. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As the sky grows lighter, , the payload canister (left) with the Integrated Truss Structure Z1 inside is slowly lifted up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  3. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  4. KSC-98pc863

    NASA Image and Video Library

    1998-07-16

    STS-95 crew members gather around the Vestibular Function Experiment Unit (VFEU) which includes marine fish called toadfish. In foreground, from left, are Mission Specialist Pedro Duque of the European Space Agency (ESA), a technician from the National Space Development Agency of Japan (NASDA), Payload Specialist Chiaki Mukai of NASDA, Pilot Steven W. Lindsey, and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. At center, facing the camera, are Mission Specialist Scott E. Parazynski and Commander Curtis L. Brown Jr., in back. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery

  5. KSC-98pc1086

    NASA Image and Video Library

    1998-09-14

    KENNEDY SPACE CENTER, FLA. The International Extreme Ultraviolet Hitchhiker-3 (IEH-3), one of the payloads for the STS-95 mission, is prepared for launch in the Multi-Payload Processing Facility. IEH-3 is comprised of seven experiments, including one that will be deployed on Flight Day 3. It is the small, non-recoverable Petite Amateur Navy Satellite (PANSAT) which will store and transmit digital communications. Other IEH investigations are the Solar Constant Experiment (SOLCON), Solar Extreme Ultraviolet Hitchhiker (SEH), Spectrograph/Telescope for Astronomical Research (STAR-LITE), Ultraviolet Spectrograph Telescope for Astronomical Research (UVSTAR), Consortium for Materials Development in Space Complex Autonomous Payloads (CONCAP-IV) for growing thin films via physical vapor transport, and two Get-Away Special (GAS) canister experiments. The experiments will be mounted on a hitchhiker bridge in Discovery's payload bay

  6. STS-85 Cmdr Brown addresses media during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Commander Curtis L. Brown, Jr., addresses the news media at a briefing at Launch Pad 39A while the other members of the flight crew in the background prepare to field questions during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (back row, from left): Pilot Kent V. Rominger; Payload Commander N. Jan Davis; Mission Specialist Stephen K. Robinson; Payload Specialist Bjarni V. Tryggvason; and Mission Specialist Robert L. Curbeam, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  7. KSC-98pc855

    NASA Image and Video Library

    1998-07-16

    KENNEDY SPACE CENTER, FLA. -- STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery

  8. STS-95 crew members participate in a SPACEHAB familiarization

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery.

  9. STS-105 crew poses for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  10. STS-105 and Expedition Three crews pose together for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  11. General View looking forward along the centerline of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General View looking forward along the centerline of the Orbiter Discovery looking into the payload bay with a payload in the process of being secured into place. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. PANSAT satellite deployment from STS-95 Discovery's payload bay

    NASA Image and Video Library

    1998-10-30

    STS095-E-5040 (30 Oct. 1998) --- PANSAT, a nonrecoverable satellite developed by the Naval Postgraduate School (NPS) in Monterey, California, is deployed from the cargo bay of the Earth-orbiting Space Shuttle Discovery. The small ball-shaped payload is basically a tiny telecommunications satellite. The photo was recorded with an electronic still camera (ESC) at 1:49:13 GMT, Oct. 30.

  13. KSC-06pd0484

    NASA Image and Video Library

    2006-03-14

    KENNEDY SPACE CENTER, FLA. - Inside the Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center, workers lower Discovery's robotic arm onto a flat bed in a work area. The arm was removed from Discovery's payload bay. The arm was removed due to damage found on the arm after it was accidentally bumped by a bridge bucket in the payload bay. Ultrasound inspections revealed a small crack, measuring 1.25 inches by 0.015 inch deep. The arm will be sent back to the vendor for repair. The bucket was being used by technicians cleaning the area and was in the process of being stowed. A bridge bucket is a personnel transport device that is suspended from an overhead bridge that moves back and forth above the shuttle's mid-body. It allows workers to access the payload bay area without walking or standing on the payload bay floor or on the fixed platforms. Space Shuttle Discovery is scheduled for launch on mission STS-121 during a launch planning window of July 1-19. Photo credit: NASA/Kim Shiflett

  14. STS-95 Payload Specialist Duque arrives at KSC to participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Pedro Duque of Spain, who represents the European Space Agency (ESA), waves after arriving in a T-38 jet aircraft at the Shuttle Landing Facility at KSC. He is joining other STS-95 crew members in a familiarization tour of the SPACEHAB module and the equipment that will fly with them on the Space Shuttle Discovery scheduled to launch Oct. 29, 1998. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  15. 'Secret' Shuttle payloads revealed

    NASA Astrophysics Data System (ADS)

    Powell, Joel W.

    1993-05-01

    A secret military payload carried by the orbiter Discovery launched on January 24 1985 is discussed. Secondary payloads on the military Shuttle flights are briefly reviewed. Most of the military middeck experiments were sponsored by the Space Test Program established at the Pentagon to oversee all Defense Department space research projects.

  16. IEH-3 is prepared for launch on STS-95 in the MPPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker-3 (IEH-3), one of the payloads for the STS-95 mission, is prepared for launch in the Multi-Payload Processing Facility. IEH-3 is comprised of seven experiments, including one that will be deployed on Flight Day 3. It is the small, non-recoverable Petite Amateur Navy Satellite (PANSAT) which will store and transmit digital communications. Other IEH investigations are the Solar Constant Experiment (SOLCON), Solar Extreme Ultraviolet Hitchhiker (SEH), Spectrograph/Telescope for Astronomical Research (STAR-LITE), Ultraviolet Spectrograph Telescope for Astronomical Research (UVSTAR), Consortium for Materials Development in Space Complex Autonomous Payloads (CONCAP-IV) for growing thin films via physical vapor transport, and two Get-Away Special (GAS) canister experiments. The experiments will be mounted on a hitchhiker bridge in Discovery's payload bay.

  17. General view from inside the payload bay or the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view from inside the payload bay or the Orbiter Discovery approximately along its centerline looking forward toward the bulkhead of the forward fuselage. Note the panels and insulation removed for access to the orbiter's subsystems for inspection and post-mission processing. Also note the airlock and the beam-truss attach structure supporting it and attaching it to the payload bay sill longerons. In this view the docking ring and airlock hatches have been removed. This photo was taken during the processing of the Orbiter Discovery after its final mission and in preparation for its transition to the National Air and Space Museum. This view was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Commander Charles Precourt, Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Boeing SPACEHAB Program Specialist in Engineering Ed Saenger, STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency, Boeing SPACEHAB Program Manager in Engineering Brad Reid, and Russian Interpreter Olga Belozerova.

  19. Characterization of Aluminum Honeycomb and Experimentation for Model Development and Validation, Volume I: Discovery and Characterization Experiments for High-Density Aluminum Honeycomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang; Korellis, John S.; Lee, Kenneth L.

    2006-08-01

    Honeycomb is a structure that consists of two-dimensional regular arrays of open cells. High-density aluminum honeycomb has been used in weapon assemblies to mitigate shock and protect payload because of its excellent crush properties. In order to use honeycomb efficiently and to certify the payload is protected by the honeycomb under various loading conditions, a validated honeycomb crush model is required and the mechanical properties of the honeycombs need to be fully characterized. Volume I of this report documents an experimental study of the crush behavior of high-density honeycombs. Two sets of honeycombs were included in this investigation: commercial grademore » for initial exploratory experiments, and weapon grade, which satisfied B61 specifications. This investigation also includes developing proper experimental methods for crush characterization, conducting discovery experiments to explore crush behaviors for model improvement, and identifying experimental and material uncertainties.« less

  20. STS-102 MPLM Leonardo moves into PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload changeout room on the Rotating Service Structure, Launch Pad 39B, workers move the Multi-Purpose Logistics Module Leonardo out of the payload canister. From the PCR Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  1. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51269 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth. Discovery's vertical stabilizer is at left.

  2. Closeup view of the payload bay side of the aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the payload bay side of the aft fuselage bulkhead of the Orbiter Discovery. This image has a detailed portions of the Remote Manipulator System and the Orbiter Maneuvering System/Reaction Control System Pods. This photograph wa taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Space Shuttle Projects

    NASA Image and Video Library

    1985-07-08

    The crew assigned to the STS-51G mission included (kneeling front left to right) Daniel C. Brandenstein, commander; and John O. Creighton, pilot. Standing, left to right, are mission specialists Shannon W. Lucid, Steven R. Nagel, and John M. Fabian; and payload specialists Sultan Salman Al-Saud, and Patrick Baudrey. Launched aboard the Space Shuttle Discovery on June 17, 1985 at 7:33:00 am (EDT), the STS-51G mission’s primary payloads were three communications satellites: MORELOS-A for Mexico; ARABSAT-A , for Arab Satellite communications; and TELSTAR-3D, for ATT.

  4. KSC-07pd2678

    NASA Image and Video Library

    2007-10-05

    KENNEDY SPACE CENTER, FLA. -- From the payload changeout room on Launch Pad 39A, the payloads for mission STS-120 have been transferred into space shuttle Discovery's payload bay. Seen at the lower end is the Italian-built U.S. Node 2 module, named Harmony. At the top is the orbital docking system. The red ring at top comprises rain gutters to prevent leaks into the bay from rain while the shuttle is on the pad. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton

  5. General view from inside the payload bay of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view from inside the payload bay of the Orbiter Discovery approximately along its centerline looking aft towards the bulkhead of the aft fuselage. Note panels and insulation removed for access to the orbiter's subsystems for inspection and post-mission processing. This photo was taken during the processing of the Orbiter Discovery after its final mission and in preparation for its transition to the National Air and Space Museum. This view was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. KSC-07pd2825

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors are closed around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  7. KSC-07pd2824

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors are nearly closed around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  8. KSC-07pd2820

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, preparations are under way to close space shuttle Discovery's payload bay doors around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  9. KSC-07pd2823

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors slowly enclose the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  10. KSC-07pd2822

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors are partially closed around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  11. KSC-07pd2821

    NASA Image and Video Library

    2007-10-09

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, space shuttle Discovery's payload bay doors begin to close around the U.S. Node 2 module, named Harmony. The name was chosen from an academic competition involving more than 2,200 U. S. students in kindergarten through high school. The module will be delivered to the International Space Station aboard Discovery on the 14-day STS-120 mission. An orbiter's payload bay door closure at the pad is a milestone signaling that the launch date is near. Discovery's launch is targeted for Oct. 23 at 11:38 a.m. EDT. Photo credit: NASA/George Shelton

  12. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During a break in the Crew Equipment Interface Test, Payload Specialist John H. Glenn Jr., senator from Ohio, greets Bobby Miranda. Miranda was a NASA photographer for Glenn's first flight on Friendship 7, February 1962. CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS- 95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  13. KSC-98pc1026

    NASA Image and Video Library

    1998-09-02

    During a break in the Crew Equipment Interface Test (CEIT) at KSC, Payload Specialist John H. Glenn Jr., a senator from Ohio, poses for a photo with Georgett Styers, United Space Alliance receiving scheduler, NASA Supply Logistics Depot, Cape Canaveral, Fla. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  14. KSC-98pc1008

    NASA Image and Video Library

    1998-09-02

    (Left to right) STS-95 Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai, with the National Space Development Agency of Japan, talk with Kiki Chaput, trainer, United Space Alliance-Houston, during the Crew Equipment Interface Test (CEIT) for their mission. The CEIT gives astronauts an opportunity for a hands-on look at the payloads on whcih they will be working on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  15. PANSAT satellite deployment from STS-95 Discovery's payload bay

    NASA Image and Video Library

    1998-10-30

    STS095-E-5041 (30 Oct. 1998) --- PANSAT, a nonrecoverable satellite developed by the Naval Postgraduate School (NPS) in Monterey, California, is silhouetted against a sunglint effect on ocean waters below, following its deployment from the cargo bay of the Earth-orbiting Space Shuttle Discovery. The small ball-shaped payload is basically a tiny telecommunications satellite. The photo was recorded with an electronic still camera (ESC) at 1:49:33 GMT, Oct. 30.

  16. STS-91 AMS-01 payload moved from MPPF to SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The alpha-magnetic spectrometer (AMS-1) is lifted in KSC's MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery.

  17. KSC-98pc1559

    NASA Image and Video Library

    1998-11-07

    Charles Precourt, chief of the Astronaut office in Houston, and Daniel Goldin, NASA administrator, welcome back to Earth Senator John H. Glenn Jr., from a successful mission STS-95 aboard orbiter Discovery. Glenn served as payload specialist, one of a crew of seven that included Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson, Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). They landed at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  18. Precourt and Goldin welcome Glenn back to Earth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Charles Precourt, chief of the Astronaut office in Houston, and Daniel Goldin, NASA administrator, welcome back to Earth Senator John H. Glenn Jr., from a successful mission STS-95 aboard orbiter Discovery. Glenn served as payload specialist, one of a crew of seven that included Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson, Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). They landed at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  19. STS-102 MPLM Leonardo moves into PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Inside the payload changeout room on the Rotating Service Structure, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready for the payload ground-handling mechanism (PGHM) to remove it from the canister. A worker beneath the MPLM checks equipment. Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  20. KSC-98pc641

    NASA Image and Video Library

    1998-05-26

    Technicians supervise the closure of Discovery's payload bay doors from the Payload Changout Room at Launch Pad 39A as preparations for the STS-91 launch continue. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  1. KSC-98pc640

    NASA Image and Video Library

    1998-05-26

    Technicians supervise the closure of Discovery's payload bay doors from the Payload Changout Room at Launch Pad 39A as preparations for the STS-91 launch continue. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  2. KSC-98pc639

    NASA Image and Video Library

    1998-05-26

    The Alpha Magnetic Spectrometer (AMS) experiment and four Get Away Special (GAS) payload canisters are secure in Discovery's payload bay shortly before the payload bay doors are closed for the flight of STS-91 at Launch Pad 39A. Launch is planned for June 2 with a window opening around 6:10 p.m. EDT. The AMS experiment is the first of a new generation of space-based experiments which will use particles, instead of light, to study the Universe and will search for both antimatter and "dark matter," as well as measure normal matter cosmic and gamma rays. The GAS Program, initiated to provide extremely low-cost access to space, is managed by the Shuttle Small Payloads Project at NASA's Goddard Space Flight Center. Eight GAS experiments will be conducted on STS-91. The mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  3. Detail view of the port side of the payload bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the port side of the payload bay of the Orbiter Discovery. This view shows Remote Manipulator System, Canadarm, sensors in the center of the image and a close-up view of a small segment of the orbiter's radiator panel. This photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. KSC-99pp1364

    NASA Image and Video Library

    1999-11-24

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the STS-103 payload awaits closing of Discovery's payload bay doors. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor, a new enhanced computer to replace an older model, a solid-state digital recorder, a new spare transmitter, and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST

  5. KSC01padig259

    NASA Image and Video Library

    2001-08-08

    KENNEDY SPACE CENTER, Fla. -- On Launch Pad 39a, the Rotating Service Structure rolls back from around Space Shuttle Discovery in preparation for launch on mission STS-105. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  6. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51263 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.

  8. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51264 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.

  9. Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay

    NASA Image and Video Library

    2006-07-14

    ISS013-E-51265 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.

  10. A Mars Exploration Discovery Program

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  11. A Mars Exploration Discovery Program

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    2000-01-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  12. The American Satellite Company (ASC) satellite deployed from payload bay

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  13. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Commander Curtis L. Brown Jr. (left) and Payload Specialist John H. Glenn Jr. (right) display a newspaper published at the time of Glenn's first flight in Friendship 7, February 1962. Brown and Glenn were participating in Crew Equipment Interface Test (CEIT) for their mission. The CEIT gives astronauts an opportunity for a hands-on look at the payloads on which they will be working on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  14. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During a break in the Crew Equipment Interface Test (CEIT), Payload Specialist John H. Glenn Jr.(left), senator from Ohio, greets Bobby Miranda. Miranda was a NASA photographer for Glenn's first flight on Friendship 7, February 1962. In the background is Mission Specialist Scott E. Parazynski. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS- 95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  15. KSC-98pc1022

    NASA Image and Video Library

    1998-09-02

    During a break in the Crew Equipment Interface Test (CEIT), Payload Specialist John H. Glenn Jr., a senator from Ohio, autographs a photo for Mathew and Alexandria Taraboletti. Standing behind them are their parents, Mark Taraboletti, an engineer with United Space Alliance (USA), and Eva Taraboletti, an orbiter integrity clerk with USA. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  16. View of ANDE release from orbiter Discovery payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07828 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  17. STS-114 Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Flight Day 11 begins with the STS-114 crew of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) awaking to "Anchors Away," to signify the undocking of the Raffaello Multipurpose Logistics Module (MPLM) from the International Space Station (ISS). Canadarm 2, the Space Station Remote Manipulator System (SSRMS), retrieves the Raffaello Multipurpose Logistics Module (MPLM) from the nadir port of the Unity node of the ISS and returns it to Discovery's payload bay. The Shuttle Remote Manipulator System (SRMS) hands the Orbiter Boom Sensor System (OBSS) to its counterpart, the SSRMS, for rebearthing in the payload bay as well. The rebearthing of the OBSS is shown in detail, including centerline and split-screen views. Collins sends a message to her husband, and talks with Representative Tom DeLay (R-TX). Earth views include the Amalfi coast of Italy. The ISS control room bids farewell to the STS-114 crew and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS.

  18. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Mission Specialist Janet Kavandi, Ph.D., STS091 Pilot Dominic Gorie, and STS-91 Commander Charles Precourt, and Boeing SPACEHAB Program Senior Engineer Shawn Hicks.

  19. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. Sitting in front of SPACEHAB is STS-91 Commander Charles Precourt listening to instruction by Chris Jaskolka, Boeing SPACEHAB Program senior engineer, as Lynn Ashby, Boeing SPACEHAB Program principal engineer, looks on.

  20. STS-39 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  1. KSC-99pp1366

    NASA Image and Video Library

    1999-11-24

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST

  2. STS-39 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-06-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  3. KSC-07pd1811

    NASA Image and Video Library

    2007-07-08

    KENNEDY SPACE CENTER, FLA. -- The payload canister is lifted off its transporter up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd1813

    NASA Image and Video Library

    2007-07-08

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett

  5. KSC-97PC999

    NASA Image and Video Library

    1997-07-07

    The Space Shuttle Orbiter Discovery rolls over from Orbiter Processing Facility 2 on top of the orbiter transporter to the Vehicle Assembly Building for mating with its external tank and solid rocket boosters in preparation for the STS-85 mission. Several payloads will be aboard Discovery during the 11-day mission, including the Manipulator Flight Demonstration (MFD) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2), as well as the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker (IEH-2) experiments

  6. KSC-97PC997

    NASA Image and Video Library

    1997-07-07

    The Space Shuttle Orbiter Discovery rolls over from Orbiter Processing Facility 2 on top of the orbiter transporter to the Vehicle Assembly Building for mating with its external tank and solid rocket boosters in preparation for the STS-85 mission. Several payloads will be aboard Discovery during the 11-day mission, including the Manipulator Flight Demonstration (MFD) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2), as well as the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker (IEH-2) experiments

  7. KSC-97PC996

    NASA Image and Video Library

    1997-07-07

    The Space Shuttle Orbiter Discovery in Orbiter Processing Facility 2 begins its rollover on top of the orbiter transporter to the Vehicle Assembly Building for mating with its external tank and solid rocket boosters in preparation for the STS-85 mission. Several payloads will be aboard Discovery during the 11-day mission, including the Manipulator Flight Demonstration (MFD) and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2), as well as the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker (IEH-2) experiments

  8. KSC-98pc1180

    NASA Image and Video Library

    1998-09-28

    KENNEDY SPACE CENTER, FLA. -- At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure, is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process

  9. KSC-01pp1443

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Daniel Barry has his helmet checked during suitup. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  10. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- After being moved from its workstand in the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo is suspended above the open doors of the payload canister below. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  11. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane lifts the Multi-Purpose Logistics Module Leonardo from a workstand to move it to the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  12. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, a worker at the bottom of the payload canister checks the descent of the Multi-Purpose Logistics Module Leonardo. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  13. MPLM Leonardo is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Space Station Processing Facility follow along as the Multi-Purpose Logistics Module Leonardo is moved along the ceiling toward the payload canister. The MPLM is the primary payload on mission STS-105, the 11th assembly flight to the International Space Station. Leonardo, fitted with supplies and equipment for the crew and the Station, will be transported to Launch Pad 39A and installed into Discoverys payload bay. Launch is scheduled no earlier than Aug. 9.

  14. STS-105 ICC is moved to the payload canister for transport to pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- A crane is attached to the Integrated Cargo Carrier in the Space Station Processing Facility in order to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9

  15. STS-105 ICC is moved to the payload canister for transport to pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Space Station Processing Facility lifts the Integrated Cargo Carrier from its workstand to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9

  16. STS-105 ICC is moved to the payload canister for transport to pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Space Station Processing Facility moves the Integrated Cargo Carrier toward the payload canister (right). The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo already in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9

  17. KSC-98pc1016

    NASA Image and Video Library

    1998-09-02

    Around a table in Orbiter Processing Facility Bay 2 , STS-95 crew members look over equipment during the Crew Equipment Interface Test (CEIT) for their mission. From left, they are Mission Specialist Pedro Duque, of the European Space Agency; Payload Specialist Chiaki Mukai, of the National Space Development Agency of Japan (NASDA); Mission Specialist Scott E. Parazynski, M.D.; Pilot Steven W. Lindsey; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Stephen K. Robinson; and Mission Commander Curtis L. Brown Jr. Behind them is Adam Flagan, United Space Alliance-Houston. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  18. STS-95 Payload Specialist Mukai poses with NASDA president

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Chiaki Mukai, M.D. (center), with the National Space Development Agency of Japan (NASDA), poses for a photograph with NASDA President Isao Uchida (left). Behind her at the right is a representative of the European Space Agency (ESA). Mukai was one of a crew of seven aboard orbiter Discovery, which landed at KSC at 12:04 p.m. EST, after a successful mission spanning nine days and 3.6 million miles. The other crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson; Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist John H. Glenn Jr., senator from Ohio. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  19. Davis combs her hair

    NASA Image and Video Library

    1997-08-28

    STS085-327-011 (7 - 19 August 1997) --- Astronaut N. Jan Davis spends a moment of her off-duty time aboard the Space Shuttle Discovery brushing her hair. Davis, payload commander, never strayed far from the payload operations checklist, seen attached to nearby mid-deck wall.

  20. KSC-98dc1580

    NASA Image and Video Library

    1998-11-07

    After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA)

  1. KSC-98pc1548

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  2. Space Shuttle Projects

    NASA Image and Video Library

    1997-05-08

    Five NASA astronauts and a Canadian payload specialist pause from their training schedule to pose for the traditional crew portrait for their mission, STS-85. In front are astronauts Curtis L. Brown, Jr. (right), mission commander, and Kent V. Rominger, pilot. On the back row, from the left, are astronauts Robert L. Curbeam, Jr., Stephen K. Robinson, and N. Jan Davis, all mission specialists, along with the Canadian Space Agency’s (CSA) payload specialist, Bjarni Tryggvason. The five launched into space aboard the Space Shuttle Discovery on August 7, 1997 at 10:41:00 a.m. (EDT). Major payloads included the satellite known as Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 CRISTA-SPAS-02. CRISTA; a Japanese Manipulator Flight Development (MFD); the Technology Applications and Science (TAS-01); and the International Extreme Ultraviolet Hitchhiker (IEH-02).

  3. Space Shuttle Projects

    NASA Image and Video Library

    1991-09-12

    The STS-48 mission launched aboard the Space Shuttle Discovery on September 12, 1991 at 7:11:04 pm. Five astronauts composed the crew including: John O. Creighton, commander; Kenneth S. Reightler, pilot; and Mark N. Brown, Charles D. (Sam) Gemar, and James F. Buchli, all mission specialists. The primary payload of the mission was the Upper Atmosphere Research Satellite (UARS).

  4. STS-82 Discovery payloads being integrated in VPF

    NASA Image and Video Library

    1997-01-30

    KENNEDY SPACE CENTER, FLORIDA STS-82 PREPARATIONS VIEW --- Payload processing workers in the Kennedy Space Center (KSC) Vertical Processing Facility (VPF) prepare to integrate the Space Telescope Imaging Spectrograph (STIS), suspended at center, into the Orbiter Replacement Unit (ORU) Carrier and Scientific Instrument Protective Enclosure (SIPE). STIS will replace the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). Four of the seven STS-82 crew members will perform a series of spacewalks to replace two scientific instruments with two new instruments, including STIS, and perform other tasks during the second HST servicing mission. HST was deployed nearly seven years ago and was initially serviced in 1993.

  5. STS-85 Discovery OV-103 landing

    NASA Image and Video Library

    1997-08-19

    STS085-S-014 (19 Aug. 1997) --- The main landing gear of the space shuttle Discovery touches down on Runway 33 at the Kennedy Space Center to mark the successful completion of 12-day STS-85 mission. Landing occurred at 7:08 a.m. (EDT) on Aug. 19, 1997. Onboard were astronauts Curtis L. Brown, mission commander; Kent V. Rominger, pilot; N. Jan Davis, payload commander; and Robert L. Curbeam and Stephen K. Robinson, both mission specialists; along with payload specialist Bjarni Tryggvason, representing the Canadian Space Agency. Photo credit: NASA

  6. KSC-07pd2416

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- In bay 3 of the Orbiter Processing Facility, a tool storage assembly unit is being moved for storage in Discovery's payload bay. The tools may be used on a spacewalk, yet to be determined, during mission STS-120. In an unusual operation, the payload bay doors had to be reopened after closure to accommodate the storage. Space shuttle Discovery is targeted to launch Oct. 23 to the International Space Station. It will carry the U.S. Node 2, a connecting module, named Harmony, for assembly on the space station. Photo credit: NASA/Amanda Diller

  7. STS-39 SPAS-II IBSS is grappled by RMS over OV-103's payload bay (PLB)

    NASA Image and Video Library

    1991-05-06

    STS039-15-017 (3 May 1990) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) during its berthing following a period of data collection. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the end effector of Discovery's remote manipulator system (RMS). Additional cargo, elements of the Air Force Program (AFP) 675 package, is seen near Discovery's aft bulkhead in the 60-ft. long payload bay.

  8. Closeup view looking aft from the starboard side of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking aft from the starboard side of the Orbiter Discovery looking into the payload bay and the bulkhead of the aft fuselage. Note the vertical stabilizer protruding slightly from beyond the clear sheeting used to keep positive pressure in the mid-fuselage and payload bay area during servicing. Note that the Orbiter Boom Sensor System is still attached while the Remote Manipulator System has been removed. Also note the suspended protective panels and walkways in place to protect the interior surfaces of the payload bay doors while in their open position. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. KSC-99pp1365

    NASA Image and Video Library

    1999-11-24

    KENNEDY SPACE CENTER, FLA. -- A worker at Launch Pad 39B watches as Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST

  10. KSC-06pd0479

    NASA Image and Video Library

    2006-03-14

    KENNEDY SPACE CENTER, FLA. - Inside the Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center, workers attach an overhead crane to Discovery's robotic arm in the payload bay. The arm is being removed due to damage found on the arm after it was accidentally bumped by a bridge bucket in the payload bay. Ultrasound inspections revealed a small crack, measuring 1.25 inches by 0.015 inch deep. The arm will be sent back to the vendor for repair. The bucket was being used by technicians cleaning the area and was in the process of being stowed. A bridge bucket is a personnel transport device that is suspended from an overhead bridge that moves back and forth above the shuttle's mid-body. It allows workers to access the payload bay area without walking or standing on the payload bay floor or on the fixed platforms. Space Shuttle Discovery is scheduled for launch on mission STS-121 during a launch planning window of July 1-19. Photo credit: NASA/Kim Shiflett

  11. STS-105 ICC is moved to the payload canister for transport to pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Integrated Cargo Carrier is lowered into the payload canister in front of the Multi-Purpose Logistics Module Leonardo. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The canister will transport the MPLM and ICC transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9

  12. KSC-01pp1385

    NASA Image and Video Library

    2001-07-23

    KENNEDY SPACE CENTER, Fla. -- A crane is attached to the Integrated Cargo Carrier in the Space Station Processing Facility in order to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9

  13. KSC-01pp1386

    NASA Image and Video Library

    2001-07-23

    KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Space Station Processing Facility lifts the Integrated Cargo Carrier from its workstand to move it to the payload canister. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The ICC will join the Multi-Purpose Logistics Module Leonardo in the payload canister for transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9

  14. Rollout - Shuttle Discovery - STS 41D Launch - KSC

    NASA Image and Video Library

    1986-11-26

    S86-41700 (19 May 1984) --- The Space Shuttle Discovery moves towards Pad A on the crawler transporter for its maiden flight. Discovery will be launched on its first mission no earlier than June 19, 1984. Flight 41-D will carry a crew of six; Commander Henry Hartsfield, Pilot Mike Coats, Mission Specialists Dr. Judith Resnik, Dr. Steven Hawley and Richard Mullane and Payload Specialist Charles Walker. Walker is the first payload specialist to fly aboard a space shuttle. He will be running the materials processing device developed by McDonnell Douglas as part of its Electrophoresis Operations in Space project. Mission 41-D is scheduled to be a seven-day flight and to land at Edwards Air Force Base in California. The Syncom IV-1 (LEASAT) will be deployed from Discovery's cargo bay and the OAST-1, Large Format Camera, IMAX and Cinema 360 cameras will be aboard.

  15. KSC-97PC1032

    NASA Image and Video Library

    1997-07-10

    A payload canister in the Payload Changeout Room (PCR) at Launch Pad 39A holds the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) payload for the STS-85 mission (center), as well as the Technology Applications and Science-1 (TAS-1) (top) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) (bottom) payloads. All three will be transferred from the PCR into the payload bay of the Space Shuttle Orbiter Discovery after the space vehicle arrives at the pad. The CRISTA is a system of three telescopes and four spectrometers to measure infrared radiation emitted by the Earth’s middle atmosphere. During the 11-day mission, the CRISTA-SPAS-2 free-flying satellite will be deployed from Discovery and retrieved later in the flight. Also onboard the satellite will be the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) to measure ultraviolet radiation emitted and scattered by the Earth’s atmosphere. The TAS-1 holds seven separate experiments that will provide data on the Earth’s topography and atmosphere, study the sun’s energy, and test new thermal control devices, as well as several student-developed experiments. The IEH-2 experiments will study ultraviolet radiation from stars, the sun and in the solar system

  16. KSC-97PC1033

    NASA Image and Video Library

    1997-07-10

    A payload canister in the Payload Changeout Room (PCR) at Launch Pad 39A holds the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) payload for the STS-85 mission (center), as well as the Technology Applications and Science-1 (TAS-1) (top) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) (bottom) payloads. All three will be transferred from the PCR into the payload bay of the Space Shuttle Orbiter Discovery after the space vehicle arrives at the pad. The CRISTA is a system of three telescopes and four spectrometers to measure infrared radiation emitted by the Earth’s middle atmosphere. During the 11-day mission, the CRISTA-SPAS-2 free-flying satellite will be deployed from Discovery and retrieved later in the flight. Also onboard the satellite will be the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) to measure ultraviolet radiation emitted and scattered by the Earth’s atmosphere. The TAS-1 holds seven separate experiments that will provide data on the Earth’s topography and atmosphere, study the sun’s energy, and test new thermal control devices, as well as several student-developed experiments. The IEH-2 experiments will study ultraviolet radiation from stars, the sun and in the solar system

  17. AMS in payload bay viewed from Mir Space Station

    NASA Image and Video Library

    2016-08-24

    STS091-367-033 (2-12 June 1998) --- This photo of the Space Shuttle Discovery's aft section features the Alpha Magnetic Spectrometer (AMS), as seen from Russia's Mir space station, docked with Discovery at the time. AMS is the first large-magnet experiment ever placed in Earth orbit. The scientific goal of this high-energy physics experiment is to increase our understanding of the composition and origin of the universe. It is designed to search for and measure charged particles, including antimatter, outside Earth's atmosphere. The charge of such particles can be identified only by their trajectories in a magnetic field.

  18. KSC-04PD-1133

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Technicians in the Orbiter Processing Facility attach a crane to Discoverys airlock before lifting it for installation. The airlock is located inside the orbiters payload bay and is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, and communications. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005. STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  19. KSC-01pp1442

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- STS-105 Pilot Rick Sturckow checks the fit of the glove to his launch and entry suit. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  20. KSC-01pp1440

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- Expedition Three cosmonaut Vladimir Dezhurov suits up for launch on mission STS-105. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  1. KSC-01pp1437

    NASA Image and Video Library

    2001-08-07

    KENNEDY SPACE CENTER, Fla. -- During pre-launch preparations, Expedition Three Commander Frank Culbertson shows his eagerness for liftoff. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  2. KSC-01pp1441

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz suits up for launch on mission STS-105. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  3. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perched on the Mobile Launch Platform, in the early morning hours Space Shuttle Discovery approaches Launch Complex Pad 39B after a 6-hour, 4.2-mile trip from the Vehicle Assembly Building. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. A perfect launch viewed across Banana Creek

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Billows of smoke and steam surround Space Shuttle Discovery as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  5. KSC-01pp1317

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson happily sits through suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency, are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  6. KSC-01pp1318

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester waits to don his helmet during suit fit check as part of Terminal Countdown Demonstration Test activities. He and other crew members Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Daniel Barry are also taking part in the TCDT, which includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew - Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency - several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  7. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., STS-91 Commander Charles Precourt, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Russian Interpreter Olga Belozerova, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  8. KSC-98pc1560

    NASA Image and Video Library

    1998-11-07

    STS-95 Payload Specialist Chiaki Mukai, M.D. (center), with the National Space Development Agency of Japan (NASDA), poses for a photograph with NASDA President Isao Uchida (left). Behind her at the right is a representative of the European Space Agency (ESA). Mukai was one of a crew of seven aboard orbiter Discovery, which landed at KSC at 12:04 p.m. EST, after a successful mission spanning nine days and 3.6 million miles. The other crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson; Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist John H. Glenn Jr., a senator from Ohio. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  9. KSC-98pc1562

    NASA Image and Video Library

    1998-11-07

    KENNEDY SPACE CENTER, FLA. -- Seen from across the creek bordering runway 33 at the Shuttle Landing Facility, orbiter Discovery touches down after a successful mission of nine days and 3.6 million miles. Flying above it (left) is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  10. KSC-98pc1565

    NASA Image and Video Library

    1998-11-07

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  11. KSC-98pc1563

    NASA Image and Video Library

    1998-11-07

    Viewed across the creek bordering runway 33, orbiter Discovery touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  12. KSC-98pc1564

    NASA Image and Video Library

    1998-11-07

    Viewed across the creek bordering runway 33, orbiter Discovery prepares to touch down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Flying above it is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  13. KSC-98pc376

    NASA Image and Video Library

    1998-03-18

    KENNEDY SPACE CENTER, FLA. -- The alpha-magnetic spectrometer (AMS-1) is lifted in KSC’s MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  14. KSC-98pc375

    NASA Image and Video Library

    1998-03-18

    KENNEDY SPACE CENTER, FLA. -- The alpha-magnetic spectrometer (AMS-1) is lifted in KSC’s MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  15. STS-39 OV-103 reaction control system (RCS) jets fire during onorbit maneuver

    NASA Image and Video Library

    1991-05-06

    STS039-27-016 (28 April-6 May 1991) --- The Space Shuttle Discovery fires reaction control subsystem (RCS) thrusters in this 35mm frame, taken from inside the crew cabin. Seen in Discovery's payload bay are the tops of cannisters on the STP-1 payload, configured on the STS 39 Hitchhiker carrier; and the Air Force Program (AFP) 675 package. AFP-675 consists of the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS)-1A; Far Ultraviolet Camera (FAR-UV) Experiment; Horizon Ultraviolet Program (HUP); Quadruple Ion Neutral Mass Spectrometer (QINMS); and the Uniformly Redundant Array (URA).

  16. STS-85 Discovery OV-103 landing

    NASA Image and Video Library

    1997-08-19

    STS085-S-013 (19 August 1997) --- The drag chute of the Space Shuttle Discovery is fully deployed in this scene of the spacecraft's landing on runway 33 at the Kennedy Space Center (KSC). The landing, at 7:08 a.m. (EDT), August 19, 1997, marked the completion of a successful 12-day STS-85 mission. Onboard were astronauts Curtis L. Brown, Jr., mission commander; Kent V. Rominger, pilot; N. Jan Davis, payload commander; and Robert L. Curbeam, Jr., and Stephen K. Robinson, both mission specialists; along with payload specialist Bjarni Tryggvason, representing the Canadian Space Agency (CSA).

  17. STS-85 Discovery OV-103 landing and crew portrait

    NASA Image and Video Library

    1997-08-19

    STS085-S-011 (19 August 1997) --- Following the landing of the Space Shuttle Discovery on runway 33 at the Kennedy Space Center (KSC), the six member crew poses for a final crew portrait. The landing, at 7:08 a.m. (EDT), August 19, 1997, marked the completion of a successful 12-day STS-85 mission. Left to right are payload specialist Bjarni Tryggvason of the Canadian Space Agency (CSA), along with astronauts Stephen K. Robinson, mission specialist; N. Jan Davis, payload commander; Curtis L. Brown, Jr., mission commander; Kent V. Rominger, pilot; and Robert L. Curbeam, Jr., mission specialist.

  18. General view looking forward along the centerline of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking forward along the centerline of the Orbiter Discovery looking into the payload bay. This view shows the external airlock and the beam-truss attach structure supporting it and attaching it to the payload bay sill longerons. Also note the protective covering over the docking mechanism on top of the airlock assembly. This external airlock configuration was for mating to the International Space Station. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. STS-42 crewmembers work in the IML-1 module located in OV-103's payload bay

    NASA Image and Video Library

    1992-01-30

    STS042-201-009 (22-30 Jan 1992) --- Canadian Roberta L. Bondar, payload specialist representing the Canadian Space Agency (CSA), works at the International Microgravity Laboratory's (IML-1) biorack while astronaut Stephen S. Oswald, pilot, changes a film magazine on the IMAX camera. The two were joined by five fellow crew members for eight-days of scientific research aboard the Space Shuttle Discovery in Earth-orbit. Most of their on-duty time was spent in this IML-1 Science Module, positioned in the cargo bay and attached via a tunnel to Discovery's airlock.

  20. KSC-06pd2454

    NASA Image and Video Library

    2006-11-06

    KENNEDY SPACE CENTER, FLA. -- Lamps spotlight the payload canister transporter as it slowly carries its cargo past the Vehicle Assembly Building on the road to Launch Pad 39B for mission STS-116. Inside the canister are the SPACEHAB module and the port 5 truss segment, which will be moved into the payload changeout room at the pad and transferred into Space Shuttle Discovery's payload bay once the vehicle has rolled out to the pad. The payload canister is 65 feet long, 18 feet wide and 18 feet, 7 inches high. It has the capability to carry vertically or horizontally processed payloads up to 15 feet in diameter and 60 feet long, matching the capacity of the orbiter payload bay. It can carry payloads weighing up to 65,000 pounds. Clamshell-shaped doors at the top of the canister operate like the orbiter payload bay doors, with the same allowable clearances. Photo credit: NASA/George Shelton

  1. Lessons learned from KSC processing on STS science, applications, and commercial payloads

    NASA Technical Reports Server (NTRS)

    Williams, W. E.; Ragusa, J. M.

    1984-01-01

    The present investigation is concerned with an evaluation of the lessons learned in connection with the flights of the Shuttle orbiters Columbia, Challenger, and Discovery. A description is provided of several general and specific lessons related to the processing of free-flying and attached payloads. John F. Kennedy Space Center (KSC), as the prime launch and landing site, is responsible for managing all payload-to-payload, payload-to-simulated orbiter, and payload-to-orbiter operations. For each payload, a KSC Launch Site Support Manager (LSSM) is named as the primary point of contact for the customer. Attention is given to aspects of planning interaction, payload types, and problems of ground processing. The discussed lessons are partly related to the value of early contact between customers and KSC representatives, the primary point of contact, the launch site support plan, and the importance of customer participation.

  2. KSC-01pp1388

    NASA Image and Video Library

    2001-07-23

    KENNEDY SPACE CENTER, Fla. -- The Integrated Cargo Carrier is lowered into the payload canister in front of the Multi-Purpose Logistics Module Leonardo. The ICC holds several payloads for mission STS-105, the Early Ammonia Servicer and two experiment containers. The canister will transport the MPLM and ICC transport to Launch Pad 39A where they will be placed in the payload bay of Space Shuttle Discovery. Launch of STS-105 is scheduled for 5:38 p.m. EDT Aug. 9

  3. Spacelab

    NASA Image and Video Library

    1992-01-22

    Onboard Space Shuttle Discovery (STS-42) Astronaut Norman E. Thagard, payload commander, and Canadian payload specialist Roberta L. Bondar are busily engaged with experiments in the International Microgravity Laboratory (IML-1) science module. Bondar reads a checklist near the Biorack while Thagard performs a VCR tape change-out. The two, along with four other NASA astronauts and a second IML-1 payload specialist spent more than eight days conducting experiments in Earth orbit. Part of the Space Acceleration Measurement System is in center foreground.

  4. KSC-00pp1356

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  5. KSC00pp1356

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  6. KSC-98pc1568

    NASA Image and Video Library

    1998-11-08

    The day after their return to Earth on board the orbiter Discovery, members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right are Lisa Malone, moderator and chief of NASA Public Affairs' Media Services at Kennedy Space Center; Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  7. STS-42 Payload Specialist Bondar checks Pilot Oswald's blood flow on middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Payload Specialist Roberta L. Bondar monitors Pilot Stephen S. Oswald's blood flow on the middeck of Discovery, Orbiter Vehicle (OV) 103. Bondar holds a device just above Oswald's ear and analyzes reading displayed on output module on her right. Behind the two crewmembers is the sleep station.

  8. Empty STS-114 orbiter Discovery Payload bay

    NASA Image and Video Library

    2005-07-29

    ISS011-E-11340 (29 July 2005) --- A "fish-eye" lens on a digital still camera was used to record this image of the Space Shuttle Discovery from the International Space Station, to which it is docked for several days of joint activities.

  9. AMS undergoes a final weight and balance check in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under the supervision of Boeing technicians, the Alpha Magnetic Spectrometer (AMS), a payload slated to fly on STS-91, is undergoing a final weight and balance check on the Launch Package Integration Stand in the Space Station Processing Facility (SSPF). Next, it will be placed in the Payload Canister and transported to Launch Complex 39A where it will be installed into Space Shuttle Discovery's payload bay. Weighing in at approximately three tons, the AMS is a major particle physics experiment that will look for cosmic antimatter originating from outside our galaxy. The data it gathers could also give clues about the mysterious 'dark matter' that may make up 90 percent or more of the universe. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  10. KSC-98pc587

    NASA Image and Video Library

    1998-05-02

    Under the supervision of Boeing technicians, the Alpha Magnetic Spectrometer (AMS), a payload slated to fly on STS-91, is undergoing a final weight and balance check on the Launch Package Integration Stand in the Space Station Processing Facility (SSPF). Next, it will be placed in the Payload Canister and transported to Launch Complex 39A where it will be installed into Space Shuttle Discovery's payload bay. Weighing in at approximately three tons, the AMS is a major particle physics experiment that will look for cosmic antimatter originating from outside our galaxy. The data it gathers could also give clues about the mysterious "dark matter" that may make up 90 percent or more of the universe. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  11. KSC-98pc1301

    NASA Image and Video Library

    1998-10-09

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA) is checked by Danny Wyatt (left), with KSC, and Dave Martin (right), with United Space Alliance, in the white room before entry into Space Shuttle Discovery for a pre-launch countdown exercise. Duque and other crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations

  12. KSC-98pc1300

    NASA Image and Video Library

    1998-10-09

    STS-95 Payload Specialist John H. Glenn Jr., senator from Ohio, is checked by Dave Martin(left), with United Space Alliance, and Danny Wyatt (right), of KSC, before entry into Space Shuttle Discovery for a pre-launch countdown exercise. Glenn and other crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations

  13. Pedro Duque suits up for TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA) is checked by Danny Wyatt (left), with KSC, and Dave Martin (right), with United Space Alliance, in the white room before entry into Space Shuttle Discovery for a pre-launch countdown exercise. Duque and other crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  14. Robinson, Glenn and Mukai in slidewire exercise from Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1998-01-01

    (Left to right) STS-95 Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), are ready to leave Launch Pad 39B in the slidewire basket during an emergency egress exercise. Robinson, Glenn and Mukai, along with other crew members, are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. Not shown are Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  15. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. The GAS payload G-765, in the canister on the left, is sponsored by the Canadian Space Agency and managed by C-CORE/Memorial University of Newfoundland. It is a study to understand the transport of fluids in porous media as it pertains to improving methods for enhanced oil recovery. The GAS canister on the right houses the Space Experiment Module (SEM-05), part of an educational initiative of NASA's Shuttle Small Payloads Project. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  16. Space Shuttle Project

    NASA Image and Video Library

    1992-01-22

    Onboard Space Shuttle Discovery (STS-42) the seven crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the Shuttle's cargo bay. Pictured are (clockwise from top),Commander Ronald J. Grabe, payload commander Norman E. Thagard, payload specialist Roberta L. Bondar; mission specialists William F. Readdy and David C. Hilmers; pilot Stephen S. Oswald and payload specialist Ulf Merbold. The rotating chair, used often in biomedical tests on the eight-day flight, is in center frame.

  17. KSC-97PC1030

    NASA Image and Video Library

    1997-07-10

    KENNEDY SPACE CENTER, Fla. -- The payload canister containing the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) payload for the STS-85 mission is hoisted to the Payload Changeout Room (PCR) at Launch Pad 39A. Also in the canister are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) payloads. All three will be transferred from the PCR into the payload bay of the Space Shuttle Orbiter Discovery after the space vehicle arrives at the pad. The CRISTA is a system of three telescopes and four spectrometers to measure infrared radiation emitted by the Earth’s middle atmosphere. During the 11-day mission, the CRISTA-SPAS-2 free-flying satellite will be deployed from Discovery and retrieved later in the flight. Also onboard the satellite will be the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) to measure ultraviolet radiation emitted and scattered by the Earth’s atmosphere. The TAS-1 holds seven separate experiments that will provide data on the Earth’s topography and atmosphere, study the sun’s energy, and test new thermal control devices, as well as several student-developed experiments. The IEH-2 experiments will study ultraviolet radiation from stars, the sun and in the solar system

  18. CRISTA-SPAS is placed in the PCR at LC 39A

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A payload canister in the Payload Changeout Room (PCR) at Launch Pad 39A holds the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) payload for the STS-85 mission (center), as well as the Technology Applications and Science-1 (TAS-1) (top) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) (bottom) payloads. All three will be transferred from the PCR into the payload bay of the Space Shuttle Orbiter Discovery after the space vehicle arrives at the pad. The CRISTA is a system of three telescopes and four spectrometers to measure infrared radiation emitted by the Earth's middle atmosphere. During the 11-day mission, the CRISTA-SPAS-2 free-flying satellite will be deployed from Discovery and retrieved later in the flight. Also onboard the satellite will be the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) to measure ultraviolet radiation emitted and scattered by the Earth's atmosphere. The TAS-1 holds seven separate experiments that will provide data on the Earth's topography and atmosphere, study the sun's energy, and test new thermal control devices, as well as several student- developed experiments. The IEH-2 experiments will study ultraviolet radiation from stars, the sun and in the solar system.

  19. KSC-01PP1471

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- Clouds of smoke and steam roll across the ground as Space Shuttle Discovery hurtles into the blue sky against a backdrop of cumulus clouds. Liftoff from Launch Pad 39A occurred at 5:10:14 p.m. EDT. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the Space Station. The mission payload includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station

  20. KSC-01pp1321

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  1. KSC-01pp1320

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Mikhail Tyurin are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  2. STS-102 crew members check out Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Members of the STS-102 crew check out Discovery's payload bay in the Orbiter Processing Facility bay 1. Dressed in green, they are Mission Specialist Paul W. Richards (left) and Pilot James W. Kelly. The crew is at KSC for Crew Equipment Interface Test activities. Above their heads on the left side are two of the experiments being carried on the flight. STS-102 is the 8th construction flight to the International Space Station and will carry the Multi-Purpose Logistics Module Leonardo. STS-102 is scheduled for launch March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module Destiny. The mission will also be carrying the Expedition Two crew to the Space Station, replacing the Expedition One crew who will return on Shuttle Discovery.

  3. Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  4. KSC-07pd1271

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines (behind them) of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  5. KSC-07pd1272

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  6. KSC-07pd1274

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers check the installation of an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  7. KSC-07pd1273

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  8. KSC-07pd1270

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  9. KSC-01pp1446

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester suits up for launch on mission STS-105. The mission is Forrester’s first space flight. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the International Space Station, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  10. KSC-01pp1445

    NASA Image and Video Library

    2001-08-07

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson shows his eagerness for liftoff while suiting up in his launch and entry suit. On mission STS-105, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the International Space Station, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  11. KSC-07pd2025

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Orbiter Processing Facility bay 3, a crane lowers the main bus switching unit into Discovery's payload bay. The unit is part of the payload on mission STS-120.A main bus switching unit is used for power distribution, circuit protection and fault isolation on the space station's power system. The units route power to proper locations in the space station, such as from solar arrays through umbilicals into the U.S. Lab. The unit will be installed on the external stowage platform 2 attached to the Quest airlock for temporary storage. Discovery is targeted to launch mission STS-120 no earlier than Oct. 20. Photo credit: NASA/Jim Grossmann

  12. General view looking aft from the starboard side of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking aft from the starboard side of the Orbiter Discovery looking into the payload bay and the bulkhead of the aft fuselage. Note that the Orbiter Boom Sensor System is still attached while the Remote Manipulator System has been removed. Also note the suspended protective panels and walkways in place to protect the interior surfaces of the payload bay doors while in their open position. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Closeup view looking forward along the centerline of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking forward along the centerline of the Orbiter Discovery looking into the payload bay. This view is a close-up view of the external airlock and the beam-truss attach structure supporting it and attaching it to the payload bay sill longerons. Also note the protective covering over the docking mechanism on top of the airlock assembly. This external airlock configuration was for mating to the International Space Station. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Cente - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Detail view of the flight deck looking aft. The aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the flight deck looking aft. The aft viewing windows are uncovered in this view and look out towards the payload bay. The overhead viewing windows have exterior covers in place in this view. The aft flight deck contains displays and controls for executing maneuvers for rendezvous, docking, payload deployment and retrieval, payload monitoring and the remote manipulator arm controls. Payload bay doors are also operated from this location. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Astronaut James Newman works with computers and GPS

    NASA Image and Video Library

    1993-09-20

    STS051-16-028 (12-22 Sept 1993) --- On Discovery's middeck, astronaut James H. Newman, mission specialist, works with an array of computers, including one devoted to Global Positioning System (GPS) operations, a general portable onboard computer displaying a tracking map, a portable audio data modem and another payload and general support computer. Newman was joined by four other NASA astronauts for almost ten full days in space.

  16. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. At far left is Boeing SPACEHAB Program Senior Engineer Ellen Styles, and around the table are, left to right, STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., Boeing SPACEHAB Program Senior Engineer Chris Jazkolka, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  17. Discovery with MPLM

    NASA Image and Video Library

    2010-04-16

    S131-E-010463 (16 April 2010) --- The docked space shuttle Discovery is featured in this image photographed by an STS-131 crew member on the International Space Station. The Leonardo Multi-Purpose Logistics Module is visible in Discovery’s payload bay. Earth’s horizon and the blackness of space provide the backdrop for the scene.

  18. Port side view of the Orbiter Discovery from an elevated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Port side view of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the ground support hardware known as Strongbacks attached to the payload bay doors, the crew access hatch below the name Discovery on the forward section of the Orbiter and the removed Orbiter Maneuvering System/Reaction Control System pod from the aft (tai) section. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Payload specialists Baudry and Al-Saud in the middeck

    NASA Image and Video Library

    1985-06-17

    51G-102-035 (17-24 June 1985) --- The two payload specialists for the week-long flight share a middeck scene on the earth-orbiting Discovery. Sultan Salman Abdelazize Al-Saud (left) is in the midst of a meal while Patrick Baudry conducts a phase of the French Postural Experiment (FPE) on himself. Sleep restraints are in the background.

  20. KSC-99pp1288

    NASA Image and Video Library

    1999-11-05

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the payload canister for Space Shuttle Discovery, for mission STS-103, is lifted up the Rotating Service Structure. The hoses attached to the canister provide airconditioning until the canister is mated to the environmentally controlled Payload Changeout Room and the payload bay doors are open. Installation of the payload into Discovery is slated for Friday, Nov. 12. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  1. KSC-2009-2938

    NASA Image and Video Library

    2009-05-05

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians place equipment in the Resupply Stowage Platform, or RSP, to be installed in the multi-purpose logistics module Leonardo. The module is part of the payload for space shuttle Discovery's STS-128 mission. Discovery will carry science and storage racks to the International Space Station . Launch of Discovery is targeted for Aug. 6. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd2024

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Orbiter Processing Facility bay 3, a crane moves the main bus switching unit that will be installed in Discovery's payload bay. The unit is part of the payload on mission STS-120. A main bus switching unit is used for power distribution, circuit protection and fault isolation on the space station's power system. The units route power to proper locations in the space station, such as from solar arrays through umbilicals into the U.S. Lab. The unit will be installed on the external stowage platform 2 attached to the Quest airlock for temporary storage. Discovery is targeted to launch mission STS-120 no earlier than Oct. 20. Photo credit: NASA/Jim Grossmann

  3. KSC-07pd2023

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Orbiter Processing Facility bay 3, a crane lifts the main bus switching unit that will be installed in Discovery's payload bay. The unit is part of the payload on mission STS-120. A main bus switching unit is used for power distribution, circuit protection and fault isolation on the space station's power system. The units route power to proper locations in the space station, such as from solar arrays through umbilicals into the U.S. Lab. The unit will be installed on the external stowage platform 2 attached to the Quest airlock for temporary storage. Discovery is targeted to launch mission STS-120 no earlier than Oct. 20. Photo credit: NASA/Jim Grossmann

  4. sts095-s-010

    NASA Image and Video Library

    2009-09-23

    STS095-S-010 (7 Nov. 1998) --- The space shuttle Discovery's main landing gear is just about to touch down on Runway 33 at the Shuttle Landing Facility at the Kennedy Space Center (KSC). Main gear touchdown was at 12:04 p.m. (EST), landing on orbit 135. Discovery returned to Earth with its crew of five astronauts and two payload specialists to successfully complete the nine-day mission. Onboard were astronauts Curtis L. Brown Jr., Steven W. Lindsey, Scott F. Parazynski, Stephen K. Robinson, Pedro Duque and payload specialists Chiaki Naito-Mukai and United States Senator John H. Glenn Jr. Duque represents the European Space Agency (ESA) and Mukai is with Japan's National Space Development Agency (NASDA). Photo credit: NASA

  5. sts095-s-012

    NASA Image and Video Library

    2009-09-23

    STS095-S-012 (7 Nov. 1998) --- The space shuttle Discovery is about to lower its nose wheel following main gear touchdown on Runway 33 at the Shuttle Landing Facility at the Kennedy Space Center (KSC). Main gear touchdown was at 12:04 p.m. (EST), landing on orbit 135. Discovery returned to Earth with its crew of five astronauts and two payload specialists to successfully complete the nine-day mission. Onboard were astronauts Curtis L. Brown Jr., Steven W. Lindsey, Scott F. Parazynski, Stephen K. Robinson, Pedro Duque and payload specialists Chiaki Naito-Mukai and United States Senator John H. Glenn Jr. Duque represents the European Space Agency (ESA) and Mukai is with Japan's National Space Development Agency (NASDA). Photo credit: NASA

  6. Closeup view from the starboard side looking towards the port ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view from the starboard side looking towards the port side of the Orbiter Discovery looking at the airlock and payload bay. The docking ring has been removed from the airlock prior to this photo being taken. Note that the Orbiter Boom Sensor System is still attached while the Remote Manipulator System has been removed. Also note the suspended protective panels and walkways in place to protect the interior surfaces of the payload bay doors while in their open position. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. A perfect launch viewed across Banana Creek

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Discovery seems to burst forth from a pillow of smoke as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The brilliant light from the solid rocket booster flames is reflected in nearby water. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  8. KSC-01PP1470

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- Trees frame Space Shuttle Discovery trailing columns of fire from the solid rocket boosters as it soars into the blue sky on mission STS-105 to the International Space Station. Liftoff from Launch Pad 39A occurred at 5:10:14 p.m. EDT. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the Space Station. The mission payload includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station

  9. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The day after their return to Earth on board the orbiter Discovery, members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right are Lisa Malone, moderator and chief of NASA Public Affairs' Media Services at Kennedy Space Center; Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  10. STS-92 MS Wakata gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  11. STS-92 Pilot Melroy gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  12. STS-92 MS McArthur gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  13. STS-92 Commander Duffy gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  14. STS-92 MS Lopez-Alegria gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  15. KSC00pp1353

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  16. KSC-00pp1353

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  17. STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment

    NASA Image and Video Library

    1988-09-29

    During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1985-01-08

    The crew assigned to the STS-51C mission included (kneeling in front left to right) Loren J. Schriver, pilot; and Thomas K. Mattingly, II, commander. Standing, left to right, are Gary E. Payton, payload specialist; and mission specialists James F. Buchli, and Ellison L. Onzuka. Launched aboard the Space Shuttle Discovery on January 24, 1985 at 2:50:00 pm (EST), the STS-51C was the first mission dedicated to the Department of Defense (DOD).

  19. Space Shuttle Projects

    NASA Image and Video Library

    1991-10-02

    The STS-48 crew portrait includes (front row left to right): Mark N. Brown, mission specialist; John O. Creighton, commander; and Kenneth S. Reightler, pilot. Pictured on the back row (left to right) are mission specialists Charles D. (Sam) Gemar, and James F. Buchli. The crew of five launched aboard the Space Shuttle Discovery on September 12, 1991 at 7:11:04 pm (EDT). The primary payload of the mission was the Upper Atmosphere Research Satellite (UARS).

  20. KSC-98pc1558

    NASA Image and Video Library

    1998-11-07

    After leaving the Crew Transport Vehicle, members of the mission STS-95 crew (foreground) take a close look at the orbiter Discovery that carried them for nine days and 3.6 million miles. From left, they are Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Pilot Steven W. Lindsey; and Mission Commander Curtis L. Brown Jr. The STS-95 crew completed a successful mission, landing at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  1. KSC-146fr3

    NASA Image and Video Library

    1998-02-13

    Technicians observe the alpha-magnetic spectrometer (AMS-1) after it was removed from its protective shipping case in KSC’s Multi Payload Processing Facility (MPPF). The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  2. KSC-147fr11

    NASA Image and Video Library

    1998-02-13

    A technician observes the alpha-magnetic spectrometer (AMS-1) after it was removed from its protective shipping case in KSC’s Multi Payload Processing Facility (MPPF). The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  3. KSC-143fr8

    NASA Image and Video Library

    1998-02-13

    Technicians assist in moving the alpha-magnetic spectrometer (AMS-1) from its protective shipping case in KSC’s Multi Payload Processing Facility (MPPF). The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  4. STS-39 AFP-675 and STP-1 MPESS in OV-103's payload bay (PLB)

    NASA Image and Video Library

    1991-05-06

    STS039-10-019 (28 April-6 May 1991) --- This 35mm frame, taken from inside the crew cabin, shows some of the cargo in Discovery's payload bay. Seen are the tops of canisters on the STP-1 payload, configured on the STS 39 Hitchhiker carrier; and the Air Force Program (AFP) 675 package. AFP-675 consists of the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS)-1A; Far Ultraviolet Camera (FAR-UV) Experiment; Horizon Ultraviolet Program (HUP); Quadruple Ion Neutral Mass Spectrometer (QINMS); and the Uniformly Redundant Array (URA).

  5. General view looking forward from the starboard side of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking forward from the starboard side of the Orbiter Discovery looking into the payload bay and the bulkhead of the forward fuselage with the airlock. The docking ring and airlock hatches have been removed from the airlock prior to this photo being taken. Note that the Orbiter Boom Sensor System is still attached while the Remote Manipulator System has been removed. Also note the suspended protective panels and walkways in place to protect the interior surfaces of the payload bay doors while in their open position. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. KSC01padig268

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- Smoke and steam roll over the ground as Space Shuttle Discovery lifts off on mission STS-105. Liftoff occurred on time at 5:10:14 p.m. EDT. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS will be installed on the P6 truss, which holds the Station’s giant U.S. solar arrays, batteries and the cooling radiators. The EAS contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station

  7. KSC01padig260

    NASA Image and Video Library

    2001-08-08

    KENNEDY SPACE CENTER, Fla. -- Floodlights reveal the Space Shuttle Discovery after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. Above the external tank, the “beanie cap” is poised, waiting for loading of the propellants. The cap, or vent hood, is on the end of the gaseous oxygen vent arm that allows gaseous oxygen vapors to vent away from the Space Shuttle. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  8. KSC01padig267

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- The plume of smoke grows behind Space Shuttle Discovery as it hurtles into space on mission STS-105. Liftoff occurred on time at 5:10:14 p.m. EDT. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS will be installed on the P6 truss, which holds the Station’s giant U.S. solar arrays, batteries and the cooling radiators. The EAS contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station

  9. STS-26 Discovery, OV-103, artwork showing TDRS-C deployment

    NASA Image and Video Library

    1987-11-16

    STS-26 Discovery, Orbiter Vehicle (OV) 103, artwork depicts tracking and data relay satellite C (TDRS-C) deployment. OV-103 orbits above Earth in bottom-to-sun attitude, moments after TDRS-C's release into space. TDRS-C is seen just below open payload bay (PLB). Artwork was done by Pat Rawlings of Eagle Engineering.

  10. General view of the middeck of the Orbiter Discovery while ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck of the Orbiter Discovery while in the Orbiter Processing Facility at Kennedy Space Center. The view is looking through the air lock and into the payload bay. In the foreground note the ladders and access hatches to the flight deck and the ground support panels used to protect the floors. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. Tryggvason and Robinson examine Discovery after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Payload Specialist and Canadian Space Agency astronaut Bjarni V. Tryggvason (left) and Mission Specialist Stephen K. Robinson examine the Space Shuttle orbiter Discovery after the space plane landed on Runway 33 at KSCs Shuttle Landing Facility Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. Also on board were Commander Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Commander N. Jan Davis and Mission Specialist Robert L. Curbeam, Jr. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earths middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS- 1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center.

  12. KENNEDY SPACE CENTER, FLA. - At the KSC Launch Pad 39A, two members of the payload closeout crew check equipment as the doors are just about ready to be closed. The Payload inside the bay of Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - At the KSC Launch Pad 39A, two members of the payload closeout crew check equipment as the doors are just about ready to be closed. The Payload inside the bay of Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.

  13. KSC00pp1557

    NASA Image and Video Library

    2000-10-11

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery roars through the sky trailing fire and blue mach diamonds from the engines. The perfect on-time liftoff at 7:17 p.m. EDT sends a crew of seven on a construction flight to the International Space Station on mission STS-92, the 100th in the history of the Shuttle program. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  14. KSC-00pp1557

    NASA Image and Video Library

    2000-10-11

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery roars through the sky trailing fire and blue mach diamonds from the engines. The perfect on-time liftoff at 7:17 p.m. EDT sends a crew of seven on a construction flight to the International Space Station on mission STS-92, the 100th in the history of the Shuttle program. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  15. STS-103 crew look over payload inside Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the STS-103 crew, with representatives from Goddard Space Flight Center, look over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery at Launch Pad 39B. From left are Mission Specialist Steven L. Smith and Claude Nicollier of Switzerland; Steve Pataki and Dave Southwick, with Goddard; and Mission Commander Curtis L. Brown Jr. Inspecting the payload is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Jean- Fran'''ois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  16. Launching of the Shuttle Discovery and the STS 51-G mission

    NASA Image and Video Library

    1985-06-17

    51G-S-100 (17 June 1985) --- A low-angle 35mm tracking view of the Space Shuttle Discovery, its external tank and two solid rocket boosters speeding from the KSC launch facility to begin NASA STS 51-G. The camera has captured the diamond shock effect associated with the launch phase or orbiter vehicles. Inside the Discovery are seven crewmembers and a variety of payloads representing international interests. Liftoff for 51-G occurred at 7:33:043 a.m. (EDT), June 17, 1985.

  17. Landing of STS-63 Discovery at KSC

    NASA Image and Video Library

    1995-02-11

    STS063-S-015 (11 Feb. 1995) --- The Space Shuttle Discovery deploys its drag chute on Runway 15 at the Kennedy Space Center's (KSC) Shuttle Landing Facility as it wraps up an eight-day mission. Touchdown occurred at 6:50:19 a.m. (EST), February 11, 1995. Onboard the Space Shuttle Discovery were astronauts James D. Wetherbee, mission commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; mission specialists C. Michael Foale, Janice E. Voss, and cosmonaut Vladimir G. Titov.

  18. STS-103 Wiring inspections in the aft compartment of Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Todd Biddle, with United Space Alliance, inspects wiring in the aft compartment of Discovery before launch. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope.

  19. Glenn in his sleep rack on the Discovery's middeck

    NASA Image and Video Library

    1998-10-29

    STS095-E-5032 (10-29-98) --- During Flight Day 1 activties, U.S. Sen. John H. Glenn Jr. takes part in his assigned medical studies as a payload specialist onboard the Space Shuttle Discovery. A flashlight floats in front of Sen. Glenn. The photo was made with an electronic still camera (ESC) at ll:48:35 GMT, Oct. 29.

  20. Astronaut Carl Walz during EVA in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Carl E. Walz reaches for equipment from the provisional stowage assembly (PSA) in Discvoery's cargo bay during a lengthy period of extravehicular activity (EVA). The hatch to Discovery's airlock is open nearby. Sun glare is evident above the orbiter. The picture was taken with a 35mm camera by astronaut James H. Newman, who shared EVA duties with Walz.

  1. STS-121: Discovery L-1 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Bruce Buckingham, NASA Public Affairs, introduces Jeff Spaulding, NASA Test Director; Debbie Hahn, STS-121 Payload Manager; and Kathy Winters, Shuttle Weather Officer. Spaulding gives his opening statement on this one day prior to the launching of the Space Shuttle Discovery. He discusses the following topics: 1) Launch of the Space Shuttle Discovery; 2) Weather; 3) Load over of onboard reactants; 4) Hold time for liquid hydrogen; 5) Stowage of Mid-deck completion; 6) Check-out of onboard and ground network systems; 7) Launch windows; 8) Mission duration; 9) Extravehicular (EVA) plans; 10) Space Shuttle landing day; and 11) Scrub turn-around plans. Hahn presents and discusses a short video of the STS-121 payload flow. Kathy Winters gives her weather forecast for launch. She then presents a slide presentation on the following weather conditions for the Space Shuttle Discovery: 1) STS-121 Tanking Forecast; 2) Launch Forecast; 3) SRB Recovery; 4) CONUS Launch; 5) TAL Launch; 6) 24 Hour Delay; 7) CONUS 24 Hour; 8) TAL 24 Hour; 9) 48 Hour Launch; 10) CONUS 48 Hour; and 11) TAL 48 Hour. The briefing ends with a question and answer period from the media.

  2. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08737 (9 April 1998) --- The mission commander, along with two payload specialists in training for NASA's STS-95 mission scheduled for later this year aboard Discovery, samples space foods at the Johnson Space Center (JSC). With payload specialists Chiaki Mukai and U.S. Sen. John H. Glenn Jr. (D.-Ohio) is Curtis L. Brown Jr. (right), mission commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  3. STS 51-G crewmembers depart KSC's operations and checkout building

    NASA Image and Video Library

    1985-05-20

    51G-S-117 (17 June 1985) --- 51-G crewmembers depart the Kennedy Space Center's operations and checkout building on their way to the launch pad for the launch of the Discovery. Leading the seven are Daniel C. Brandenstein, commander; and John O. Creighton, pilot. Following are Payload specialist Sultan Salman Abdelazize Al-Saud; John M. Fabian, mission specialist; Patrick Baudry, payload specialist; Shannon Lucid and Steven R. Nagel, mission specialists.

  4. STS-95 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Five astronauts based at the Johnson Space Center (JSC) and two payload specialists comprising the STS-95 mission take a break from their training schedule to pose for the STS-95 preflight portrait. Seated (left to right) are Steven W. Lindsey, pilot; and Curtis L. Brown, commander. Standing (left to right) are Scott E. Parazynski, mission specialist; Stephen K. Robinson, mission specialist; Chiaki Mukai (NASDA), payload specialist; Pedro Duque (ESA), mission specialist; and John H. Glenn, payload specialist. Glenn was a U.S. Senator and the first American to orbit the Earth in Friendship 7 in February of 1962. The seven launched into Earth orbit aboard the Space Shuttle Discovery on October 29, 1998 at 2:19:34 pm (EST). The primary payload was SPACEHAB, in which many experiments were carried out.

  5. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  6. KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-22

    KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.

  7. STS-42 crewmembers participate in JSC fire fighting training exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Ulf D. Merbold (far left), fire fighting trainer (center), Payload Specialist Roberta L. Bondar (holding hose nozzle), and backup Payload Specialist Roger K. Crouch position water hoses in the direction of a blazing fire in JSC's Fire Training Pit. The crewmembers and backup are learning fire extinguishing techniques during fire fighting and fire training exercises held at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207. Merbold is representing the European Space Agency (ESA) and Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  8. Mukai, Glenn and Robinson in flight seats during TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In their flight seats aboard Space Shuttle Discovery are (front to back) STS-95 Payload Specialists Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), and John H. Glenn Jr., senator from Ohio, and Mission Specialist Stephen K. Robinson. Mukai, Glenn and Robinson, along with other crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. Not shown are Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  9. STS-92 MS Wisoff gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Peter J.K. '''Jeff''' Wisoff reaches out to shake the hand of Danny Wyatt, KSC NASA Quality Assurance specialist, after completing final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wisoff and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  10. KSC-00pp1563

    NASA Image and Video Library

    2000-10-11

    STS-92 Mission Specialist William S. McArthur Jr. undergoes final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. McArthur and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  11. KSC-00pp1569

    NASA Image and Video Library

    2000-10-11

    STS-92 Commander Brian Duffy is helped with final suit check in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  12. KSC-00pp1567

    NASA Image and Video Library

    2000-10-11

    STS-92 Pilot Pamela Ann Melroy has a final check on her launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Melroy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  13. STS-96 crew members in the white room are prepared for entry into Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-96 Mission Specialist Ellen Ochoa chats with white room closeout crew members while being checked out for entry into the orbiter Discovery. At left are Mechanical Technicians Al Schmidt and Chris meinert; at right is Quality Assurance Specialist James Davis and Closeout Chief Travis Thompson. The white room is an environmental chamber at the end of the orbiter access arm that provides entry to the orbiter crew compartment. STS-96 is a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  14. KSC technicians inspect TDRS-C, an STS-26 payload, in VPF clean room

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Kennedy Space Center (KSC) clean-suited technicians inspect tracking and data relay satellite C (TDRS-C) in KSC's Vertical Processing Facility (VPF) clean room. TDRS-C is the primary satellite payload aboard STS-26 Discovery, Orbiter Vehicle (OV) 103. TDRS-C will relay data from low Earth orbiting spacecraft, and air-to-ground voice communications and television from Space Shuttle orbiters when operational. View provided by KSC with alternate number KSC-88PC-363.

  15. Astronaut James Newman evaluates tether devices in Discovery's payload bay

    NASA Image and Video Library

    1993-09-16

    Astronaut James H. Newman, mission specialist, uses a 35mm camera to take a picture of fellow astronaut Carl E. Walz (out of frame) in Discovery's cargo bay. The two were engaged in an extravehicular activity (EVA) to test equipment to be used on future EVA's. Newman is tethered to the starboard side, with the orbital maneuvering system (OMS) pod just behind him.

  16. Perfect launch for Space Shuttle Discovery on mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Trailing a fiery-looking column of smoke, Space Shuttle Discovery hurtles into a blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  17. Perfect launch for Space Shuttle Discovery on mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Smoke billows out from Launch Pad 39A as Space Shuttle Discovery soars into the blue sky on mission STS-105 to the International Space Station. Liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  18. KSC-08pd1013

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, workers on either side monitor the progress of the payload canister as it is raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  19. KSC-08pd1009

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, technicians monitor the rotation of the payload canister to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module. The canister will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  20. KSC-08pd1012

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is being raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  1. KSC-08pd1014

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is suspended vertically after rotation from the horizontal. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  2. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As daylight creeps over the horizon, STS-95 Space Shuttle Discovery, on the Mobile Launch Platform, arrives at Launch Complex Pad 39B after a 4.2-mile trip taking approximately 6 hours. At the left is the 'white room,' attached to the orbiter access arm. The white room is an environmental chamber that mates with the orbiter and holds six persons. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  3. KSC-98pc1179

    NASA Image and Video Library

    1998-09-28

    KENNEDY SPACE CENTER, FLA. -- At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure (FSS), is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process. At the top of the FSS can be seen the 80-foot lightning mast . The 4-foot-high lightning rod on top helps prevent lightning current from passing directly through the Space Shuttle and the structures on the pad

  4. sts095-s-015

    NASA Image and Video Library

    2009-09-23

    STS095-S-015 (7 Nov. 1998) --- The main landing gear of the space shuttle Discovery is about to touch down on Runway 33 at the Shuttle Landing Facility at the Kennedy Space Center (KSC). Main gear touchdown was at 12:04 p.m. (EST), landing on orbit 135. Discovery returned to Earth with its crew of five astronauts and two payload specialists to successfully complete the nine-day mission. A Shuttle Training Aircraft (STA) is at top center, with the Vehicle Assembly Building (VAB) at right edge of frame. Onboard were astronauts Curtis L. Brown Jr., Steven W. Lindsey, Scott F. Parazynski, Stephen K. Robinson, Pedro Duque and payload specialists Chiaki Naito-Mukai and United States Senator John H. Glenn Jr. Duque represents the European Space Agency (ESA) and Mukai is with Japan's National Space Development Agency (NASDA). Photo credit: NASA

  5. STS-85 Mission Specialist Stephen Robinson suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson smiles as he is assisted with his ascent/reentry flight suit by a suit technician in the Operations and Checkout (O&C) Building. He has been a NASA employee since 1975 and has worked at Ames and Langley Research Centers. Robinson holds a doctorate in mechanical engineering and is a licensed pilot. He will assist Mission Specialist Robert L. Curbeam, Jr. with the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA- SPAS-2) free-flyer and conduct Comet Hale-Bopp observations with the Southwest Ultraviolet Imaging System. Robinson will also coordinate photo and television data operations during the mission. The primary payload aboard the Space Shuttle orbiter Discovery is the CRISTA-SPAS- 2. Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  6. KSC-98pc1561

    NASA Image and Video Library

    1998-11-07

    STS-95 Mission Specialist Pedro Duque of Spain (center), with the European Space Agency, poses with two high-ranking Spanish military officers. Duque was one of a crew of seven aboard orbiter Discovery which landed at the Shuttle Landing Facility at 12:04 p.m. EST after a successful mission spanning nine days and 3.6 million miles. The other STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson and Scott E. Parazynski; and Payload Specialists Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), and John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  7. General view of the mid deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid deck of the Orbiter Discovery during pre-launch preparations. Note the payload and mission specialists seats. The seats are removed packed and stowed during on-orbit activities. Also not the black panels in the right of the image, they are protective panels used for preparation of the orbiter and astronaut ingress while the orbiter is in its vertical launch position. This image was taken at Kenney Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. STS-103 Wiring inspections in the aft compartment of Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Chris Kidd, with United Space Alliance (USA) stands by outside the aft compartment of Discovery while Todd Biddle (USA) inspects wiring inside. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope.

  9. View of the shuttle orbiter Discovery's payload bay during RMS checkout

    NASA Image and Video Library

    1997-02-12

    S82-E-5014 (12 Feb. 1997) --- Space Shuttle Discovery's Remote Manipulator System (RMS) gets a preliminary workout in preparation for a busy work load later in the week. The crewmembers are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. This view was taken with an Electronic Still Camera (ESC).

  10. SPACEHAB is lowered by crane in the SSPF into the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is lowered into the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  11. Astronaut Bernard Harris monitors Spacehab experiments

    NASA Image and Video Library

    1995-02-03

    STS063-68-013 (3-11 Feb 1995) --- Astronaut Bernard A. Harris, Jr., a physician and payload commander, monitors several Spacehab-3 experiments which occupy locker space on the Space Shuttle Discovery's mid-deck. The Spacehab 3 Module is located in the cargo bay. Others onboard the Discovery were astronauts James D. Wetherbee, commander; Eileen M. Collins, pilot; mission specialists C. Michael Foale, Janice E. Voss, and Russian cosmonaut Vladimir G. Titov.

  12. GN and C Subsystem Concept for Safe Precision Landing of the Proposed Lunar MARE Robotic Science Mission

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.; hide

    2016-01-01

    The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

  13. STS-85 crew insignia

    NASA Image and Video Library

    1997-04-22

    STS085-S-001 (May 1997) --- The mission patch for STS-85 is designed to reflect the broad range of science and engineering payloads on the flight. The primary objectives of the mission are to measure chemical constituents in Earth?s atmosphere with a free-flying satellite and to flight-test a new Japanese robotic arm designed for use on the International Space Station (ISS). STS-85 is the second flight of the satellite known as CRISTA-SPAS-02. CRISTA, depicted on the right side of the patch pointing its trio of infrared telescopes at Earth?s atmosphere, stands for Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere. The high inclination orbit is shown as a yellow band over Earth?s northern latitudes. In the space shuttle Discovery?s open payload bay an enlarged version of the Japanese National Space Development Agency?s (NASDA) Manipulator Flight Demonstration (MFD) robotic arm is shown. Also shown in the payload bay are two sets of multi-science experiments: the International Extreme Ultraviolet Hitchhiker (IEH-02) nearest the tail and the Technology Applications and Science (TAS-01) payload. Jupiter and three stars are shown to represent sources of ultraviolet energy in the universe. Comet Hale-Bopp, which will be visible from Earth during the mission, is depicted at upper right. The left side of the patch symbolizes daytime operations over the Northern Hemisphere of Earth and the solar science objectives of several of the payloads. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  14. Crater Morphology in the Phoenix Landing Ellipse: Insights Into Net Erosion and Ice Table Depth

    NASA Technical Reports Server (NTRS)

    Noe Dobrea, E. Z.; Stoker, C. R.; McKay, C. P.; Davila, A. F.; Krco, M.

    2015-01-01

    Icebreaker [1] is a Discovery class mission being developed for future flight opportunities. Under this mission concept, the Icebreaker payload is carried on a stationary lander, and lands in the same landing ellipse as Phoenix. Samples are acquired from the subsurface using a drilling system that penetrates into materials which may include loose or cemented soil, icy soil, pure ice, rocks, or mixtures of these. To avoid the complexity of mating additional strings, the drill is single-string, limiting it to a total length of 1 m.

  15. STS-63 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Crew members assigned to the STS-63 mission included (front left to right) Janice E. Voss, mission specialist; Eileen M. Collins, pilot; (the first woman to pilot a Space Shuttle), James D. Wetherbee, commander; and Vladmir G. Titov (Cosmonaut). Standing in the rear are mission specialists Bernard A. Harris, and C. Michael Foale. Launched aboard the Space Shuttle Discovery on February 3, 1995 at 12:22:04 am (EST), the primary payload for the mission was the SPACEHAB-3. STS-63 marked the first approach and fly around by the Shuttle with the Russian space station Mir.

  16. Earth Science

    NASA Image and Video Library

    1996-01-31

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.

  17. Two-step Laser Time-of-Flight Mass Spectrometry to Elucidate Organic Diversity in Planetary Surface Materials.

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.

    2013-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.

  18. KSC-2010-4426

    NASA Image and Video Library

    2010-08-19

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida, the Ku-band antenna is stored in space shuttle Discovery's payload bay. The antenna, which resembles a mini-satellite dish, transmits audio, video and data between Earth and the shuttle. Next, the clamshell doors of the payload bay will close completely in preparation for its move to the Vehicle Assembly Building next month. There, it will be attached to its external fuel tank and a set of solid rocket boosters for launch on the STS-133 mission to the International Space Station. Targeted to launch Nov. 1, STS-133 will carry the multipurpose logistics module, or PMM, packed with supplies and critical spare parts, as well as Robonaut 2, or R2, to the station. Discovery will leave the module behind so it can be used for microgravity experiments in fluid physics, materials science, biology and biotechnology. Photo credit: NASA/Kim Shiflett

  19. KSC-2010-4428

    NASA Image and Video Library

    2010-08-19

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida, the Ku-band antenna is stored in space shuttle Discovery's payload bay. The antenna, which resembles a mini-satellite dish, transmits audio, video and data between Earth and the shuttle. Next, the clamshell doors of the payload bay will close completely in preparation for its move to the Vehicle Assembly Building next month. There, it will be attached to its external fuel tank and a set of solid rocket boosters for launch on the STS-133 mission to the International Space Station. Targeted to launch Nov. 1, STS-133 will carry the multipurpose logistics module, or PMM, packed with supplies and critical spare parts, as well as Robonaut 2, or R2, to the station. Discovery will leave the module behind so it can be used for microgravity experiments in fluid physics, materials science, biology and biotechnology. Photo credit: NASA/Kim Shiflett

  20. KSC-2010-4427

    NASA Image and Video Library

    2010-08-19

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida, the Ku-band antenna is stored in space shuttle Discovery's payload bay. The antenna, which resembles a mini-satellite dish, transmits audio, video and data between Earth and the shuttle. Next, the clamshell doors of the payload bay will close completely in preparation for its move to the Vehicle Assembly Building next month. There, it will be attached to its external fuel tank and a set of solid rocket boosters for launch on the STS-133 mission to the International Space Station. Targeted to launch Nov. 1, STS-133 will carry the multipurpose logistics module, or PMM, packed with supplies and critical spare parts, as well as Robonaut 2, or R2, to the station. Discovery will leave the module behind so it can be used for microgravity experiments in fluid physics, materials science, biology and biotechnology. Photo credit: NASA/Kim Shiflett

  1. KSC-06pd1728

    NASA Image and Video Library

    2006-08-03

    KENNEDY SPACE CENTER, FLA. - Suspended by cables in bay 3 of the Orbiter Processing Facility, the orbiter boom sensor system is lowered toward its place in Discovery's payload bay. It was removed last week in order to inspect the power system, which is routine after every flight. Discovery returned from mission STS-121 in late July, and is now being processed for mission STS-116, scheduled to launch in mid-December. Photo credit: NASA/Jim Grossmann

  2. Detail view of the forward section, port side, of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the forward section, port side, of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the removal of the Forward Reaction Control System Module from the nose section, the ground-support window covers and the strongback attached to the payload bay door. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. KSC-07pd2681

    NASA Image and Video Library

    2007-10-05

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, workers remove the rain gutters from space shuttle Discovery's payload bay. The gutters prevent leaks into the bay from rain while the shuttle is on the pad. Beneath is the orbital docking system. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton

  4. KSC-01pp1425

    NASA Image and Video Library

    2001-08-06

    KENNEDY SPACE CENTER, Fla. -- On Launch Pad 39A, Discovery’s payload bay doors close on the payloads inside. On the Integrated Cargo Carrier seen here is the Early Ammonia Servicer (EAS) on the left. The EAS contains spare ammonia for the Station’s cooling system. Ammonia is the fluid used in the radiators that cool the Station’s electronics. The EAS will be installed on the P6 truss holding the giant U.S. solar arrays, batteries and cooling radiators. Other payloads in the bay are the Multi-Purpose Logistics Module Leonardo, filled with laboratory racks of science equipment and racks and platforms of experiments and supplies, and various experiments attached on the port and starboard adapter beams. Discovery is scheduled to be launched Aug. 9, 2001

  5. SPACEHAB is moved by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is moved by crane over the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  6. KSC-01pp1475

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz sends a message home while preparing to enter Space Shuttle Discovery for launch. Assisting with flight equipment are (left) Orbiter Vehicle Closeout Chief Chris Meinert, (right) USA Mechanical Technician Al Schmidt and (behind) NASA Quality Assurance Specialist Ken Strite. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station's cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station

  7. KSC-01pp1478

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. - Expedition Three Commander Frank Culbertson sends a greeting home while having his flight equipment checked before he enters Space Shuttle Discovery for launch. Helping him are (front) USA Mechanical Technician Al Schmidt and (back) NASA Quality Assurance Specialist Ken Strite. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the International Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station

  8. Spectators in the stands watch launch of STS-95 and Space Shuttle Discovery.

    NASA Technical Reports Server (NTRS)

    1998-01-01

    These stands are filled with spectators watching and photographing the launch of STS-95. The viewing sites and roadways at Kennedy Space Center bulge with people and vehicles wanting to see Space Shuttle Discovery lift off. Extra attention has been drawn to the mission due to the addition to the crew of John H. Glenn Jr., a senator from Ohio. STS-95 is Glenn's second flight into space after 36 years; he was one of the original Project Mercury astronauts and flew his first mission in February 1962. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  9. KSC-05PD-1086

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians in Space Shuttle Discovery's payload bay perform a borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  10. Launch of STS-63 Discovery

    NASA Image and Video Library

    1995-02-03

    STS063-S-007 (3 Feb 1995) --- The race to catch up with the Russia's Mir gets underway as the Space Shuttle Discovery launches from Pad 39B, Kennedy Space Center (KSC) at 12:22:04 (EST), February 3, 1995. Discovery is the first in the current fleet of four Space Shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) Shuttle flight are astronauts James D. Wetherbee, mission commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov.

  11. Oblique view of the Orbiter Discovery from an elevated platform ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the Forward Reaction Control System (RCS) Module from the forward section and the Orbiter Maneuvering System (OMS)/RCS pods from the aft section have been removed. Ground support equipment called Strongbacks are attached to the payload bay doors and the Flight Deck windows have been covered by ground support equipment. Also note the scale figure standing by the Orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-12

    This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

  13. Duque and Parazynski in slidewire exercise from Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain (left), representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski (right) signal they are ready to leave Launch Pad 39B in the slidewire basket during an emergency egress exercise. Duque and Parazynski, along with other crew members, are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. Not shown are Mission Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA). The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  14. Duque and Parazynski in an emergency egress exercise from Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialists Pedro Duque of Spain (left), representing the European Space Agency (ESA), and Scott E. Parazynski (behind him) hurry toward the basket at the 195-foot level of Launch Pad 39B during an emergency egress exercise. Duque and Parazynski, along with other crew members, are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  15. KSC-99pp0599

    NASA Image and Video Library

    1999-05-27

    KENNEDY SPACE CENTER, FLA. -- The launch of Space Shuttle Discovery on mission STS-96 is reflected in the waters of Banana Creek just after sunrise. Liftoff occurred at 6:49:42 a.m. EDT. In the shadows near the bottom are silhouetted a number of spectators at the Banana Creek viewing site. STS-96 is on a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT

  16. KSC-00pp1564

    NASA Image and Video Library

    2000-10-11

    STS-92 Mission Specialist Koichi Wakata of Japan gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Wakata and the rest of the crew are making the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  17. STS-92 MS Chiao gets suit checked in the White Room before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Mission Specialist Leroy Chiao waves while waiting for suit check in the White Room. Behind him is Commander Brian Duffy. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Chiao, Duffy and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  18. KSC-00pp1565

    NASA Image and Video Library

    2000-10-11

    STS-92 Mission Specialist Michael E. Lopez-Alegria gets a final check of his launch and entry suit in the White Room before entering Discovery. The White Room is an environmentally controlled area at the end of the Orbiter Access Arm that provides entry to the orbiter as well as emergency egress if needed. The arm remains in the extended position until 7 minutes 24 seconds before launch. Lopez-Alegria and the rest of the crew are undertaking the fifth flight to the International Space Station for construction. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. The mission includes four spacewalks for the construction activities. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT

  19. Perfect launch for Space Shuttle Discovery on mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Viewed from between the trees, Space Shuttle Discovery rises above the smoke as it soars into the blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  20. KSC01padig261

    NASA Image and Video Library

    2001-08-08

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery is bathed in light after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. The Shuttle comprises the two solid rocket boosters, external tank and orbiter, all of which are secured on the mobile launcher platform beneath them. Extending toward Discovery from the fixed service structure at left is the orbiter access arm. At the end of the arm is the White Room, an environmental chamber that mates with the orbiter and allows personnel to enter the crew compartment. Below, on either side of the orbiter’s tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  1. KSC-2011-5574

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- finds shelter in the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley

  2. KSC-2011-5546

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- winds its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  3. KSC-2011-5550

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- awaits entry into the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  4. KSC-98pc637

    NASA Image and Video Library

    1998-05-26

    A SPACEHAB Single Module (top) and the Alpha Magnetic Spectrometer (AMS) experiment are secure in Discovery's payload bay shortly before the payload bay doors are closed for the flight of STS-91 at Launch Pad 39A. Launch is planned for June 2 with a window opening around 6:10 p.m. EDT. The single SPACEHAB module houses experiments to be performed by the astronauts and serves as a cargo carrier for items to be transferred to and from the Russian Space Station Mir. The AMS experiment is the first of a new generation of space-based experiments which will use particles, instead of light, to study the Universe and will search for both antimatter and "dark matter," as well as measure normal matter cosmic and gamma rays. STS-91 will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  5. DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07837 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  6. DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07831 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  7. DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07838 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  8. STS-85 crew portraits in the middeck hatch and in front of lockers

    NASA Image and Video Library

    1997-08-26

    STS085-320-020 (7 - 19 August 1997) --- For their traditional in-flight crew portrait, the six crew members for this mission float on the mid-deck of the Space Shuttle Discovery. On top, left to right, are Bjarni Tryggvason, payload specialist of the Canadian Space Agency (CSA); along with astronauts Stephen K. Robinson, mission specialist; and Curtis L. Brown, Jr., mission commander. On bottom, from the left, are astronauts Robert L. Curbeam, Jr., mission specialist; N. Jan Davis, payload commander; and Kent V. Rominger, pilot.

  9. STS-56 view of freeflying SPARTAN-201 backdropped over the Mediterranean Sea

    NASA Image and Video Library

    1993-04-17

    During STS-56, the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN-201), a freeflying payload, was photographed by Discovery's, Orbiter Vehicle (OV) 103's, crewmembers as it drifted above the Mediterranean Sea near the island of Crete. On the mission's third day, the remote manipulator system (RMS) arm was used to lift SPARTAN-201 from its support structure in OV-103's payload bay and release it in space. SPARTAN-201 was later recaptured by OV-103's RMS and returned to Earth with the astronaut crew.

  10. STS-42 Discovery, Orbiter Vehicle (OV) 103, lifts off from KSC LC Pad

    NASA Image and Video Library

    1992-01-22

    STS042-S-064 (22 Jan 1992) --- A horizontal image of liftoff of STS-42, with a crew of seven and the International Microgravity Laboratory (IML-1) onboard. Crewmembers are astronauts Ronald J. Grabe, mission commander; Stephen S. Oswald, pilot; Norman E. Thagard, payload commander; David C. Hilmers and William F. Readdy, both mission specialists; and payload specialists Roberta L. Bondar of Canada and Ulf Merbold, representing the European Space Agency (ESA). Liftoff occurred at 9:52:33 a.m. (EST), Jan. 22, 1992.

  11. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08740 (9 April 1998) --- Five members of the STS-95 crew review supplies that may accompany them on the scheduled October launch of the Space Shuttle Discovery. From the left are Stephen K. Robinson, mission specialist; U.S. Sen. John H. Glenn Jr. (D.-Ohio), payload specialist; Pedro Duque, mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; and Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA). The photo was taken by Joe McNally, National Geographic, for NASA.

  12. KENNEDY SPACE CENTER, FLA. - The turbulent weather common to a Florida afternoon in the summer subsides into a serene canopy of cornflower blue, and a manmade "bird" takes flight. The Space Shuttle Discovery soars skyward from Launch Pad 39B on Mission STS-64 at 6:22:35 p.m. EDT, Sept. 9. On board are a crew of six: Commander Richard N. Richards; Pilot L. Blaine Hammond Jr.; and Mission Specialists Mark C. Lee, Carl J. Meade, Susan J. Helms and Dr. J.M. Linenger. Payloads for the flight include the Lidar In-Space Technology Experiment (LITE), the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) and the Robot Operated Material Processing System (ROMPS). Mission Specialists Lee and Meade also are scheduled to perform an extravehicular activity during the 64th Shuttle mission.

    NASA Image and Video Library

    1994-09-09

    KENNEDY SPACE CENTER, FLA. - The turbulent weather common to a Florida afternoon in the summer subsides into a serene canopy of cornflower blue, and a manmade "bird" takes flight. The Space Shuttle Discovery soars skyward from Launch Pad 39B on Mission STS-64 at 6:22:35 p.m. EDT, Sept. 9. On board are a crew of six: Commander Richard N. Richards; Pilot L. Blaine Hammond Jr.; and Mission Specialists Mark C. Lee, Carl J. Meade, Susan J. Helms and Dr. J.M. Linenger. Payloads for the flight include the Lidar In-Space Technology Experiment (LITE), the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) and the Robot Operated Material Processing System (ROMPS). Mission Specialists Lee and Meade also are scheduled to perform an extravehicular activity during the 64th Shuttle mission.

  13. KSC-2012-1449

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  14. KSC-2012-1444

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  15. KSC-2012-1453

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA astronaut Stephen Robinson sit in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  16. KSC-2012-1445

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  17. KSC-2012-1452

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA astronaut Stephen Robinson stand in the middeck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  18. KSC-2012-1456

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA astronaut Stephen Robinson sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Robinson is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  19. KSC-05PD-1603

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Roger Crouch (center), a payload specialist, talks to the media prior to the launch of Space Shuttle Discovery on the historic Return to Flight mission STS- 114. He has flown on two Shuttle missions, STS-83 and STS-94. STS-114 is the 114th Space Shuttle flight and the 31st for Discovery. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.

  20. President and Mrs. Clinton watch launch of Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1998-01-01

    From the roof of the Launch Control Center, U.S. President Bill Clinton and First Lady Hillary Rodham Clinton track the plume and successful launch of Space Shuttle Discovery on mission STS-95. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on the mission.

  1. KSC-07pd2680

    NASA Image and Video Library

    2007-10-05

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, workers are removing the rain gutters from space shuttle Discovery's payload bay. The gutters prevent leaks into the bay from rain while the shuttle is on the pad. Beneath is the orbital docking system. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton

  2. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. KSC-97PC1215

    NASA Image and Video Library

    1997-08-07

    STS-85 Payload Commander N. Jan Davis is assisted with her ascent/reentry flight suit by white room closeout crew members Dave Law (left) and Jack Burritt at Launch Pad 39A before she enters the crew cabin of the Space Shuttle orbiter Discovery

  5. RME 1328, MIM - PS Tryggvason works with FLEX experiment

    NASA Image and Video Library

    1997-08-25

    STS085-312-006 (7-19 August 1997) --- Payload specialist Bjarni Tryggvason, representing the Canadian Space Agency (CSA), inputs data into a computer regarding the Microgravity Vibration Isolation Mount (MIM) experiment on the mid-deck of the Space Shuttle Discovery.

  6. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, center, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. On his immediate left is Dale Steffey, SPACEHAB vice president, operations, and at the right of the photograph is Michael Lounge, SPACEHAB vice president, flight systems development. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  7. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences, and Dale Steffey, SPACEHAB vice president, operations. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  8. SPACEHAB is raised by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is raised by crane from a transporter in KSC's Space Station Processing Facility, where it will be moved to the payload canister. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  9. KSC-99pp1320

    NASA Image and Video Library

    1999-11-16

    KENNEDY SPACE CENTER, FLA. -- STS-103's Hubble servicing cargo is transferred from the payload changeout room at Launch Pad 39B to the payload bay in Space Shuttle Discovery. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  10. KSC-99pp1321

    NASA Image and Video Library

    1999-11-16

    KENNEDY SPACE CENTER, FLA. -- Workers oversee the transfer of STS-103's Hubble servicing cargo from the payload changeout room at Launch Pad 39B to the payload bay in Space Shuttle Discovery. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  11. KSC-07pd2212

    NASA Image and Video Library

    2007-08-03

    KENNEDY SPACE CENTER, FLA. - In Discovery's payload bay in Orbiter Processing Facility bay 3, STS-120 crew members are getting hands-on experience with a winch that is used to manually close the payload bay doors in the event that becomes necessary. At right is Expedition 16 Flight Engineer Daniel M. Tani. The STS-120 crew is at Kennedy for a crew equipment interface test, or CEIT, which includes harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The STS-120 mission will deliver the Harmony module, christened after a school contest, which will provide attachment points for European and Japanese laboratory modules on the International Space Station. Known in technical circles as Node 2, it is similar to the six-sided Unity module that links the U.S. and Russian sections of the station. Built in Italy for the United States, Harmony will be the first new U.S. pressurized component to be added. The STS-120 mission is targeted to launch on Oct. 20. Photo credit: NASA/George Shelton

  12. Crewmembers sleeping in sleep restraints

    NASA Image and Video Library

    1997-08-29

    STS085-327-026 (7 - 19 August 1997) --- Payload specialist Bjarni V. Tryggvason, representing the Canadian Space Agency (CSA), sleeps on the Space Shuttle Discovery's mid-deck floor. Tryggvason elected to not use a pillow, allowing his head to float freely in the Microgravity environment.

  13. KSC-05PD-1082

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, a technician in Space Shuttle Discovery's payload bay studies a photo of the retract link assembly on the orbiter's main landing gear door prior to conducting a borescope inspection. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  14. KSC01padig075

    NASA Image and Video Library

    2001-02-12

    KENNEDY SPACE CENTER, Fla. -- As Space Shuttle Discovery, on its Mobile Launcher Platform, nears Launch Pad 39B, fog rolls over the top of the external tank and solid rocket boosters. Discovery will be flying on mission STS-102 to the International Space Station. Its payload is the Multi-Purpose Logistics Module Leonardo, a “moving van,” to carry laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The flight will also carry the Expedition Two crew up to the Space Station, replacing Expedition One, who will return to Earth on Discovery. Launch is scheduled for March 8 at 6:45 a.m. EST

  15. KSC-05PD-1077

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians construct a platform in Space Shuttle Discovery's payload bay to support an upcoming borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  16. KSC-01pp1413

    NASA Image and Video Library

    2001-08-05

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz arrives at KSC aboard a T-38 jet to make final preparations for launch. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001

  17. KSC-05PD-1080

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians construct a platform in Space Shuttle Discovery's payload bay to support an upcoming borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  18. KSC-05PD-1079

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians construct a platform in Space Shuttle Discovery's payload bay to support an upcoming borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  19. KSC-05PD-1085

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, technicians in Space Shuttle Discovery's payload bay monitor the images received during a borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  20. KSC-05PD-1084

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Complex 39B, a technician in Space Shuttle Discovery's payload bay performs a borescope inspection of the retract link assembly on the orbiter's main landing gear door. The inspection is a precautionary measure after a small crack was found in a retract link assembly on the right-hand main landing gear on orbiter Atlantis. An initial review of the closeout photos of the link assembly on Discovery did not reveal any cracks. Discovery is scheduled to return the Space Shuttle fleet to operational status on mission STS-114. This additional work does not impact the launch planning window of July 13-31.

  1. KSC-2010-5843

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians removed a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  2. KSC-2010-5842

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  3. KSC-2010-5841

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  4. KSC-2010-5840

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  5. KSC-2010-5838

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  6. KSC-2010-5839

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  7. KSC-2010-5836

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  8. KSC-2010-5837

    NASA Image and Video Library

    2010-12-09

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians remove a few items from space shuttle Discovery's middeck payload, including food, prior to a tanking test planned for no earlier than Dec. 15. During the test, engineers will monitor what happens to the external fuel tank's newly replaced ground umbilical carrier plate (GUCP) and the intertank's stringers, which are 21-foot long, U-shaped aluminum brackets located on the intertank, during loading of cryogenic propellants. Technicians already installed environmental enclosures on the tank, removed foam and prepared the tank's skin for approximately 89 strain gauges and thermocouples. Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at GUCP. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Ben Smegelsky

  9. STS-53 Discovery, OV-103, DOD Hercules digital electronic imagery equipment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-53 Discovery, Orbiter Vehicle (OV) 103, Department of Defense (DOD) mission Hand-held Earth-oriented Real-time Cooperative, User-friendly, Location, targeting, and Environmental System (Hercules) spaceborne experiment equipment is documented in this table top view. HERCULES is a joint NAVY-NASA-ARMY payload designed to provide real-time high resolution digital electronic imagery and geolocation (latitude and longitude determination) of earth surface targets of interest. HERCULES system consists of (from left to right): a specially modified GRID Systems portable computer mounted atop NASA developed Playback-Downlink Unit (PDU) and the Naval Research Laboratory (NRL) developed HERCULES Attitude Processor (HAP); the NASA-developed Electronic Still Camera (ESC) Electronics Box (ESCEB) including removable imagery data storage disks and various connecting cables; the ESC (a NASA modified Nikon F-4 camera) mounted atop the NRL HERCULES Inertial Measurement Unit (HIMU) containing the three

  10. STS-53 Discovery, OV-103, DOD Hercules digital electronic imagery equipment

    NASA Image and Video Library

    1992-04-22

    STS-53 Discovery, Orbiter Vehicle (OV) 103, Department of Defense (DOD) mission Hand-held Earth-oriented Real-time Cooperative, User-friendly, Location, targeting, and Environmental System (Hercules) spaceborne experiment equipment is documented in this table top view. HERCULES is a joint NAVY-NASA-ARMY payload designed to provide real-time high resolution digital electronic imagery and geolocation (latitude and longitude determination) of earth surface targets of interest. HERCULES system consists of (from left to right): a specially modified GRID Systems portable computer mounted atop NASA developed Playback-Downlink Unit (PDU) and the Naval Research Laboratory (NRL) developed HERCULES Attitude Processor (HAP); the NASA-developed Electronic Still Camera (ESC) Electronics Box (ESCEB) including removable imagery data storage disks and various connecting cables; the ESC (a NASA modified Nikon F-4 camera) mounted atop the NRL HERCULES Inertial Measurement Unit (HIMU) containing the three-axis ring-laser gyro.

  11. KSC-01pp1449

    NASA Image and Video Library

    2001-08-08

    KENNEDY SPACE CENTER, Fla. -- Floodlights reveal the Space Shuttle Discovery after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. Above the external tank, the “beanie cap” is poised, waiting for loading of the propellants. The cap, or vent hood, is on the end of the gaseous oxygen vent arm that allows gaseous oxygen vapors to vent away from the Space Shuttle. Below, on either side of the orbiter’s tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the International Space Station, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  12. KSC-2011-5529

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery ventures out in public seemingly "undressed" -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors. The shuttle is rolling from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  13. KSC-2011-5533

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2, in the background. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  14. KSC-2011-5549

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  15. KSC-2011-5545

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past Orbiter Processing Facility-3, or OPF-3, at right, on its way from OPF-2 to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  16. KSC-2011-5542

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  17. KSC-2011-5528

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery, as it is seldom seen in public -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its way to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  18. KSC-2011-5532

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  19. KSC-2011-5573

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- is welcomed into the Vehicle Assembly Building, or VAB, after its roll from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley

  20. KSC-2011-5572

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its move to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley

  1. KSC-2009-3603

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – TIn Orbiter Processing Facility 3 at NASA's Kennedy Space Center in Florida, STS-128 crew members are lowered into space shuttle Discovery's payload bay to check equipment. At center is Mission Specialist John "Danny" Olivas. The crew is at Kennedy for a crew equipment interface test, or CEIT, which provides hands-on training and observation of shuttle and flight hardware. The STS-128 flight will carry science and storage racks to the International Space Station on Discovery. Launch is targeted for Aug. 7. Photo credit: NASA/Jim Grossmann

  2. KSC-99pp1393

    NASA Image and Video Library

    1999-12-07

    KENNEDY SPACE CENTER, FLA. -- Todd Biddle, with United Space Alliance, inspects wiring in the aft compartment of Discovery before launch. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope

  3. 2nd EVA - MS Foale and Nicollier during FGS changeout

    NASA Image and Video Library

    1999-12-24

    STS103-501-026 (19 - 27 December 1999) --- Astronauts C. Michael Foale, left, and Claude Nicollier (on Discovery's robotic arm) install a Fine Guidance Sensor (FGS) into a protective enclosure in the Shuttle’s payload bay. Foale and Nicollier performed the second of three space walks to service the Hubble Space Telescope (HST) on the STS-103 mission. A large format camera inside Discovery's cabin was used to record this high-resolution image, while the Shuttle was orbiting above ocean and clouds.

  4. Launch of STS-60 Shuttle Discovery

    NASA Image and Video Library

    1994-02-03

    STS060-S-105 (3 Feb 1994) --- The Space Shuttle Discovery heads toward an eight-day mission in Earth orbit with five NASA astronauts and a Russian cosmonaut aboard. Liftoff occurred as scheduled at 7:10 a.m. (EST), February 3, 1994. Aboard the spacecraft were astronauts Charles F. Bolden Jr., commander; Kenneth S. Reightler Jr., pilot; Franklin R. Chang-Diaz, payload commander; and N. Jan Davis and Ronald M. Sega, mission specialists, along with Russian cosmonaut Sergei K. Krikalev, also a mission specialist.

  5. Launch of STS-60 Shuttle Discovery

    NASA Image and Video Library

    1994-02-03

    STS060-S-106 (3 Feb 1994) --- Palm trees are silhouetted in the foreground of this 70mm image as the Space Shuttle Discovery heads toward an eight-day mission in Earth orbit. Liftoff occurred as scheduled at 7:10 a.m. (EST), February 3, 1994. Aboard the spacecraft were astronauts Charles F. Bolden Jr., commander; Kenneth S. Reightler Jr., pilot; Franklin R. Chang-Diaz, payload commander; and N. Jan Davis and Ronald M. Sega, mission specialists, along with Russian cosmonaut Sergei K. Krikalev, also a mission specialist.

  6. The STS-92 crew is ready to leave KSC after CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Pilot Pam Melroy poses at the Shuttle Landing Facility before flying back to Houston. She and other crew members completed their Crew Equipment Interface Test activities, looking over their mission payload and related equipment. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).

  7. STS-114: Discovery Mission Status/Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bob Castle, Mission Operations Representative, and Wayne Hale, Space Shuttle Deputy Program Manager are seen during a post Mission Management Team (MMT) briefing. Bob Castle talks about the Multi-Purpose Logistics Module (MPLM) payload and its readiness for unberthing. Wayne Hale presents pictures of the Space Shuttle Thermal Blanket, Wind Tunnel Tests, and Space Shuttle Blanket Pre and Post Tests. Questions from the news media about the Thermal Protection System after undocking and re-entry of the Space Shuttle Discovery, and lessons learned are addressed.

  8. STS-42 Payload Specialist Bondar in single person life raft at JSC's WETF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Roberta L. Bondar, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress exercises held in the Weightless Environment Training Facility (WETF) Bldg 29 pool. Bondar holds the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB). The STS-42 crewmembers rehearsed procedures for launch emergency egress and a water landing. Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  9. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08736 (9 April 1998) --- The STS-95 crew members sample space food as part of their training agenda for the scheduled late October/early November mission aboard the Space Shuttle Discovery. From the left are Pedro Duque, mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; Steven W. Lindsey, pilot; Stephen K. Robinson, mission specialist; Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  10. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08729 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Stephen K. Robinson, mission specialist; payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., mission commander. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  11. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08730 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Stephen K. Robinson, mission specialist; payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., mission commander. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  12. In-flight portrait of the STS-60 crew

    NASA Image and Video Library

    1999-04-09

    STS060-31-028 (3-11 Feb. 1994) --- Five NASA astronauts and a Russian cosmonaut squeeze through the tunnel which connects the shirt-sleeve environments of the space shuttle Discovery and the SPACEHAB module. SPACEHAB is located in the spacecraft’s payload bay. Charles F. Bolden Jr., mission commander, is at upper right. Others, clockwise from the commander, are Ronald M. Sega and N. Jan Davis, both mission specialists; Franklin R. Chang-Diaz, payload commander; cosmonaut Sergei K. Krikalev, mission specialist; and Kenneth S. Reightler Jr., pilot. The six spent eight days in Earth orbit. Photo credit: NASA

  13. International Space Station (ISS)

    NASA Image and Video Library

    2006-07-08

    The shadows of astronauts Piers J. Sellers and Michael E. Fossum, STS-121 mission specialists, who are anchored to the Space Shuttle Discovery's Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) foot restraint, are visible against a shuttle's payload bay door during a session of extravehicular activity (EVA).

  14. STS-114: Discovery L-3 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bruce Buckingham of NASA Public Affair hosted this briefing. Jeff Spaulding, NASA Test Director; Scott Higgenbotham, STS-114 Payload-Mission Manager; Cathy Winters, Shuttle Weather Officer were present. Jeff specifically noted that the mission represents NASA's first step towards fulfilling the President's visions of returning to the Moon and then on to Mars and beyond. Scott reports that the 28,000 pounds of ISS hardware that is in the payload bay of the Discovery is ready to go, and completed final close outs. Cathy mentioned that Hurricane Dennis is not a threat, however, main threat of inland thunderstorms would result to 30% weather prohibiting launch. Cathy further gave current weather forecast supported with charts: the Launch Forecast, Tanking Forecast, SRB (Shuttle Solid Rocket Booster) Forecast, CONUS and TAL Launch Sites Forecast and with 24 hours and 48 hours turn around plan. Final inspections, ice formation, ice inspection, effect of weather conditions to the external tank, delays and contingencies were some of the topics covered with the News Media.

  15. KSC-04pd1672

    NASA Image and Video Library

    2004-08-23

    KENNEDY SPACE CENTER, FLA. - The Remote Manipulator System (RMS), also known as the Canadian robotic arm, for the orbiter Discovery has arrived at KSC’s Vehicle Assembly Building Lab. Seen on the left end is the shoulder pitch joint. The wrist and shoulder joints on the RMS allow the basic structure of the arm to maneuver similar to a human arm. The RMS is used to deploy and retrieve payloads, provide a mobile extension ladder or foot restraints for crew members during extravehicular activities; and to aid the flight crew members in viewing surfaces of the orbiter or payloads through a television camera on the RMS. The arm is also serving as the base for the new Orbiter Boom Sensor System (OBSS), one of the safety measures for Return to Flight, equipping the Shuttle with cameras and laser systems to inspect the Shuttle’s Thermal Protection System while in space. Discovery is scheduled for a launch planning window of March 2005 on mission STS-114.

  16. STS-56 Discovery, Orbiter Vehicle (OV) 103, crew insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, crew insignia (logo), the Official insignia of the NASA STS-56 mission, is a pictorial representation of the STS-56 Atmospheric Laboratory for Applications and Science 2 (ATLAS-2) mission as seen from the crew's viewpoint. The payload bay (PLB) is depicted with the ATLAS-2 pallet, Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment, and Spartan -- the two primary scientific payloads on the flight. With ATLAS-2 serving as part of the 'Mission to Planet Earth' project, the crew has depicted the planet prominently in the artwork. Two primary areas of study are the atmosphere and the sun. To highlight this, Earth's atmosphere is depicted as a stylized visible spectrum and the sunrise is represented with an enlarged two-colored corona. Surnames of the Commander and Pilot are inscribed in the Earth field, with the surnames of the mission specialists appearing in the space background. They are Commander Kenneth Cameron, Pilot Stephen S. Oswald,

  17. KSC-99pp1287

    NASA Image and Video Library

    1999-11-05

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the payload canister for Space Shuttle Discovery, for mission STS-103, is lifted up the Rotating Service Structure. Installation of the payload into Discovery is slated for Friday, Nov. 12. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  18. Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Baggett, R.

    2004-11-01

    Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg throughput of Xenon propellant. The test was intentionally terminated in 2003 after accumulating 233 kg throughput. The thruster has been completely disassembled and the conditions of all components documented. Because most of the NSTAR design features have been used in the NEXT thruster, the success of the ELT goes a long way toward qualifying NEXT by similarity Recent mission analyses for Discovery and New Frontiers class missions have also identified potential benefits of low-power, high thrust Hall Effect thrusters. Estimated to be ready for mission implementation by 2008, low-power Hall systems could increase mission capture for electric propulsion by greatly reducing propulsion cost, mass and complexity.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1994-07-20

    The STS-64 patch depicts the Space Shuttle Discovery in a payload-bay-to-Earth attitude with its primary payload, Lidar In-Space Technology Experiment (LITE-1) operating in support of Mission to Planet Earth. LITE-1 is a lidar system that uses a three-wavelength laser, symbolized by the three gold rays emanating from the star in the payload bay that form part of the astronaut symbol. The major objective of the LITE-1 is to gather data about the Earth's troposphere and stratosphere, represented by the clouds and dual-colored Earth limb. A secondary payload on STS-64 is the free-flier SPARTAN 201 satellite shown on the Remote Manipulator System (RMS) arm post-retrieval. The RMS also operated another payload, Shuttle Plume Impingement Flight Experiment (SPIFEX). A newly tested extravehicular activity (EVA) maneuvering device, Simplified Aid for EVA Rescue (SAFER), represented symbolically by the two small nozzles on the backpacks of the two untethered EVA crew men. The names of the crew members encircle the patch: Astronauts Richard N. Richards, L. Blaine Hammond, Jr., Jerry M. Linenger, Susan J. Helms, Carl J. Meade and Mark C. Lee. The gold or silver stars by each name represent that person's parent service.

  20. STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane begins lifting the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  1. STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers attach an overhead crane to the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  2. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences; Dale Steffey, SPACEHAB vice president, operations; and Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  3. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  4. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, David Rossi, SPACEHAB president and chief operating officer (extreme left); Michael Lounge, SPACEHAB vice president, flight systems development; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  5. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  6. KSC-07pp2994

    NASA Image and Video Library

    2007-10-23

    KENNEDY SPACE CENTER, FLA. -- A spider in the foreground appears to be dancing on the lightning mast near space shuttle Discovery as the shuttle roars toward space on mission STS-120 to the International Space Station. Liftoff of Discovery was on time at 11:38:19 a.m. EDT. The mission is the 23rd assembly flight to the space station and the 34th flight for Discovery. The STS-120 payload is the Italian-built U.S. Node 2, called Harmony. During the 14-day mission, the crew will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:50 a.m. EST on Nov. 6. Photo credit: NASA/Sandra Joseph, Tony Gray, Robert Murray

  7. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Strapped into their seats inside the orbiter Discovery for a simulated countdown exercise are (left to right) STS-103 Mission Specialists Claude Nicollier of Switzerland, Steven L. Smith, and C. Michael Foale (Ph.D.). The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Jean-Fran'''ois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  8. STS-103 crew look over payload inside Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, STS-103 Mission Specialist C. Michael Foale (Ph.D.) looks over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery. The activity is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Jean- Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  9. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Seated in the orbiter Discovery for a simulated countdown exercise is STS-103 Pilot Scott J. Kelly. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean- Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  10. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialist John M. Grunsfeld (Ph.D.) sits inside orbiter Discovery waiting for the start of a simulated countdown exercise. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Jean-Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  11. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Commander Curtis L. Brown Jr. sits inside orbiter Discovery waiting for the start of a simulated countdown exercise. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  12. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialists Jean-Fran'''ois Clervoy of France takes his seat inside the Space Shuttle Discovery during a practice launch countdown, part of Terminal Countdown Demonstration Test (TCDT) activities, while astronaut David 'Doc' Brown checks him out. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  13. KSC-2012-1448

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand beside the wheel of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  14. Brown at RMS controls on the aft flight deck

    NASA Image and Video Library

    1998-11-24

    STS095-366-031 (29 Oct-7 Nov 1998) --- Astronaut Curtis L. Brown, Jr., mission commander, operates controls on the aft flight deck of the Space Shuttle Discovery. Brown was joined by four other NASA astronauts and two payload specialists for the nine-day mission.

  15. KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at Pad 39A, Kennedy Space Center, Fla. Discovery, the orbiter for STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at Pad 39A, Kennedy Space Center, Fla. Discovery, the orbiter for STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  16. KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  17. KSC-07pd2923

    NASA Image and Video Library

    2007-10-22

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A on NASA's Kennedy Space Center, space shuttle Discovery is fully revealed after rollback of the rotating service structure, at far left. Next to it is the fixed service structure, or FSS, with the 80-foot-tall lightning mast on top. Extending from the FSS to the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below it, also extending toward Discovery from the structure, is the orbiter access arm with the White Room at the end. The crew gains access into the orbiter through the White Room. Rollback of the RSS started at 3:34 p.m. EDT and was complete at 4:20 p.m. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-120. Discovery is scheduled for liftoff at 11:38 a.m. EDT on Oct. 23. The mission will be the 23rd assembly flight to the International Space Station and the 34th flight for Discovery. Payload on the mission is the Italian-built U.S. Node 2, called Harmony. The 14-day mission will install Harmony and move the P6 solar arrays to their permanent position and deploy them. Discovery is expected to complete its mission and return home at 4:47 a.m. EST on Nov. 6. Photo credit: NASA/Kim Shiflett

  18. Launch of STS-63 Discovery

    NASA Image and Video Library

    1995-02-03

    STS063-S-003 (3 Feb. 1995) --- A 35mm camera was used to expose this image of the space shuttle Discovery as it began its race to catch up with the Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST), Feb. 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) shuttle flight are astronauts James D. Wetherbee, commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; and mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov. Photo credit: NASA

  19. Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam

    2004-01-01

    Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.

  20. KSC-99pp0598

    NASA Image and Video Library

    1999-05-27

    NASA Administrator Daniel Goldin (left) greets Mme. Aline Chretien, wife of the Canadian Prime Minister, at the launch of STS-96. Looking on in the background (between them) is former astronaut Jean-Loup Chretien (no relation), who flew on STS-86. Mme. Chretien attended the launch because one of the STs-96 crew is Mission Specialist Julie Payette, who represents the Canadian Space Agency. Space Shuttle Discovery launched on time at 6:49:42 a.m. EDT to begin a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT

Top