Sample records for discrete element computer

  1. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motamarri, P.; Nowak, M.R.; Leiter, K.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.« less

  2. Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto

    2018-04-01

    Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.

  3. Investigation into discretization methods of the six-parameter Iwan model

    NASA Astrophysics Data System (ADS)

    Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo

    2017-02-01

    Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.

  4. Center for Efficient Exascale Discretizations Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolev, Tzanio; Dobrev, Veselin; Tomov, Vladimir

    The CEED Software suite is a collection of generally applicable software tools focusing on the following computational motives: PDE discretizations on unstructured meshes, high-order finite element and spectral element methods and unstructured adaptive mesh refinement. All of this software is being developed as part of CEED, a co-design Center for Efficient Exascale Discretizations, within DOE's Exascale Computing Project (ECP) program.

  5. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  6. Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K

    2007-07-07

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.

  7. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  8. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  9. Drekar v.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seefeldt, Ben; Sondak, David; Hensinger, David M.

    Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less

  10. Simulating Soft Shadows with Graphics Hardware,

    DTIC Science & Technology

    1997-01-15

    This radiance texture is analogous to the mesh of radiosity values computed in a radiosity algorithm. Unlike a radiosity algorithm, however, our...discretely. Several researchers have explored continuous visibility methods for soft shadow computation and radiosity mesh generation. With this approach...times of several seconds [9]. Most radiosity methods discretize each surface into a mesh of elements and then use discrete methods such as ray

  11. Applications of discrete element method in modeling of grain postharvest operations

    USDA-ARS?s Scientific Manuscript database

    Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...

  12. On the computational aspects of comminution in discrete element method

    NASA Astrophysics Data System (ADS)

    Chaudry, Mohsin Ali; Wriggers, Peter

    2018-04-01

    In this paper, computational aspects of crushing/comminution of granular materials are addressed. For crushing, maximum tensile stress-based criterion is used. Crushing model in discrete element method (DEM) is prone to problems of mass conservation and reduction in critical time step. The first problem is addressed by using an iterative scheme which, depending on geometric voids, recovers mass of a particle. In addition, a global-local framework for DEM problem is proposed which tends to alleviate the local unstable motion of particles and increases the computational efficiency.

  13. Aorta modeling with the element-based zero-stress state and isogeometric discretization

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi

    2017-02-01

    Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.

  14. A three-dimensional FEM-DEM technique for predicting the evolution of fracture in geomaterials and concrete

    NASA Astrophysics Data System (ADS)

    Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio

    2018-07-01

    This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.

  15. Discretization of the induced-charge boundary integral equation.

    PubMed

    Bardhan, Jaydeep P; Eisenberg, Robert S; Gillespie, Dirk

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  16. Discretization of the induced-charge boundary integral equation

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  17. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  18. Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.

    2012-01-01

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358

  19. Vectorial finite elements for solving the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.

    2018-06-01

    The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.

  20. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)

    NASA Astrophysics Data System (ADS)

    Chang, R.; Li, S.; Lubarda, M. V.; Livshitz, B.; Lomakin, V.

    2011-04-01

    A fast micromagnetic simulator (FastMag) for general problems is presented. FastMag solves the Landau-Lifshitz-Gilbert equation and can handle multiscale problems with a high computational efficiency. The simulator derives its high performance from efficient methods for evaluating the effective field and from implementations on massively parallel graphics processing unit (GPU) architectures. FastMag discretizes the computational domain into tetrahedral elements and therefore is highly flexible for general problems. The magnetostatic field is computed via the superposition principle for both volume and surface parts of the computational domain. This is accomplished by implementing efficient quadrature rules and analytical integration for overlapping elements in which the integral kernel is singular. Thus, discretized superposition integrals are computed using a nonuniform grid interpolation method, which evaluates the field from N sources at N collocated observers in O(N) operations. This approach allows handling objects of arbitrary shape, allows easily calculating of the field outside the magnetized domains, does not require solving a linear system of equations, and requires little memory. FastMag is implemented on GPUs with ?> GPU-central processing unit speed-ups of 2 orders of magnitude. Simulations are shown of a large array of magnetic dots and a recording head fully discretized down to the exchange length, with over a hundred million tetrahedral elements on an inexpensive desktop computer.

  1. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem

    PubMed Central

    2012-01-01

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al. PMID:22338640

  2. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem.

    PubMed

    Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio

    2012-02-16

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.

  3. Computer-Aided Transformation of PDE Models: Languages, Representations, and a Calculus of Operations

    DTIC Science & Technology

    2016-01-05

    discretizations . We maintain that what is clear at the mathematical level should be equally clear in computation. In this small STIR project, we separate the...concerns of describing and discretizing such models by defining an input language representing PDE, including steady-state and tran- sient, linear and...solvers, such as [8, 9], focused on the solvers themselves and particular families of discretizations (e. g. finite elements), and now it is natural to

  4. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    DTIC Science & Technology

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  5. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  6. A locally refined rectangular grid finite element method - Application to computational fluid dynamics and computational physics

    NASA Technical Reports Server (NTRS)

    Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.

    1991-01-01

    The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.

  7. Computation of scattering matrix elements of large and complex shaped absorbing particles with multilevel fast multipole algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang

    2015-05-01

    Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.

  8. Stabilized Finite Elements in FUN3D

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Newman, James C.; Karman, Steve L.

    2017-01-01

    A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.

  9. A Mechanistic Design Approach for Graphite Nanoplatelet (GNP) Reinforced Asphalt Mixtures for Low-Temperature Applications

    DOT National Transportation Integrated Search

    2018-01-01

    This report explores the application of a discrete computational model for predicting the fracture behavior of asphalt mixtures at low temperatures based on the results of simple laboratory experiments. In this discrete element model, coarse aggregat...

  10. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-01-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  11. Variational approach to probabilistic finite elements

    NASA Astrophysics Data System (ADS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-08-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  12. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1987-01-01

    Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  13. An iterative truncation method for unbounded electromagnetic problems using varying order finite elements

    NASA Astrophysics Data System (ADS)

    Paul, Prakash

    2009-12-01

    The finite element method (FEM) is used to solve three-dimensional electromagnetic scattering and radiation problems. Finite element (FE) solutions of this kind contain two main types of error: discretization error and boundary error. Discretization error depends on the number of free parameters used to model the problem, and on how effectively these parameters are distributed throughout the problem space. To reduce the discretization error, the polynomial order of the finite elements is increased, either uniformly over the problem domain or selectively in those areas with the poorest solution quality. Boundary error arises from the condition applied to the boundary that is used to truncate the computational domain. To reduce the boundary error, an iterative absorbing boundary condition (IABC) is implemented. The IABC starts with an inexpensive boundary condition and gradually improves the quality of the boundary condition as the iteration continues. An automatic error control (AEC) is implemented to balance the two types of error. With the AEC, the boundary condition is improved when the discretization error has fallen to a low enough level to make this worth doing. The AEC has these characteristics: (i) it uses a very inexpensive truncation method initially; (ii) it allows the truncation boundary to be very close to the scatterer/radiator; (iii) it puts more computational effort on the parts of the problem domain where it is most needed; and (iv) it can provide as accurate a solution as needed depending on the computational price one is willing to pay. To further reduce the computational cost, disjoint scatterers and radiators that are relatively far from each other are bounded separately and solved using a multi-region method (MRM), which leads to savings in computational cost. A simple analytical way to decide whether the MRM or the single region method will be computationally cheaper is also described. To validate the accuracy and savings in computation time, different shaped metallic and dielectric obstacles (spheres, ogives, cube, flat plate, multi-layer slab etc.) are used for the scattering problems. For the radiation problems, waveguide excited antennas (horn antenna, waveguide with flange, microstrip patch antenna) are used. Using the AEC the peak reduction in computation time during the iteration is typically a factor of 2, compared to the IABC using the same element orders throughout. In some cases, it can be as high as a factor of 4.

  14. Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong; Park, Ja-Rin

    2017-06-01

    A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.

  15. Analysis of reinforced concrete structures with occurrence of discrete cracks at arbitrary positions

    NASA Technical Reports Server (NTRS)

    Blaauwendraad, J.; Grootenboer, H. J.; Bouma, A. L.; Reinhardt, H. W.

    1980-01-01

    A nonlinear analysis of in-plane loaded plates is presented, which eliminates the disadvantages of the smeared crack approach. The elements used and the computational method are discussed. An example is shown in which one or more discrete cracks are dominant.

  16. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE PAGES

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...

    2016-09-22

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  17. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  18. Application of the control volume mixed finite element method to a triangular discretization

    USGS Publications Warehouse

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  19. Cortical Neural Computation by Discrete Results Hypothesis

    PubMed Central

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation. PMID:27807408

  20. Cortical Neural Computation by Discrete Results Hypothesis.

    PubMed

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation.

  1. Coupled discrete element and finite volume solution of two classical soil mechanics problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Drumm, Eric; Guiochon, Georges A

    One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less

  2. Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu

    2014-11-01

    This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.

  3. High performance computation of radiative transfer equation using the finite element method

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.

    2018-05-01

    This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.

  4. High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy (Editor); Deconinck, Herman (Editor)

    1999-01-01

    The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.

  5. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peiyuan; Brown, Timothy; Fullmer, William D.

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less

  6. The role of continuity in residual-based variational multiscale modeling of turbulence

    NASA Astrophysics Data System (ADS)

    Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.

    2008-02-01

    This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.

  7. Element Verification and Comparison in Sierra/Solid Mechanics Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Yuki; Roth, William

    2016-05-01

    The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown formore » each problem in order to facilitate element selection when computer resources are limited.« less

  8. Computational Overlap Coupling Between Micropolar Linear Elastic Continuum Finite Elements and Nonlinear Elastic Spherical Discrete Elements in One Dimension

    DTIC Science & Technology

    2013-01-01

    Cracking in asphalt pavement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 2. 2D...metallic binder, figure 1(b)), particulate energetic materials (explosive crystalline grains with polymeric binder, figure 1(c)), asphalt pavement (stone...explosive HMX grains and at grain-matrix interfaces (2). (d) Cracking in asphalt pavement . 2 (i) it is limited by current computing power (even

  9. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    PubMed

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the two methods are essentially equivalent; i.e., they have comparable accuracies for the same number of elements. We find that ions in water--charges embedded in a high-dielectric medium--are harder to compute accurately than charges in a low-dielectric medium.

  10. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  11. Application of an enhanced discrete element method to oil and gas drilling processes

    NASA Astrophysics Data System (ADS)

    Ubach, Pere Andreu; Arrufat, Ferran; Ring, Lev; Gandikota, Raju; Zárate, Francisco; Oñate, Eugenio

    2016-03-01

    The authors present results on the use of the discrete element method (DEM) for the simulation of drilling processes typical in the oil and gas exploration industry. The numerical method uses advanced DEM techniques using a local definition of the DEM parameters and combined FEM-DEM procedures. This paper presents a step-by-step procedure to build a DEM model for analysis of the soil region coupled to a FEM model for discretizing the drilling tool that reproduces the drilling mechanics of a particular drill bit. A parametric study has been performed to determine the model parameters in order to maintain accurate solutions with reduced computational cost.

  12. A multigrid solver for the semiconductor equations

    NASA Technical Reports Server (NTRS)

    Bachmann, Bernhard

    1993-01-01

    We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.

  13. Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Liu, Jiangguo; Mu, Lin

    2014-11-01

    This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors.more » We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.« less

  14. Solving the incompressible surface Navier-Stokes equation by surface finite elements

    NASA Astrophysics Data System (ADS)

    Reuther, Sebastian; Voigt, Axel

    2018-01-01

    We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.

  15. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  16. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE PAGES

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    2017-02-24

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  17. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    NASA Astrophysics Data System (ADS)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  18. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.

  19. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  20. The Effect of Scale Dependent Discretization on the Progressive Failure of Composite Materials Using Multiscale Analyses

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    A multiscale modeling methodology, which incorporates a statistical distribution of fiber strengths into coupled micromechanics/ finite element analyses, is applied to unidirectional polymer matrix composites (PMCs) to analyze the effect of mesh discretization both at the micro- and macroscales on the predicted ultimate tensile (UTS) strength and failure behavior. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a PMC tensile specimen that initiates at the repeating unit cell (RUC) level. Three different finite element mesh densities were employed and each coupled with an appropriate RUC. Multiple simulations were performed in order to assess the effect of a statistical distribution of fiber strengths on the bulk composite failure and predicted strength. The coupled effects of both the micro- and macroscale discretizations were found to have a noticeable effect on the predicted UTS and computational efficiency of the simulations.

  1. Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media

    NASA Technical Reports Server (NTRS)

    Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.

    1998-01-01

    The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.

  2. A new splitting scheme to the discrete Boltzmann equation for non-ideal gases on non-uniform meshes

    NASA Astrophysics Data System (ADS)

    Patel, Saumil; Lee, Taehun

    2016-12-01

    We present a novel numerical procedure for solving the discrete Boltzmann equations (DBE) on non-uniform meshes. Our scheme is based on the Strang splitting method where we seek to investigate two-phase flow applications. In this note, we investigate the onset of parasitic currents which arise in many computational two-phase algorithms. To the best of our knowledge, the results presented in this work show, for the first time, a spectral element discontinuous Galerkin (SEDG) discretization of a discrete Boltzmann equation which successfully eliminates parasitic currents on non-uniform meshes. With the hope that this technique can be used for applications in complex geometries, calculations are performed on non-uniform mesh distributions by using high-order (spectral), body-fitting quadrilateral elements. Validation and verification of our work is carried out by comparing results against the classical 2D Young-Laplace law problem for a static drop.

  3. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  4. Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; O'Callahan, John

    2009-01-01

    Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.

  5. DOMAIN DECOMPOSITION METHOD APPLIED TO A FLOW PROBLEM Norberto C. Vera Guzmán Institute of Geophysics, UNAM

    NASA Astrophysics Data System (ADS)

    Vera, N. C.; GMMC

    2013-05-01

    In this paper we present the results of macrohybrid mixed Darcian flow in porous media in a general three-dimensional domain. The global problem is solved as a set of local subproblems which are posed using a domain decomposition method. Unknown fields of local problems, velocity and pressure are approximated using mixed finite elements. For this application, a general three-dimensional domain is considered which is discretized using tetrahedra. The discrete domain is decomposed into subdomains and reformulated the original problem as a set of subproblems, communicated through their interfaces. To solve this set of subproblems, we use finite element mixed and parallel computing. The parallelization of a problem using this methodology can, in principle, to fully exploit a computer equipment and also provides results in less time, two very important elements in modeling. Referencias G.Alduncin and N.Vera-Guzmán Parallel proximal-point algorithms for mixed _nite element models of _ow in the subsurface, Commun. Numer. Meth. Engng 2004; 20:83-104 (DOI: 10.1002/cnm.647) Z. Chen, G.Huan and Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2006. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.

  6. Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods

    NASA Astrophysics Data System (ADS)

    Ullrich, P. A.; Guerra, J. E.

    2014-12-01

    The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.

  7. Transport of phase space densities through tetrahedral meshes using discrete flow mapping

    NASA Astrophysics Data System (ADS)

    Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor

    2017-01-01

    Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.

  8. A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time

    NASA Astrophysics Data System (ADS)

    Lang, Holger; Linn, Joachim

    2009-09-01

    We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.

  9. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  10. Stable finite element approximations of two-phase flow with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2015-09-01

    A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element approximations of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete approximations are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.

  11. On the torsional loading of elastoplastic spheres in contact

    NASA Astrophysics Data System (ADS)

    Nadimi, Sadegh; Fonseca, Joana

    2017-06-01

    The mechanical interaction between two bodies involves normal loading in combination with tangential, torsional and rotational loading. This paper focuses on the torsional loading of two spherical bodies which leads to twisting moment. The theoretical approach for calculating twisting moment between two spherical bodies has been proposed by Lubkin [1]. Due to the complexity of the solution, this has been simplified by Deresiewicz for discrete element modelling [2]. Here, the application of a simplified model for elastoplastic spheres is verified using computational modelling. The single grain interaction is simulated in a combined finite discrete element domain. In this domain a grain can deform using a finite element formulation and can interact with other objects based on discrete element principles. For an elastoplastic model, the contact area is larger in comparison with the elastic model, under a given normal force. Therefore, the plastic twisting moment is stiffer. The results presented here are important for describing any granular system involving torsional loading of elastoplastic grains. In particular, recent research on the behaviour of soil has clearly shown the importance of plasticity on grain interaction and rearrangement.

  12. Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell

    USGS Publications Warehouse

    Ji, S.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    In this study, we report a direct comparison between a physical test and a computer simulation of rapidly sheared granular materials. An annular shear cell experiment was conducted. All parameters were kept the same between the physical and the computational systems to the extent possible. Artificially softened particles were used in the simulation to reduce the computational time to a manageable level. Sensitivity study on the particle stiffness ensured such artificial modification was acceptable. In the experiment, a range of normal stress was applied to a given amount of particles sheared in an annular trough with a range of controlled shear speed. Two types of particles, glass and Delrin, were used in the experiment. Qualitatively, the required torque to shear the materials under different rotational speed compared well with those in the physical experiments for both the glass and the Delrin particles. However, the quantitative discrepancies between the measured and simulated shear stresses were nearly a factor of two. Boundary conditions, particle size distribution, particle damping and friction, including a sliding and rolling, contact force model, were examined to determine their effects on the computational results. It was found that of the above, the rolling friction between particles had the most significant effect on the macro stress level. This study shows that discrete element simulation is a viable method for engineering design for granular material systems. Particle level information is needed to properly conduct these simulations. However, not all particle level information is equally important in the study regime. Rolling friction, which is not commonly considered in many discrete element models, appears to play an important role. ?? 2009 Elsevier Ltd.

  13. Analysis of passive damping in thick composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.

  14. An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions

    NASA Astrophysics Data System (ADS)

    Zahr, M. J.; Persson, P.-O.

    2018-07-01

    This work introduces a novel discontinuity-tracking framework for resolving discontinuous solutions of conservation laws with high-order numerical discretizations that support inter-element solution discontinuities, such as discontinuous Galerkin or finite volume methods. The proposed method aims to align inter-element boundaries with discontinuities in the solution by deforming the computational mesh. A discontinuity-aligned mesh ensures the discontinuity is represented through inter-element jumps while smooth basis functions interior to elements are only used to approximate smooth regions of the solution, thereby avoiding Gibbs' phenomena that create well-known stability issues. Therefore, very coarse high-order discretizations accurately resolve the piecewise smooth solution throughout the domain, provided the discontinuity is tracked. Central to the proposed discontinuity-tracking framework is a discrete PDE-constrained optimization formulation that simultaneously aligns the computational mesh with discontinuities in the solution and solves the discretized conservation law on this mesh. The optimization objective is taken as a combination of the deviation of the finite-dimensional solution from its element-wise average and a mesh distortion metric to simultaneously penalize Gibbs' phenomena and distorted meshes. It will be shown that our objective function satisfies two critical properties that are required for this discontinuity-tracking framework to be practical: (1) possesses a local minima at a discontinuity-aligned mesh and (2) decreases monotonically to this minimum in a neighborhood of radius approximately h / 2, whereas other popular discontinuity indicators fail to satisfy the latter. Another important contribution of this work is the observation that traditional reduced space PDE-constrained optimization solvers that repeatedly solve the conservation law at various mesh configurations are not viable in this context since severe overshoot and undershoot in the solution, i.e., Gibbs' phenomena, may make it impossible to solve the discrete conservation law on non-aligned meshes. Therefore, we advocate a gradient-based, full space solver where the mesh and conservation law solution converge to their optimal values simultaneously and therefore never require the solution of the discrete conservation law on a non-aligned mesh. The merit of the proposed method is demonstrated on a number of one- and two-dimensional model problems including the L2 projection of discontinuous functions, Burgers' equation with a discontinuous source term, transonic flow through a nozzle, and supersonic flow around a bluff body. We demonstrate optimal O (h p + 1) convergence rates in the L1 norm for up to polynomial order p = 6 and show that accurate solutions can be obtained on extremely coarse meshes.

  15. Finite element probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacvarov, D.C.

    1981-01-01

    A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less

  16. Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics

    NASA Technical Reports Server (NTRS)

    Roe, P. L.

    1984-01-01

    A possible technique is explored for extending to multidimensional flows some of the upwind-differencing methods that are highly successful in the one-dimensional case. Emphasis is on the two-dimensional case, and the flow domain is assumed to be divided into polygonal computational elements. Inside each element, the flow is represented by a local superposition of elementary solutions consisting of plane waves not necessarily aligned with the element boundaries.

  17. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  18. A discrete mechanics framework for real time virtual surgical simulations with application to virtual laparoscopic nephrectomy.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert

    2009-01-01

    The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.

  19. Probabilistic finite elements for transient analysis in nonlinear continua

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  20. The value of continuity: Refined isogeometric analysis and fast direct solvers

    DOE PAGES

    Garcia, Daniel; Pardo, David; Dalcin, Lisandro; ...

    2016-08-24

    Here, we propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing themore » Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between p 2 and p 3, with pp being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to p 2. In a 2D mesh with four million elements and p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with one million elements and p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.« less

  1. Efficient and robust compositional two-phase reservoir simulation in fractured media

    NASA Astrophysics Data System (ADS)

    Zidane, A.; Firoozabadi, A.

    2015-12-01

    Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.

  2. Flux-Based Finite Volume representations for general thermal problems

    NASA Technical Reports Server (NTRS)

    Mohan, Ram V.; Tamma, Kumar K.

    1993-01-01

    Flux-Based Finite Volume (FV) element representations for general thermal problems are given in conjunction with a generalized trapezoidal gamma-T family of algorithms, formulated following the spirit of what we term as the Lax-Wendroff based FV formulations. The new flux-based representations introduced offer an improved physical interpretation of the problem along with computationally convenient and attractive features. The space and time discretization emanate from a conservation form of the governing equation for thermal problems, and in conjunction with the flux-based element representations give rise to a physically improved and locally conservative numerical formulations. The present representations seek to involve improved locally conservative properties, improved physical representations and computational features; these are based on a 2D, bilinear FV element and can be extended for other cases. Time discretization based on a gamma-T family of algorithms in the spirit of a Lax-Wendroff based FV formulations are employed. Numerical examples involving linear/nonlinear steady and transient situations are shown to demonstrate the applicability of the present representations for thermal analysis situations.

  3. Analysis and computation of a least-squares method for consistent mesh tying

    DOE PAGES

    Day, David; Bochev, Pavel

    2007-07-10

    We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less

  4. Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method

    NASA Astrophysics Data System (ADS)

    Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.

    2013-06-01

    Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.

  5. A discrete element method-based approach to predict the breakage of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Sun, Xin; Xu, Wei

    Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less

  6. A discrete element method-based approach to predict the breakage of coal

    DOE PAGES

    Gupta, Varun; Sun, Xin; Xu, Wei; ...

    2017-08-05

    Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less

  7. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation.

    PubMed

    Crea, Simona; Cipriani, Christian; Donati, Marco; Carrozza, Maria Chiara; Vitiello, Nicola

    2015-03-01

    Here we describe a novel wearable feedback apparatus for lower-limb amputees. The system is based on three modules: a pressure-sensitive insole for the measurement of the plantar pressure distribution under the prosthetic foot during gait, a computing unit for data processing and gait segmentation, and a set of vibrating elements placed on the thigh skin. The feedback strategy relies on the detection of specific gait-phase transitions of the amputated leg. Vibrating elements are activated in a time-discrete manner, simultaneously with the occurrence of the detected gait-phase transitions. Usability and effectiveness of the apparatus were successfully assessed through an experimental validation involving ten healthy volunteers.

  8. Finite Element Aircraft Simulation of Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.

    1997-01-01

    A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.

  9. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  10. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Jamelot, Erell; Ciarlet, Patrick

    2013-05-01

    Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart-Thomas-Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code. APOLLO3 is a registered trademark in France.

  11. Mathematical construction and perturbation analysis of Zernike discrete orthogonal points.

    PubMed

    Shi, Zhenguang; Sui, Yongxin; Liu, Zhenyu; Peng, Ji; Yang, Huaijiang

    2012-06-20

    Zernike functions are orthogonal within the unit circle, but they are not over the discrete points such as CCD arrays or finite element grids. This will result in reconstruction errors for loss of orthogonality. By using roots of Legendre polynomials, a set of points within the unit circle can be constructed so that Zernike functions over the set are discretely orthogonal. Besides that, the location tolerances of the points are studied by perturbation analysis, and the requirements of the positioning precision are not very strict. Computer simulations show that this approach provides a very accurate wavefront reconstruction with the proposed sampling set.

  12. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    NASA Astrophysics Data System (ADS)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.

  13. kappa-Version of Finite Element Method: A New Mathematical and Computational Framework for BVP and IVP

    DTIC Science & Technology

    2007-01-01

    differentiability, fluid-solid interaction, error estimation, re-discretization, moving meshes 16. SECURITY CLASSIFICATION OF: 17 . LIMITATION OF 18. NUMBER...method the weight function is an indepen- dent function v = 0 6 4Ph , with v = 0 on F, if W = W0 on F1. 2. Galerkin method (GM): If Wh is an approximation...This can be demonstrated by considering a simple I-D case (like described above) in which the discretization 17 is uniform with characteristic length

  14. Finite element concepts in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.

  15. DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske

    2008-12-01

    We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.

  16. Discrete Roughness Effects on Shuttle Orbiter at Mach 6

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Hamilton, H. Harris, II

    2002-01-01

    Discrete roughness boundary layer transition results on a Shuttle Orbiter model in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed with new boundary layer calculations to provide consistency for comparison to other published results. The experimental results were previously obtained utilizing the phosphor thermography system to monitor the status of the boundary layer via global heat transfer images of the Orbiter windward surface. The size and location of discrete roughness elements were systematically varied along the centerline of the 0.0075-scale model at an angle of attack of 40 deg and the boundary layer response recorded. Various correlative approaches were attempted, with the roughness transition correlations based on edge properties providing the most reliable results. When a consistent computational method is used to compute edge conditions, transition datasets for different configurations at several angles of attack have been shown to collapse to a well-behaved correlation.

  17. Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture.

    PubMed

    Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E

    2018-01-23

    Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains

    NASA Astrophysics Data System (ADS)

    Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.

    2018-02-01

    A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.

  19. Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow

    PubMed Central

    2017-01-01

    We report a computational fluid dynamics–discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas–solid contact efficiencies. Cluster gas–solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors. PMID:28553011

  20. Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow.

    PubMed

    Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M

    2017-05-17

    We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.

  1. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.

  2. A discrete element method-based approach to predict the breakage of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Sun, Xin; Xu, Wei

    Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been informed by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments. However, the predictive capabilities for new coals and processes are limited. This work presents a Discrete Element Method based computational framework to predict particle size distribution resulting from the breakage of coal particles characterized by the coal’s physical properties. The effect ofmore » certain operating parameters on the breakage behavior of coal particles also is examined.« less

  3. Computer-aided modeling and prediction of performance of the modified Lundell class of alternators in space station solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Demerdash, Nabeel A. O.; Wang, Ren-Hong

    1988-01-01

    The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented.

  4. A discrete fracture model for two-phase flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Gläser, Dennis; Helmig, Rainer; Flemisch, Bernd; Class, Holger

    2017-12-01

    A discrete fracture model on the basis of a cell-centered finite volume scheme with multi-point flux approximation (MPFA) is presented. The fractures are included in a d-dimensional computational domain as (d - 1)-dimensional entities living on the element facets, which requires the grid to have the element facets aligned with the fracture geometries. However, the approach overcomes the problem of small cells inside the fractures when compared to equi-dimensional models. The system of equations considered is solved on both the matrix and the fracture domain, where on the prior the fractures are treated as interior boundaries and on the latter the exchange term between fracture and matrix appears as an additional source/sink. This exchange term is represented by the matrix-fracture fluxes, computed as functions of the unknowns in both domains by applying adequate modifications to the MPFA scheme. The method is applicable to both low-permeable as well as highly conductive fractures. The quality of the results obtained by the discrete fracture model is studied by comparison to an equi-dimensional discretization on a simple geometry for both single- and two-phase flow. For the case of two-phase flow in a highly conductive fracture, good agreement in the solution and in the matrix-fracture transfer fluxes could be observed, while for a low-permeable fracture the discrepancies were more pronounced. The method is then applied two-phase flow through a realistic fracture network in two and three dimensions.

  5. Advances and trends in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1986-01-01

    Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.

  6. A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications

    NASA Astrophysics Data System (ADS)

    Rangarajan, Ramsharan; Gao, Huajian

    2015-09-01

    We introduce a finite element method to compute equilibrium configurations of fluid membranes, identified as stationary points of a curvature-dependent bending energy functional under certain geometric constraints. The reparameterization symmetries in the problem pose a challenge in designing parametric finite element methods, and existing methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we exploit these symmetries by representing solution surfaces as normal offsets of given reference surfaces and entirely bypass the need for artificial constraints. We then resort to a Galerkin finite element method to compute discrete C1 approximations of the normal offset coordinate. The variational framework presented is suitable for computing deformations of three-dimensional membranes subject to a broad range of external interactions. We provide a systematic algorithm for computing large deformations, wherein solutions at subsequent load steps are identified as perturbations of previously computed ones. We discuss the numerical implementation of the method in detail and demonstrate its optimal convergence properties using examples. We discuss applications of the method to studying adhesive interactions of fluid membranes with rigid substrates and to investigate the influence of membrane tension in tether formation.

  7. BlazeDEM3D-GPU A Large Scale DEM simulation code for GPUs

    NASA Astrophysics Data System (ADS)

    Govender, Nicolin; Wilke, Daniel; Pizette, Patrick; Khinast, Johannes

    2017-06-01

    Accurately predicting the dynamics of particulate materials is of importance to numerous scientific and industrial areas with applications ranging across particle scales from powder flow to ore crushing. Computational discrete element simulations is a viable option to aid in the understanding of particulate dynamics and design of devices such as mixers, silos and ball mills, as laboratory scale tests comes at a significant cost. However, the computational time required to simulate an industrial scale simulation which consists of tens of millions of particles can take months to complete on large CPU clusters, making the Discrete Element Method (DEM) unfeasible for industrial applications. Simulations are therefore typically restricted to tens of thousands of particles with highly detailed particle shapes or a few million of particles with often oversimplified particle shapes. However, a number of applications require accurate representation of the particle shape to capture the macroscopic behaviour of the particulate system. In this paper we give an overview of the recent extensions to the open source GPU based DEM code, BlazeDEM3D-GPU, that can simulate millions of polyhedra and tens of millions of spheres on a desktop computer with a single or multiple GPUs.

  8. Incompressible Navier-Stokes and parabolized Navier-Stokes solution procedures and computational techniques

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.

    1982-01-01

    Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.

  9. Finite element analysis of TAVI: Impact of native aortic root computational modeling strategies on simulation outcomes.

    PubMed

    Finotello, Alice; Morganti, Simone; Auricchio, Ferdinando

    2017-09-01

    In the last few years, several studies, each with different aim and modeling detail, have been proposed to investigate transcatheter aortic valve implantation (TAVI) with finite elements. The present work focuses on the patient-specific finite element modeling of the aortic valve complex. In particular, we aim at investigating how different modeling strategies in terms of material models/properties and discretization procedures can impact analysis results. Four different choices both for the mesh size (from  20 k elements to  200 k elements) and for the material model (from rigid to hyperelastic anisotropic) are considered. Different approaches for modeling calcifications are also taken into account. Post-operative CT data of the real implant are used as reference solution with the aim of outlining a trade-off between computational model complexity and reliability of the results. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  11. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  12. Computational plasticity algorithm for particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  13. Partitioning strategy for efficient nonlinear finite element dynamic analysis on multiprocessor computers

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1989-01-01

    A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.

  14. Experimental and numerical characterization of expanded glass granules

    NASA Astrophysics Data System (ADS)

    Chaudry, Mohsin Ali; Woitzik, Christian; Düster, Alexander; Wriggers, Peter

    2018-07-01

    In this paper, the material response of expanded glass granules at different scales and under different boundary conditions is investigated. At grain scale, single particle tests can be used to determine properties like Young's modulus or crushing strength. With experiments like triaxial and oedometer tests, it is possible to examine the bulk mechanical behaviour of the granular material. Our experimental investigation is complemented by a numerical simulation where the discrete element method is used to compute the mechanical behaviour of such materials. In order to improve the simulation quality, effects such as rolling resistance, inelastic behaviour, damage, and crushing are also included in the discrete element method. Furthermore, the variation of the material properties of granules is modelled by a statistical distribution and included in our numerical simulation.

  15. Research study on stabilization and control: Modern sampled-data control theory. Continuous and discrete describing function analysis of the LST system. [with emphasis on the control moment gyroscope control loop

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Singh, G.

    1974-01-01

    The dynamics of the Large Space Telescope (LST) control system were studied in order to arrive at a simplified model for computer simulation without loss of accuracy. The frictional nonlinearity of the Control Moment Gyroscope (CMG) Control Loop was analyzed in a model to obtain data for the following: (1) a continuous describing function for the gimbal friction nonlinearity; (2) a describing function of the CMG nonlinearity using an analytical torque equation; and (3) the discrete describing function and function plots for CMG functional linearity. Preliminary computer simulations are shown for the simplified LST system, first without, and then with analytical torque expressions. Transfer functions of the sampled-data LST system are also described. A final computer simulation is presented which uses elements of the simplified sampled-data LST system with analytical CMG frictional torque expressions.

  16. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  17. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  18. Exploring a Multiphysics Resolution Approach for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Estupinan Donoso, Alvaro Antonio; Peters, Bernhard

    2018-06-01

    Metal additive manufacturing (AM) is a fast-evolving technology aiming to efficiently produce complex parts while saving resources. Worldwide, active research is being performed to solve the existing challenges of this growing technique. Constant computational advances have enabled multiscale and multiphysics numerical tools that complement the traditional physical experimentation. In this contribution, an advanced discrete-continuous concept is proposed to address the physical phenomena involved during laser powder bed fusion. The concept treats powder as discrete by the extended discrete element method, which predicts the thermodynamic state and phase change for each particle. The fluid surrounding is solved with multiphase computational fluid dynamics techniques to determine momentum, heat, gas and liquid transfer. Thus, results track the positions and thermochemical history of individual particles in conjunction with the prevailing fluid phases' temperature and composition. It is believed that this methodology can be employed to complement experimental research by analysis of the comprehensive results, which can be extracted from it to enable AM processes optimization for parts qualification.

  19. Continuum and discrete approach in modeling biofilm development and structure: a review.

    PubMed

    Mattei, M R; Frunzo, L; D'Acunto, B; Pechaud, Y; Pirozzi, F; Esposito, G

    2018-03-01

    The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.

  20. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  1. Knowledge network model of the energy consumption in discrete manufacturing system

    NASA Astrophysics Data System (ADS)

    Xu, Binzi; Wang, Yan; Ji, Zhicheng

    2017-07-01

    Discrete manufacturing system generates a large amount of data and information because of the development of information technology. Hence, a management mechanism is urgently required. In order to incorporate knowledge generated from manufacturing data and production experience, a knowledge network model of the energy consumption in the discrete manufacturing system was put forward based on knowledge network theory and multi-granularity modular ontology technology. This model could provide a standard representation for concepts, terms and their relationships, which could be understood by both human and computer. Besides, the formal description of energy consumption knowledge elements (ECKEs) in the knowledge network was also given. Finally, an application example was used to verify the feasibility of the proposed method.

  2. Global exponential periodicity and stability of discrete-time complex-valued recurrent neural networks with time-delays.

    PubMed

    Hu, Jin; Wang, Jun

    2015-06-01

    In recent years, complex-valued recurrent neural networks have been developed and analysed in-depth in view of that they have good modelling performance for some applications involving complex-valued elements. In implementing continuous-time dynamical systems for simulation or computational purposes, it is quite necessary to utilize a discrete-time model which is an analogue of the continuous-time system. In this paper, we analyse a discrete-time complex-valued recurrent neural network model and obtain the sufficient conditions on its global exponential periodicity and exponential stability. Simulation results of several numerical examples are delineated to illustrate the theoretical results and an application on associative memory is also given. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Errors due to the truncation of the computational domain in static three-dimensional electrical impedance tomography.

    PubMed

    Vauhkonen, P J; Vauhkonen, M; Kaipio, J P

    2000-02-01

    In electrical impedance tomography (EIT), an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. The currents spread out in three dimensions and therefore off-plane structures have a significant effect on the reconstructed images. A question arises: how far from the current carrying electrodes should the discretized model of the object be extended? If the model is truncated too near the electrodes, errors are produced in the reconstructed images. On the other hand if the model is extended very far from the electrodes the computational time may become too long in practice. In this paper the model truncation problem is studied with the extended finite element method. Forward solutions obtained using so-called infinite elements, long finite elements and separable long finite elements are compared to the correct solution. The effects of the truncation of the computational domain on the reconstructed images are also discussed and results from the three-dimensional (3D) sensitivity analysis are given. We show that if the finite element method with ordinary elements is used in static 3D EIT, the dimension of the problem can become fairly large if the errors associated with the domain truncation are to be avoided.

  4. Adaptive Wavelet Modeling of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.

    2009-12-01

    Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  5. On computational Gestalt detection thresholds.

    PubMed

    Grompone von Gioi, Rafael; Jakubowicz, Jérémie

    2009-01-01

    The aim of this paper is to show some recent developments of computational Gestalt theory, as pioneered by Desolneux, Moisan and Morel. The new results allow to predict much more accurately the detection thresholds. This step is unavoidable if one wants to analyze visual detection thresholds in the light of computational Gestalt theory. The paper first recalls the main elements of computational Gestalt theory. It points out a precision issue in this theory, essentially due to the use of discrete probability distributions. It then proposes to overcome this issue by using continuous probability distributions and illustrates it on the meaningful alignment detector of Desolneux et al.

  6. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    NASA Astrophysics Data System (ADS)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  7. Determination of Poisson Ratio of Bovine Extraocular Muscle by Computed X-Ray Tomography

    PubMed Central

    Kim, Hansang; Yoo, Lawrence; Shin, Andrew; Demer, Joseph L.

    2013-01-01

    The Poisson ratio (PR) is a fundamental mechanical parameter that approximates the ratio of relative change in cross sectional area to tensile elongation. However, the PR of extraocular muscle (EOM) is almost never measured because of experimental constraints. The problem was overcome by determining changes in EOM dimensions using computed X-ray tomography (CT) at microscopic resolution during tensile elongation to determine transverse strain indicated by the change in cross-section. Fresh bovine EOM specimens were prepared. Specimens were clamped in a tensile fixture within a CT scanner (SkyScan, Belgium) with temperature and humidity control and stretched up to 35% of initial length. Sets of 500–800 contiguous CT images were obtained at 10-micron resolution before and after tensile loading. Digital 3D models were then built and discretized into 6–8-micron-thick elements. Changes in longitudinal thickness of each microscopic element were determined to calculate strain. Green's theorem was used to calculate areal strain in transverse directions orthogonal to the stretching direction. The mean PR from discretized 3D models for every microscopic element in 14 EOM specimens averaged 0.457 ± 0.004 (SD). The measured PR of bovine EOM is thus near the limit of incompressibility. PMID:23484091

  8. Mineral density volume gradients in normal and diseased human tissues

    DOE PAGES

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; ...

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  9. Mineral density volume gradients in normal and diseased human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  10. Mineral density volume gradients in normal and diseased human tissues.

    PubMed

    Djomehri, Sabra I; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W; Yun, Wenbing; Lau, S H; Webb, Samuel; Ho, Sunita P

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  11. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    PubMed Central

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  12. Computational domain discretization in numerical analysis of flow within granular materials

    NASA Astrophysics Data System (ADS)

    Sosnowski, Marcin

    2018-06-01

    The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.

  13. Use of edge-based finite elements for solving three dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1991-01-01

    Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.

  14. Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination

    NASA Astrophysics Data System (ADS)

    Citro, V.; Luchini, P.; Giannetti, F.; Auteri, F.

    2017-09-01

    The study of the stability of a dynamical system described by a set of partial differential equations (PDEs) requires the computation of unstable states as the control parameter exceeds its critical threshold. Unfortunately, the discretization of the governing equations, especially for fluid dynamic applications, often leads to very large discrete systems. As a consequence, matrix based methods, like for example the Newton-Raphson algorithm coupled with a direct inversion of the Jacobian matrix, lead to computational costs too large in terms of both memory and execution time. We present a novel iterative algorithm, inspired by Krylov-subspace methods, which is able to compute unstable steady states and/or accelerate the convergence to stable configurations. Our new algorithm is based on the minimization of the residual norm at each iteration step with a projection basis updated at each iteration rather than at periodic restarts like in the classical GMRES method. The algorithm is able to stabilize any dynamical system without increasing the computational time of the original numerical procedure used to solve the governing equations. Moreover, it can be easily inserted into a pre-existing relaxation (integration) procedure with a call to a single black-box subroutine. The procedure is discussed for problems of different sizes, ranging from a small two-dimensional system to a large three-dimensional problem involving the Navier-Stokes equations. We show that the proposed algorithm is able to improve the convergence of existing iterative schemes. In particular, the procedure is applied to the subcritical flow inside a lid-driven cavity. We also discuss the application of Boostconv to compute the unstable steady flow past a fixed circular cylinder (2D) and boundary-layer flow over a hemispherical roughness element (3D) for supercritical values of the Reynolds number. We show that Boostconv can be used effectively with any spatial discretization, be it a finite-difference, finite-volume, finite-element or spectral method.

  15. Inversion of Robin coefficient by a spectral stochastic finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Bangti; Zou Jun

    2008-03-01

    This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.

  16. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 13.2

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.5

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; hide

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. FUN3D Manual: 13.1

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  3. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  4. FUN3D Manual: 13.3

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2018-01-01

    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  5. Modeling error analysis of stationary linear discrete-time filters

    NASA Technical Reports Server (NTRS)

    Patel, R.; Toda, M.

    1977-01-01

    The performance of Kalman-type, linear, discrete-time filters in the presence of modeling errors is considered. The discussion is limited to stationary performance, and bounds are obtained for the performance index, the mean-squared error of estimates for suboptimal and optimal (Kalman) filters. The computation of these bounds requires information on only the model matrices and the range of errors for these matrices. Consequently, a design can easily compare the performance of a suboptimal filter with that of the optimal filter, when only the range of errors in the elements of the model matrices is available.

  6. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    DTIC Science & Technology

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  7. Computational modeling of chemo-electro-mechanical coupling: A novel implicit monolithic finite element approach

    PubMed Central

    Wong, J.; Göktepe, S.; Kuhl, E.

    2014-01-01

    Summary Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, while the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of four days on a standard desktop computer. PMID:23798328

  8. A finite volume method for trace element diffusion and partitioning during crystal growth

    NASA Astrophysics Data System (ADS)

    Hesse, Marc A.

    2012-09-01

    A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.

  9. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method

    PubMed Central

    Kojic, Milos; Filipovic, Nenad; Tsuda, Akira

    2012-01-01

    A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322

  10. Development of an adaptive hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1994-01-01

    In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.

  11. Setting up virgin stress conditions in discrete element models.

    PubMed

    Rojek, J; Karlis, G F; Malinowski, L J; Beer, G

    2013-03-01

    In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain.

  12. Setting up virgin stress conditions in discrete element models

    PubMed Central

    Rojek, J.; Karlis, G.F.; Malinowski, L.J.; Beer, G.

    2013-01-01

    In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain. PMID:27087731

  13. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.

  15. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  16. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  17. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  18. Three-dimensional geoelectric modelling with optimal work/accuracy rate using an adaptive wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.

    2010-08-01

    Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  19. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.

  20. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    NASA Astrophysics Data System (ADS)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high-level scientific workflow middleware enables reproducibility of results more convenient and also provides a reusable and portable workflow template that can be deployed across different computing infrastructures. Acknowledgements This work was kindly supported by NordForsk as part of the Nordic Center of Excellence (NCoE) eSTICC (eScience Tools for Investigating Climate Change at High Northern Latitudes) and the Top-level Research Initiative NCoE SVALI (Stability and Variation of Arctic Land Ice).

  1. A finite element analysis of viscoelastically damped sandwich plates

    NASA Astrophysics Data System (ADS)

    Ma, B.-A.; He, J.-F.

    1992-01-01

    A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.

  2. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.

  3. Application of Dynamic Analysis in Semi-Analytical Finite Element Method.

    PubMed

    Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus

    2017-08-30

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.

  4. Modelling DC responses of 3D complex fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  5. Modelling DC responses of 3D complex fracture networks

    DOE PAGES

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    2018-03-01

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  6. A Least-Squares Finite Element Method for Electromagnetic Scattering Problems

    NASA Technical Reports Server (NTRS)

    Wu, Jie; Jiang, Bo-nan

    1996-01-01

    The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.

  7. New method for identifying features of an image on a digital video display

    NASA Astrophysics Data System (ADS)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  8. Improved Subcell Model for the Prediction of Braided Composite Response

    NASA Technical Reports Server (NTRS)

    Cater, Christopher R.; Xinran, Xiao; Goldberg, Robert K.; Kohlman, Lee W.

    2013-01-01

    In this work, the modeling of triaxially braided composites was explored through a semi-analytical discretization. Four unique subcells, each approximated by a "mosaic" stacking of unidirectional composite plies, were modeled through the use of layered-shell elements within the explicit finite element code LS-DYNA. Two subcell discretizations were investigated: a model explicitly capturing pure matrix regions, and a novel model which absorbed pure matrix pockets into neighboring tow plies. The in-plane stiffness properties of both models, computed using bottom-up micromechanics, correlated well to experimental data. The absorbed matrix model, however, was found to best capture out-of- plane flexural properties by comparing numerical simulations of the out-of-plane displacements from single-ply tension tests to experimental full field data. This strong correlation of out-of-plane characteristics supports the current modeling approach as a viable candidate for future work involving impact simulations.

  9. A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms.

    PubMed

    Alsmadi, Othman M K; Abo-Hammour, Zaer S

    2015-01-01

    A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.

  10. Solving the hypersingular boundary integral equation in three-dimensional acoustics using a regularization relationship.

    PubMed

    Yan, Zai You; Hung, Kin Chew; Zheng, Hui

    2003-05-01

    Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz integral equation through a double surface integral method or regularization relationship has been studied. By introducing the new concept of discretized operator matrix, evaluation of the double surface integrals is reduced to calculate the product of two discretized operator matrices. Such a treatment greatly improves the computational efficiency. As the number of frequencies to be computed increases, the computational cost of solving the composite Helmholtz integral equation is comparable to that of solving the conventional Helmholtz integral equation. In this paper, the detailed formulation of the proposed regularization method is presented. The computational efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear quadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the corresponding analytical solutions as finer meshes are applied.

  11. Fully Coupled Nonlinear Fluid Flow and Poroelasticity in Arbitrarily Fractured Porous Media: A Hybrid-Dimensional Computational Model

    NASA Astrophysics Data System (ADS)

    Jin, L.; Zoback, M. D.

    2017-10-01

    We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.

  12. The Spectral Element Method for Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    1998-11-01

    We will describe SEAM, a Spectral Element Atmospheric Model. SEAM solves the 3D primitive equations used in climate modeling and medium range forecasting. SEAM uses a spectral element discretization for the surface of the globe and finite differences in the vertical direction. The model is spectrally accurate, as demonstrated by a variety of test cases. It is well suited for modern distributed-shared memory computers, sustaining over 24 GFLOPS on a 240 processor HP Exemplar. This performance has allowed us to run several interesting simulations in full spherical geometry at high resolution (over 22 million grid points).

  13. Least-squares Legendre spectral element solutions to sound propagation problems.

    PubMed

    Lin, W H

    2001-02-01

    This paper presents a novel algorithm and numerical results of sound wave propagation. The method is based on a least-squares Legendre spectral element approach for spatial discretization and the Crank-Nicolson [Proc. Cambridge Philos. Soc. 43, 50-67 (1947)] and Adams-Bashforth [D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CBMS-NSF Monograph, Siam 1977)] schemes for temporal discretization to solve the linearized acoustic field equations for sound propagation. Two types of NASA Computational Aeroacoustics (CAA) Workshop benchmark problems [ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, edited by J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA Conference Publication 3300, 1995a] are considered: a narrow Gaussian sound wave propagating in a one-dimensional space without flows, and the reflection of a two-dimensional acoustic pulse off a rigid wall in the presence of a uniform flow of Mach 0.5 in a semi-infinite space. The first problem was used to examine the numerical dispersion and dissipation characteristics of the proposed algorithm. The second problem was to demonstrate the capability of the algorithm in treating sound propagation in a flow. Comparisons were made of the computed results with analytical results and results obtained by other methods. It is shown that all results computed by the present method are in good agreement with the analytical solutions and results of the first problem agree very well with those predicted by other schemes.

  14. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  15. An accurate boundary element method for the exterior elastic scattering problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Xu, Liwei; Yin, Tao

    2017-11-01

    This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.

  16. Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation

    NASA Astrophysics Data System (ADS)

    Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.

    2012-09-01

    The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.

  17. Advanced graphical user interface for multi-physics simulations using AMST

    NASA Astrophysics Data System (ADS)

    Hoffmann, Florian; Vogel, Frank

    2017-07-01

    Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.

  18. Apparatus for obtaining an X-ray image

    DOEpatents

    Watanabe, Eiji

    1979-01-01

    A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.

  19. ATHENA 3D: A finite element code for ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.

    2014-04-01

    The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.

  20. Inversion of potential field data using the finite element method on parallel computers

    NASA Astrophysics Data System (ADS)

    Gross, L.; Altinay, C.; Shaw, S.

    2015-11-01

    In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.

  1. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE PAGES

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...

    2016-04-27

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  2. A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Son, Kwon Joong

    2018-02-01

    Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.

  3. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  4. Probabilistic finite elements for fatigue and fracture analysis

    NASA Astrophysics Data System (ADS)

    Belytschko, Ted; Liu, Wing Kam

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  5. Design criteria for small coded aperture masks in gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Gehrels, Neil

    1990-01-01

    Most theoretical work on coded aperture masks in X-ray and low-energy gamma-ray astronomy has concentrated on masks with large numbers of elements. For gamma-ray spectrometers in the MeV range, the detector plane usually has only a few discrete elements, so that masks with small numbers of elements are called for. For this case it is feasible to analyze by computer all the possible mask patterns of given dimension to find the ones that best satisfy the desired performance criteria. A particular set of performance criteria for comparing the flux sensitivities, source positioning accuracies and transparencies of different mask patterns is developed. The results of such a computer analysis for masks up to dimension 5 x 5 unit cell are presented and it is concluded that there is a great deal of flexibility in the choice of mask pattern for each dimension.

  6. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1993-01-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  7. Engine structures modeling software system: Computer code. User's manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.

  8. Progressive Failure of a Unidirectional Fiber-Reinforced Composite Using the Method of Cells: Discretization Objective Computational Results

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    The smeared crack band theory is implemented within the generalized method of cells and high-fidelity generalized method of cells micromechanics models to capture progressive failure within the constituents of a composite material while retaining objectivity with respect to the size of the discretization elements used in the model. An repeating unit cell containing 13 randomly arranged fibers is modeled and subjected to a combination of transverse tension/compression and transverse shear loading. The implementation is verified against experimental data (where available), and an equivalent finite element model utilizing the same implementation of the crack band theory. To evaluate the performance of the crack band theory within a repeating unit cell that is more amenable to a multiscale implementation, a single fiber is modeled with generalized method of cells and high-fidelity generalized method of cells using a relatively coarse subcell mesh which is subjected to the same loading scenarios as the multiple fiber repeating unit cell. The generalized method of cells and high-fidelity generalized method of cells models are validated against a very refined finite element model.

  9. Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows

    NASA Astrophysics Data System (ADS)

    Di Pietro, Daniele A.; Marche, Fabien

    2018-02-01

    In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

  10. Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues with Continuous Fiber Distributions

    PubMed Central

    Hou, Chieh; Ateshian, Gerard A.

    2015-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492

  11. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    PubMed

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

  12. Methods of parallel computation applied on granular simulations

    NASA Astrophysics Data System (ADS)

    Martins, Gustavo H. B.; Atman, Allbens P. F.

    2017-06-01

    Every year, parallel computing has becoming cheaper and more accessible. As consequence, applications were spreading over all research areas. Granular materials is a promising area for parallel computing. To prove this statement we study the impact of parallel computing in simulations of the BNE (Brazil Nut Effect). This property is due the remarkable arising of an intruder confined to a granular media when vertically shaken against gravity. By means of DEM (Discrete Element Methods) simulations, we study the code performance testing different methods to improve clock time. A comparison between serial and parallel algorithms, using OpenMP® is also shown. The best improvement was obtained by optimizing the function that find contacts using Verlet's cells.

  13. Meshfree Modeling of Munitions Penetration in Soils

    DTIC Science & Technology

    2017-04-01

    discretization ...................... 8 Figure 2. Nodal smoothing domain for the modified stabilized nonconforming nodal integration...projectile ............................................................................................... 36 Figure 17. Discretization for the...List of Acronyms DEM: discrete element methods FEM: finite element methods MSNNI: modified stabilized nonconforming nodal integration RK

  14. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  15. Efficient parallel resolution of the simplified transport equations in mixed-dual formulation

    NASA Astrophysics Data System (ADS)

    Barrault, M.; Lathuilière, B.; Ramet, P.; Roman, J.

    2011-03-01

    A reactivity computation consists of computing the highest eigenvalue of a generalized eigenvalue problem, for which an inverse power algorithm is commonly used. Very fine modelizations are difficult to treat for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time. A first implementation of a Lagrangian based domain decomposition method brings to a poor parallel efficiency because of an increase in the power iterations [1]. In order to obtain a high parallel efficiency, we improve the parallelization scheme by changing the location of the loop over the subdomains in the overall algorithm and by benefiting from the characteristics of the Raviart-Thomas finite element. The new parallel algorithm still allows us to locally adapt the numerical scheme (mesh, finite element order). However, it can be significantly optimized for the matching grid case. The good behavior of the new parallelization scheme is demonstrated for the matching grid case on several hundreds of nodes for computations based on a pin-by-pin discretization.

  16. Space-time least-squares finite element method for convection-reaction system with transformed variables

    PubMed Central

    Nam, Jaewook

    2011-01-01

    We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752

  17. The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions.

    PubMed

    Arridge, S R; Dehghani, H; Schweiger, M; Okada, E

    2000-01-01

    We present a method for handling nonscattering regions within diffusing domains. The method develops from an iterative radiosity-diffusion approach using Green's functions that was computationally slow. Here we present an improved implementation using a finite element method (FEM) that is direct. The fundamental idea is to introduce extra equations into the standard diffusion FEM to represent nondiffusive light propagation across a nonscattering region. By appropriate mesh node ordering the computational time is not much greater than for diffusion alone. We compare results from this method with those from a discrete ordinate transport code, and with Monte Carlo calculations. The agreement is very good, and, in addition, our scheme allows us to easily model time-dependent and frequency domain problems.

  18. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  19. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.

    PubMed

    Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun

    2018-01-01

    Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.

  20. Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems

    NASA Astrophysics Data System (ADS)

    Arrarás, A.; Portero, L.; Yotov, I.

    2014-01-01

    We study space and time discretizations for mixed formulations of parabolic problems. The spatial approximation is based on the multipoint flux mixed finite element method, which reduces to an efficient cell-centered pressure system on general grids, including triangles, quadrilaterals, tetrahedra, and hexahedra. The time integration is performed by using a domain decomposition time-splitting technique combined with multiterm fractional step diagonally implicit Runge-Kutta methods. The resulting scheme is unconditionally stable and computationally efficient, as it reduces the global system to a collection of uncoupled subdomain problems that can be solved in parallel without the need for Schwarz-type iteration. Convergence analysis for both the semidiscrete and fully discrete schemes is presented.

  1. Application of Dynamic Analysis in Semi-Analytical Finite Element Method

    PubMed Central

    Oeser, Markus

    2017-01-01

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement’s state. PMID:28867813

  2. Development and Application of Compatible Discretizations of Maxwell's Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Koning, J; Rieben, R

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less

  3. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications☆

    PubMed Central

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-01-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517

  4. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    PubMed

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  5. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  6. Deformation in Micro Roll Forming of Bipolar Plate

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  7. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    NASA Astrophysics Data System (ADS)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  8. Numerical treatment for solving two-dimensional space-fractional advection-dispersion equation using meshless method

    NASA Astrophysics Data System (ADS)

    Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng

    2018-02-01

    Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.

  9. A robust, finite element model for hydrostatic surface water flows

    USGS Publications Warehouse

    Walters, R.A.; Casulli, V.

    1998-01-01

    A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.

  10. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    PubMed

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  11. Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements

    NASA Astrophysics Data System (ADS)

    Crean, Jared; Hicken, Jason E.; Del Rey Fernández, David C.; Zingg, David W.; Carpenter, Mark H.

    2018-03-01

    We present and analyze an entropy-stable semi-discretization of the Euler equations based on high-order summation-by-parts (SBP) operators. In particular, we consider general multidimensional SBP elements, building on and generalizing previous work with tensor-product discretizations. In the absence of dissipation, we prove that the semi-discrete scheme conserves entropy; significantly, this proof of nonlinear L2 stability does not rely on integral exactness. Furthermore, interior penalties can be incorporated into the discretization to ensure that the total (mathematical) entropy decreases monotonically, producing an entropy-stable scheme. SBP discretizations with curved elements remain accurate, conservative, and entropy stable provided the mapping Jacobian satisfies the discrete metric invariants; polynomial mappings at most one degree higher than the SBP operators automatically satisfy the metric invariants in two dimensions. In three-dimensions, we describe an elementwise optimization that leads to suitable Jacobians in the case of polynomial mappings. The properties of the semi-discrete scheme are verified and investigated using numerical experiments.

  12. A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi

    2017-11-01

    A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing (UYBHM) under Grant Number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.

  13. Performance of low-rank QR approximation of the finite element Biot-Savart law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Fasenfest, B

    2006-10-16

    In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law. Our goal is to develop an algorithm that is easily implemented on parallel computers. It is assumed that the known current density and the unknown magnetic field are both expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representingmore » distant interactions being low rank and having a compressed QR representation. While an octree partitioning of the matrix may be ideal, for ease of parallel implementation we employ a partitioning based on number of processors. The rank of each block (i.e. the compression) is determined by the specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present computational results for large-scale computations.« less

  14. Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.

    2016-01-01

    Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.

  15. Modeling of the WSTF frictional heating apparatus in high pressure systems

    NASA Technical Reports Server (NTRS)

    Skowlund, Christopher T.

    1992-01-01

    In order to develop a computer program able to model the frictional heating of metals in high pressure oxygen or nitrogen a number of additions have been made to the frictional heating model originally developed for tests in low pressure helium. These additions include: (1) a physical property package for the gases to account for departures from the ideal gas state; (2) two methods for spatial discretization (finite differences with quadratic interpolation or orthogonal collocation on finite elements) which substantially reduce the computer time required to solve the transient heat balance; (3) more efficient programs for the integration of the ordinary differential equations resulting from the discretization of the partial differential equations; and (4) two methods for determining the best-fit parameters via minimization of the mean square error (either a direct search multivariable simplex method or a modified Levenburg-Marquardt algorithm). The resulting computer program has been shown to be accurate, efficient and robust for determining the heat flux or friction coefficient vs. time at the interface of the stationary and rotating samples.

  16. Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph

    2010-01-01

    Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.

  17. Efficient genetic algorithms using discretization scheduling.

    PubMed

    McLay, Laura A; Goldberg, David E

    2005-01-01

    In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling.

  18. Finite element stress analysis of the human left ventricle whose irregular shape is developed from single plane cineangiocardiogram

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Hamid, M. S.

    1977-01-01

    The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.

  19. Radiation and scattering from printed antennas on cylindrically conformal platforms

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Bindiganavale, Sunil

    1994-01-01

    The goal was to develop suitable methods and software for the analysis of antennas on cylindrical coated and uncoated platforms. Specifically, the finite element boundary integral and finite element ABC methods were employed successfully and associated software were developed for the analysis and design of wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This work led to the successful implementation of analysis software for such antennas. Developments which played a role in this respect are the efficient implementation of the 3D Green's function for a metallic cylinder, the incorporation of the fast Fourier transform in computing the matrix-vector products executed in the solver of the finite element-boundary integral system, and the development of a new absorbing boundary condition for terminating the finite element mesh on cylindrical surfaces.

  20. Analysis of Steel-With-Composite Material Substitution in Military Vehicle Hull Floors Subjected to Shallow-Buried Landmine-Detonation Loads

    DTIC Science & Technology

    2014-01-01

    vehicles/structures; in the work of Bergeron et al. (2002), an instrumented ballistic pendulum was utilized to investigate mine detonation-induced...element/ discrete-particle computational analysis in order to investigate potential benefits and drawbacks associated with material substitution...investigate potential benefits and drawbacks associated with material substitution (from steel to composite) in military-vehicle hull-floors whose primary

  1. Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing

    DTIC Science & Technology

    2006-09-01

    tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time- accurate parallel explicit solver...Incompressible fluid flow in a moving/deforming container including accurate modeling of the free-surface, turbulence, and viscous effects ...paper, a single computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of

  2. An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

    NASA Astrophysics Data System (ADS)

    Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.

    2018-06-01

    We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.

  3. Parallel discrete-event simulation schemes with heterogeneous processing elements.

    PubMed

    Kim, Yup; Kwon, Ikhyun; Chae, Huiseung; Yook, Soon-Hyung

    2014-07-01

    To understand the effects of nonidentical processing elements (PEs) on parallel discrete-event simulation (PDES) schemes, two stochastic growth models, the restricted solid-on-solid (RSOS) model and the Family model, are investigated by simulations. The RSOS model is the model for the PDES scheme governed by the Kardar-Parisi-Zhang equation (KPZ scheme). The Family model is the model for the scheme governed by the Edwards-Wilkinson equation (EW scheme). Two kinds of distributions for nonidentical PEs are considered. In the first kind computing capacities of PEs are not much different, whereas in the second kind the capacities are extremely widespread. The KPZ scheme on the complex networks shows the synchronizability and scalability regardless of the kinds of PEs. The EW scheme never shows the synchronizability for the random configuration of PEs of the first kind. However, by regularizing the arrangement of PEs of the first kind, the EW scheme is made to show the synchronizability. In contrast, EW scheme never shows the synchronizability for any configuration of PEs of the second kind.

  4. Computational Study of Laminar Flow Control on a Subsonic Swept Wing Using Discrete Roughness Elements

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.

    2011-01-01

    A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.

  5. The interactive digital video interface

    NASA Technical Reports Server (NTRS)

    Doyle, Michael D.

    1989-01-01

    A frequent complaint in the computer oriented trade journals is that current hardware technology is progressing so quickly that software developers cannot keep up. A example of this phenomenon can be seen in the field of microcomputer graphics. To exploit the advantages of new mechanisms of information storage and retrieval, new approaches must be made towards incorporating existing programs as well as developing entirely new applications. A particular area of need is the correlation of discrete image elements to textural information. The interactive digital video (IDV) interface embodies a new concept in software design which addresses these needs. The IDV interface is a patented device and language independent process for identifying image features on a digital video display and which allows a number of different processes to be keyed to that identification. Its capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. Sophisticated interrelationships can be set up between images, text, and program control mechanisms.

  6. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  7. Wheat mill stream properties for discrete element method modeling

    USDA-ARS?s Scientific Manuscript database

    A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...

  8. Calibrating the stress-time curve of a combined finite-discrete element method to a Split Hopkinson Pressure Bar experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban

    We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less

  9. Calibrating the stress-time curve of a combined finite-discrete element method to a Split Hopkinson Pressure Bar experiment

    DOE PAGES

    Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban; ...

    2018-05-01

    We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less

  10. Basal friction evolution and crevasse distribution during the surge of Basin 3, Austfonna ice-cap - offline coupling between a continuum ice dynamic model and a discrete element model

    NASA Astrophysics Data System (ADS)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Gladstone, Rupert; Schellenberger, Thomas; Altena, Bas; Moore, John

    2017-04-01

    The outlet glacier at Basin 3, Austfonna ice-cap entered its active surge phase in autumn 2012. We assess the evolution of the basal friction during the surge through inverse modelling of basal friction coefficients using recent velocity observation from 2012 to 2014 in a continuum ice dynamic model Elmer/ice. The obtained basal friction coefficient distributions at different time instances are further used as a boundary condition in a discrete element model (HiDEM) that is capable of computing fracturing of ice. The inverted basal friction coefficient evolution shows a gradual 'unplugging' of the stagnant frontal area and northwards and inland expansion of the fast flowing region in the southern basin. The validation between the modeled crevasses distribution and the satellite observation in August 2013 shows a good agreement in shear zones inland and at the frontal area. Crevasse distributions of the summer before and after the glacier reached its maximum velocity in January 2013 (August 2012 and August 2014, respectively) are also evaluated. Previous studies suggest the triggering and development of the surge are linked to surface melt water penetrating through ice to form an efficient basal hydrology system thereby triggering a hydro- thermodynamic feedback. This preliminary offline coupling between a continuum ice dynamic model and a discrete element model will give a hint on future model development of linking supra-glacial to sub-glacial hydrology system.

  11. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields.

    PubMed

    Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J

    2018-01-30

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  12. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-02-01

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  13. A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates

    NASA Astrophysics Data System (ADS)

    Läuter, Matthias; Giraldo, Francis X.; Handorf, Dörthe; Dethloff, Klaus

    2008-12-01

    A global model of the atmosphere is presented governed by the shallow water equations and discretized by a Runge-Kutta discontinuous Galerkin method on an unstructured triangular grid. The shallow water equations on the sphere, a two-dimensional surface in R3, are locally represented in terms of spherical triangular coordinates, the appropriate local coordinate mappings on triangles. On every triangular grid element, this leads to a two-dimensional representation of tangential momentum and therefore only two discrete momentum equations. The discontinuous Galerkin method consists of an integral formulation which requires both area (elements) and line (element faces) integrals. Here, we use a Rusanov numerical flux to resolve the discontinuous fluxes at the element faces. A strong stability-preserving third-order Runge-Kutta method is applied for the time discretization. The polynomial space of order k on each curved triangle of the grid is characterized by a Lagrange basis and requires high-order quadature rules for the integration over elements and element faces. For the presented method no mass matrix inversion is necessary, except in a preprocessing step. The validation of the atmospheric model has been done considering standard tests from Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys. 102 (1992) 211-224], unsteady analytical solutions of the nonlinear shallow water equations and a barotropic instability caused by an initial perturbation of a jet stream. A convergence rate of O(Δx) was observed in the model experiments. Furthermore, a numerical experiment is presented, for which the third-order time-integration method limits the model error. Thus, the time step Δt is restricted by both the CFL-condition and accuracy demands. Conservation of mass was shown up to machine precision and energy conservation converges for both increasing grid resolution and increasing polynomial order k.

  14. A fast algorithm for forward-modeling of gravitational fields in spherical coordinates with 3D Gauss-Legendre quadrature

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Liu, J.; Chen, B.; Guo, R.; Chen, L.

    2017-12-01

    Forward modeling of gravitational fields at large-scale requires to consider the curvature of the Earth and to evaluate the Newton's volume integral in spherical coordinates. To acquire fast and accurate gravitational effects for subsurface structures, subsurface mass distribution is usually discretized into small spherical prisms (called tesseroids). The gravity fields of tesseroids are generally calculated numerically. One of the commonly used numerical methods is the 3D Gauss-Legendre quadrature (GLQ). However, the traditional GLQ integration suffers from low computational efficiency and relatively poor accuracy when the observation surface is close to the source region. We developed a fast and high accuracy 3D GLQ integration based on the equivalence of kernel matrix, adaptive discretization and parallelization using OpenMP. The equivalence of kernel matrix strategy increases efficiency and reduces memory consumption by calculating and storing the same matrix elements in each kernel matrix just one time. In this method, the adaptive discretization strategy is used to improve the accuracy. The numerical investigations show that the executing time of the proposed method is reduced by two orders of magnitude compared with the traditional method that without these optimized strategies. High accuracy results can also be guaranteed no matter how close the computation points to the source region. In addition, the algorithm dramatically reduces the memory requirement by N times compared with the traditional method, where N is the number of discretization of the source region in the longitudinal direction. It makes the large-scale gravity forward modeling and inversion with a fine discretization possible.

  15. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

    NASA Astrophysics Data System (ADS)

    Katili, Irwan

    1993-06-01

    A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

  16. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions.

    PubMed

    Brown, James; Carrington, Tucker

    2015-07-28

    Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.

  17. Spectral decontamination of a real-time helicopter simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1983-01-01

    Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.

  18. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    NASA Astrophysics Data System (ADS)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  19. Original analytic solution of a half-bridge modelled as a statically indeterminate system

    NASA Astrophysics Data System (ADS)

    Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra; Barhalescu, Mihaela

    2016-12-01

    The paper presents an original computer based analytical model of a half-bridge belonging to a circular settling tank. The primary unknown is computed using the force method, the coefficients of the canonical equation being calculated using either the discretization of the bending moment diagram in trapezoids, or using the relations specific to the polygons. A second algorithm based on the method of initial parameters is also presented. Analyzing the new solution we came to the conclusion that most of the computer code developed for other model may be reused. The results are useful to evaluate the behavior of the structure and to compare with the results of the finite element models.

  20. Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.

    PubMed

    Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N

    2015-12-01

    Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frayce, D.; Khayat, R.E.; Derdouri, A.

    The dual reciprocity boundary element method (DRBEM) is implemented to solve three-dimensional transient heat conduction problems in the presence of arbitrary sources, typically as these problems arise in materials processing. The DRBEM has a major advantage over conventional BEM, since it avoids the computation of volume integrals. These integrals stem from transient, nonlinear, and/or source terms. Thus there is no need to discretize the inner domain, since only a number of internal points are needed for the computation. The validity of the method is assessed upon comparison with results from benchmark problems where analytical solutions exist. There is generally goodmore » agreement. Comparison against finite element results is also favorable. Calculations are carried out in order to assess the influence of the number and location of internal nodes. The influence of the ratio of the numbers of internal to boundary nodes is also examined.« less

  2. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.

    1972-01-01

    The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  3. Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Klimczak, Marek; Cecot, Witold

    2018-01-01

    We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.

  4. The optimal design support system for shell components of vehicles using the methods of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Szczepanik, M.; Poteralski, A.

    2016-11-01

    The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.

  5. Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs

    NASA Astrophysics Data System (ADS)

    Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan

    2016-04-01

    This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.

  6. A 3-D turbulent flow analysis using finite elements with k-ɛ model

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Yagawa, G.; Eguchi, Y.

    1989-03-01

    This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.

  7. A design study for the addition of higher order parametric discrete elements to NASTRAN

    NASA Technical Reports Server (NTRS)

    Stanton, E. L.

    1972-01-01

    The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.

  8. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE PAGES

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    2017-06-21

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  9. Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Gopalan, Balaji; Benyahia, Sofiane

    Several discrete particle methods exist in the open literature to simulate fluidized bed systems, such as discrete element method (DEM), time driven hard sphere (TDHS), coarse-grained particle method (CGPM), coarse grained hard sphere (CGHS), and multi-phase particle-in-cell (MP-PIC). These different approaches usually solve the fluid phase in a Eulerian fixed frame of reference and the particle phase using the Lagrangian method. The first difference between these models lies in tracking either real particles or lumped parcels. The second difference is in the treatment of particle-particle interactions: by calculating collision forces (DEM and CGPM), using momentum conservation laws (TDHS and CGHS),more » or based on particle stress model (MP-PIC). These major model differences lead to a wide range of results accuracy and computation speed. However, these models have never been compared directly using the same experimental dataset. In this research, a small-scale fluidized bed is simulated with these methods using the same open-source code MFIX. The results indicate that modeling the particle-particle collision by TDHS increases the computation speed while maintaining good accuracy. Also, lumping few particles in a parcel increases the computation speed with little loss in accuracy. However, modeling particle-particle interactions with solids stress leads to a big loss in accuracy with a little increase in computation speed. The MP-PIC method predicts an unphysical particle-particle overlap, which results in incorrect voidage distribution and incorrect overall bed hydrodynamics. Based on this study, we recommend using the CGHS method for fluidized bed simulations due to its computational speed that rivals that of MPPIC while maintaining a much better accuracy.« less

  10. A high-order spatial filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-04-01

    A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.

  11. Dimensioning appropriate technical and economic parameters of elements in urban distribution power nets based on discrete fast marching method

    NASA Astrophysics Data System (ADS)

    Afanasyev, A. P.; Bazhenov, R. I.; Luchaninov, D. V.

    2018-05-01

    The main purpose of the research is to develop techniques for defining the best technical and economic trajectories of cables in urban power systems. The proposed algorithms of calculation of the routes for laying cables take into consideration topological, technical and economic features of the cabling. The discrete option of an algorithm Fast marching method is applied as a calculating tool. It has certain advantages compared to other approaches. In particular, this algorithm is cost-effective to compute, therefore, it is not iterative. Trajectories of received laying cables are considered as optimal ones from the point of view of technical and economic criteria. They correspond to the present rules of modern urban development.

  12. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  13. Effective dimensional reduction algorithm for eigenvalue problems for thin elastic structures: A paradigm in three dimensions

    PubMed Central

    Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.

    2000-01-01

    We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469

  14. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    NASA Astrophysics Data System (ADS)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  15. CDM: Teaching Discrete Mathematics to Computer Science Majors

    ERIC Educational Resources Information Center

    Sutner, Klaus

    2005-01-01

    CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…

  16. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  17. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  18. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  19. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-01-14

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  20. Vibration transmission through rolling element bearings in geared rotor system, part 1. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Lim, Teik Chin

    1989-01-01

    A mathematical model is proposed to examine the vibration transmission through rolling element bearings in geared rotor systems. Current bearing models, based on either ideal boundary conditions for the shaft or purely translational stiffness element description, cannot explain how the vibratory motion may be transmitted from the rotating shaft to the casing. This study clarifies this issue qualitatively and quantitatively by developing a comprehensive bearing stiffness matrix of dimension 6 model for the precision rolling element bearings from basic principles. The proposed bearing formulation is extended to analyze the overall geared rotor system dynamics including casing and mounts. The bearing stiffness matrix is included in discrete system models using lumped parameter and/or dynamic finite element techniques. Eigensolution and forced harmonic response due to rotating mass unbalance or kinematic transmission error excitation for a number of examples are computed.

  1. Quasi-Optimal Elimination Trees for 2D Grids with Singularities

    DOE PAGES

    Paszyńska, A.; Paszyński, M.; Jopek, K.; ...

    2015-01-01

    We consmore » truct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O N e log ⁡ N e , where N e is the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.« less

  2. Quasi-Optimal Elimination Trees for 2D Grids with Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paszyńska, A.; Paszyński, M.; Jopek, K.

    We consmore » truct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O N e log ⁡ N e , where N e is the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.« less

  3. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions

    PubMed Central

    Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-01-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906

  4. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.

    PubMed

    Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-02-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Copyright © 2011 Wiley Periodicals, Inc.

  5. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  6. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  7. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  8. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.

    PubMed

    Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub

    2017-01-01

    A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System

    PubMed Central

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second. PMID:24891848

  10. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System.

    PubMed

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.

  11. Conservative discretization of the Landau collision integral

    DOE PAGES

    Hirvijoki, E.; Adams, M. F.

    2017-03-28

    Here we describe a density, momentum-, and energy-conserving discretization of the nonlinear Landau collision integral. The method is suitable for both the finite-element and discontinuous Galerkin methods and does not require structured meshes. The conservation laws for the discretization are proven algebraically and demonstrated numerically for an axially symmetric nonlinear relaxation problem using a finite-element implementation.

  12. GEMPIC: geometric electromagnetic particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Kraus, Michael; Kormann, Katharina; Morrison, Philip J.; Sonnendrücker, Eric

    2017-08-01

    We present a novel framework for finite element particle-in-cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov-Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from finite element exterior calculus ensure conservation of the divergence of the magnetic field and Gauss' law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the finite element basis, as long as the corresponding finite element spaces satisfy certain compatibility conditions.

  13. The reduced basis method for the electric field integral equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, M., E-mail: fares@cerfacs.f; Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed; Maday, Y., E-mail: maday@ann.jussieu.f

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, formore » many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.« less

  14. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.

    PubMed

    Watson, Erkai; Steinhauser, Martin O

    2017-04-02

    In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms -1 . We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy-conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.

  15. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena

    PubMed Central

    Watson, Erkai; Steinhauser, Martin O.

    2017-01-01

    In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms−1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength. PMID:28772739

  16. Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter

    2018-01-01

    This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.

  17. A modified symplectic PRK scheme for seismic wave modeling

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  18. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter

    2008-04-15

    A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.

  19. Efficient computational nonlinear dynamic analysis using modal modification response technique

    NASA Astrophysics Data System (ADS)

    Marinone, Timothy; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2012-08-01

    Generally, structural systems contain nonlinear characteristics in many cases. These nonlinear systems require significant computational resources for solution of the equations of motion. Much of the model, however, is linear where the nonlinearity results from discrete local elements connecting different components together. Using a component mode synthesis approach, a nonlinear model can be developed by interconnecting these linear components with highly nonlinear connection elements. The approach presented in this paper, the Modal Modification Response Technique (MMRT), is a very efficient technique that has been created to address this specific class of nonlinear problem. By utilizing a Structural Dynamics Modification (SDM) approach in conjunction with mode superposition, a significantly smaller set of matrices are required for use in the direct integration of the equations of motion. The approach will be compared to traditional analytical approaches to make evident the usefulness of the technique for a variety of test cases.

  20. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less

  1. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P. T.

    1993-09-01

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Provingmore » this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H 1 Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.« less

  2. TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics

    DOE PAGES

    Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; ...

    2015-04-16

    Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family ofmore » molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.« less

  3. Adaptive multi-time-domain subcycling for crystal plasticity FE modeling of discrete twin evolution

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Cheng, Jiahao

    2018-02-01

    Crystal plasticity finite element (CPFE) models that accounts for discrete micro-twin nucleation-propagation have been recently developed for studying complex deformation behavior of hexagonal close-packed (HCP) materials (Cheng and Ghosh in Int J Plast 67:148-170, 2015, J Mech Phys Solids 99:512-538, 2016). A major difficulty with conducting high fidelity, image-based CPFE simulations of polycrystalline microstructures with explicit twin formation is the prohibitively high demands on computing time. High strain localization within fast propagating twin bands requires very fine simulation time steps and leads to enormous computational cost. To mitigate this shortcoming and improve the simulation efficiency, this paper proposes a multi-time-domain subcycling algorithm. It is based on adaptive partitioning of the evolving computational domain into twinned and untwinned domains. Based on the local deformation-rate, the algorithm accelerates simulations by adopting different time steps for each sub-domain. The sub-domains are coupled back after coarse time increments using a predictor-corrector algorithm at the interface. The subcycling-augmented CPFEM is validated with a comprehensive set of numerical tests. Significant speed-up is observed with this novel algorithm without any loss of accuracy that is advantageous for predicting twinning in polycrystalline microstructures.

  4. Iterative algorithms for large sparse linear systems on parallel computers

    NASA Technical Reports Server (NTRS)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  5. Damage Initiation in Two-Dimensional, Woven, Carbon-Carbon Composites

    DTIC Science & Technology

    1988-12-01

    biaxial stress interaction were themselves a function of the applied biaxial stress ratio and thus the error in measuring F12 depended on F12. To find the...the supported directions. Discretizing the model will tend to induce error in the computed nodal displacements when compared to an exact continuum...solution, however, for an increasing number of elements in the structural model, the net error should converge to zero (3:94). The inherent flexibility in

  6. A new least-squares transport equation compatible with voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J. B.; Morel, J. E.

    2013-07-01

    We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)

  7. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  8. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  9. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  10. Discontinuous finite element method for vector radiative transfer

    NASA Astrophysics Data System (ADS)

    Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping

    2017-03-01

    The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.

  11. Aeroelastic-Acoustics Simulation of Flight Systems

    NASA Technical Reports Server (NTRS)

    Gupta, kajal K.; Choi, S.; Ibrahim, A.

    2009-01-01

    This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.

  12. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.

  13. Probabilistic Structures Analysis Methods (PSAM) for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The basic formulation for probabilistic finite element analysis is described and demonstrated on a few sample problems. This formulation is based on iterative perturbation that uses the factorized stiffness on the unperturbed system as the iteration preconditioner for obtaining the solution to the perturbed problem. This approach eliminates the need to compute, store and manipulate explicit partial derivatives of the element matrices and force vector, which not only reduces memory usage considerably, but also greatly simplifies the coding and validation tasks. All aspects for the proposed formulation were combined in a demonstration problem using a simplified model of a curved turbine blade discretized with 48 shell elements, and having random pressure and temperature fields with partial correlation, random uniform thickness, and random stiffness at the root.

  14. Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element

    NASA Astrophysics Data System (ADS)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    1992-05-01

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.

  15. Granular materials interacting with thin flexible rods

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2017-04-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  16. Indirect boundary element method to simulate elastic wave propagation in piecewise irregular and flat regions

    NASA Astrophysics Data System (ADS)

    Perton, Mathieu; Contreras-Zazueta, Marcial A.; Sánchez-Sesma, Francisco J.

    2016-06-01

    A new implementation of indirect boundary element method allows simulating the elastic wave propagation in complex configurations made of embedded regions that are homogeneous with irregular boundaries or flat layers. In an older implementation, each layer of a flat layered region would have been treated as a separated homogeneous region without taking into account the flat boundary information. For both types of regions, the scattered field results from fictitious sources positioned along their boundaries. For the homogeneous regions, the fictitious sources emit as in a full-space and the wave field is given by analytical Green's functions. For flat layered regions, fictitious sources emit as in an unbounded flat layered region and the wave field is given by Green's functions obtained from the discrete wavenumber (DWN) method. The new implementation allows then reducing the length of the discretized boundaries but DWN Green's functions require much more computation time than the full-space Green's functions. Several optimization steps are then implemented and commented. Validations are presented for 2-D and 3-D problems. Higher efficiency is achieved in 3-D.

  17. Using RDF to Model the Structure and Process of Systems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Marko A.; Watkins, Jennifer H.; Bollen, Johan; Gershenson, Carlos

    Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 109 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.

  18. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  19. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-10-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  20. Multiple scattering in planetary regoliths using first-order incoherent interactions

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Markkanen, Johannes; Väisänen, Timo; Penttilä, Antti

    2017-10-01

    We consider scattering of light by a planetary regolith modeled using discrete random media of spherical particles. The size of the random medium can range from microscopic sizes of a few wavelengths to macroscopic sizes approaching infinity. The size of the particles is assumed to be of the order of the wavelength. We extend the numerical Monte Carlo method of radiative transfer and coherent backscattering (RT-CB) to the case of dense packing of particles. We adopt the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input for the RT-CB. The volume element must be larger than the wavelength but smaller than the mean free path length of incoherent extinction. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path, and utilize the reciprocity of electromagnetic waves to verify the computation. We illustrate the incoherent volume-element scattering characteristics and compare the dense-medium RT-CB to asymptotically exact results computed using the Superposition T-matrix method (STMM). We show that the dense-medium RT-CB compares favorably to the STMM results for the current cases of sparse and dense discrete random media studied. The novel method can be applied in modeling light scattering by the surfaces of asteroids and other airless solar system objects, including UV-Vis-NIR spectroscopy, photometry, polarimetry, and radar scattering problems.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.

  1. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    NASA Astrophysics Data System (ADS)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  2. Nonconforming mortar element methods: Application to spectral discretizations

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Mavriplis, Cathy; Patera, Anthony

    1988-01-01

    Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.

  3. Optical computing using optical flip-flops in Fourier processors: use in matrix multiplication and discrete linear transforms.

    PubMed

    Ando, S; Sekine, S; Mita, M; Katsuo, S

    1989-12-15

    An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.

  4. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE PAGES

    Grayver, Alexander V.; Kolev, Tzanio V.

    2015-11-01

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  5. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayver, Alexander V.; Kolev, Tzanio V.

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  6. Large-scale computation of incompressible viscous flow by least-squares finite element method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.

  7. Shape and Stress Sensing of Multilayered Composite and Sandwich Structures Using an Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.

  8. Computation of Symmetric Discrete Cosine Transform Using Bakhvalov's Algorithm

    NASA Technical Reports Server (NTRS)

    Aburdene, Maurice F.; Strojny, Brian C.; Dorband, John E.

    2005-01-01

    A number of algorithms for recursive computation of the discrete cosine transform (DCT) have been developed recently. This paper presents a new method for computing the discrete cosine transform and its inverse using Bakhvalov's algorithm, a method developed for evaluation of a polynomial at a point. In this paper, we will focus on both the application of the algorithm to the computation of the DCT-I and its complexity. In addition, Bakhvalov s algorithm is compared with Clenshaw s algorithm for the computation of the DCT.

  9. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

  10. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  11. Modelling of structural flexiblity in multibody railroad vehicle systems

    NASA Astrophysics Data System (ADS)

    Escalona, José L.; Sugiyama, Hiroyuki; Shabana, Ahmed A.

    2013-07-01

    This paper presents a review of recent research investigations on the computer modelling of flexible bodies in railroad vehicle systems. The paper will also discuss the influence of the structural flexibility of various components, including the wheelset, the truck frames, tracks, pantograph/catenary systems, and car bodies, on the dynamics of railroad vehicles. While several formulations and computer techniques for modelling structural flexibility are discussed in this paper, a special attention is paid to the floating frame of reference formulation which is widely used and leads to reduced-order finite-element models for flexible bodies by employing component modes synthesis techniques. Other formulations and numerical methods such as semi-analytical approaches, absolute nodal coordinate formulation, finite-segment method, boundary elements method, and discrete elements method are also discussed. This investigation is motivated by the fact that the structural flexibility can have a significant effect on the overall dynamics of railroad vehicles, ride comfort, vibration suppression and noise level reduction, lateral stability, track response to vehicle forces, stress analysis, wheel-rail contact forces, wear and crashworthiness.

  12. On the Development of an Efficient Parallel Hybrid Solver with Application to Acoustically Treated Aero-Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Nark, Douglas M.; Nguyen, Duc T.; Tungkahotara, Siroj

    2006-01-01

    A finite element solution to the convected Helmholtz equation in a nonuniform flow is used to model the noise field within 3-D acoustically treated aero-engine nacelles. Options to select linear or cubic Hermite polynomial basis functions and isoparametric elements are included. However, the key feature of the method is a domain decomposition procedure that is based upon the inter-mixing of an iterative and a direct solve strategy for solving the discrete finite element equations. This procedure is optimized to take full advantage of sparsity and exploit the increased memory and parallel processing capability of modern computer architectures. Example computations are presented for the Langley Flow Impedance Test facility and a rectangular mapping of a full scale, generic aero-engine nacelle. The accuracy and parallel performance of this new solver are tested on both model problems using a supercomputer that contains hundreds of central processing units. Results show that the method gives extremely accurate attenuation predictions, achieves super-linear speedup over hundreds of CPUs, and solves upward of 25 million complex equations in a quarter of an hour.

  13. Multiscale techniques for parabolic equations.

    PubMed

    Målqvist, Axel; Persson, Anna

    2018-01-01

    We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the [Formula: see text]-norm. We present numerical examples, which confirm our theoretical findings.

  14. A new finite element formulation for computational fluid dynamics. IX - Fourier analysis of space-time Galerkin/least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Shakib, Farzin; Hughes, Thomas J. R.

    1991-01-01

    A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.

  15. Distribution of breakage events in random packings of rodlike particles.

    PubMed

    Grof, Zdeněk; Štěpánek, František

    2013-07-01

    Uniaxial compaction and breakage of rodlike particle packing has been studied using a discrete element method simulation. A scaling relationship between the applied stress, the number of breakage events, and the number-mean particle length has been derived and compared with computational experiments. Based on results for a wide range of intrinsic particle strengths and initial particle lengths, it seems that a single universal relation can be used to describe the incidence of breakage events during compaction of rodlike particle layers.

  16. Hindcast Wave Information for the Great Lakes: Lake Huron. Wave Information Studies of US Coastlines

    DTIC Science & Technology

    1991-12-01

    model used in this study, DWAVE , was developed by Dr. Donald T. Resio of Offshore and Coastal Technologies, Inc. It is described in Resio and Perrie...1989) and in an unpublished contractor’s report* available from the Wave Information Study (WIS) Project Office. 17. DWAVE is a FORTRAN computer code...discrete elements. Figure 4 shows how energy is partitioned in a directional spectrum within DWAVE . As seen there, each frequency-direction increment

  17. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calio, I.; Cannizzaro, F.; Marletta, M.

    2008-07-08

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to themore » requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria.« less

  18. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    NASA Astrophysics Data System (ADS)

    Caliò, I.; Cannizzaro, F.; D'Amore, E.; Marletta, M.; Pantò, B.

    2008-07-01

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria.

  19. Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden

    2014-11-01

    The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).

  20. The ADER-DG method for seismic wave propagation and earthquake rupture dynamics

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Gabriel, Alice; Ampuero, Jean-Paul; de la Puente, Josep; Käser, Martin

    2013-04-01

    We will present the Arbitrary high-order DERivatives Discontinuous Galerkin (ADER-DG) method for solving the combined elastodynamic wave propagation and dynamic rupture problem. The ADER-DG method enables high-order accuracy in space and time while being implemented on unstructured tetrahedral meshes. A tetrahedral element discretization provides rapid and automatized mesh generation as well as geometrical flexibility. Features as mesh coarsening and local time stepping schemes can be applied to reduce computational efforts without introducing numerical artifacts. The method is well suited for parallelization and large scale high-performance computing since only directly neighboring elements exchange information via numerical fluxes. The concept of fluxes is a key ingredient of the numerical scheme as it governs the numerical dispersion and diffusion properties and allows to accommodate for boundary conditions, empirical friction laws of dynamic rupture processes, or the combination of different element types and non-conforming mesh transitions. After introducing fault dynamics into the ADER-DG framework, we will demonstrate its specific advantages in benchmarking test scenarios provided by the SCEC/USGS Spontaneous Rupture Code Verification Exercise. An important result of the benchmark is that the ADER-DG method avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping, filtering or other modifications of the produced synthetic seismograms. To demonstrate the capabilities of the proposed scheme we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes branching and curved fault segments. Furthermore, topography is respected in the discretized model to capture the surface waves correctly. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies.

  1. Discrete Element Method (DEM) Simulations using PFC3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt Evans

    Contains input scripts, background information, reduced data, and results associated with the discrete element method (DEM) simulations of interface shear tests, plate anchor pullout tests, and torpedo anchor installation and pullout tests, using the software PFC3D (v4.0).

  2. Real time optimal guidance of low-thrust spacecraft: an application of nonlinear model predictive control.

    PubMed

    Arrieta-Camacho, Juan José; Biegler, Lorenz T

    2005-12-01

    Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit.

  3. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  4. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  5. A Design of Computer Aided Instructions (CAI) for Undirected Graphs in the Discrete Math Tutorial (DMT). Part 1.

    DTIC Science & Technology

    1990-06-01

    The objective of this thesis research is to create a tutorial for teaching aspects of undirected graphs in discrete math . It is one of the submodules...of the Discrete Math Tutorial (DMT), which is a Computer Aided Instructional (CAI) tool for teaching discrete math to the Naval Academy and the

  6. A Design of Computer Aided Instructions (CAI) for Undirected Graphs in the Discrete Math Tutorial (DMT). Part 2

    DTIC Science & Technology

    1990-06-01

    The objective of this thesis research is to create a tutorial for teaching aspects of undirected graphs in discrete math . It is one of the submodules...of the Discrete Math Tutorial (DMT), which is a Computer Aided Instructional (CAI) tool for teaching discrete math to the Naval Academy and the

  7. Aircraft Engine Noise Scattering By Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  8. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  9. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing.

    PubMed

    Xu, Jason; Minin, Vladimir N

    2015-07-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.

  10. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing

    PubMed Central

    Xu, Jason; Minin, Vladimir N.

    2016-01-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377

  11. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.

    PubMed

    Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A

    2018-01-01

    Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).

  12. Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

    NASA Astrophysics Data System (ADS)

    Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran

    2018-06-01

    This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

  13. Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature

    NASA Astrophysics Data System (ADS)

    Huang, Minsheng; Li, Zhenhuan

    2015-12-01

    To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and inter-phase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them.

  14. Efficient Voronoi volume estimation for DEM simulations of granular materials under confined conditions

    PubMed Central

    Frenning, Göran

    2015-01-01

    When the discrete element method (DEM) is used to simulate confined compression of granular materials, the need arises to estimate the void space surrounding each particle with Voronoi polyhedra. This entails recurring Voronoi tessellation with small changes in the geometry, resulting in a considerable computational overhead. To overcome this limitation, we propose a method with the following features:•A local determination of the polyhedron volume is used, which considerably simplifies implementation of the method.•A linear approximation of the polyhedron volume is utilised, with intermittent exact volume calculations when needed.•The method allows highly accurate volume estimates to be obtained at a considerably reduced computational cost. PMID:26150975

  15. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  16. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  17. Metriplectic integrators for the Landau collision operator

    DOE PAGES

    Kraus, Michael; Hirvijoki, Eero

    2017-10-02

    Here, we present a novel framework for addressing the nonlinear Landau collision integral in terms of finite element and other subspace projection methods. We employ the underlying metriplectic structure of the Landau collision integral and, using a Galerkin discretization for the velocity space, we transform the infinite-dimensional system into a finite-dimensional, time-continuous metriplectic system. Temporal discretization is accomplished using the concept of discrete gradients. The conservation of energy, momentum, and particle densities, as well as the production of entropy is demonstrated algebraically for the fully discrete system. Due to the generality of our approach, the conservation properties and the monotonicmore » behavior of entropy are guaranteed for finite element discretizations, in general, independently of the mesh configuration.« less

  18. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Marte

    The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the resultsmore » to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less

  19. 3D DEM analyses of the 1963 Vajont rock slide

    NASA Astrophysics Data System (ADS)

    Boon, Chia Weng; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.

  20. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understandmore » of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less

  1. Discrete Molecular Dynamics Can Predict Helical Prestructured Motifs in Disordered Proteins

    PubMed Central

    Han, Kyou-Hoon; Dokholyan, Nikolay V.; Tompa, Péter; Kalmár, Lajos; Hegedűs, Tamás

    2014-01-01

    Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available. PMID:24763499

  2. In Praise of Numerical Computation

    NASA Astrophysics Data System (ADS)

    Yap, Chee K.

    Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.

  3. Surgical resource utilization in urban terrorist bombing: a computer simulation.

    PubMed

    Hirshberg, A; Stein, M; Walden, R

    1999-09-01

    The objective of this study was to analyze the utilization of surgical staff and facilities during an urban terrorist bombing incident. A discrete-event computer model of the emergency room and related hospital facilities was constructed and implemented, based on cumulated data from 12 urban terrorist bombing incidents in Israel. The simulation predicts that the admitting capacity of the hospital depends primarily on the number of available surgeons and defines an optimal staff profile for surgeons, residents, and trauma nurses. The major bottlenecks in the flow of critical casualties are the shock rooms and the computed tomographic scanner but not the operating rooms. The simulation also defines the number of reinforcement staff needed to treat noncritical casualties and shows that radiology is the major obstacle to the flow of these patients. Computer simulation is an important new tool for the optimization of surgical service elements for a multiple-casualty situation.

  4. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    NASA Technical Reports Server (NTRS)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  5. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  6. State-Transition Structures in Physics and in Computation

    NASA Astrophysics Data System (ADS)

    Petri, C. A.

    1982-12-01

    In order to establish close connections between physical and computational processes, it is assumed that the concepts of “state” and of “transition” are acceptable both to physicists and to computer scientists, at least in an informal way. The aim of this paper is to propose formal definitions of state and transition elements on the basis of very low level physical concepts in such a way that (1) all physically possible computations can be described as embedded in physical processes; (2) the computational aspects of physical processes can be described on a well-defined level of abstraction; (3) the gulf between the continuous models of physics and the discrete models of computer science can be bridged by simple mathematical constructs which may be given a physical interpretation; (4) a combinatorial, nonstatistical definition of “information” can be given on low levels of abstraction which may serve as a basis to derive higher-level concepts of information, e.g., by a statistical or probabilistic approach. Conceivable practical consequences are discussed.

  7. A parallel computer implementation of fast low-rank QR approximation of the Biot-Savart law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D A; Fasenfest, B J; Stowell, M L

    2005-11-07

    In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law on parallel computers. It is assumed that the known current density and the unknown magnetic field are both expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing distant interactions being low rank and having a compressed QR representation.more » The matrix partitioning is determined by the number of processors, the rank of each block (i.e. the compression) is determined by the specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present computational results for large-scale computations.« less

  8. Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-06-01

    Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semi-discrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re → ∞ their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.

  9. Particle models for discrete element modeling of bulk grain properties of wheat kernels

    USDA-ARS?s Scientific Manuscript database

    Recent research has shown the potential of discrete element method (DEM) in simulating grain flow in bulk handling systems. Research has also revealed that simulation of grain flow with DEM requires establishment of appropriate particle models for each grain type. This research completes the three-p...

  10. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudencio, E.; Candel, A.; Ge, L.

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less

  11. Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2004-12-06

    We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase ofmore » the electric field vector components are presented and discussed.« less

  12. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  13. Dual Formulations of Mixed Finite Element Methods with Applications

    PubMed Central

    Gillette, Andrew; Bajaj, Chandrajit

    2011-01-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. PMID:21984841

  14. Fast transient digitizer

    DOEpatents

    Villa, Francesco

    1982-01-01

    Method and apparatus for sequentially scanning a plurality of target elements with an electron scanning beam modulated in accordance with variations in a high-frequency analog signal to provide discrete analog signal samples representative of successive portions of the analog signal; coupling the discrete analog signal samples from each of the target elements to a different one of a plurality of high speed storage devices; converting the discrete analog signal samples to equivalent digital signals; and storing the digital signals in a digital memory unit for subsequent measurement or display.

  15. Composite solvers for linear saddle point problems arising from the incompressible Stokes equations with highly heterogeneous viscosity structure

    NASA Astrophysics Data System (ADS)

    Sanan, P.; Schnepp, S. M.; May, D.; Schenk, O.

    2014-12-01

    Geophysical applications require efficient forward models for non-linear Stokes flow on high resolution spatio-temporal domains. The bottleneck in applying the forward model is solving the linearized, discretized Stokes problem which takes the form of a large, indefinite (saddle point) linear system. Due to the heterogeniety of the effective viscosity in the elliptic operator, devising effective preconditioners for saddle point problems has proven challenging and highly problem-dependent. Nevertheless, at least three approaches show promise for preconditioning these difficult systems in an algorithmically scalable way using multigrid and/or domain decomposition techniques. The first is to work with a hierarchy of coarser or smaller saddle point problems. The second is to use the Schur complement method to decouple and sequentially solve for the pressure and velocity. The third is to use the Schur decomposition to devise preconditioners for the full operator. These involve sub-solves resembling inexact versions of the sequential solve. The choice of approach and sub-methods depends crucially on the motivating physics, the discretization, and available computational resources. Here we examine the performance trade-offs for preconditioning strategies applied to idealized models of mantle convection and lithospheric dynamics, characterized by large viscosity gradients. Due to the arbitrary topological structure of the viscosity field in geodynamical simulations, we utilize low order, inf-sup stable mixed finite element spatial discretizations which are suitable when sharp viscosity variations occur in element interiors. Particular attention is paid to possibilities within the decoupled and approximate Schur complement factorization-based monolithic approaches to leverage recently-developed flexible, communication-avoiding, and communication-hiding Krylov subspace methods in combination with `heavy' smoothers, which require solutions of large per-node sub-problems, well-suited to solution on hybrid computational clusters. To manage the combinatorial explosion of solver options (which include hybridizations of all the approaches mentioned above), we leverage the modularity of the PETSc library.

  16. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

    2017-12-01

    A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

  17. The dimension split element-free Galerkin method for three-dimensional potential problems

    NASA Astrophysics Data System (ADS)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-06-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  18. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  19. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-04-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  20. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu

    2018-04-01

    In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog ⁡ M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.

  1. The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1992-01-01

    A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.

  2. Numerical sedimentation particle-size analysis using the Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.

    2015-12-01

    Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

  3. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.

  4. 3D Discrete element approach to the problem on abutment pressure in a gently dipping coal seam

    NASA Astrophysics Data System (ADS)

    Klishin, S. V.; Revuzhenko, A. F.

    2017-09-01

    Using the discrete element method, the authors have carried out 3D implementation of the problem on strength loss in surrounding rock mass in the vicinity of a production heading and on abutment pressure in a gently dripping coal seam. The calculation of forces at the contacts between particles accounts for friction, rolling resistance and viscosity. Between discrete particles modeling coal seam, surrounding rock mass and broken rocks, an elastic connecting element is introduced to allow simulating coherent materials. The paper presents the kinematic patterns of rock mass deformation, stresses in particles and the graph of the abutment pressure behavior in the coal seam.

  5. A modal approach based on perfectly matched layers for the forced response of elastic open waveguides

    NASA Astrophysics Data System (ADS)

    Gallezot, M.; Treyssède, F.; Laguerre, L.

    2018-03-01

    This paper investigates the computation of the forced response of elastic open waveguides with a numerical modal approach based on perfectly matched layers (PML). With a PML of infinite thickness, the solution can theoretically be expanded as a discrete sum of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), the waveguide cross-section is discretized and the PML must be truncated to a finite thickness. This truncation transforms the continuous sum into a discrete set of PML modes. To guarantee the uniqueness of the numerical solution of the forced response problem, an orthogonality relationship is proposed. This relationship is applicable to any type of modes (trapped, leaky and PML modes) and hence allows the numerical solution to be expanded on a discrete sum in a convenient manner. This also leads to an expression for the modal excitability valid for leaky modes. The physical relevance of each type of mode for the solution is clarified through two numerical test cases, a homogeneous medium and a circular bar waveguide example, excited by a point source. The former is favourably compared to a transient analytical solution, showing that PML modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows that the PML mode contribution yields the long-term diffraction phenomenon whereas the leaky mode contribution prevails closer to the source. The leaky mode contribution is shown to remain accurate even with a relatively small PML thickness, hence reducing the computational cost. This is of particular interest for solving three-dimensional waveguide problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is handled in a third numerical example by considering a buried square bar.

  6. Novel numerical techniques for magma dynamics

    NASA Astrophysics Data System (ADS)

    Rhebergen, S.; Katz, R. F.; Wathen, A.; Alisic, L.; Rudge, J. F.; Wells, G.

    2013-12-01

    We discuss the development of finite element techniques and solvers for magma dynamics computations. These are implemented within the FEniCS framework. This approach allows for user-friendly, expressive, high-level code development, but also provides access to powerful, scalable numerical solvers and a large family of finite element discretisations. With the recent addition of dolfin-adjoint, FeniCS supports automated adjoint and tangent-linear models, enabling the rapid development of Generalised Stability Analysis. The ability to easily scale codes to three dimensions with large meshes, and/or to apply intricate adjoint calculations means that efficiency of the numerical algorithms is vital. We therefore describe our development and analysis of preconditioners designed specifically for finite element discretizations of equations governing magma dynamics. The preconditioners are based on Elman-Silvester-Wathen methods for the Stokes equation, and we extend these to flows with compaction. Our simulations are validated by comparison of results with laboratory experiments on partially molten aggregates.

  7. A rationale for human operator pulsive control behavior

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1979-01-01

    When performing tracking tasks which involve demanding controlled elements such as those with K/s-squared dynamics, the human operator often develops discrete or pulsive control outputs. A dual-loop model of the human operator is discussed, the dominant adaptive feature of which is the explicit appearance of an internal model of the manipulator-controlled element dynamics in an inner feedback loop. Using this model, a rationale for pulsive control behavior is offered which is based upon the assumption that the human attempts to reduce the computational burden associated with time integration of sensory inputs. It is shown that such time integration is a natural consequence of having an internal representation of the K/s-squared-controlled element dynamics in the dual-loop model. A digital simulation is discussed in which a modified form of the dual-loop model is shown to be capable of producing pulsive control behavior qualitively comparable to that obtained in experiment.

  8. Modeling of convection phenomena in Bridgman-Stockbarger crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Eraslan, A. H.; Sheu, J. Z.

    1985-01-01

    Thermal convection phenomena in a vertically oriented Bridgman-Stockbarger apparatus were modeled by computer simulations for different gravity conditions, ranging from earth conditions to extremely low gravity, approximate space conditions. The modeling results were obtained by the application of a state-of-the art, transient, multi-dimensional, completely densimetrically coupled, discrete-element computational model which was specifically developed for the simulation of flow, temperature, and species concentration conditions in two-phase (solid-liquid) systems. The computational model was applied to the simulation of the flow and the thermal conditions associated with the convection phenomena in a modified Germanium-Silicon charge enclosed in a stationary fused-silica ampoule. The results clearly indicated that the gravitational field strength influences the characteristics of the coherent vortical flow patterns, interface shape and position, maximum melt velocity, and interfacial normal temperature gradient.

  9. Eigenmode computation of cavities with perturbed geometry using matrix perturbation methods applied on generalized eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula

    2018-07-01

    Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.

  10. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  11. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Stanescu, D.; Hussaini, M. Y.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far field. The effects of non-uniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing. 0 2002 Elsevier Science Ltd. All rights reserved.

  12. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  13. Discrete element weld model, phase 2

    NASA Technical Reports Server (NTRS)

    Prakash, C.; Samonds, M.; Singhal, A. K.

    1987-01-01

    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.

  14. Microscopic analysis of Hopper flow with ellipsoidal particles

    NASA Astrophysics Data System (ADS)

    Liu, Sida; Zhou, Zongyan; Zou, Ruiping; Pinson, David; Yu, Aibing

    2013-06-01

    Hoppers are widely used in process industries. With such widespread application, difficulties in achieving desired operational behaviors have led to extensive experimental and mathematical studies in the past decades. Particularly, the discrete element method has become one of the most important simulation tools for design and analysis. So far, most studies are on spherical particles for computational convenience. In this work, ellipsoidal particles are used as they can represent a large variation of particle shapes. Hopper flow with ellipsoidal particles is presented highlighting the effect of particle shape on the microscopic properties.

  15. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  16. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    NASA Astrophysics Data System (ADS)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  17. A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics

    ERIC Educational Resources Information Center

    Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.

    2005-01-01

    This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…

  18. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  19. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOEpatents

    Blacker, Teddy D.

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  20. Vortex-scalar element calculations of a diffusion flame stabilized on a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Ghoniem, Ahmed F.; Givi, Peyman

    1987-01-01

    The vortex-scalar element method, a scheme which utilizes vortex elements to discretize the region of high vorticity and scalar elements to represent species or temperature fields, is utilized in the numerical simulations of a two-dimensional reacting mixing layer. Computations are performed for a diffusion flame at high Reynolds and Peclet numbers without resorting to turbulence models. In the nonreacting flow, the mean and fluctuation profiles of a conserved scalar show good agreement with experimental measurements. Results for the reacting flow indicate that for temperature independent kinetics, the chemical reaction begins immediately downstream of the splitter plate where mixing starts. Results for the reacting flow with Arrhenius kinetics show an ignition delay, which depends on reactant temperature, before significant chemical reaction occurs. Harmonic forcing changes the structure of the layer, and concomitantly the rates of mixing and reaction, in accordance with experimental results. Strong stretch within the braids in the nonequilibrium kinetics case causes local flame quenching due to the temperature drop associated with the large convective fluxes.

  1. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  2. 3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope

    NASA Astrophysics Data System (ADS)

    Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping

    2018-05-01

    There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.

  3. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.

  4. Sensitivity Equation Derivation for Transient Heat Transfer Problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson

    2004-01-01

    The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.

  5. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  6. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  7. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  8. Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack

    2013-01-01

    Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.

  9. Real-time haptic cutting of high-resolution soft tissues.

    PubMed

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  10. A comparative study between two smoothing strategies for the simulation of contact with large sliding

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Magnain, Benoît; Chevaugeon, Nicolas

    2013-05-01

    The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar elements (Fischer and Wriggers, Comput Methods Appl Mech Eng 195:5020-5036, 2006; McDevitt and Laursen, Int J Numer Methods Eng 48:1525-1547, 2000; Puso and Laursen, Comput Methods Appl Mech Eng 93:601-629, 2004), smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) (Belytschko et al., Int J Numer Methods Eng 55:101-125, 2002; Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method, ASME, New York, 1982; Legrand, Modèles de prediction de l'interaction rotor/stator dans un moteur d'avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes, 2005; Muñoz, Comput Methods Appl Mech Eng 197:979-993, 2008; Wriggers and Krstulovic-Opara, J Appl Math Mech (ZAMM) 80:77-80, 2000) and, the use of isogeometric analysis (Temizer et al., Comput Methods Appl Mech Eng 200:1100-1112, 2011; Hughes et al., Comput Methods Appl Mech Eng 194:4135-4195, 2005; de Lorenzis et al., Int J Numer Meth Eng, in press, 2011). In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management (Feng et al., Comput Mech 36:375-383, 2005). A comparative study focusing on the pros and cons of each method regarding geometrical precision and numerical stability for contact solution is proposed. The scope of this study is limited to 2D contact problems for which we consider several types of finite elements. Test cases are given in order to illustrate this comparative study.

  11. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.

  12. Wing Shape Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2015-01-01

    A new two step theory is investigated for predicting the deflection and slope of an entire structure using strain measurements at discrete locations. In the first step, a measured strain is fitted using a piecewise least squares curve fitting method together with the cubic spline technique. These fitted strains are integrated twice to obtain deflection data along the fibers. In the second step, computed deflection along the fibers are combined with a finite element model of the structure in order to extrapolate the deflection and slope of the entire structure through the use of System Equivalent Reduction and Expansion Process. The theory is first validated on a computational model, a cantilevered rectangular wing. It is then applied to test data from a cantilevered swept wing model.

  13. An efficient approach to the analysis of rail surface irregularities accounting for dynamic train-track interaction and inelastic deformations

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-11-01

    A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.

  14. Computation of aeroelastic characteristics and stress-strained state of parachutes

    NASA Astrophysics Data System (ADS)

    Dneprov, Igor'v.

    The paper presents computation results of the stress-strained state and aeroelastic characteristics of different types of parachutes in the process of their interaction with a flow. Simulation of the aerodynamic part of the aeroelastic problem is based on the discrete vortex method, while the elastic part of the problem is solved by employing either the finite element method, or the finite difference method. The research covers the following problems of the axisymmetric parachutes dynamic aeroelasticity: parachute inflation, forebody influence on the aerodynamic characteristics of the object-parachute system, parachute disreefing, parachute inflation in the presence of the engagement parachute. The paper also presents the solution of the spatial problem of static aeroelasticity for a single-envelope ram-air parachute. Some practical recommendations are suggested.

  15. A homogenization-based quasi-discrete method for the fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.

    2014-05-01

    The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.

  16. A priori discretization error metrics for distributed hydrologic modeling applications

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Tolson, Bryan A.; Craig, James R.; Shafii, Mahyar

    2016-12-01

    Watershed spatial discretization is an important step in developing a distributed hydrologic model. A key difficulty in the spatial discretization process is maintaining a balance between the aggregation-induced information loss and the increase in computational burden caused by the inclusion of additional computational units. Objective identification of an appropriate discretization scheme still remains a challenge, in part because of the lack of quantitative measures for assessing discretization quality, particularly prior to simulation. This study proposes a priori discretization error metrics to quantify the information loss of any candidate discretization scheme without having to run and calibrate a hydrologic model. These error metrics are applicable to multi-variable and multi-site discretization evaluation and provide directly interpretable information to the hydrologic modeler about discretization quality. The first metric, a subbasin error metric, quantifies the routing information loss from discretization, and the second, a hydrological response unit (HRU) error metric, improves upon existing a priori metrics by quantifying the information loss due to changes in land cover or soil type property aggregation. The metrics are straightforward to understand and easy to recode. Informed by the error metrics, a two-step discretization decision-making approach is proposed with the advantage of reducing extreme errors and meeting the user-specified discretization error targets. The metrics and decision-making approach are applied to the discretization of the Grand River watershed in Ontario, Canada. Results show that information loss increases as discretization gets coarser. Moreover, results help to explain the modeling difficulties associated with smaller upstream subbasins since the worst discretization errors and highest error variability appear in smaller upstream areas instead of larger downstream drainage areas. Hydrologic modeling experiments under candidate discretization schemes validate the strong correlation between the proposed discretization error metrics and hydrologic simulation responses. Discretization decision-making results show that the common and convenient approach of making uniform discretization decisions across the watershed performs worse than the proposed non-uniform discretization approach in terms of preserving spatial heterogeneity under the same computational cost.

  17. Nonlinear initial-boundary value solutions by the finite element method. [for Navier-Stokes equations of two dimensional flow

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    The finite-element method is used to establish a numerical solution algorithm for the Navier-Stokes equations for two-dimensional flows of a viscous compressible fluid. Numerical experiments confirm the advection property for the finite-element equivalent of the nonlinear convection term for both unidirectional and recirculating flowfields. For linear functionals, the algorithm demonstrates good accuracy using coarse discretizations and h squared convergence with discretization refinement.

  18. New discretization and solution techniques for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.

    1983-01-01

    Several topics arising in the finite element solution of the incompressible Navier-Stokes equations are considered. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. The role of artificial viscosity in viscous flow calculations is studied, emphasizing work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some modifications are mentioned.

  19. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  20. Domain decomposition methods for nonconforming finite element spaces of Lagrange-type

    NASA Technical Reports Server (NTRS)

    Cowsar, Lawrence C.

    1993-01-01

    In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.

  1. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Several stabilized discretization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin discretization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobian linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. These variants have been implemented in the "ELF" library for which example calculations will be shown. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Some prevalent limiting strategies will be reviewed. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc. will be addressed as needed.

  2. A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation

    PubMed Central

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831

  3. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.

    PubMed

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.

  4. Hysteretic Models Considering Axial-Shear-Flexure Interaction

    NASA Astrophysics Data System (ADS)

    Ceresa, Paola; Negrisoli, Giorgio

    2017-10-01

    Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.

  5. Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    DTIC Science & Technology

    2016-08-04

    soil type. The modeling approach is based on (i) a seamless integration of multibody dynamics and discrete element method (DEM) solvers, and (ii...ensure that the vehicle follows a desired path. The soil is modeled as a Discrete Element Model (DEM) with a general cohesive material model that is

  6. Computation of Discrete Slanted Hole Film Cooling Flow Using the Navier-Stokes Equations.

    DTIC Science & Technology

    1982-07-01

    7 -121 796 COMPUTATION OF DISCRETE SLANTED HOLE FILM COOLING FLOW i/ i USING THE NAVIER- ..(U) CIENTIFIC RESEARCH ASSOCIATES INC GLASTONBURY CT H...V U U6-IMSA P/ & .OS,-TR. 82-1004 Report R82-910002-4 / COMPUTATION OF DISCRETE SLAMED HOLE FILM COOLING FLOW ( USING THE XAVIER-STOKES EQUATIONS H...CL SIT %GE (f.en Dae Entere)04 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO] S. RECIPIENT’S CATALOG NUMBERAO

  7. Unified viscoelasticity: Applying discrete element models to soft tissues with two characteristic times.

    PubMed

    Anssari-Benam, Afshin; Bucchi, Andrea; Bader, Dan L

    2015-09-18

    Discrete element models have often been the primary tool in investigating and characterising the viscoelastic behaviour of soft tissues. However, studies have employed varied configurations of these models, based on the choice of the number of elements and the utilised formation, for different subject tissues. This approach has yielded a diverse array of viscoelastic models in the literature, each seemingly resulting in different descriptions of viscoelastic constitutive behaviour and/or stress-relaxation and creep functions. Moreover, most studies do not apply a single discrete element model to characterise both stress-relaxation and creep behaviours of tissues. The underlying assumption for this disparity is the implicit perception that the viscoelasticity of soft tissues cannot be described by a universal behaviour or law, resulting in the lack of a unified approach in the literature based on discrete element representations. This paper derives the constitutive equation for different viscoelastic models applicable to soft tissues with two characteristic times. It demonstrates that all possible configurations exhibit a unified and universal behaviour, captured by a single constitutive relationship between stress, strain and time as: σ+Aσ̇+Bσ¨=Pε̇+Qε¨. The ensuing stress-relaxation G(t) and creep J(t) functions are also unified and universal, derived as [Formula: see text] and J(t)=c2+(ε0-c2)e(-PQt)+σ0Pt, respectively. Application of these relationships to experimental data is illustrated for various tissues including the aortic valve, ligament and cerebral artery. The unified model presented in this paper may be applied to all tissues with two characteristic times, obviating the need for employing varied configurations of discrete element models in preliminary investigation of the viscoelastic behaviour of soft tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The dynamics of a forced coupled network of active elements

    NASA Astrophysics Data System (ADS)

    Parks, Helen F.; Ermentrout, Bard; Rubin, Jonathan E.

    2011-03-01

    This paper presents the derivation and analysis of mathematical models motivated by the experimental induction of contour phosphenes in the retina. First, a spatially discrete chain of periodically forced coupled oscillators is considered via reduction to a chain of scalar phase equations. Each isolated oscillator locks in a 1:2 manner with the forcing so that there is intrinsic bistability, with activity peaking on either the odd or even cycles of the forcing. If half the chain is started on the odd cycle and half on the even cycle (“split state”), then with sufficiently strong coupling, a wave can be produced that can travel in either direction due to symmetry. Numerical and analytic methods are employed to determine the size of coupling necessary for the split state solution to destabilize such that waves appear. Taking a continuum limit, we reduce the chain to a partial differential equation. We use a Melnikov function to compute, to leading order, the speed of the traveling wave solution to the partial differential equation as a function of the form of coupling and the forcing parameters and compare our result to the numerically computed discrete and continuum wave speeds.

  9. A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.

    PubMed

    Fedele, Marco; Faggiano, Elena; Dedè, Luca; Quarteroni, Alfio

    2017-10-01

    In this paper, we propose a full computational framework to simulate the hemodynamics in the aorta including the valve. Closed and open valve surfaces, as well as the lumen aorta, are reconstructed directly from medical images using new ad hoc algorithms, allowing a patient-specific simulation. The fluid dynamics problem that accounts from the movement of the valve is solved by a new 3D-0D fluid-structure interaction model in which the valve surface is implicitly represented through level set functions, yielding, in the Navier-Stokes equations, a resistive penalization term enforcing the blood to adhere to the valve leaflets. The dynamics of the valve between its closed and open position is modeled using a reduced geometric 0D model. At the discrete level, a finite element formulation is used and the SUPG stabilization is extended to include the resistive term in the Navier-Stokes equations. Then, after time discretization, the 3D fluid and 0D valve models are coupled through a staggered approach. This computational framework, applied to a patient-specific geometry and data, allows to simulate the movement of the valve, the sharp pressure jump occurring across the leaflets, and the blood flow pattern inside the aorta.

  10. A microstructural lattice model for strain oriented problems: A combined Monte Carlo finite element technique

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1987-01-01

    A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.

  11. An efficient numerical model for multicomponent compressible flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Firoozabadi, Abbas

    2014-12-01

    An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant-Freidricks-Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20-130 times in 2D. In 3D, one may expect even a higher computational efficiency.

  12. SIGMA--A Graphical Approach to Teaching Simulation.

    ERIC Educational Resources Information Center

    Schruben, Lee W.

    1992-01-01

    SIGMA (Simulation Graphical Modeling and Analysis) is a computer graphics environment for building, testing, and experimenting with discrete event simulation models on personal computers. It uses symbolic representations (computer animation) to depict the logic of large, complex discrete event systems for easier understanding and has proven itself…

  13. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  14. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations

    NASA Astrophysics Data System (ADS)

    Albaba, Adel; Lambert, Stéphane; Faug, Thierry

    2018-05-01

    The present paper investigates the mean impact force exerted by a granular mass flowing down an incline and impacting a rigid wall of semi-infinite height. First, this granular flow-wall interaction problem is modeled by numerical simulations based on the discrete element method (DEM). These DEM simulations allow computing the depth-averaged quantities—thickness, velocity, and density—of the incoming flow and the resulting mean force on the rigid wall. Second, that problem is described by a simple analytic solution based on a depth-averaged approach for a traveling compressible shock wave, whose volume is assumed to shrink into a singular surface, and which coexists with a dead zone. It is shown that the dead-zone dynamics and the mean force on the wall computed from DEM can be reproduced reasonably well by the analytic solution proposed over a wide range of slope angle of the incline. These results are obtained by feeding the analytic solution with the thickness, the depth-averaged velocity, and the density averaged over a certain distance along the incline rather than flow quantities taken at a singular section before the jump, thus showing that the assumption of a shock wave volume shrinking into a singular surface is questionable. The finite length of the traveling wave upstream of the grains piling against the wall must be considered. The sensitivity of the model prediction to that sampling length remains complicated, however, which highlights the need of further investigation about the properties and the internal structure of the propagating granular wave.

  15. Efficient Computation of Atmospheric Flows with Tempest: Development of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2015-12-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  16. Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.

    PubMed

    Hua, Wei; Wang, Jiasong; Zhao, Jian

    2014-01-01

    Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Phase computations and phase models for discrete molecular oscillators.

    PubMed

    Suvak, Onder; Demir, Alper

    2012-06-11

    Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.

  18. Phase computations and phase models for discrete molecular oscillators

    PubMed Central

    2012-01-01

    Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330

  19. Application of wall-models to discontinuous Galerkin LES

    NASA Astrophysics Data System (ADS)

    Frère, Ariane; Carton de Wiart, Corentin; Hillewaert, Koen; Chatelain, Philippe; Winckelmans, Grégoire

    2017-08-01

    Wall-resolved Large-Eddy Simulations (LES) are still limited to moderate Reynolds number flows due to the high computational cost required to capture the inner part of the boundary layer. Wall-modeled LES (WMLES) provide more affordable LES by modeling the near-wall layer. Wall function-based WMLES solve LES equations up to the wall, where the coarse mesh resolution essentially renders the calculation under-resolved. This makes the accuracy of WMLES very sensitive to the behavior of the numerical method. Therefore, best practice rules regarding the use and implementation of WMLES cannot be directly transferred from one methodology to another regardless of the type of discretization approach. Whilst numerous studies present guidelines on the use of WMLES, there is a lack of knowledge for discontinuous finite-element-like high-order methods. Incidentally, these methods are increasingly used on the account of their high accuracy on unstructured meshes and their strong computational efficiency. The present paper proposes best practice guidelines for the use of WMLES in these methods. The study is based on sensitivity analyses of turbulent channel flow simulations by means of a Discontinuous Galerkin approach. It appears that good results can be obtained without the use of a spatial or temporal averaging. The study confirms the importance of the wall function input data location and suggests to take it at the bottom of the second off-wall element. These data being available through the ghost element, the suggested method prevents the loss of computational scalability experienced in unstructured WMLES. The study also highlights the influence of the polynomial degree used in the wall-adjacent element. It should preferably be of even degree as using polynomials of degree two in the first off-wall element provides, surprisingly, better results than using polynomials of degree three.

  20. Parallel multiscale simulations of a brain aneurysm

    PubMed Central

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em

    2012-01-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work. PMID:23734066

  1. Parallel multiscale simulations of a brain aneurysm.

    PubMed

    Grinberg, Leopold; Fedosov, Dmitry A; Karniadakis, George Em

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr . The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.

  2. Parallel multiscale simulations of a brain aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm.more » The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.« less

  3. New formulation of the discrete element method

    NASA Astrophysics Data System (ADS)

    Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon

    2018-01-01

    A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.

  4. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Helenbrook, B. T.

    2005-01-01

    This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

  5. Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, A. K. H.; Ng, P. L.; Lam, J. Y. K.

    2010-05-21

    Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete. In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip behaviour. However, there is very limited research on how to simulate the dowel action of discrete reinforcing bars. Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in concrete is developed. The model features the derivation of dowel stiffness matrix based on beam-on-elastic-foundation theory and the direct assemblage ofmore » dowel stiffness into the concrete element stiffness matrices. The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness formulation. Deep beams tested in the literature are analysed and it is found that the incorporation of dowel action model improves the accuracy of analysis.« less

  6. A discrete element model for the investigation of the geometrically nonlinear behaviour of solids

    NASA Astrophysics Data System (ADS)

    Ockelmann, Felix; Dinkler, Dieter

    2018-07-01

    A three-dimensional discrete element model for elastic solids with large deformations is presented. Therefore, an discontinuum approach is made for solids. The properties of elastic material are transferred analytically into the parameters of a discrete element model. A new and improved octahedron gap-filled face-centred cubic close packing of spheres is split into unit cells, to determine the parameters of the discrete element model. The symmetrical unit cells allow a model with equal shear components in each contact plane and fully isotropic behaviour for Poisson's ratio above 0. To validate and show the broad field of applications of the new model, the pin-pin Euler elastica is presented and investigated. The thin and sensitive structure tends to undergo large deformations and rotations with a highly geometrically nonlinear behaviour. This behaviour of the elastica can be modelled and is compared to reference solutions. Afterwards, an improved more realistic simulation of the elastica is presented which softens secondary buckling phenomena. The model is capable of simulating solids with small strains but large deformations and a strongly geometrically nonlinear behaviour, taking the shear stiffness of the material into account correctly.

  7. EAC: A program for the error analysis of STAGS results for plates

    NASA Technical Reports Server (NTRS)

    Sistla, Rajaram; Thurston, Gaylen A.; Bains, Nancy Jane C.

    1989-01-01

    A computer code is now available for estimating the error in results from the STAGS finite element code for a shell unit consisting of a rectangular orthotropic plate. This memorandum contains basic information about the computer code EAC (Error Analysis and Correction) and describes the connection between the input data for the STAGS shell units and the input data necessary to run the error analysis code. The STAGS code returns a set of nodal displacements and a discrete set of stress resultants; the EAC code returns a continuous solution for displacements and stress resultants. The continuous solution is defined by a set of generalized coordinates computed in EAC. The theory and the assumptions that determine the continuous solution are also outlined in this memorandum. An example of application of the code is presented and instructions on its usage on the Cyber and the VAX machines have been provided.

  8. 7 CFR 1753.80 - Minor construction procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... same calendar year is limited to the following amounts for the following discrete categories of minor...) A single minor construction project may be a discrete element of a somewhat larger overall project... placement project. It cannot be a portion, by dividing into smaller segments, of a discrete major...

  9. Numerical stability analysis of two-dimensional solute transport along a discrete fracture in a porous rock matrix

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Kolditz, Olaf

    2015-07-01

    This work reports numerical stability conditions in two-dimensional solute transport simulations including discrete fractures surrounded by an impermeable rock matrix. We use an advective-dispersive problem described in Tang et al. (1981) and examine the stability of the Crank-Nicolson Galerkin finite element method (CN-GFEM). The stability conditions are analyzed in terms of the spatial discretization length perpendicular to the fracture, the flow velocity, the diffusion coefficient, the matrix porosity, the fracture aperture, and the fracture longitudinal dispersivity. In addition, we verify applicability of the recently developed finite element method-flux corrected transport (FEM-FCT) method by Kuzmin () to suppress oscillations in the hybrid system, with a comparison to the commonly utilized Streamline Upwinding/Petrov-Galerkin (SUPG) method. Major findings of this study are (1) the mesh von Neumann number (Fo) ≥ 0.373 must be satisfied to avoid undershooting in the matrix, (2) in addition to an upper bound, the Courant number also has a lower bound in the fracture in cases of low dispersivity, and (3) the FEM-FCT method can effectively suppress the oscillations in both the fracture and the matrix. The results imply that, in cases of low dispersivity, prerefinement of a numerical mesh is not sufficient to avoid the instability in the hybrid system if a problem involves evolutionary flow fields and dynamic material parameters. Applying the FEM-FCT method to such problems is recommended if negative concentrations cannot be tolerated and computing time is not a strong issue.

  10. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).

  11. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    PubMed Central

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005

  12. SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.

    1999-03-01

    This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples ofmore » the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.« less

  13. Weak Galerkin method for the Biot’s consolidation model

    DOE PAGES

    Hu, Xiaozhe; Mu, Lin; Ye, Xiu

    2017-08-23

    In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less

  14. Weak Galerkin method for the Biot’s consolidation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaozhe; Mu, Lin; Ye, Xiu

    In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less

  15. Domain decomposition for a mixed finite element method in three dimensions

    USGS Publications Warehouse

    Cai, Z.; Parashkevov, R.R.; Russell, T.F.; Wilson, J.D.; Ye, X.

    2003-01-01

    We consider the solution of the discrete linear system resulting from a mixed finite element discretization applied to a second-order elliptic boundary value problem in three dimensions. Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic problem by eliminating the pressure through the use of substructures of the domain. The practicality of the reduction relies on a local basis, presented here, for the divergence-free subspace of the velocity space. We consider additive and multiplicative domain decomposition methods for solving the reduced elliptic problem, and their uniform convergence is established.

  16. New discretization and solution techniques for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.

    1983-01-01

    This paper considers several topics arising in the finite element solution of the incompressible Navier-Stokes equations. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. Following this, the role of artificial viscosity in viscous flow calculations is studied, emphasizing recent work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some recent modifications are mentioned.

  17. Asteroid orbital inversion using uniform phase-space sampling

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.

    2014-07-01

    We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.

  18. An efficient fully-implicit multislope MUSCL method for multiphase flow with gravity in discrete fractured media

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-06-01

    The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.

  19. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  20. Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components

    PubMed Central

    Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.

    2015-01-01

    This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an ‘agent’, meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory. PMID:26452000

  1. A symplectic integration method for elastic filaments

    NASA Astrophysics Data System (ADS)

    Ladd, Tony; Misra, Gaurav

    2009-03-01

    Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.

  2. Category representations in the brain are both discretely localized and widely distributed.

    PubMed

    Shehzad, Zarrar; McCarthy, Gregory

    2018-06-01

    Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.

  3. Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components.

    PubMed

    Gardiner, Bruce S; Wong, Kelvin K L; Joldes, Grand R; Rich, Addison J; Tan, Chin Wee; Burgess, Antony W; Smith, David W

    2015-10-01

    This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.

  4. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  5. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Loubère, Raphaël

    2016-08-01

    In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.

  6. A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.

    2015-09-01

    In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.

  7. Micromechanical Aspects of Hydraulic Fracturing Processes

    NASA Astrophysics Data System (ADS)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.

  8. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbold, E. B.; Walton, O.; Homel, M. A.

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulationsmore » emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.« less

  9. The Clemson University, University Research Initiative Program in Discrete Mathematics and Computational Analysis

    DTIC Science & Technology

    1990-03-01

    Assmus, E. F., and J. D. Key, "Affine and projective planes", to appear in Discrete Math (Special Coding Theory Issue). 5. Assumus, E. F. and J. D...S. Locke, ’The subchromatic number of a graph", Discrete Math . 74 (1989)33-49. 24. Hedetniemi, S. T., and T. V. Wimer, "K-terminal recursive families...34Designs and geometries with Cayley", submitted to Journal of Symbolic Computation. 34. Key, J. D., "Regular sets in geometries", Annals of Discrete Math . 37

  10. Geometry of discrete quantum computing

    NASA Astrophysics Data System (ADS)

    Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung

    2013-05-01

    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.

  11. The discrete adjoint method for parameter identification in multibody system dynamics.

    PubMed

    Lauß, Thomas; Oberpeilsteiner, Stefan; Steiner, Wolfgang; Nachbagauer, Karin

    2018-01-01

    The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method , where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.

  12. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  13. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE PAGES

    Molzahn, Daniel K.

    2017-03-15

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  14. Energy harvesting devices, systems, and related methods

    DOEpatents

    Kotter, Dale K.

    2016-10-18

    Energy harvesting devices include a substrate and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to collect energy in the visible and infrared light spectra and to reradiate energy having a wavelength in the range of about 0.8 .mu.m to about 0.9 .mu.m. The resonance elements are arranged in groups of two or more resonance elements. Systems for harvesting electromagnetic radiation include a substrate, a plurality of resonance elements including a conductive material carried by the substrate, and a photovoltaic material coupled to the substrate and to at least one resonance element. The resonance elements are arranged in groups, such as in a dipole, a tripole, or a bowtie configuration. Methods for forming an energy harvesting device include forming groups of two or more discrete resonance elements in a substrate and coupling a photovoltaic material to the groups of discrete resonance elements.

  15. Infrared-Proximity-Sensor Modules For Robot

    NASA Technical Reports Server (NTRS)

    Parton, William; Wegerif, Daniel; Rosinski, Douglas

    1995-01-01

    Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.

  16. High-Order Entropy Stable Formulations for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.

    2013-01-01

    A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.

  17. A new 3D maser code applied to flaring events

    NASA Astrophysics Data System (ADS)

    Gray, M. D.; Mason, L.; Etoka, S.

    2018-06-01

    We set out the theory and discretization scheme for a new finite-element computer code, written specifically for the simulation of maser sources. The code was used to compute fractional inversions at each node of a 3D domain for a range of optical thicknesses. Saturation behaviour of the nodes with regard to location and optical depth was broadly as expected. We have demonstrated via formal solutions of the radiative transfer equation that the apparent size of the model maser cloud decreases as expected with optical depth as viewed by a distant observer. Simulations of rotation of the cloud allowed the construction of light curves for a number of observable quantities. Rotation of the model cloud may be a reasonable model for quasi-periodic variability, but cannot explain periodic flaring.

  18. On discrete control of nonlinear systems with applications to robotics

    NASA Technical Reports Server (NTRS)

    Eslami, Mansour

    1989-01-01

    Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.

  19. Practical Aspects of Stabilized FEM Discretizations of Nonlinear Conservation Law Systems with Convex Extension

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Saini, Subhash (Technical Monitor)

    1999-01-01

    This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the Galerkin least-squares (GLS) and the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the POE system. Central to the development of the simplified GLS and DG methods is the Degenerative Scaling Theorem which characterizes right symmetrizes of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobean matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler, Navier-Stokes, and magnetohydrodynamic (MHD) equations. Linear and nonlinear energy stability is proven for the simplified GLS and DG methods. Spatial convergence properties of the simplified GLS and DO methods are numerical evaluated via the computation of Ringleb flow on a sequence of successively refined triangulations. Finally, we consider a posteriori error estimates for the GLS and DG demoralization assuming error functionals related to the integrated lift and drag of a body. Sample calculations in 20 are shown to validate the theory and implementation.

  20. Fourier-spectral element approximation of the ion–electron Braginskii system with application to tokamak edge plasma in divertor configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjeaud, Sebastian; INRIA project CASTOR; Pasquetti, Richard, E-mail: richard.pasquetti@unice.fr

    Due to the extreme conditions required to produce energy by nuclear fusion in tokamaks, simulating the plasma behavior is an important but challenging task. We focus on the edge part of the plasma, where fluid approaches are probably the best suited, and our approach relies on the Braginskii ion–electron model. Assuming that the electric field is electrostatic, this yields a set of 10 strongly coupled and non-linear conservation equations that exhibit multiscale and anisotropy features. The computational domain is a torus of complex geometrical section, that corresponds to the divertor configuration, i.e. with an “X-point” in the magnetic surfaces. Tomore » capture the complex physics that is involved, high order methods are used: The time-discretization is based on a Strang splitting, that combines implicit and explicit high order Runge–Kutta schemes, and the space discretization makes use of the spectral element method in the poloidal plane together with Fourier expansions in the toroidal direction. The paper thoroughly describes the algorithms that have been developed, provides some numerical validations of the key algorithms and exhibits the results of preliminary numerical experiments. In particular, we point out that the highest frequency of the system is intermediate between the ion and electron cyclotron frequencies.« less

  1. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    NASA Astrophysics Data System (ADS)

    Mitra, Tamoghna; Saxén, Henrik

    2016-11-01

    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  2. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  3. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  4. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  5. Computer-Aided Diagnosis System for Alzheimer's Disease Using Different Discrete Transform Techniques.

    PubMed

    Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M

    2016-05-01

    The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.

  6. Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation

    NASA Astrophysics Data System (ADS)

    Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo

    2015-10-01

    The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.

  7. Coupled NASTRAN/boundary element formulation for acoustic scattering

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.

    1987-01-01

    A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.

  8. Parallel and Distributed Computing Combinatorial Algorithms

    DTIC Science & Technology

    1993-10-01

    Discrete Math , 1991. In press. [551 L. Finkelstein, D. Kleitman, and T. Leighton. Applying the classification theorem for finite simple groups to minimize...Mathematics (in press). [741 L. Heath, T. Leighton, and A. Rosenberg. Comparing queue and stack layouts. SIAM J Discrete Math , 5(3):398-412, August 1992...line can meet only a few. DIMA CS Series in Discrete Math and Theoretical Computer Science, 9, 1993. Publications, Presentations and Theses Supported

  9. The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues

    NASA Astrophysics Data System (ADS)

    Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa

    2009-01-01

    The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.

  10. A living mesoscopic cellular automaton made of skin scales.

    PubMed

    Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C

    2017-04-12

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  11. A living mesoscopic cellular automaton made of skin scales

    NASA Astrophysics Data System (ADS)

    Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.

    2017-04-01

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  12. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  13. Comparison of algorithms for computing the two-dimensional discrete Hartley transform

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Burton, John C.; Miller, Keith W.

    1989-01-01

    Three methods have been described for computing the two-dimensional discrete Hartley transform. Two of these employ a separable transform, the third method, the vector-radix algorithm, does not require separability. In-place computation of the vector-radix method is described. Operation counts and execution times indicate that the vector-radix method is fastest.

  14. Hodge numbers for all CICY quotients

    NASA Astrophysics Data System (ADS)

    Constantin, Andrei; Gray, James; Lukas, Andre

    2017-01-01

    We present a general method for computing Hodge numbers for Calabi-Yau manifolds realised as discrete quotients of complete intersections in products of projective spaces. The method relies on the computation of equivariant cohomologies and is illustrated for several explicit examples. In this way, we compute the Hodge numbers for all discrete quotients obtained in Braun's classification [1].

  15. Discontinuous Finite Element Quasidiffusion Methods

    DOE PAGES

    Anistratov, Dmitriy Yurievich; Warsa, James S.

    2018-05-21

    Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less

  16. Discontinuous Finite Element Quasidiffusion Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anistratov, Dmitriy Yurievich; Warsa, James S.

    Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less

  17. Original data preprocessor for Femap/Nastran

    NASA Astrophysics Data System (ADS)

    Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra

    2016-12-01

    Automatic data processing and visualization in the finite elements analysis of the structural problems is a long run concern in mechanical engineering. The paper presents the `common database' concept according to which the same information may be accessed from an analytical model, as well as from a numerical one. In this way, input data expressed as comma-separated-value (CSV) files are loaded into the Femap/Nastran environment using original API codes, being automatically generated: the geometry of the model, the loads and the constraints. The original API computer codes are general, being possible to generate the input data of any model. In the next stages, the user may create the discretization of the model, set the boundary conditions and perform a given analysis. If additional accuracy is needed, the analyst may delete the previous discretizations and using the same information automatically loaded, other discretizations and analyses may be done. Moreover, if new more accurate information regarding the loads or constraints is acquired, they may be modelled and then implemented in the data generating program which creates the `common database'. This means that new more accurate models may be easily generated. Other facility consists of the opportunity to control the CSV input files, several loading scenarios being possible to be generated in Femap/Nastran. In this way, using original intelligent API instruments the analyst is focused to accurately model the phenomena and on creative aspects, the repetitive and time-consuming activities being performed by the original computer-based instruments. Using this data processing technique we apply to the best Asimov's principle `minimum change required / maximum desired response'.

  18. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape.

    PubMed

    Mazzotti, M; Marzani, A; Bartoli, I

    2014-01-01

    A fully coupled 2.5D formulation is proposed to compute the dispersive parameters of waveguides with arbitrary cross-section immersed in infinite inviscid fluids. The discretization of the waveguide is performed by means of a Semi-Analytical Finite Element (SAFE) approach, whereas a 2.5D BEM formulation is used to model the impedance of the surrounding infinite fluid. The kernels of the boundary integrals contain the fundamental solutions of the space Fourier-transformed Helmholtz equation, which governs the wave propagation process in the fluid domain. Numerical difficulties related to the evaluation of singular integrals are avoided by using a regularization procedure. To improve the numerical stability of the discretized boundary integral equations for the external Helmholtz problem, the so called CHIEF method is used. The discrete wave equation results in a nonlinear eigenvalue problem in the complex axial wavenumbers that is solved at the frequencies of interest by means of a contour integral algorithm. In order to separate physical from non-physical solutions and to fulfill the requirement of holomorphicity of the dynamic stiffness matrix inside the complex wavenumber contour, the phase of the radial bulk wavenumber is uniquely defined by enforcing the Snell-Descartes law at the fluid-waveguide interface. Three numerical applications are presented. The computed dispersion curves for a circular bar immersed in oil are in agreement with those extracted using the Global Matrix Method. Novel results are presented for viscoelastic steel bars of square and L-shaped cross-section immersed in water. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.

  20. Almost equivalence of combinatorial and distance processes for discrimination in multielement images.

    PubMed

    Ferraro, M; Foster, D H

    1991-01-01

    Under certain experimental conditions, visual discrimination performance in multielement images is closely related to visual identification performance: elements of the image are distinguished only insofar as they appear to have distinct, discrete, internal characterizations. This report is concerned with the detailed relationship between such internal characterizations and observable discrimination performance. Two types of general processes that might underline discrimination are considered. The first is based on computing all possible internal image characterizations that could allow a correct decision, each characterization weighted by the probability of its occurrence and of a correct decision being made. The second process is based on computing the difference between the probabilities associated with the internal characterizations of the individual image elements, the difference quantified naturally with an l(p) norm. The relationship between the two processes was investigated analytically and by Monte Carlo simulations over a plausible range of numbers n of the internal characterizations of each of the m elements in the image. The predictions of the two processes were found to be closely similar. The relationship was precisely one-to-one, however, only for n = 2, m = 3, 4, 6, and for n greater than 2, m = 3, 4, p = 2. For all other cases tested, a one-to-one relationship was shown to be impossible.

  1. Anisotropic scattering of discrete particle arrays.

    PubMed

    Paul, Joseph S; Fu, Wai Chong; Dokos, Socrates; Box, Michael

    2010-05-01

    Far-field intensities of light scattered from a linear centro-symmetric array illuminated by a plane wave of incident light are estimated at a series of detector angles. The intensities are computed from the superposition of E-fields scattered by the individual array elements. An average scattering phase function is used to model the scattered fields of individual array elements. The nature of scattering from the array is investigated using an image (theta-phi plot) of the far-field intensities computed at a series of locations obtained by rotating the detector angle from 0 degrees to 360 degrees, corresponding to each angle of incidence in the interval [0 degrees 360 degrees]. The diffraction patterns observed from the theta-Phi plot are compared with those for isotropic scattering. In the absence of prior information on the array geometry, the intensities corresponding to theta-Phi pairs satisfying the Bragg condition are used to estimate the phase function. An algorithmic procedure is presented for this purpose and tested using synthetic data. The relative error between estimated and theoretical values of the phase function is shown to be determined by the mean spacing factor, the number of elements, and the far-field distance. An empirical relationship is presented to calculate the optimal far-field distance for a given specification of the percentage error.

  2. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  3. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

    NASA Astrophysics Data System (ADS)

    Kamran, K.; Rossi, R.; Oñate, E.

    2013-07-01

    The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

  4. Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines

    NASA Astrophysics Data System (ADS)

    Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert

    2018-06-01

    This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.

  5. Efficient Computation of Atmospheric Flows with Tempest: Validation of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge; Ullrich, Paul

    2016-04-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods for a wide range of spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of idealized test cases to validate the performance of the SNFEM applied in the vertical with an emphasis on flow features and dynamic behavior. Internal gravity wave, mountain wave, convective bubble, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  6. Error analysis and correction of discrete solutions from finite element codes

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.

    1984-01-01

    Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.

  7. Discrete and continuum simulations of near-field ground motion from Source Physics Experiments (SPE) (Invited)

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2013-12-01

    This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source Physics Experiments in a granitic formation. One of the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the magnitude in the radial direction) at many locations. Furthermore, azimuthal variations in radial velocities were also observed which cannot be generated by a spherical source in isotropic materials. Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to, heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion at the surface caused by material spall and gravity. We have performed a three dimensional computational studies considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet this approach requires the mesh to be aligned with joints, which may present technical difficulties in three dimensions when multiple non-persistent joints are present. In addition, the discrete method is more computationally expensive. The continuum approach assumes that the joints are stiff and the dilatancy and shear softening can be neglected. In this approach, the joints are modeled as weakness planes within the material, which are imbedded into and pass through many finite elements. The advantage of this approach is that it requires neither sophisticated meshing algorithms nor contact detection algorithm. It is also suitable for evaluating the bounds of possible shear motion due to uncertainties in the joints distribution. Details of this uncertainty quantification study are presented in a separate abstract (Vorobiev, et.al). In the present work using both the continuum and the discrete approaches we study the effects of the surface spall, in-situ stress and joint orientation on the observed near-field motion. Three dimensional numerical simulations are performed for different burial depths and yields to investigate scalability of both radial and shear motions. The motion calculated in the near-field is then propagated into a far field. Results of the far field study are presented in an accompanied work (Pitarka, et al). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. A stabilized element-based finite volume method for poroelastic problems

    NASA Astrophysics Data System (ADS)

    Honório, Hermínio T.; Maliska, Clovis R.; Ferronato, Massimiliano; Janna, Carlo

    2018-07-01

    The coupled equations of Biot's poroelasticity, consisting of stress equilibrium and fluid mass balance in deforming porous media, are numerically solved. The governing partial differential equations are discretized by an Element-based Finite Volume Method (EbFVM), which can be used in three dimensional unstructured grids composed of elements of different types. One of the difficulties for solving these equations is the numerical pressure instability that can arise when undrained conditions take place. In this paper, a stabilization technique is developed to overcome this problem by employing an interpolation function for displacements that considers also the pressure gradient effect. The interpolation function is obtained by the so-called Physical Influence Scheme (PIS), typically employed for solving incompressible fluid flows governed by the Navier-Stokes equations. Classical problems with analytical solutions, as well as three-dimensional realistic cases are addressed. The results reveal that the proposed stabilization technique is able to eliminate the spurious pressure instabilities arising under undrained conditions at a low computational cost.

  9. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  10. Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Luan; Chang, Chin-Chih; Sheu, Dwan-Fang

    2016-04-01

    This paper proposes the generalised random and age replacement policies for a multi-state system composed of multi-state elements. The degradation of the multi-state element is assumed to follow the non-homogeneous continuous time Markov process which is a continuous time and discrete state process. A recursive approach is presented to efficiently compute the time-dependent state probability distribution of the multi-state element. The state and performance distribution of the entire multi-state system is evaluated via the combination of the stochastic process and the Lz-transform method. The concept of customer-centred reliability measure is developed based on the system performance and the customer demand. We develop the random and age replacement policies for an aging multi-state system subject to imperfect maintenance in a failure (or unacceptable) state. For each policy, the optimum replacement schedule which minimises the mean cost rate is derived analytically and discussed numerically.

  11. Crack Turning and Arrest Mechanisms for Integral Structure

    NASA Technical Reports Server (NTRS)

    Pettit, Richard; Ingraffea, Anthony

    1999-01-01

    In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.

  12. Space-Time Discrete KPZ Equation

    NASA Astrophysics Data System (ADS)

    Cannizzaro, G.; Matetski, K.

    2018-03-01

    We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.

  13. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  14. Electrical Resistivity Tomography using a finite element based BFGS algorithm with algebraic multigrid preconditioning

    NASA Astrophysics Data System (ADS)

    Codd, A. L.; Gross, L.

    2018-03-01

    We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.

  15. An advanced approach for computer modeling and prototyping of the human tooth.

    PubMed

    Chang, Kuang-Hua; Magdum, Sheetalkumar; Khera, Satish C; Goel, Vijay K

    2003-05-01

    This paper presents a systematic and practical method for constructing accurate computer and physical models that can be employed for the study of human tooth mechanics. The proposed method starts with a histological section preparation of a human tooth. Through tracing outlines of the tooth on the sections, discrete points are obtained and are employed to construct B-spline curves that represent the exterior contours and dentino-enamel junction (DEJ) of the tooth using a least square curve fitting technique. The surface skinning technique is then employed to quilt the B-spline curves to create a smooth boundary and DEJ of the tooth using B-spline surfaces. These surfaces are respectively imported into SolidWorks via its application protocol interface to create solid models. The solid models are then imported into Pro/MECHANICA Structure for finite element analysis (FEA). The major advantage of the proposed method is that it first generates smooth solid models, instead of finite element models in discretized form. As a result, a more advanced p-FEA can be employed for structural analysis, which usually provides superior results to traditional h-FEA. In addition, the solid model constructed is smooth and can be fabricated with various scales using the solid freeform fabrication technology. This method is especially useful in supporting bioengineering applications, where the shape of the object is usually complicated. A human maxillary second molar is presented to illustrate and demonstrate the proposed method. Note that both the solid and p-FEA models of the molar are presented. However, comparison between p- and h-FEA models is out of the scope of the paper.

  16. Comparison of Computer Based Instruction to Behavior Skills Training for Teaching Staff Implementation of Discrete-Trial Instruction with an Adult with Autism

    ERIC Educational Resources Information Center

    Nosik, Melissa R.; Williams, W. Larry; Garrido, Natalia; Lee, Sarah

    2013-01-01

    In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following…

  17. A POSTERIORI ERROR ANALYSIS OF TWO STAGE COMPUTATION METHODS WITH APPLICATION TO EFFICIENT DISCRETIZATION AND THE PARAREAL ALGORITHM.

    PubMed

    Chaudhry, Jehanzeb Hameed; Estep, Don; Tavener, Simon; Carey, Varis; Sandelin, Jeff

    2016-01-01

    We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.

  18. A generalized vortex lattice method for subsonic and supersonic flow applications

    NASA Technical Reports Server (NTRS)

    Miranda, L. R.; Elliot, R. D.; Baker, W. M.

    1977-01-01

    If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.

  19. Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries

    NASA Astrophysics Data System (ADS)

    Shoaib Anwar, Muhammad; Rasheed, Amer

    2017-07-01

    Heat transfer through a Forchheimer medium in an unsteady magnetohydrodynamic (MHD) developed differential-type fluid flow is analyzed numerically in this study. The boundary layer flow is modeled with the help of the fractional calculus approach. The fluid is confined between infinite parallel plates and flows by motion of the plates in their own plane. Both the plates have variable surface temperature. Governing partial differential equations with appropriate initial and boundary conditions are solved by employing a finite-difference scheme to discretize the fractional time derivative and finite-element discretization for spatial variables. Coefficients of skin friction and local Nusselt numbers are computed for the fractional model. The flow behavior is presented for various values of the involved parameters. The influence of different dimensionless numbers on skin friction and Nusselt number is discussed by tabular results. Forchheimer medium flows that involve catalytic converters and gas turbines can be modeled in a similar manner.

  20. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

Top