Sample records for discrete latent variable

  1. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  2. Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items

    ERIC Educational Resources Information Center

    Lu, Irene R. R.; Thomas, D. Roland

    2008-01-01

    This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…

  3. Development and Application of Methods for Estimating Operating Characteristics of Discrete Test Item Responses without Assuming any Mathematical Form.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    In latent trait theory the latent space, or space of the hypothetical construct, is usually represented by some unidimensional or multi-dimensional continuum of real numbers. Like the latent space, the item response can either be treated as a discrete variable or as a continuous variable. Latent trait theory relates the item response to the latent…

  4. Building Coherent Validation Arguments for the Measurement of Latent Constructs with Unified Statistical Frameworks

    ERIC Educational Resources Information Center

    Rupp, Andre A.

    2012-01-01

    In the focus article of this issue, von Davier, Naemi, and Roberts essentially coupled: (1) a short methodological review of structural similarities of latent variable models with discrete and continuous latent variables; and (2) 2 short empirical case studies that show how these models can be applied to real, rather than simulated, large-scale…

  5. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  6. Evaluation of Scale Reliability with Binary Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; Asparouhov, Tihomir

    2010-01-01

    A method for interval estimation of scale reliability with discrete data is outlined. The approach is applicable with multi-item instruments consisting of binary measures, and is developed within the latent variable modeling methodology. The procedure is useful for evaluation of consistency of single measures and of sum scores from item sets…

  7. The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models

    ERIC Educational Resources Information Center

    Park, Jungkyu; Yu, Hsiu-Ting

    2016-01-01

    The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…

  8. Intraclass Correlation Coefficients in Hierarchical Design Studies with Discrete Response Variables: A Note on a Direct Interval Estimation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A latent variable modeling procedure that can be used to evaluate intraclass correlation coefficients in two-level settings with discrete response variables is discussed. The approach is readily applied when the purpose is to furnish confidence intervals at prespecified confidence levels for these coefficients in setups with binary or ordinal…

  9. Examining Measurement Invariance and Differential Item Functioning with Discrete Latent Construct Indicators: A Note on a Multiple Testing Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; Marcoulides, George A.; Li, Tatyana; Menold, Natalja

    2018-01-01

    A latent variable modeling method for studying measurement invariance when evaluating latent constructs with multiple binary or binary scored items with no guessing is outlined. The approach extends the continuous indicator procedure described by Raykov and colleagues, utilizes similarly the false discovery rate approach to multiple testing, and…

  10. A latent class multiple constraint multiple discrete-continuous extreme value model of time use and goods consumption.

    DOT National Transportation Integrated Search

    2016-06-01

    This paper develops a microeconomic theory-based multiple discrete continuous choice model that considers: (a) that both goods consumption and time allocations (to work and non-work activities) enter separately as decision variables in the utility fu...

  11. Ascertainment-adjusted parameter estimation approach to improve robustness against misspecification of health monitoring methods

    NASA Astrophysics Data System (ADS)

    Juesas, P.; Ramasso, E.

    2016-12-01

    Condition monitoring aims at ensuring system safety which is a fundamental requirement for industrial applications and that has become an inescapable social demand. This objective is attained by instrumenting the system and developing data analytics methods such as statistical models able to turn data into relevant knowledge. One difficulty is to be able to correctly estimate the parameters of those methods based on time-series data. This paper suggests the use of the Weighted Distribution Theory together with the Expectation-Maximization algorithm to improve parameter estimation in statistical models with latent variables with an application to health monotonic under uncertainty. The improvement of estimates is made possible by incorporating uncertain and possibly noisy prior knowledge on latent variables in a sound manner. The latent variables are exploited to build a degradation model of dynamical system represented as a sequence of discrete states. Examples on Gaussian Mixture Models, Hidden Markov Models (HMM) with discrete and continuous outputs are presented on both simulated data and benchmarks using the turbofan engine datasets. A focus on the application of a discrete HMM to health monitoring under uncertainty allows to emphasize the interest of the proposed approach in presence of different operating conditions and fault modes. It is shown that the proposed model depicts high robustness in presence of noisy and uncertain prior.

  12. On Studying Common Factor Dominance and Approximate Unidimensionality in Multicomponent Measuring Instruments with Discrete Items

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2018-01-01

    This article outlines a procedure for examining the degree to which a common factor may be dominating additional factors in a multicomponent measuring instrument consisting of binary items. The procedure rests on an application of the latent variable modeling methodology and accounts for the discrete nature of the manifest indicators. The method…

  13. Discrete Sparse Coding.

    PubMed

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  14. Toward a Model-Based Approach to the Clinical Assessment of Personality Psychopathology

    PubMed Central

    Eaton, Nicholas R.; Krueger, Robert F.; Docherty, Anna R.; Sponheim, Scott R.

    2015-01-01

    Recent years have witnessed tremendous growth in the scope and sophistication of statistical methods available to explore the latent structure of psychopathology, involving continuous, discrete, and hybrid latent variables. The availability of such methods has fostered optimism that they can facilitate movement from classification primarily crafted through expert consensus to classification derived from empirically-based models of psychopathological variation. The explication of diagnostic constructs with empirically supported structures can then facilitate the development of assessment tools that appropriately characterize these constructs. Our goal in this paper is to illustrate how new statistical methods can inform conceptualization of personality psychopathology and therefore its assessment. We use magical thinking as example, because both theory and earlier empirical work suggested the possibility of discrete aspects to the latent structure of personality psychopathology, particularly forms of psychopathology involving distortions of reality testing, yet other data suggest that personality psychopathology is generally continuous in nature. We directly compared the fit of a variety of latent variable models to magical thinking data from a sample enriched with clinically significant variation in psychotic symptomatology for explanatory purposes. Findings generally suggested a continuous latent variable model best represented magical thinking, but results varied somewhat depending on different indices of model fit. We discuss the implications of the findings for classification and applied personality assessment. We also highlight some limitations of this type of approach that are illustrated by these data, including the importance of substantive interpretation, in addition to use of model fit indices, when evaluating competing structural models. PMID:24007309

  15. Latent variable method for automatic adaptation to background states in motor imagery BCI

    NASA Astrophysics Data System (ADS)

    Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei

    2018-02-01

    Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.

  16. Assessing Fit of Models with Discrete Proficiency Variable in Educational Assessment. Research Report. RR-04-07

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Almond, Russell; Yan, Duanli

    2004-01-01

    Model checking is a crucial part of any statistical analysis. As educators tie models for testing to cognitive theory of the domains, there is a natural tendency to represent participant proficiencies with latent variables representing the presence or absence of the knowledge, skills, and proficiencies to be tested (Mislevy, Almond, Yan, &…

  17. A Cognitive Diagnosis Model for Cognitively Based Multiple-Choice Options

    ERIC Educational Resources Information Center

    de la Torre, Jimmy

    2009-01-01

    Cognitive or skills diagnosis models are discrete latent variable models developed specifically for the purpose of identifying the presence or absence of multiple fine-grained skills. However, applications of these models typically involve dichotomous or dichotomized data, including data from multiple-choice (MC) assessments that are scored as…

  18. Software for the Application of Discrete Latent Structure Models to Item Response Data.

    ERIC Educational Resources Information Center

    Haertel, Edward H.

    These FORTRAN programs and MATHEMATICA routines were developed in the course of a research project titled "Achievement and Assessment in School Science: Modeling and Mapping Ability and Performance." Their use is described in other publications from that project, including "Latent Traits or Latent States? The Role of Discrete Models…

  19. A Latent Class Approach to Examining Forms of Peer Victimization

    ERIC Educational Resources Information Center

    Bradshaw, Catherine P.; Waasdorp, Tracy E.; O'Brennan, Lindsey M.

    2013-01-01

    There is growing interest in gender differences in the experience of various forms of peer victimization; however, much of the work to date has used traditional variable-centered approaches by focusing on scales or individual forms of victimization in isolation. The current study explored whether there were discrete groups of adolescents who…

  20. Evidence for the Continuous Latent Structure of Mania in the Epidemiologic Catchment Area from Multiple Latent Structure and Construct Validation Methodologies

    PubMed Central

    Prisciandaro, James J.; Roberts, John E.

    2011-01-01

    Background Although psychiatric diagnostic systems have conceptualized mania as a discrete phenomenon, appropriate latent structure investigations testing this conceptualization are lacking. In contrast to these diagnostic systems, several influential theories of mania have suggested a continuous conceptualization. The present study examined whether mania has a continuous or discrete latent structure using a comprehensive approach including taxometric, information-theoretic latent distribution modeling (ITLDM), and predictive validity methodologies in the Epidemiologic Catchment Area (ECA) study. Methods Eight dichotomous manic symptom items were submitted to a variety of latent structural analyses; including factor analyses, taxometric procedures, and ITLDM; in 10,105 ECA community participants. Additionally, a variety of continuous and discrete models of mania were compared in terms of their relative abilities to predict outcomes (i.e., health service utilization, internalizing and externalizing disorders, and suicidal behavior). Results Taxometric and ITLDM analyses consistently supported a continuous conceptualization of mania. In ITLDM analyses, a continuous model of mania demonstrated 6:52:1 odds over the best fitting latent class model of mania. Factor analyses suggested that the continuous structure of mania was best represented by a single latent factor. Predictive validity analyses demonstrated a consistent superior ability of continuous models of mania relative to discrete models. Conclusions The present study provided three independent lines of support for a continuous conceptualization of mania. The implications of a continuous model of mania are discussed. PMID:20507671

  1. Joint modeling of longitudinal data and discrete-time survival outcome.

    PubMed

    Qiu, Feiyou; Stein, Catherine M; Elston, Robert C

    2016-08-01

    A predictive joint shared parameter model is proposed for discrete time-to-event and longitudinal data. A discrete survival model with frailty and a generalized linear mixed model for the longitudinal data are joined to predict the probability of events. This joint model focuses on predicting discrete time-to-event outcome, taking advantage of repeated measurements. We show that the probability of an event in a time window can be more precisely predicted by incorporating the longitudinal measurements. The model was investigated by comparison with a two-step model and a discrete-time survival model. Results from both a study on the occurrence of tuberculosis and simulated data show that the joint model is superior to the other models in discrimination ability, especially as the latent variables related to both survival times and the longitudinal measurements depart from 0. © The Author(s) 2013.

  2. Clustering and variable selection in the presence of mixed variable types and missing data.

    PubMed

    Storlie, C B; Myers, S M; Katusic, S K; Weaver, A L; Voigt, R G; Croarkin, P E; Stoeckel, R E; Port, J D

    2018-05-17

    We consider the problem of model-based clustering in the presence of many correlated, mixed continuous, and discrete variables, some of which may have missing values. Discrete variables are treated with a latent continuous variable approach, and the Dirichlet process is used to construct a mixture model with an unknown number of components. Variable selection is also performed to identify the variables that are most influential for determining cluster membership. The work is motivated by the need to cluster patients thought to potentially have autism spectrum disorder on the basis of many cognitive and/or behavioral test scores. There are a modest number of patients (486) in the data set along with many (55) test score variables (many of which are discrete valued and/or missing). The goal of the work is to (1) cluster these patients into similar groups to help identify those with similar clinical presentation and (2) identify a sparse subset of tests that inform the clusters in order to eliminate unnecessary testing. The proposed approach compares very favorably with other methods via simulation of problems of this type. The results of the autism spectrum disorder analysis suggested 3 clusters to be most likely, while only 4 test scores had high (>0.5) posterior probability of being informative. This will result in much more efficient and informative testing. The need to cluster observations on the basis of many correlated, continuous/discrete variables with missing values is a common problem in the health sciences as well as in many other disciplines. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Discrete subgroups of adolescents diagnosed with borderline personality disorder: a latent class analysis of personality features.

    PubMed

    Ramos, Vera; Canta, Guilherme; de Castro, Filipa; Leal, Isabel

    2014-08-01

    Research suggests that borderline personality disorder (BPD) can be diagnosed in adolescents and is marked by considerable heterogeneity. This study aimed to identify personality features characterizing adolescents with BPD and possible meaningful patterns of heterogeneity that could lead to personality subgroups. The authors analyzed data on 60 adolescents, ages 15 to 18 years, who met DSM criteria for a BPD diagnosis. The authors used latent class analysis (LCA) to identify subgroups based on the personality pattern scales from the Millon Adolescent Clinical Inventory (MACI). LCA indicated that the best-fitting solution was a two-class model, identifying two discrete subgroups of BPD adolescents that were described as internalizing and externalizing. The subgroups were then compared on clinical and sociodemographic variables, measures of personality dimensions, DSM BPD criteria, and perception of attachment styles. Adolescents with a BPD diagnosis constitute a heterogeneous group and vary meaningfully on personality features that can have clinical implications for treatment.

  4. A comparison of three random effects approaches to analyze repeated bounded outcome scores with an application in a stroke revalidation study.

    PubMed

    Molas, Marek; Lesaffre, Emmanuel

    2008-12-30

    Discrete bounded outcome scores (BOS), i.e. discrete measurements that are restricted on a finite interval, often occur in practice. Examples are compliance measures, quality of life measures, etc. In this paper we examine three related random effects approaches to analyze longitudinal studies with a BOS as response: (1) a linear mixed effects (LM) model applied to a logistic transformed modified BOS; (2) a model assuming that the discrete BOS is a coarsened version of a latent random variable, which after a logistic-normal transformation, satisfies an LM model; and (3) a random effects probit model. We consider also the extension whereby the variability of the BOS is allowed to depend on covariates. The methods are contrasted using a simulation study and on a longitudinal project, which documents stroke rehabilitation in four European countries using measures of motor and functional recovery. Copyright 2008 John Wiley & Sons, Ltd.

  5. Insights into the latent multinomial model through mark-resight data on female grizzly bears with cubs-of-the-year

    USGS Publications Warehouse

    Higgs, Megan D.; Link, William; White, Gary C.; Haroldson, Mark A.; Bjornlie, Daniel D.

    2013-01-01

    Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference about the latent multinomial frequencies for unmarked animals. We discuss undesirable behavior of the commonly used discrete uniform prior distribution on the population size parameter and provide OpenBUGS code for fitting such models. The application provides valuable insights into subtleties of implementing Bayesian inference for latent multinomial models. We tie the discussion to our application, though the insights are broadly useful for applications of the latent multinomial model.

  6. Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.

    PubMed

    Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka

    2017-01-01

    Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.

  7. The Cramér-Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations.

    PubMed

    Wang, Zhiguo; Shen, Xiaojing; Wang, Ping; Zhu, Yunmin

    2018-04-05

    This paper considers the problems of the posterior Cramér-Rao bound and sensor selection for multi-sensor nonlinear systems with uncertain observations. In order to effectively overcome the difficulties caused by uncertainty, we investigate two methods to derive the posterior Cramér-Rao bound. The first method is based on the recursive formula of the Cramér-Rao bound and the Gaussian mixture model. Nevertheless, it needs to compute a complex integral based on the joint probability density function of the sensor measurements and the target state. The computation burden of this method is relatively high, especially in large sensor networks. Inspired by the idea of the expectation maximization algorithm, the second method is to introduce some 0-1 latent variables to deal with the Gaussian mixture model. Since the regular condition of the posterior Cramér-Rao bound is unsatisfied for the discrete uncertain system, we use some continuous variables to approximate the discrete latent variables. Then, a new Cramér-Rao bound can be achieved by a limiting process of the Cramér-Rao bound of the continuous system. It avoids the complex integral, which can reduce the computation burden. Based on the new posterior Cramér-Rao bound, the optimal solution of the sensor selection problem can be derived analytically. Thus, it can be used to deal with the sensor selection of a large-scale sensor networks. Two typical numerical examples verify the effectiveness of the proposed methods.

  8. Graphical Models for Ordinal Data

    PubMed Central

    Guo, Jian; Levina, Elizaveta; Michailidis, George; Zhu, Ji

    2014-01-01

    A graphical model for ordinal variables is considered, where it is assumed that the data are generated by discretizing the marginal distributions of a latent multivariate Gaussian distribution. The relationships between these ordinal variables are then described by the underlying Gaussian graphical model and can be inferred by estimating the corresponding concentration matrix. Direct estimation of the model is computationally expensive, but an approximate EM-like algorithm is developed to provide an accurate estimate of the parameters at a fraction of the computational cost. Numerical evidence based on simulation studies shows the strong performance of the algorithm, which is also illustrated on data sets on movie ratings and an educational survey. PMID:26120267

  9. Discrete Latent Markov Models for Normally Distributed Response Data

    ERIC Educational Resources Information Center

    Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.

    2005-01-01

    Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…

  10. On the explaining-away phenomenon in multivariate latent variable models.

    PubMed

    van Rijn, Peter; Rijmen, Frank

    2015-02-01

    Many probabilistic models for psychological and educational measurements contain latent variables. Well-known examples are factor analysis, item response theory, and latent class model families. We discuss what is referred to as the 'explaining-away' phenomenon in the context of such latent variable models. This phenomenon can occur when multiple latent variables are related to the same observed variable, and can elicit seemingly counterintuitive conditional dependencies between latent variables given observed variables. We illustrate the implications of explaining away for a number of well-known latent variable models by using both theoretical and real data examples. © 2014 The British Psychological Society.

  11. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics.

    PubMed

    Harris, Kenneth D; Hochgerner, Hannah; Skene, Nathan G; Magno, Lorenza; Katona, Linda; Bengtsson Gonzales, Carolina; Somogyi, Peter; Kessaris, Nicoletta; Linnarsson, Sten; Hjerling-Leffler, Jens

    2018-06-18

    Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.

  12. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  13. Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables

    ERIC Educational Resources Information Center

    Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan

    2017-01-01

    We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…

  14. Early PTSD Symptom Trajectories: Persistence, Recovery, and Response to Treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS)

    PubMed Central

    Galatzer-Levy, Isaac R.; Ankri, Yael; Freedman, Sara; Israeli-Shalev, Yossi; Roitman, Pablo; Gilad, Moran; Shalev, Arieh Y.

    2013-01-01

    Context Uncovering heterogeneities in the progression of early PTSD symptoms can improve our understanding of the disorder's pathogenesis and prophylaxis. Objectives To describe discrete symptom trajectories and examine their relevance for preventive interventions. Design Latent Growth Mixture Modeling (LGMM) of data from a randomized controlled study of early treatment. LGMM identifies latent longitudinal trajectories by exploring discrete mixture distributions underlying observable data. Setting Hadassah Hospital unselectively receives trauma survivors from Jerusalem and vicinity. Participants Adult survivors of potentially traumatic events consecutively admitted to the hospital's emergency department (ED) were assessed ten days and one-, five-, nine- and fifteen months after ED admission. Participants with data at ten days and at least two additional assessments (n = 957) were included; 125 received cognitive behavioral therapy (CBT) between one and nine months. Approach We used LGMM to identify latent parameters of symptom progression and tested the effect of CBT on these parameters. CBT consisted of 12 weekly sessions of either cognitive therapy (n = 41) or prolonged exposure (PE, n = 49), starting 29.8±5.7 days after ED admission, or delayed PE (n = 35) starting at 151.8±42.4 days. CBT effectively reduced PTSD symptoms in the entire sample. Main Outcome Measure Latent trajectories of PTSD symptoms; effects of CBT on these trajectories. Results Three trajectories were identified: Rapid Remitting (rapid decrease in symptoms from 1- to 5-months; 56% of the sample), Slow Remitting (progressive decrease in symptoms over 15 months; 27%) and Non-Remitting (persistently elevated symptoms; 17%). CBT accelerated the recovery of the Slow Remitting class but did not affect the other classes. Conclusions The early course of PTSD symptoms is characterized by distinct and diverging response patterns that are centrally relevant to understanding the disorder and preventing its occurrence. Studies of the pathogenesis of PTSD may benefit from using clustered symptom trajectories as their dependent variables. PMID:23990895

  15. Empirical Bayes Approaches to Multivariate Fuzzy Partitions.

    ERIC Educational Resources Information Center

    Woodbury, Max A.; Manton, Kenneth G.

    1991-01-01

    An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)

  16. A statistical model for interpreting computerized dynamic posturography data

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Metter, E. Jeffrey; Paloski, William H.

    2002-01-01

    Computerized dynamic posturography (CDP) is widely used for assessment of altered balance control. CDP trials are quantified using the equilibrium score (ES), which ranges from zero to 100, as a decreasing function of peak sway angle. The problem of how best to model and analyze ESs from a controlled study is considered. The ES often exhibits a skewed distribution in repeated trials, which can lead to incorrect inference when applying standard regression or analysis of variance models. Furthermore, CDP trials are terminated when a patient loses balance. In these situations, the ES is not observable, but is assigned the lowest possible score--zero. As a result, the response variable has a mixed discrete-continuous distribution, further compromising inference obtained by standard statistical methods. Here, we develop alternative methodology for analyzing ESs under a stochastic model extending the ES to a continuous latent random variable that always exists, but is unobserved in the event of a fall. Loss of balance occurs conditionally, with probability depending on the realized latent ES. After fitting the model by a form of quasi-maximum-likelihood, one may perform statistical inference to assess the effects of explanatory variables. An example is provided, using data from the NIH/NIA Baltimore Longitudinal Study on Aging.

  17. Multifactor valuation models of energy futures and options on futures

    NASA Astrophysics Data System (ADS)

    Bertus, Mark J.

    The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.

  18. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  19. A Model of Young Children's Social Cognition: Linkages Between Latent Structures and Discrete Processing

    ERIC Educational Resources Information Center

    Meece, Darrell

    1999-01-01

    This study proposes a model of associations between young children's social cognition and their social behavior with peers. In this model, two latent structures -children's representations of peer relationships and emotion regulation -- predict children's competent, prosocial, withdrawn, and aggressive behavior. Moreover, the model proposes that…

  20. Taxometric Analysis as a General Strategy for Distinguishing Categorical from Dimensional Latent Structure

    ERIC Educational Resources Information Center

    McGrath, Robert E.; Walters, Glenn D.

    2012-01-01

    Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…

  1. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

    ERIC Educational Resources Information Center

    Henson, Robert A.; Templin, Jonathan L.; Willse, John T.

    2009-01-01

    This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…

  2. Inferring network structure in non-normal and mixed discrete-continuous genomic data.

    PubMed

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2018-03-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.

  3. Inferring network structure in non-normal and mixed discrete-continuous genomic data

    PubMed Central

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2017-01-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. PMID:28437848

  4. The Structure of Student Satisfaction with College Services: A Latent Class Model

    ERIC Educational Resources Information Center

    Adwere-Boamah, Joseph

    2011-01-01

    Latent Class Analysis (LCA) was used to identify distinct groups of Community college students based on their self-ratings of satisfaction with student service programs. The programs were counseling, financial aid, health center, student programs and student government. The best fitting model to describe the data was a two Discrete-Factor model…

  5. Using Comparison Data to Differentiate Categorical and Dimensional Data by Examining Factor Score Distributions: Resolving the Mode Problem

    ERIC Educational Resources Information Center

    Ruscio, John; Walters, Glenn D.

    2009-01-01

    Factor-analytic research is common in the study of constructs and measures in psychological assessment. Latent factors can represent traits as continuous underlying dimensions or as discrete categories. When examining the distributions of estimated scores on latent factors, one would expect unimodal distributions for dimensional data and bimodal…

  6. Latent mnemonic strengths are latent: a comment on Mickes, Wixted, and Wais (2007).

    PubMed

    Rouder, Jeffrey N; Pratte, Michael S; Morey, Richard D

    2010-06-01

    Mickes, Wixted, and Wais (2007) proposed a simple test of latent strength variability in recognition memory. They asked participants to rate their confidence using either a 20-point or a 99-point strength scale and plotted distributions of the resulting ratings. They found 25% more variability in ratings for studied than for new items, which they interpreted as providing evidence that latent mnemonic strength distributions are 25% more variable for studied than for new items. We show here that this conclusion is critically dependent on assumptions--so much so that these assumptions determine the conclusions. In fact, opposite conclusions, such that study does not affect the variability of latent strength, may be reached by making different but equally plausible assumptions. Because all measurements of mnemonic strength variability are critically dependent on untestable assumptions, all are arbitrary. Hence, there is no principled method for assessing the relative variability of latent mnemonic strength distributions.

  7. Taxometric Investigation of PTSD: Data from Two Nationally Representative Samples

    ERIC Educational Resources Information Center

    Broman-Fulks, Joshua J.; Ruggiero, Kenneth J.; Green, Bradley A.; Kilpatrick, Dean G.; Danielson, Carla Kmett; Resnick, Heidi S.; Saunders, Benjamin E.

    2006-01-01

    Current psychiatric nosology depicts posttraumatic stress disorder (PTSD) as a discrete diagnostic category. However, only one study has examined the latent structure of PTSD, and this study suggested that PTSD may be more accurately conceptualized as an extreme reaction to traumatic life events rather than a discrete clinical syndrome. To build…

  8. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    PubMed Central

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  9. A Latent Variable Approach to the Simple View of Reading

    ERIC Educational Resources Information Center

    Kershaw, Sarah; Schatschneider, Chris

    2012-01-01

    The present study utilized a latent variable modeling approach to examine the Simple View of Reading in a sample of students from 3rd, 7th, and 10th grades (N = 215, 188, and 180, respectively). Latent interaction modeling and other latent variable models were employed to investigate (a) the functional form of the relationship between decoding and…

  10. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  11. Person Re-Identification via Distance Metric Learning With Latent Variables.

    PubMed

    Sun, Chong; Wang, Dong; Lu, Huchuan

    2017-01-01

    In this paper, we propose an effective person re-identification method with latent variables, which represents a pedestrian as the mixture of a holistic model and a number of flexible models. Three types of latent variables are introduced to model uncertain factors in the re-identification problem, including vertical misalignments, horizontal misalignments and leg posture variations. The distance between two pedestrians can be determined by minimizing a given distance function with respect to latent variables, and then be used to conduct the re-identification task. In addition, we develop a latent metric learning method for learning the effective metric matrix, which can be solved via an iterative manner: once latent information is specified, the metric matrix can be obtained based on some typical metric learning methods; with the computed metric matrix, the latent variables can be determined by searching the state space exhaustively. Finally, extensive experiments are conducted on seven databases to evaluate the proposed method. The experimental results demonstrate that our method achieves better performance than other competing algorithms.

  12. Adolescent cigarette smoking: health-related behavior or normative transgression?

    PubMed

    Turbin, M S; Jessor, R; Costa, F M

    2000-09-01

    Relations among measures of adolescent behavior were examined to determine whether cigarette smoking fits into a structure of problem behaviors-behaviors that involve normative transgression-or a structure of health-related behaviors, or both. In an ethnically and socioeconomically diverse sample of 1782 male and female high school adolescents, four first-order problem behavior latent variables-sexual intercourse experience, alcohol abuse, illicit drug use, and delinquency-were established and together were shown to reflect a second-order latent variable of problem behavior. Four first-order latent variables of health-related behaviors-unhealthy dietary habits, sedentary behavior, unsafe behavior, and poor dental hygiene-were also established and together were shown to reflect a second-order latent variable of health-compromising behavior. The structure of relations among those latent variables was modeled. Cigarette smoking had a significant and substantial loading only on the problem-behavior latent variable; its loading on the health-compromising behavior latent variable was essentially zero. Adolescent cigarette smoking relates strongly and directly to problem behaviors and only indirectly, if at all, to health-compromising behaviors. Interventions to prevent or reduce adolescent smoking should attend more to factors that influence problem behaviors.

  13. Providing Information to Parents of Children with Mental Health Problems: A Discrete Choice Conjoint Analysis of Professional Preferences

    ERIC Educational Resources Information Center

    Cunningham, Charles E.; Deal, Ken; Rimas, Heather; Chen, Yvonne; Buchanan, Don H.; Sdao-Jarvie, Kathie

    2009-01-01

    We used discrete choice conjoint analysis to model the ways 645 children's mental health (CMH) professionals preferred to provide information to parents seeking CMH services. Participants completed 20 choice tasks presenting experimentally varied combinations of the study's 14 4-level CMH information transfer attributes. Latent class analysis…

  14. A Discrete Choice Conjoint Experiment to Evaluate Parent Preferences for Treatment of Young, Medication Naive Children with ADHD

    ERIC Educational Resources Information Center

    Waschbusch, Daniel A.; Cunningham, Charles E.; Pelham, William E., Jr.; Rimas, Heather L.; Greiner, Andrew R.; Gnagy, Elizabeth M.; Waxmonsky, James; Fabiano, Gregory A.; Robb, Jessica A.; Burrows-MacLean, Lisa; Scime, Mindy; Hoffman, Martin T.

    2011-01-01

    The current study examined treatment preferences of 183 parents of young (average age = 5.8 years, SD = 0.6), medication naive children with ADHD. Preferences were evaluated using a discrete choice experiment in which parents made choices between different combinations of treatment characteristics, outcomes, and costs. Latent class analysis…

  15. A Discrete Latent State Approach to Diagnostic Testing. Final Report on Contract Number N00014-81-K-0564.

    ERIC Educational Resources Information Center

    Paulson, James A.

    This paper reports on a project which has developed the general latent class model as a framework for representation of item responses. This framework can be used to represent data in applications such as mastery tests and other kinds of achievement tests, where there is reason to believe that current foundations are deficient. Methods of…

  16. Discrete response patterns in the upper range of hypnotic suggestibility: A latent profile analysis.

    PubMed

    Terhune, Devin Blair

    2015-05-01

    High hypnotic suggestibility is a heterogeneous condition and there is accumulating evidence that highly suggestible individuals may be comprised of discrete subtypes with dissimilar cognitive and phenomenological profiles. This study applied latent profile analysis to response patterns on a diverse battery of difficult hypnotic suggestions in a sample of individuals in the upper range of hypnotic suggestibility. Comparisons among models indicated that a four-class model was optimal. One class was comprised of very highly suggestible (virtuoso) participants, two classes included highly suggestible participants who were alternately more responsive to inhibitory cognitive suggestions or posthypnotic amnesia suggestions, and the fourth class consisted primarily of medium suggestible participants. These results indicate that there are discrete response profiles in high hypnotic suggestibility. They further provide a number of insights regarding the optimization of hypnotic suggestibility measurement and have implications for the instrumental use of hypnosis for the modeling of different psychological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A Framework for Multifaceted Evaluation of Student Models

    ERIC Educational Resources Information Center

    Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter

    2015-01-01

    Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…

  18. The Latent Variable Approach as Applied to Transitive Reasoning

    ERIC Educational Resources Information Center

    Bouwmeester, Samantha; Vermunt, Jeroen K.; Sijtsma, Klaas

    2012-01-01

    We discuss the limitations of hypothesis testing using (quasi-) experiments in the study of cognitive development and suggest latent variable modeling as a viable alternative to experimentation. Latent variable models allow testing a theory as a whole, incorporating individual differences with respect to developmental processes or abilities in the…

  19. Much Ado about Nothing--Or at Best, Very Little

    ERIC Educational Resources Information Center

    Widaman, Keith F.

    2014-01-01

    Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…

  20. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    ERIC Educational Resources Information Center

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  1. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  2. Evaluation of Student Performance through a Multidimensional Finite Mixture IRT Model.

    PubMed

    Bacci, Silvia; Bartolucci, Francesco; Grilli, Leonardo; Rampichini, Carla

    2017-01-01

    In the Italian academic system, a student can enroll for an exam immediately after the end of the teaching period or can postpone it; in this second case the exam result is missing. We propose an approach for the evaluation of a student performance throughout the course of study, accounting also for nonattempted exams. The approach is based on an item response theory model that includes two discrete latent variables representing student performance and priority in selecting the exams to take. We explicitly account for nonignorable missing observations as the indicators of attempted exams also contribute to measure the performance (within-item multidimensionality). The model also allows for individual covariates in its structural part.

  3. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  4. Latent variable models are network models.

    PubMed

    Molenaar, Peter C M

    2010-06-01

    Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.

  5. Examining Parallelism of Sets of Psychometric Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Patelis, Thanos; Marcoulides, George A.

    2011-01-01

    A latent variable modeling approach that can be used to examine whether several psychometric tests are parallel is discussed. The method consists of sequentially testing the properties of parallel measures via a corresponding relaxation of parameter constraints in a saturated model or an appropriately constructed latent variable model. The…

  6. Predictive Inference Using Latent Variables with Covariates*

    PubMed Central

    Schofield, Lynne Steuerle; Junker, Brian; Taylor, Lowell J.; Black, Dan A.

    2014-01-01

    Plausible Values (PVs) are a standard multiple imputation tool for analysis of large education survey data that measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally-generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations (MESE) model of Schofield (2008). PMID:25231627

  7. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  8. Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach

    ERIC Educational Resources Information Center

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…

  9. The Least-Squares Estimation of Latent Trait Variables.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi

    This paper presents a new method for estimating a given latent trait variable by the least-squares approach. The beta weights are obtained recursively with the help of Fourier series and expressed as functions of item parameters of response curves. The values of the latent trait variable estimated by this method and by maximum likelihood method…

  10. Selection of latent variables for multiple mixed-outcome models

    PubMed Central

    ZHOU, LING; LIN, HUAZHEN; SONG, XINYUAN; LI, YI

    2014-01-01

    Latent variable models have been widely used for modeling the dependence structure of multiple outcomes data. However, the formulation of a latent variable model is often unknown a priori, the misspecification will distort the dependence structure and lead to unreliable model inference. Moreover, multiple outcomes with varying types present enormous analytical challenges. In this paper, we present a class of general latent variable models that can accommodate mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent variables and estimates parameters. We show that the proposed estimator is consistent, asymptotically normal and has the oracle property. The practical utility of the methods is confirmed via simulations as well as an application to the analysis of the World Values Survey, a global research project that explores peoples’ values and beliefs and the social and personal characteristics that might influence them. PMID:27642219

  11. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  12. Gene variants associated with antisocial behaviour: A latent variable approach

    PubMed Central

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation program in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours, and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Results Eight single-nucleotide polymorphisms (SNPs) from 8 genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all 8 genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid, and cholinergic signaling as well as stress response pathways in mediating susceptibility to antisocial behaviour. Conclusions This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential “co-action” of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the etiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a ‘shared’ variance across genetic risk alleles associated with complex neuropsychiatric dimensional phenotypes using relatively small numbers of well-characterized research participants. PMID:23822756

  13. A Comparison of Approaches for the Analysis of Interaction Effects between Latent Variables Using Partial Least Squares Path Modeling

    ERIC Educational Resources Information Center

    Henseler, Jorg; Chin, Wynne W.

    2010-01-01

    In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…

  14. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    PubMed

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches

    PubMed Central

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417

  16. Replicates in high dimensions, with applications to latent variable graphical models.

    PubMed

    Tan, Kean Ming; Ning, Yang; Witten, Daniela M; Liu, Han

    2016-12-01

    In classical statistics, much thought has been put into experimental design and data collection. In the high-dimensional setting, however, experimental design has been less of a focus. In this paper, we stress the importance of collecting multiple replicates for each subject in this setting. We consider learning the structure of a graphical model with latent variables, under the assumption that these variables take a constant value across replicates within each subject. By collecting multiple replicates for each subject, we are able to estimate the conditional dependence relationships among the observed variables given the latent variables. To test the null hypothesis of conditional independence between two observed variables, we propose a pairwise decorrelated score test. Theoretical guarantees are established for parameter estimation and for this test. We show that our proposal is able to estimate latent variable graphical models more accurately than some existing proposals, and apply the proposed method to a brain imaging dataset.

  17. Clinical Insight Into Latent Variables of Psychiatric Questionnaires for Mood Symptom Self-Assessment

    PubMed Central

    Saunders, Kate; Bilderbeck, Amy; Palmius, Niclas; Goodwin, Guy; De Vos, Maarten

    2017-01-01

    Background We recently described a new questionnaire to monitor mood called mood zoom (MZ). MZ comprises 6 items assessing mood symptoms on a 7-point Likert scale; we had previously used standard principal component analysis (PCA) to tentatively understand its properties, but the presence of multiple nonzero loadings obstructed the interpretation of its latent variables. Objective The aim of this study was to rigorously investigate the internal properties and latent variables of MZ using an algorithmic approach which may lead to more interpretable results than PCA. Additionally, we explored three other widely used psychiatric questionnaires to investigate latent variable structure similarities with MZ: (1) Altman self-rating mania scale (ASRM), assessing mania; (2) quick inventory of depressive symptomatology (QIDS) self-report, assessing depression; and (3) generalized anxiety disorder (7-item) (GAD-7), assessing anxiety. Methods We elicited responses from 131 participants: 48 bipolar disorder (BD), 32 borderline personality disorder (BPD), and 51 healthy controls (HC), collected longitudinally (median [interquartile range, IQR]: 363 [276] days). Participants were requested to complete ASRM, QIDS, and GAD-7 weekly (all 3 questionnaires were completed on the Web) and MZ daily (using a custom-based smartphone app). We applied sparse PCA (SPCA) to determine the latent variables for the four questionnaires, where a small subset of the original items contributes toward each latent variable. Results We found that MZ had great consistency across the three cohorts studied. Three main principal components were derived using SPCA, which can be tentatively interpreted as (1) anxiety and sadness, (2) positive affect, and (3) irritability. The MZ principal component comprising anxiety and sadness explains most of the variance in BD and BPD, whereas the positive affect of MZ explains most of the variance in HC. The latent variables in ASRM were identical for the patient groups but different for HC; nevertheless, the latent variables shared common items across both the patient group and HC. On the contrary, QIDS had overall very different principal components across groups; sleep was a key element in HC and BD but was absent in BPD. In GAD-7, nervousness was the principal component explaining most of the variance in BD and HC. Conclusions This study has important implications for understanding self-reported mood. MZ has a consistent, intuitively interpretable latent variable structure and hence may be a good instrument for generic mood assessment. Irritability appears to be the key distinguishing latent variable between BD and BPD and might be useful for differential diagnosis. Anxiety and sadness are closely interlinked, a finding that might inform treatment effects to jointly address these covarying symptoms. Anxiety and nervousness appear to be amongst the cardinal latent variable symptoms in BD and merit close attention in clinical practice. PMID:28546141

  18. Confidence Intervals for a Semiparametric Approach to Modeling Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.

    2011-01-01

    Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…

  19. Estimating Latent Variable Interactions with Nonnormal Observed Data: A Comparison of Four Approaches

    ERIC Educational Resources Information Center

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…

  20. Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.

    PubMed

    Zhang, Yue; Berhane, Kiros

    2016-01-01

    We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.

  1. The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.

    PubMed

    Congdon, Peter

    2011-01-01

    Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.

  2. Application of Local Linear Embedding to Nonlinear Exploratory Latent Structure Analysis

    ERIC Educational Resources Information Center

    Wang, Haonan; Iyer, Hari

    2007-01-01

    In this paper we discuss the use of a recent dimension reduction technique called Locally Linear Embedding, introduced by Roweis and Saul, for performing an exploratory latent structure analysis. The coordinate variables from the locally linear embedding describing the manifold on which the data reside serve as the latent variable scores. We…

  3. Introduction to Latent Class Analysis with Applications

    ERIC Educational Resources Information Center

    Porcu, Mariano; Giambona, Francesca

    2017-01-01

    Latent class analysis (LCA) is a statistical method used to group individuals (cases, units) into classes (categories) of an unobserved (latent) variable on the basis of the responses made on a set of nominal, ordinal, or continuous observed variables. In this article, we introduce LCA in order to demonstrate its usefulness to early adolescence…

  4. Mixture Distribution Latent State-Trait Analysis: Basic Ideas and Applications

    ERIC Educational Resources Information Center

    Courvoisier, Delphine S.; Eid, Michael; Nussbeck, Fridtjof W.

    2007-01-01

    Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N = 501) revealed that a model with 2…

  5. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    PubMed

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions. Copyright © 2017 the American Physiological Society.

  6. Etiological Beliefs, Treatments, Stigmatizing Attitudes toward Schizophrenia. What Do Italians and Israelis Think?

    PubMed

    Mannarini, Stefania; Boffo, Marilisa; Rossi, Alessandro; Balottin, Laura

    2017-01-01

    Background: Although scientific research on the etiology of mental disorders has improved the knowledge of biogenetic and psychosocial aspects related to the onset of mental illness, stigmatizing attitudes and behaviors are still very prevalent and pose a significant social problem. Aim: The aim of this study was to deepen the knowledge of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics, such as culture and religion of the perceiver. More precisely, the main purpose is the definition of a structure of variables, namely perceived dangerousness, social closeness, and avoidance of the ill person, together with the beliefs about the best treatment to be undertaken and the sick person' gender, capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned. Method: The study involved 305 university students, 183 from the University of Padua, Italy, and 122 from the University of Haifa, Israel. For the analyses, a latent class analysis (LCA) approach was chosen to identify a latent categorical structure accounting for the covariance between the observed variables. Such a latent structure was expected to be moderated by cultural background (Italy versus Israel) and religious beliefs, whereas causal beliefs, recommended treatment, dangerousness, social closeness, and public avoidance were the manifest variables, namely the observed indicators of the latent variable. Results: Two sets of results were obtained. First, the relevance of the manifest variables as indicators of the hypothesized latent variable was highlighted. Second, a two-latent-class categorical dimension represented by prejudicial attitudes, causal beliefs, and treatments concerning schizophrenia was found. Specifically, the differential effects of the two cultures and the religious beliefs on the latent structure and their relations highlighted the relevance of the observed variables as indicators of the expected latent variable. Conclusion: The present study contributes to the improvement of the understanding of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics of the perceiver. The definition of a structure of variables capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned was achieved from a cross-cultural perspective.

  7. Heterogeneity in general practitioners' preferences for quality improvement programs: a choice experiment and policy simulation in France.

    PubMed

    Ammi, Mehdi; Peyron, Christine

    2016-12-01

    Despite increasing popularity, quality improvement programs (QIP) have had modest and variable impacts on enhancing the quality of physician practice. We investigate the heterogeneity of physicians' preferences as a potential explanation of these mixed results in France, where the national voluntary QIP - the CAPI - has been cancelled due to its unpopularity. We rely on a discrete choice experiment to elicit heterogeneity in physicians' preferences for the financial and non-financial components of QIP. Using mixed and latent class logit models, results show that the two models should be used in concert to shed light on different aspects of the heterogeneity in preferences. In particular, the mixed logit demonstrates that heterogeneity in preferences is concentrated on the pay-for-performance component of the QIP, while the latent class model shows that physicians can be grouped in four homogeneous groups with specific preference patterns. Using policy simulation, we compare the French CAPI with other possible QIPs, and show that the majority of the physician subgroups modelled dislike the CAPI, while favouring a QIP using only non-financial interventions. We underline the importance of modelling preference heterogeneity in designing and implementing QIPs.

  8. Mixture Factor Analysis for Approximating a Nonnormally Distributed Continuous Latent Factor with Continuous and Dichotomous Observed Variables

    ERIC Educational Resources Information Center

    Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo

    2012-01-01

    Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…

  9. The Latent Structure of Dietary Restraint, Body Dissatisfaction, and Drive for Thinness: A Series of Taxometric Analyses

    ERIC Educational Resources Information Center

    Holm-Denoma, Jill M.; Richey, J. Anthony; Joiner, Thomas E., Jr.

    2010-01-01

    Although the latent structure of various eating disorders has been explored in previous studies, no published studies have examined the latent structure of theoretically relevant variables that have been shown to cut across eating disorder diagnoses. The current study examined 3 such variables (dietary restraint, body dissatisfaction, and drive…

  10. The Houdini Transformation: True, but Illusory.

    PubMed

    Bentler, Peter M; Molenaar, Peter C M

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model.

  11. The Houdini Transformation: True, but Illusory

    PubMed Central

    Bentler, Peter M.; Molenaar, Peter C. M.

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model. PMID:23180888

  12. Prioritising health service innovation investments using public preferences: a discrete choice experiment.

    PubMed

    Erdem, Seda; Thompson, Carl

    2014-08-28

    Prioritising scarce resources for investment in innovation by publically funded health systems is unavoidable. Many healthcare systems wish to foster transparency and accountability in the decisions they make by incorporating the public in decision-making processes. This paper presents a unique conceptual approach exploring the public's preferences for health service innovations by viewing healthcare innovations as 'bundles' of characteristics. This decompositional approach allows policy-makers to compare numerous competing health service innovations without repeatedly administering surveys for specific innovation choices. A Discrete Choice Experiment (DCE) was used to elicit preferences. Individuals chose from presented innovation options that they believe the UK National Health Service (NHS) should invest the most in. Innovations differed according to: (i) target population; (ii) target age; (iii) implementation time; (iv) uncertainty associated with their likely effects; (v) potential health benefits; and, (vi) cost to a taxpayer. This approach fosters multidimensional decision-making, rather than imposing a single decision criterion (e.g., cost, target age) in prioritisation. Choice data was then analysed using scale-adjusted Latent Class models to investigate variability in preferences and scale and valuations amongst respondents. Three latent classes with considerable heterogeneity in the preferences were present. Each latent class is composed of two consumer subgroups varying in the level of certainty in their choices. All groups preferred scientifically proven innovations, those with potential health benefits that cost less. There were, however, some important differences in their preferences for innovation investment choices: Class-1 (54%) prefers innovations benefitting adults and young people and does not prefer innovations targeting people with 'drug addiction' and 'obesity'. Class- 2 (34%) prefers innovations targeting 'cancer' patients only and has negative preferences for innovations targeting elderly, and Class-3 (12%) prefers spending on elderly and cancer patients the most. DCE can help policy-makers incorporate public preferences for health service innovation investment choices into decision making. The findings provide useful information on the public's valuation and acceptability of potential health service innovations. Such information can be used to guide innovation prioritisation decisions by comparing competing innovation options. The approach in this paper makes, these often implicit and opaque decisions, more transparent and explicit.

  13. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  14. The Log-Linear Cognitive Diagnostic Model (LCDM) as a Special Case of The General Diagnostic Model (GDM). Research Report. ETS RR-14-40

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2014-01-01

    Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more information about test takers' performance than do unidimensional latent variable models. Recent developments in diagnostic modeling emphasize the possibility that multiple skills may interact in a conjunctive way within the…

  15. Measurement Model Specification Error in LISREL Structural Equation Models.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice; Lomax, Richard

    This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…

  16. Evaluating measurement models in clinical research: covariance structure analysis of latent variable models of self-conception.

    PubMed

    Hoyle, R H

    1991-02-01

    Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.

  17. Unfinished Business in Clarifying Causal Measurement: Commentary on Bainter and Bollen

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2014-01-01

    In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…

  18. Interexaminer variation of minutia markup on latent fingerprints.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-07-01

    Latent print examiners often differ in the number of minutiae they mark during analysis of a latent, and also during comparison of a latent with an exemplar. Differences in minutia counts understate interexaminer variability: examiners' markups may have similar minutia counts but differ greatly in which specific minutiae were marked. We assessed variability in minutia markup among 170 volunteer latent print examiners. Each provided detailed markup documenting their examinations of 22 latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. An average of 12 examiners marked each latent. The primary factors associated with minutia reproducibility were clarity, which regions of the prints examiners chose to mark, and agreement on value or comparison determinations. In clear areas (where the examiner was "certain of the location, presence, and absence of all minutiae"), median reproducibility was 82%; in unclear areas, median reproducibility was 46%. Differing interpretations regarding which regions should be marked (e.g., when there is ambiguity in the continuity of a print) contributed to variability in minutia markup: especially in unclear areas, marked minutiae were often far from the nearest minutia marked by a majority of examiners. Low reproducibility was also associated with differences in value or comparison determinations. Lack of standardization in minutia markup and unfamiliarity with test procedures presumably contribute to the variability we observed. We have identified factors accounting for interexaminer variability; implementing standards for detailed markup as part of documentation and focusing future training efforts on these factors may help to facilitate transparency and reduce subjectivity in the examination process. Published by Elsevier Ireland Ltd.

  19. Multimethod latent class analysis

    PubMed Central

    Nussbeck, Fridtjof W.; Eid, Michael

    2015-01-01

    Correct and, hence, valid classifications of individuals are of high importance in the social sciences as these classifications are the basis for diagnoses and/or the assignment to a treatment. The via regia to inspect the validity of psychological ratings is the multitrait-multimethod (MTMM) approach. First, a latent variable model for the analysis of rater agreement (latent rater agreement model) will be presented that allows for the analysis of convergent validity between different measurement approaches (e.g., raters). Models of rater agreement are transferred to the level of latent variables. Second, the latent rater agreement model will be extended to a more informative MTMM latent class model. This model allows for estimating (i) the convergence of ratings, (ii) method biases in terms of differential latent distributions of raters and differential associations of categorizations within raters (specific rater bias), and (iii) the distinguishability of categories indicating if categories are satisfyingly distinct from each other. Finally, an empirical application is presented to exemplify the interpretation of the MTMM latent class model. PMID:26441714

  20. Exploring heterogeneity in clinical trials with latent class analysis

    PubMed Central

    Abarda, Abdallah; Contractor, Ateka A.; Wang, Juan; Dayton, C. Mitchell

    2018-01-01

    Case-mix is common in clinical trials and treatment effect can vary across different subgroups. Conventionally, a subgroup analysis is performed by dividing the overall study population by one or two grouping variables. It is usually impossible to explore complex high-order intersections among confounding variables. Latent class analysis (LCA) provides a framework to identify latent classes by observed manifest variables. Distal clinical outcomes and treatment effect can be different across these classes. This paper provides a step-by-step tutorial on how to perform LCA with R. A simulated dataset is generated to illustrate the process. In the example, the classify-analyze approach is employed to explore the differential treatment effects on distal outcomes across latent classes. PMID:29955579

  1. On the Asymptotic Relative Efficiency of Planned Missingness Designs.

    PubMed

    Rhemtulla, Mijke; Savalei, Victoria; Little, Todd D

    2016-03-01

    In planned missingness (PM) designs, certain data are set a priori to be missing. PM designs can increase validity and reduce cost; however, little is known about the loss of efficiency that accompanies these designs. The present paper compares PM designs to reduced sample (RN) designs that have the same total number of data points concentrated in fewer participants. In 4 studies, we consider models for both observed and latent variables, designs that do or do not include an "X set" of variables with complete data, and a full range of between- and within-set correlation values. All results are obtained using asymptotic relative efficiency formulas, and thus no data are generated; this novel approach allows us to examine whether PM designs have theoretical advantages over RN designs removing the impact of sampling error. Our primary findings are that (a) in manifest variable regression models, estimates of regression coefficients have much lower relative efficiency in PM designs as compared to RN designs, (b) relative efficiency of factor correlation or latent regression coefficient estimates is maximized when the indicators of each latent variable come from different sets, and (c) the addition of an X set improves efficiency in manifest variable regression models only for the parameters that directly involve the X-set variables, but it substantially improves efficiency of most parameters in latent variable models. We conclude that PM designs can be beneficial when the model of interest is a latent variable model; recommendations are made for how to optimize such a design.

  2. Environmental risk perception, environmental concern and propensity to participate in organic farming programmes.

    PubMed

    Toma, Luiza; Mathijs, Erik

    2007-04-01

    This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.

  3. Class Evolution Tree: A Graphical Tool to Support Decisions on the Number of Classes in Exploratory Categorical Latent Variable Modeling for Rehabilitation Research

    ERIC Educational Resources Information Center

    Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa

    2011-01-01

    The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…

  4. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    NASA Astrophysics Data System (ADS)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  5. Incorporating environmental attitudes in discrete choice models: an exploration of the utility of the awareness of consequences scale.

    PubMed

    Hoyos, David; Mariel, Petr; Hess, Stephane

    2015-02-01

    Environmental economists are increasingly interested in better understanding how people cognitively organise their beliefs and attitudes towards environmental change in order to identify key motives and barriers that stimulate or prevent action. In this paper, we explore the utility of a commonly used psychometric scale, the awareness of consequences (AC) scale, in order to better understand stated choices. The main contribution of the paper is that it provides a novel approach to incorporate attitudinal information into discrete choice models for environmental valuation: firstly, environmental attitudes are incorporated using a reinterpretation of the classical AC scale recently proposed by Ryan and Spash (2012); and, secondly, attitudinal data is incorporated as latent variables under a hybrid choice modelling framework. This novel approach is applied to data from a survey conducted in the Basque Country (Spain) in 2008 aimed at valuing land-use policies in a Natura 2000 Network site. The results are relevant to policy-making because choice models that are able to accommodate underlying environmental attitudes may help in designing more effective environmental policies. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Data on the interexaminer variation of minutia markup on latent fingerprints.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-09-01

    The data in this article supports the research paper entitled "Interexaminer variation of minutia markup on latent fingerprints" [1]. The data in this article describes the variability in minutia markup during both analysis of the latents and comparison between latents and exemplars. The data was collected in the "White Box Latent Print Examiner Study," in which each of 170 volunteer latent print examiners provided detailed markup documenting their examinations of latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. Each examiner examined 22 latent-exemplar pairs; an average of 12 examiners marked each latent.

  7. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation

    PubMed Central

    Xu, Man K.; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J. S.; Croudace, Tim J.; Barnett, Jennifer H.; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B.

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits. PMID:29075213

  8. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation.

    PubMed

    Xu, Man K; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J S; Croudace, Tim J; Barnett, Jennifer H; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene ( MAOA ) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.

  9. Group Comparisons in the Presence of Missing Data Using Latent Variable Modeling Techniques

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2010-01-01

    A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…

  10. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  11. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  12. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance.

    PubMed

    Goold, Conor; Newberry, Ruth C

    2017-01-01

    Studies of animal personality attempt to uncover underlying or "latent" personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4-10 months, 10 months-3 years, 3-6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate "aggressive personality" trait attributions can be costly to dogs, recipients of aggression and society in general.

  13. Latent class instrumental variables: A clinical and biostatistical perspective

    PubMed Central

    Baker, Stuart G.; Kramer, Barnett S.; Lindeman, Karen S.

    2015-01-01

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. PMID:26239275

  14. Identification of Chinese medicine syndromes in persistent insomnia associated with major depressive disorder: a latent tree analysis.

    PubMed

    Yeung, Wing-Fai; Chung, Ka-Fai; Zhang, Nevin Lian-Wen; Zhang, Shi Ping; Yung, Kam-Ping; Chen, Pei-Xian; Ho, Yan-Yee

    2016-01-01

    Chinese medicine (CM) syndrome (zheng) differentiation is based on the co-occurrence of CM manifestation profiles, such as signs and symptoms, and pulse and tongue features. Insomnia is a symptom that frequently occurs in major depressive disorder despite adequate antidepressant treatment. This study aims to identify co-occurrence patterns in participants with persistent insomnia and major depressive disorder from clinical feature data using latent tree analysis, and to compare the latent variables with relevant CM syndromes. One hundred and forty-two participants with persistent insomnia and a history of major depressive disorder completed a standardized checklist (the Chinese Medicine Insomnia Symptom Checklist) specially developed for CM syndrome classification of insomnia. The checklist covers symptoms and signs, including tongue and pulse features. The clinical features assessed by the checklist were analyzed using Lantern software. CM practitioners with relevant experience compared the clinical feature variables under each latent variable with reference to relevant CM syndromes, based on a previous review of CM syndromes. The symptom data were analyzed to build the latent tree model and the model with the highest Bayes information criterion score was regarded as the best model. This model contained 18 latent variables, each of which divided participants into two clusters. Six clusters represented more than 50 % of the sample. The clinical feature co-occurrence patterns of these six clusters were interpreted as the CM syndromes Liver qi stagnation transforming into fire, Liver fire flaming upward, Stomach disharmony, Hyperactivity of fire due to yin deficiency, Heart-kidney noninteraction, and Qi deficiency of the heart and gallbladder. The clinical feature variables that contributed significant cumulative information coverage (at least 95 %) were identified. Latent tree model analysis on a sample of depressed participants with insomnia revealed 13 clinical feature co-occurrence patterns, four mutual-exclusion patterns, and one pattern with a single clinical feature variable.

  15. Development of lifetime comorbidity in the WHO World Mental Health (WMH) Surveys

    PubMed Central

    Kessler, Ronald C.; Ormel, Johan; Petukhova, Maria; McLaughlin, Katie A.; Green, Jennifer Greif; Russo, Leo J.; Stein, Dan J.; Zaslavsky, Alan M; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Andrade, Laura; Benjet, Corina; de Girolamo, Giovanni; de Graaf, Ron; Demyttenaere, Koen; Fayyad, John; Haro, Josep Maria; Hu, Chi yi; Karam, Aimee; Lee, Sing; Lepine, Jean-Pierre; Matchsinger, Herbert; Mihaescu-Pintia, Constanta; Posada-Villa, Jose; Sagar, Rajesh; Üstün, T. Bedirhan

    2010-01-01

    CONTEXT Although numerous studies have examined the role of latent variables in the structure of comorbidity among mental disorders, none has examined their role in the development of comorbidity. OBJECTIVE To study the role of latent variables in the development of comorbidity among 18 lifetime DSM-IV disorders in the WHO World Mental Health (WMH) surveys. SETTING/PARTICIPANTS Nationally or regionally representative community surveys in 14 countries with a total of 21,229 respondents. MAIN OUTCOME MEASURES First onset of 18 lifetime DSM-IV anxiety, mood, behavior, and substance disorders assessed retrospectively in the WHO Composite International Diagnostic Interview (CIDI). RESULTS Separate internalizing (anxiety and mood disorders) and externalizing (behavior and substance disorders) factors were found in exploratory factor analysis of lifetime disorders. Consistently significant positive time-lagged associations were found in survival analyses for virtually all temporally primary lifetime disorders predicting subsequent onset of other disorders. Within-domain (i.e., internalizing or externalizing) associations were generally stronger than between-domain associations. The vast majority of time-lagged associations were explained by a model that assumed the existence of mediating latent internalizing and externalizing variables. Specific phobia and obsessive-compulsive disorder (internalizing) and hyperactivity disorder and oppositional-defiant disorder (externalizing) were the most important predictors. A small number of residual associations remained significant after controlling the latent variables. CONCLUSIONS The good fit of the latent variable model suggests that common causal pathways account for most of the comorbidity among the disorders considered here. These common pathways should be the focus of future research on the development of comorbidity, although several important pair-wise associations that cannot be accounted for by latent variables also exist that warrant further focused study. PMID:21199968

  16. Regression mixture models: Does modeling the covariance between independent variables and latent classes improve the results?

    PubMed Central

    Lamont, Andrea E.; Vermunt, Jeroen K.; Van Horn, M. Lee

    2016-01-01

    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we test the effects of violating an implicit assumption often made in these models – i.e., independent variables in the model are not directly related to latent classes. Results indicated that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. Additionally, this study tests whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations, but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a re-analysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted. PMID:26881956

  17. A descriptivist approach to trait conceptualization and inference.

    PubMed

    Jonas, Katherine G; Markon, Kristian E

    2016-01-01

    In their recent article, How Functionalist and Process Approaches to Behavior Can Explain Trait Covariation, Wood, Gardner, and Harms (2015) underscore the need for more process-based understandings of individual differences. At the same time, the article illustrates a common error in the use and interpretation of latent variable models: namely, the misuse of models to arbitrate issues of causation and the nature of latent variables. Here, we explain how latent variables can be understood simply as parsimonious summaries of data, and how statistical inference can be based on choosing those summaries that minimize information required to represent the data using the model. Although Wood, Gardner, and Harms acknowledge this perspective, they underestimate its significance, including its importance to modeling and the conceptualization of psychological measurement. We believe this perspective has important implications for understanding individual differences in a number of domains, including current debates surrounding the role of formative versus reflective latent variables. (c) 2015 APA, all rights reserved).

  18. Stochastic Approximation Methods for Latent Regression Item Response Models. Research Report. ETS RR-09-09

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2009-01-01

    This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…

  19. A General Approach to Defining Latent Growth Components

    ERIC Educational Resources Information Center

    Mayer, Axel; Steyer, Rolf; Mueller, Horst

    2012-01-01

    We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…

  20. Developing an Instrument to Assess Higher Education Leadership.

    ERIC Educational Resources Information Center

    Montez, Joni

    An instrument was developed to assess the construct of higher education leadership from discrete innate (possessed) and extrinsic (directed toward others) points of view. Dimensions of the latent construct of higher education leadership were identified, and their content and the relationships between their indicators were "mapped" according to the…

  1. Latent class instrumental variables: a clinical and biostatistical perspective.

    PubMed

    Baker, Stuart G; Kramer, Barnett S; Lindeman, Karen S

    2016-01-15

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings.

    PubMed

    Whiteway, Matthew R; Butts, Daniel A

    2017-03-01

    The activity of sensory cortical neurons is not only driven by external stimuli but also shaped by other sources of input to the cortex. Unlike external stimuli, these other sources of input are challenging to experimentally control, or even observe, and as a result contribute to variability of neural responses to sensory stimuli. However, such sources of input are likely not "noise" and may play an integral role in sensory cortex function. Here we introduce the rectified latent variable model (RLVM) in order to identify these sources of input using simultaneously recorded cortical neuron populations. The RLVM is novel in that it employs nonnegative (rectified) latent variables and is much less restrictive in the mathematical constraints on solutions because of the use of an autoencoder neural network to initialize model parameters. We show that the RLVM outperforms principal component analysis, factor analysis, and independent component analysis, using simulated data across a range of conditions. We then apply this model to two-photon imaging of hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex during a tactile discrimination task. Across many experiments, the RLVM identifies latent variables related to both the tactile stimulation as well as nonstimulus aspects of the behavioral task, with a majority of activity explained by the latter. These results suggest that properly identifying such latent variables is necessary for a full understanding of sensory cortical function and demonstrate novel methods for leveraging large population recordings to this end. NEW & NOTEWORTHY The rapid development of neural recording technologies presents new opportunities for understanding patterns of activity across neural populations. Here we show how a latent variable model with appropriate nonlinear form can be used to identify sources of input to a neural population and infer their time courses. Furthermore, we demonstrate how these sources are related to behavioral contexts outside of direct experimental control. Copyright © 2017 the American Physiological Society.

  3. Measuring individual differences in responses to date-rape vignettes using latent variable models.

    PubMed

    Tuliao, Antover P; Hoffman, Lesa; McChargue, Dennis E

    2017-01-01

    Vignette methodology can be a flexible and powerful way to examine individual differences in response to dangerous real-life scenarios. However, most studies underutilize the usefulness of such methodology by analyzing only one outcome, which limits the ability to track event-related changes (e.g., vacillation in risk perception). The current study was designed to illustrate the dynamic influence of risk perception on exit point from a date-rape vignette. Our primary goal was to provide an illustrative example of how to use latent variable models for vignette methodology, including latent growth curve modeling with piecewise slopes, as well as latent variable measurement models. Through the combination of a step-by-step exposition in this text and corresponding model syntax available electronically, we detail an alternative statistical "blueprint" to enhance future violence research efforts using vignette methodology. Aggr. Behav. 43:60-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    PubMed

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  5. Realist identification of group-level latent variables for perinatal social epidemiology theory building.

    PubMed

    Eastwood, John Graeme; Jalaludin, Bin Badrudin; Kemp, Lynn Ann; Phung, Hai Ngoc

    2014-01-01

    We have previously reported in this journal on an ecological study of perinatal depressive symptoms in South Western Sydney. In that article, we briefly reported on a factor analysis that was utilized to identify empirical indicators for analysis. In this article, we report on the mixed method approach that was used to identify those latent variables. Social epidemiology has been slow to embrace a latent variable approach to the study of social, political, economic, and cultural structures and mechanisms, partly for philosophical reasons. Critical realist ontology and epistemology have been advocated as an appropriate methodological approach to both theory building and theory testing in the health sciences. We describe here an emergent mixed method approach that uses qualitative methods to identify latent constructs followed by factor analysis using empirical indicators chosen to measure identified qualitative codes. Comparative analysis of the findings is reported together with a limited description of realist approaches to abstract reasoning.

  6. Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.

    PubMed

    Ding, Cherng G; Jane, Ten-Der

    2012-09-01

    In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.

  7. Heteroscedastic Latent Trait Models for Dichotomous Data.

    PubMed

    Molenaar, Dylan

    2015-09-01

    Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability.

  8. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  9. Estimating and Visualizing Nonlinear Relations among Latent Variables: A Semiparametric Approach

    ERIC Educational Resources Information Center

    Pek, Jolynn; Sterba, Sonya K.; Kok, Bethany E.; Bauer, Daniel J.

    2009-01-01

    The graphical presentation of any scientific finding enhances its description, interpretation, and evaluation. Research involving latent variables is no exception, especially when potential nonlinear effects are suspect. This article has multiple aims. First, it provides a nontechnical overview of a semiparametric approach to modeling nonlinear…

  10. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  11. Behavioral Scale Reliability and Measurement Invariance Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2004-01-01

    A latent variable modeling approach to reliability and measurement invariance evaluation for multiple-component measuring instruments is outlined. An initial discussion deals with the limitations of coefficient alpha, a frequently used index of composite reliability. A widely and readily applicable structural modeling framework is next described…

  12. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders

    2007-01-01

    Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…

  13. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  14. Meta-Analysis of Scale Reliability Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2013-01-01

    A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…

  15. Diagnostic Procedures for Detecting Nonlinear Relationships between Latent Variables

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C.

    2012-01-01

    Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…

  16. Estimation of the latent mediated effect with ordinal data using the limited-information and Bayesian full-information approaches.

    PubMed

    Chen, Jinsong; Zhang, Dake; Choi, Jaehwa

    2015-12-01

    It is common to encounter latent variables with ordinal data in social or behavioral research. Although a mediated effect of latent variables (latent mediated effect, or LME) with ordinal data may appear to be a straightforward combination of LME with continuous data and latent variables with ordinal data, the methodological challenges to combine the two are not trivial. This research covers model structures as complex as LME and formulates both point and interval estimates of LME for ordinal data using the Bayesian full-information approach. We also combine weighted least squares (WLS) estimation with the bias-corrected bootstrapping (BCB; Efron Journal of the American Statistical Association, 82, 171-185, 1987) method or the traditional delta method as the limited-information approach. We evaluated the viability of these different approaches across various conditions through simulation studies, and provide an empirical example to illustrate the approaches. We found that the Bayesian approach with reasonably informative priors is preferred when both point and interval estimates are of interest and the sample size is 200 or above.

  17. The Relationship Between Executive Functions and Language Abilities in Children: A Latent Variables Approach

    PubMed Central

    Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis

    2017-01-01

    Purpose We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Results Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals–Fourth Edition (CELF-4). When composites denoting lexical–semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. Conclusions The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs. PMID:28306755

  18. The Relationship Between Executive Functions and Language Abilities in Children: A Latent Variables Approach.

    PubMed

    Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M; Weismer, Susan Ellis

    2017-04-14

    We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals-Fourth Edition (CELF-4). When composites denoting lexical-semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs.

  19. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance

    PubMed Central

    2017-01-01

    Studies of animal personality attempt to uncover underlying or “latent” personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4–10 months, 10 months–3 years, 3–6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate “aggressive personality” trait attributions can be costly to dogs, recipients of aggression and society in general. PMID:28854267

  20. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    PubMed

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models*

    PubMed Central

    Kirby, James B.; Bollen, Kenneth A.

    2009-01-01

    Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054

  2. Matrix completion by deep matrix factorization.

    PubMed

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of marriage on HIV/AIDS risk behaviors among impoverished, at-risk couples: a multilevel latent variable approach.

    PubMed

    Stein, Judith A; Nyamathi, Adeline; Ullman, Jodie B; Bentler, Peter M

    2007-01-01

    Studies among normative samples generally demonstrate a positive impact of marriage on health behaviors and other related attitudes. In this study, we examine the impact of marriage on HIV/AIDS risk behaviors and attitudes among impoverished, highly stressed, homeless couples, many with severe substance abuse problems. A multilevel analysis of 368 high-risk sexually intimate married and unmarried heterosexual couples assessed individual and couple-level effects on social support, substance use problems, HIV/AIDS knowledge, perceived HIV/AIDS risk, needle-sharing, condom use, multiple sex partners, and HIV/AIDS testing. More variance was explained in the protective and risk variables by couple-level latent variable predictors than by individual latent variable predictors, although some gender effects were found (e.g., more alcohol problems among men). The couple-level variable of marriage predicted lower perceived risk, less deviant social support, and fewer sex partners but predicted more needle-sharing.

  4. Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.

    PubMed

    Falk, Carl F; Biesanz, Jeremy C

    2011-11-30

    Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.

  5. Detecting Social Desirability Bias Using Factor Mixture Models

    ERIC Educational Resources Information Center

    Leite, Walter L.; Cooper, Lou Ann

    2010-01-01

    Based on the conceptualization that social desirable bias (SDB) is a discrete event resulting from an interaction between a scale's items, the testing situation, and the respondent's latent trait on a social desirability factor, we present a method that makes use of factor mixture models to identify which examinees are most likely to provide…

  6. Psychometrics in Psychological Research: Role Model or Partner in Science?

    ERIC Educational Resources Information Center

    Sijtsma, Klaas

    2006-01-01

    This is a reaction to Borsboom's (2006) discussion paper on the issue that psychology takes so little notice of the modern developments in psychometrics, in particular, latent variable methods. Contrary to Borsboom, it is argued that latent variables are summaries of interesting data properties, that construct validation should involve studying…

  7. An Alternative Approach for Nonlinear Latent Variable Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Bentler, Peter M.

    2010-01-01

    In the last decades there has been an increasing interest in nonlinear latent variable models. Since the seminal paper of Kenny and Judd, several methods have been proposed for dealing with these kinds of models. This article introduces an alternative approach. The methodology involves fitting some third-order moments in addition to the means and…

  8. Using Structural Equation Models with Latent Variables to Study Student Growth and Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1991-01-01

    Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…

  9. Aptitude, Achievement and Competence in Medicine: A Latent Variable Path Model

    ERIC Educational Resources Information Center

    Collin, V. Terri; Violato, Claudio; Hecker, Kent

    2009-01-01

    To develop and test a latent variable path model of general achievement, aptitude for medicine and competence in medicine employing data from the Medical College Admission Test (MCAT), pre-medical undergraduate grade point average (UGPA) and demographic characteristics for competence in pre-clinical and measures of competence (United States…

  10. Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    2010-01-01

    A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…

  11. Estimation of Latent Group Effects: Psychometric Technical Report No. 2.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.

    Conventional methods of multivariate normal analysis do not apply when the variables of interest are not observed directly, but must be inferred from fallible or incomplete data. For example, responses to mental test items may depend upon latent aptitude variables, which modeled in turn as functions of demographic effects in the population. A…

  12. Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators

    ERIC Educational Resources Information Center

    Weissman, Alexander

    2013-01-01

    Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…

  13. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  14. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  15. Evaluation of Weighted Scale Reliability and Criterion Validity: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2007-01-01

    A method is outlined for evaluating the reliability and criterion validity of weighted scales based on sets of unidimensional measures. The approach is developed within the framework of latent variable modeling methodology and is useful for point and interval estimation of these measurement quality coefficients in counseling and education…

  16. Multilevel Latent Class Analysis: Parametric and Nonparametric Models

    ERIC Educational Resources Information Center

    Finch, W. Holmes; French, Brian F.

    2014-01-01

    Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…

  17. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion

    NASA Astrophysics Data System (ADS)

    Hamid, M. R. Ab; Sami, W.; Mohmad Sidek, M. H.

    2017-09-01

    Assessment of discriminant validity is a must in any research that involves latent variables for the prevention of multicollinearity issues. Fornell and Larcker criterion is the most widely used method for this purpose. However, a new method has emerged for establishing the discriminant validity assessment through heterotrait-monotrait (HTMT) ratio of correlations method. Therefore, this article presents the results of discriminant validity assessment using these methods. Data from previous study was used that involved 429 respondents for empirical validation of value-based excellence model in higher education institutions (HEI) in Malaysia. From the analysis, the convergent, divergent and discriminant validity were established and admissible using Fornell and Larcker criterion. However, the discriminant validity is an issue when employing the HTMT criterion. This shows that the latent variables under study faced the issue of multicollinearity and should be looked into for further details. This also implied that the HTMT criterion is a stringent measure that could detect the possible indiscriminant among the latent variables. In conclusion, the instrument which consisted of six latent variables was still lacking in terms of discriminant validity and should be explored further.

  18. Exploring Parental Influence on the Progression of Alcohol Use in Mexican-Heritage Youth: A Latent Transition Analysis

    PubMed Central

    Shin, YoungJu; Lee, Jeong-Kyu; Lu, Yu; Hecht, Michael

    2015-01-01

    Mexican-heritage youth are members of the fastest growing minority group and are at particular risk for substance use including alcohol consumption. Youth face numerous risk factors including positive descriptions of substance use on media and peer offers that are potentially ameliorated by parental anti-substance use socialization efforts. Guided by primary socialization theory and the theory of planned behavior, the present study posited eight research questions to identify discrete subgroups/patterns of Mexican-heritage youth alcohol use behavior and parental influence on youth outcomes. Longitudinal survey data (n = 1,147) from youth in 29 public schools located in Phoenix, Arizona were collected over three years. Latent class and transition analyses identified four discrete subgroups characterized by response patterns of alcohol use behaviors and perceptions in Mexican-heritage youth: 1) Non-drinker, 2) Potential drinker, 3) Experimenter, and 4) Regular drinker. Targeted parent-child communication about alcohol and parental monitoring were found to be significant predictors for youth alcohol use. Research implications and future directions are suggested. PMID:26300049

  19. Modeling loosely annotated images using both given and imagined annotations

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Boujemaa, Nozha; Chen, Yunhao; Deng, Lei

    2011-12-01

    In this paper, we present an approach to learn latent semantic analysis models from loosely annotated images for automatic image annotation and indexing. The given annotation in training images is loose due to: 1. ambiguous correspondences between visual features and annotated keywords; 2. incomplete lists of annotated keywords. The second reason motivates us to enrich the incomplete annotation in a simple way before learning a topic model. In particular, some ``imagined'' keywords are poured into the incomplete annotation through measuring similarity between keywords in terms of their co-occurrence. Then, both given and imagined annotations are employed to learn probabilistic topic models for automatically annotating new images. We conduct experiments on two image databases (i.e., Corel and ESP) coupled with their loose annotations, and compare the proposed method with state-of-the-art discrete annotation methods. The proposed method improves word-driven probability latent semantic analysis (PLSA-words) up to a comparable performance with the best discrete annotation method, while a merit of PLSA-words is still kept, i.e., a wider semantic range.

  20. Latent profile analyses of posttraumatic stress disorder, depression and generalized anxiety disorder symptoms in trauma-exposed soldiers.

    PubMed

    Contractor, Ateka A; Elhai, Jon D; Fine, Thomas H; Tamburrino, Marijo B; Cohen, Gregory; Shirley, Edwin; Chan, Philip K; Liberzon, Israel; Galea, Sandro; Calabrese, Joseph R

    2015-09-01

    Posttraumatic stress disorder (PTSD) is comorbid with major depressive disorder (MDD; Kessler et al., 1995) and generalized anxiety disorder (GAD; Brown et al., 2001). We aimed to (1) assess discrete patterns of post-trauma PTSD-depression-GAD symptoms using latent profile analyses (LPAs), and (2) assess covariates (gender, income, education, age) in defining the best fitting class solution. The PTSD Checklist (assessing PTSD symptoms), GAD-7 scale (assessing GAD symptoms), and Patient Health Questionnaire-9 (assessing depression) were administered to 1266 trauma-exposed Ohio National Guard soldiers. Results indicated three discrete subgroups based on symptom patterns with mild (class 1), moderate (class 2) and severe (class 3) levels of symptomatology. Classes differed in symptom severity rather than symptom type. Income and education significantly predicted class 1 versus class 3 membership, and class 2 versus class 3. In conclusion, there is heterogeneity regarding severity of PTSD-depression-GAD symptomatology among trauma-exposed soldiers, with income and education predictive of class membership. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Use of AFIS for linking scenes of crime.

    PubMed

    Hefetz, Ido; Liptz, Yakir; Vaturi, Shaul; Attias, David

    2016-05-01

    Forensic intelligence can provide critical information in criminal investigations - the linkage of crime scenes. The Automatic Fingerprint Identification System (AFIS) is an example of a technological improvement that has advanced the entire forensic identification field to strive for new goals and achievements. In one example using AFIS, a series of burglaries into private apartments enabled a fingerprint examiner to search latent prints from different burglary scenes against an unsolved latent print database. Latent finger and palm prints coming from the same source were associated with over than 20 cases. Then, by forensic intelligence and profile analysis the offender's behavior could be anticipated. He was caught, identified, and arrested. It is recommended to perform an AFIS search of LT/UL prints against current crimes automatically as part of laboratory protocol and not by an examiner's discretion. This approach may link different crime scenes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Examining the temporal relationship between psychological climate, work attitude, and staff turnover

    PubMed Central

    Garner, Bryan R.; Hunter, Brooke D.

    2012-01-01

    Relative to the broader industrial-organizational (I-O) psychology field, research on the turnover of substance use disorder (SUD) treatment staff is in its infancy. Despite its long and rich history, recent reviews of the turnover literature within I-O psychology have noted there remains considerable room for improvement. In particular, recommendations have been made for research that considers time in the turnover process and explores more distal causes of staff turnover. Addressing these gaps, this paper examined the temporal relationship between latent measures of psychological climate, work attitude, and staff turnover. Using data from 95 SUD treatment staff clustered within 29 treatment organizations, multilevel discrete-time survival analyses revealed that a latent measure of work attitude (e.g., job satisfaction, pay satisfaction, turnover intentions) fully mediated the temporal relationship between latent measures of psychological climate (e.g., supervisor support, coworker support, role conflict) and subsequent staff turnover. PMID:22658290

  3. Testing Specific Hypotheses Concerning Latent Group Differences in Multi-group Covariance Structure Analysis with Structured Means.

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)

  4. Spurious Latent Classes in the Mixture Rasch Model

    ERIC Educational Resources Information Center

    Alexeev, Natalia; Templin, Jonathan; Cohen, Allan S.

    2011-01-01

    Mixture Rasch models have been used to study a number of psychometric issues such as goodness of fit, response strategy differences, strategy shifts, and multidimensionality. Although these models offer the potential for improving understanding of the latent variables being measured, under some conditions overextraction of latent classes may…

  5. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    ERIC Educational Resources Information Center

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  6. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    PubMed

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A new model of wheezing severity in young children using the validated ISAAC wheezing module: A latent variable approach with validation in independent cohorts.

    PubMed

    Brunwasser, Steven M; Gebretsadik, Tebeb; Gold, Diane R; Turi, Kedir N; Stone, Cosby A; Datta, Soma; Gern, James E; Hartert, Tina V

    2018-01-01

    The International Study of Asthma and Allergies in Children (ISAAC) Wheezing Module is commonly used to characterize pediatric asthma in epidemiological studies, including nearly all airway cohorts participating in the Environmental Influences on Child Health Outcomes (ECHO) consortium. However, there is no consensus model for operationalizing wheezing severity with this instrument in explanatory research studies. Severity is typically measured using coarsely-defined categorical variables, reducing power and potentially underestimating etiological associations. More precise measurement approaches could improve testing of etiological theories of wheezing illness. We evaluated a continuous latent variable model of pediatric wheezing severity based on four ISAAC Wheezing Module items. Analyses included subgroups of children from three independent cohorts whose parents reported past wheezing: infants ages 0-2 in the INSPIRE birth cohort study (Cohort 1; n = 657), 6-7-year-old North American children from Phase One of the ISAAC study (Cohort 2; n = 2,765), and 5-6-year-old children in the EHAAS birth cohort study (Cohort 3; n = 102). Models were estimated using structural equation modeling. In all cohorts, covariance patterns implied by the latent variable model were consistent with the observed data, as indicated by non-significant χ2 goodness of fit tests (no evidence of model misspecification). Cohort 1 analyses showed that the latent factor structure was stable across time points and child sexes. In both cohorts 1 and 3, the latent wheezing severity variable was prospectively associated with wheeze-related clinical outcomes, including physician asthma diagnosis, acute corticosteroid use, and wheeze-related outpatient medical visits when adjusting for confounders. We developed an easily applicable continuous latent variable model of pediatric wheezing severity based on items from the well-validated ISAAC Wheezing Module. This model prospectively associates with asthma morbidity, as demonstrated in two ECHO birth cohort studies, and provides a more statistically powerful method of testing etiologic hypotheses of childhood wheezing illness and asthma.

  8. Three Cs in measurement models: causal indicators, composite indicators, and covariates.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2011-09-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.

  9. Using structural equation modeling to investigate relationships among ecological variables

    USGS Publications Warehouse

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0.1258. Natural variability had a positive direct effect on biodiversity of magnitude 0.5347 and a negative indirect effect mediated through growth potential of magnitude -0.1105 yielding a positive total effects of magnitude 0.4242. Sediment contamination had a negative direct effect on biodiversity of magnitude -0.1956 and a negative indirect effect on growth potential via biodiversity of magnitude -0.067. Biodiversity had a positive effect on growth potential of magnitude 0.8432, and growth potential had a positive effect on biodiversity of magnitude 0.3398. The correlation between biodiversity and growth potential was estimated at 0.7658 and that between sediment contamination and natural variability at -0.3769.

  10. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  11. The Relationship between Executive Functions and Language Abilities in Children: A Latent Variables Approach

    ERIC Educational Resources Information Center

    Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis

    2017-01-01

    Purpose: We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method: Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF…

  12. The Benefits of Latent Variable Modeling to Develop Norms for a Translated Version of a Standardized Scale

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Shaw, Leslie A.; Shogren, Karrie A.; Lang, Kyle M.; Little, Todd D.

    2017-01-01

    This article demonstrates the use of structural equation modeling to develop norms for a translated version of a standardized scale, the Supports Intensity Scale-Children's Version (SIS-C). The latent variable norming method proposed is useful when the standardization sample for a translated version is relatively small to derive norms…

  13. Interrater Agreement Evaluation: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; von Eye, Alexander; Marcoulides, George A.

    2013-01-01

    A latent variable modeling method for evaluation of interrater agreement is outlined. The procedure is useful for point and interval estimation of the degree of agreement among a given set of judges evaluating a group of targets. In addition, the approach allows one to test for identity in underlying thresholds across raters as well as to identify…

  14. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    ERIC Educational Resources Information Center

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  15. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  16. Cognitive Preconditions of Early Reading and Spelling: A Latent-Variable Approach with Longitudinal Data

    ERIC Educational Resources Information Center

    Preßler, Anna-Lena; Könen, Tanja; Hasselhorn, Marcus; Krajewski, Kristin

    2014-01-01

    The aim of the present study was to empirically disentangle the interdependencies of the impact of nonverbal intelligence, working memory capacities, and phonological processing skills on early reading decoding and spelling within a latent variable approach. In a sample of 127 children, these cognitive preconditions were assessed before the onset…

  17. An Alternative Two Stage Least Squares (2SLS) Estimator for Latent Variable Equations.

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.

    1996-01-01

    An alternative two-stage least squares (2SLS) estimator of the parameters in LISREL type models is proposed and contrasted with existing estimators. The new 2SLS estimator allows observed and latent variables to originate from nonnormal distributions, is consistent, has a known asymptotic covariance matrix, and can be estimated with standard…

  18. Classical Item Analysis Using Latent Variable Modeling: A Note on a Direct Evaluation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2011-01-01

    A directly applicable latent variable modeling procedure for classical item analysis is outlined. The method allows one to point and interval estimate item difficulty, item correlations, and item-total correlations for composites consisting of categorical items. The approach is readily employed in empirical research and as a by-product permits…

  19. A Direct Latent Variable Modeling Based Method for Point and Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…

  20. Introduction to the special section on mixture modeling in personality assessment.

    PubMed

    Wright, Aidan G C; Hallquist, Michael N

    2014-01-01

    Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.

  1. Assets as a Socioeconomic Status Index: Categorical Principal Components Analysis vs. Latent Class Analysis.

    PubMed

    Sartipi, Majid; Nedjat, Saharnaz; Mansournia, Mohammad Ali; Baigi, Vali; Fotouhi, Akbar

    2016-11-01

    Some variables like Socioeconomic Status (SES) cannot be directly measured, instead, so-called 'latent variables' are measured indirectly through calculating tangible items. There are different methods for measuring latent variables such as data reduction methods e.g. Principal Components Analysis (PCA) and Latent Class Analysis (LCA). The purpose of our study was to measure assets index- as a representative of SES- through two methods of Non-Linear PCA (NLPCA) and LCA, and to compare them for choosing the most appropriate model. This was a cross sectional study in which 1995 respondents filled the questionnaires about their assets in Tehran. The data were analyzed by SPSS 19 (CATPCA command) and SAS 9.2 (PROC LCA command) to estimate their socioeconomic status. The results were compared based on the Intra-class Correlation Coefficient (ICC). The 6 derived classes from LCA based on BIC, were highly consistent with the 6 classes from CATPCA (Categorical PCA) (ICC = 0.87, 95%CI: 0.86 - 0.88). There is no gold standard to measure SES. Therefore, it is not possible to definitely say that a specific method is better than another one. LCA is a complicated method that presents detailed information about latent variables and required one assumption (local independency), while NLPCA is a simple method, which requires more assumptions. Generally, NLPCA seems to be an acceptable method of analysis because of its simplicity and high agreement with LCA.

  2. Insurees' preferences in hospital choice-A population-based study.

    PubMed

    Schuldt, Johannes; Doktor, Anna; Lichters, Marcel; Vogt, Bodo; Robra, Bernt-Peter

    2017-10-01

    In Germany, the patient himself makes the choice for or against a health service provider. Hospital comparison websites offer him possibilities to inform himself before choosing. However, it remains unclear, how health care consumers use those websites, and there is little information about how preferences in hospital choice differ interpersonally. We conducted a Discrete-Choice-Experiment (DCE) on hospital choice with 1500 randomly selected participants (age 40-70) in three different German cities selecting four attributes for hospital vignettes. The analysis of the study draws on multilevel mixed effects logit regression analyses with the dependent variables: "chance to select a hospital" and "choice confidence". Subsequently, we performed a Latent-Class-Analysis to uncover consumer segments with distinct preferences. 590 of the questionnaires were evaluable. All four attributes of the hospital vignettes have a significant impact on hospital choice. The attribute "complication rate" exerts the highest impact on consumers' decisions and reported choice confidence. Latent-Class-Analysis results in one dominant consumer segment that considered the complication rate the most important decision criterion. Using DCE, we were able to show that the complication rate is an important trusted criterion in hospital choice to a large group of consumers. Our study supports current governmental efforts in Germany to concentrate the provision of specialized health care services. We suggest further national and cross-national research on the topic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Discrete-continuous variable structural synthesis using dual methods

    NASA Technical Reports Server (NTRS)

    Schmit, L. A.; Fleury, C.

    1980-01-01

    Approximation concepts and dual methods are extended to solve structural synthesis problems involving a mix of discrete and continuous sizing type of design variables. Pure discrete and pure continuous variable problems can be handled as special cases. The basic mathematical programming statement of the structural synthesis problem is converted into a sequence of explicit approximate primal problems of separable form. These problems are solved by constructing continuous explicit dual functions, which are maximized subject to simple nonnegativity constraints on the dual variables. A newly devised gradient projection type of algorithm called DUAL 1, which includes special features for handling dual function gradient discontinuities that arise from the discrete primal variables, is used to find the solution of each dual problem. Computational implementation is accomplished by incorporating the DUAL 1 algorithm into the ACCESS 3 program as a new optimizer option. The power of the method set forth is demonstrated by presenting numerical results for several example problems, including a pure discrete variable treatment of a metallic swept wing and a mixed discrete-continuous variable solution for a thin delta wing with fiber composite skins.

  4. Variable-Length Computerized Adaptive Testing Using the Higher Order DINA Model

    ERIC Educational Resources Information Center

    Hsu, Chia-Ling; Wang, Wen-Chung

    2015-01-01

    Cognitive diagnosis models provide profile information about a set of latent binary attributes, whereas item response models yield a summary report on a latent continuous trait. To utilize the advantages of both models, higher order cognitive diagnosis models were developed in which information about both latent binary attributes and latent…

  5. Testing Manifest Monotonicity Using Order-Constrained Statistical Inference

    ERIC Educational Resources Information Center

    Tijmstra, Jesper; Hessen, David J.; van der Heijden, Peter G. M.; Sijtsma, Klaas

    2013-01-01

    Most dichotomous item response models share the assumption of latent monotonicity, which states that the probability of a positive response to an item is a nondecreasing function of a latent variable intended to be measured. Latent monotonicity cannot be evaluated directly, but it implies manifest monotonicity across a variety of observed scores,…

  6. Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane

    2015-01-01

    Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…

  7. The Effect of Latent Binary Variables on the Uncertainty of the Prediction of a Dichotomous Outcome Using Logistic Regression Based Propensity Score Matching.

    PubMed

    Szekér, Szabolcs; Vathy-Fogarassy, Ágnes

    2018-01-01

    Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.

  8. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2013-01-01

    In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021

  9. Latent change models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory?

    PubMed

    Hertzog, Christopher; Dixon, Roger A; Hultsch, David F; MacDonald, Stuart W S

    2003-12-01

    The authors used 6-year longitudinal data from the Victoria Longitudinal Study (VLS) to investigate individual differences in amount of episodic memory change. Latent change models revealed reliable individual differences in cognitive change. Changes in episodic memory were significantly correlated with changes in other cognitive variables, including speed and working memory. A structural equation model for the latent change scores showed that changes in speed and working memory predicted changes in episodic memory, as expected by processing resource theory. However, these effects were best modeled as being mediated by changes in induction and fact retrieval. Dissociations were detected between cross-sectional ability correlations and longitudinal changes. Shuffling the tasks used to define the Working Memory latent variable altered patterns of change correlations.

  10. Validity Study in Multidimensional Latent Space and Efficient Computerized Adaptive Testing. Final Report.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    This paper is the final report of a multi-year project sponsored by the Office of Naval Research (ONR) in 1987 through 1990. The main objectives of the research summarized were to: investigate the non-parametric approach to the estimation of the operating characteristics of discrete item responses; revise and strengthen the package computer…

  11. Impact of Diagnosticity on the Adequacy of Models for Cognitive Diagnosis under a Linear Attribute Structure: A Simulation Study

    ERIC Educational Resources Information Center

    de La Torre, Jimmy; Karelitz, Tzur M.

    2009-01-01

    Compared to unidimensional item response models (IRMs), cognitive diagnostic models (CDMs) based on latent classes represent examinees' knowledge and item requirements using discrete structures. This study systematically examines the viability of retrofitting CDMs to IRM-based data with a linear attribute structure. The study utilizes a procedure…

  12. Autism Spectrum Disorders as a Qualitatively Distinct Category from Typical Behavior in a Large, Clinically Ascertained Sample

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Youngstrom, Eric A.; Sinclair, Leslie; Kubu, Cynthia S.; Law, Paul; Rezai, Ali; Constantino, John N.; Eng, Charis

    2010-01-01

    The present study evaluated the hypothesis that autism spectrum disorders (ASDs) are best represented as a discrete category distinct from typical behavior within autism-affected families. The latent structure, categorical versus dimensional, of ASDs informs future diagnostic revisions, clinical assessment, and the design of future research. Data…

  13. A Comparison of General Diagnostic Models (GDM) and Bayesian Networks Using a Middle School Mathematics Test

    ERIC Educational Resources Information Center

    Wu, Haiyan

    2013-01-01

    General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…

  14. Growth Modeling with Non-Ignorable Dropout: Alternative Analyses of the STAR*D Antidepressant Trial

    PubMed Central

    Muthén, Bengt; Asparouhov, Tihomir; Hunter, Aimee; Leuchter, Andrew

    2011-01-01

    This paper uses a general latent variable framework to study a series of models for non-ignorable missingness due to dropout. Non-ignorable missing data modeling acknowledges that missingness may depend on not only covariates and observed outcomes at previous time points as with the standard missing at random (MAR) assumption, but also on latent variables such as values that would have been observed (missing outcomes), developmental trends (growth factors), and qualitatively different types of development (latent trajectory classes). These alternative predictors of missing data can be explored in a general latent variable framework using the Mplus program. A flexible new model uses an extended pattern-mixture approach where missingness is a function of latent dropout classes in combination with growth mixture modeling using latent trajectory classes. A new selection model allows not only an influence of the outcomes on missingness, but allows this influence to vary across latent trajectory classes. Recommendations are given for choosing models. The missing data models are applied to longitudinal data from STAR*D, the largest antidepressant clinical trial in the U.S. to date. Despite the importance of this trial, STAR*D growth model analyses using non-ignorable missing data techniques have not been explored until now. The STAR*D data are shown to feature distinct trajectory classes, including a low class corresponding to substantial improvement in depression, a minority class with a U-shaped curve corresponding to transient improvement, and a high class corresponding to no improvement. The analyses provide a new way to assess drug efficiency in the presence of dropout. PMID:21381817

  15. Partial Granger causality--eliminating exogenous inputs and latent variables.

    PubMed

    Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng

    2008-07-15

    Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

  16. The Fixed-Links Model in Combination with the Polynomial Function as a Tool for Investigating Choice Reaction Time Data

    ERIC Educational Resources Information Center

    Schweizer, Karl

    2006-01-01

    A model with fixed relations between manifest and latent variables is presented for investigating choice reaction time data. The numbers for fixation originate from the polynomial function. Two options are considered: the component-based (1 latent variable for each component of the polynomial function) and composite-based options (1 latent…

  17. Estimation of Contextual Effects through Nonlinear Multilevel Latent Variable Modeling with a Metropolis-Hastings Robbins-Monro Algorithm

    ERIC Educational Resources Information Center

    Yang, Ji Seung; Cai, Li

    2014-01-01

    The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…

  18. On the Benefits of Latent Variable Modeling for Norming Scales: The Case of the "Supports Intensity Scale-Children's Version"

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.

    2016-01-01

    Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…

  19. Do Two or More Multicomponent Instruments Measure the Same Construct? Testing Construct Congruence Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Tong, Bing

    2016-01-01

    A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…

  20. Improvement in latent variable indirect response modeling of multiple categorical clinical endpoints: application to modeling of guselkumab treatment effects in psoriatic patients.

    PubMed

    Hu, Chuanpu; Randazzo, Bruce; Sharma, Amarnath; Zhou, Honghui

    2017-10-01

    Exposure-response modeling plays an important role in optimizing dose and dosing regimens during clinical drug development. The modeling of multiple endpoints is made possible in part by recent progress in latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate the level of improvement achievable by jointly modeling two such endpoints in the latent variable IDR modeling framework through the sharing of model parameters. This is illustrated with an application to the exposure-response of guselkumab, a human IgG1 monoclonal antibody in clinical development that blocks IL-23. A Phase 2b study was conducted in 238 patients with psoriasis for which disease severity was assessed using Psoriasis Area and Severity Index (PASI) and Physician's Global Assessment (PGA) scores. A latent variable Type I IDR model was developed to evaluate the therapeutic effect of guselkumab dosing on 75, 90 and 100% improvement of PASI scores from baseline and PGA scores, with placebo effect empirically modeled. The results showed that the joint model is able to describe the observed data better with fewer parameters compared with the common approach of separately modeling the endpoints.

  1. Construct validity evidence for the Male Role Norms Inventory-Short Form: A structural equation modeling approach using the bifactor model.

    PubMed

    Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R

    2016-10-01

    The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Using Design-Based Latent Growth Curve Modeling with Cluster-Level Predictor to Address Dependency

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L.

    2014-01-01

    The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…

  3. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  4. A Latent Transition Analysis Model for Assessing Change in Cognitive Skills

    ERIC Educational Resources Information Center

    Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan

    2016-01-01

    Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…

  5. Alexithymia and psychosocial problems among Italian preadolescents. A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Balottin, Laura; Toldo, Irene; Gatta, Michela

    2016-10-01

    The study, conducted on Italian preadolscents aged 11 to 13 belonging to the general population, aims to investigate the relationship between the emotional functioning, namely, alexithymia, and the risk of developing behavioral and emotional problems measured using the Strength and Difficulty Questionnaire. The latent class analysis approach allowed to identify two latent variables, accounting for the internalizing (emotional symptoms and difficulties in emotional awareness) and for the externalizing problems (conduct problems and hyperactivity, problematic relationships with peers, poor prosocial behaviors and externally oriented thinking). The two latent variables featured two latent classes: the difficulty in dealing with problems and the strength to face problems that was representative of most of the healthy participants with specific gender differences. Along with the analysis of psychopathological behaviors, the study of resilience and strengths can prove to be a key step in order to develop valuable preventive approaches to tackle psychiatric disorders. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  6. Mutual Information between Discrete Variables with Many Categories using Recursive Adaptive Partitioning

    PubMed Central

    Seok, Junhee; Seon Kang, Yeong

    2015-01-01

    Mutual information, a general measure of the relatedness between two random variables, has been actively used in the analysis of biomedical data. The mutual information between two discrete variables is conventionally calculated by their joint probabilities estimated from the frequency of observed samples in each combination of variable categories. However, this conventional approach is no longer efficient for discrete variables with many categories, which can be easily found in large-scale biomedical data such as diagnosis codes, drug compounds, and genotypes. Here, we propose a method to provide stable estimations for the mutual information between discrete variables with many categories. Simulation studies showed that the proposed method reduced the estimation errors by 45 folds and improved the correlation coefficients with true values by 99 folds, compared with the conventional calculation of mutual information. The proposed method was also demonstrated through a case study for diagnostic data in electronic health records. This method is expected to be useful in the analysis of various biomedical data with discrete variables. PMID:26046461

  7. Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches.

    PubMed

    Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M

    2018-07-01

    Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).

  8. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Li; Jiao, Yong-Chang

    2016-07-01

    This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

  9. Modeling Bivariate Change in Individual Differences: Prospective Associations Between Personality and Life Satisfaction.

    PubMed

    Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M

    2017-09-18

    A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. High-Performance Psychometrics: The Parallel-E Parallel-M Algorithm for Generalized Latent Variable Models. Research Report. ETS RR-16-34

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2016-01-01

    This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…

  11. Cognitive Psychology Meets Psychometric Theory: On the Relation between Process Models for Decision Making and Latent Variable Models for Individual Differences

    ERIC Educational Resources Information Center

    van der Maas, Han L. J.; Molenaar, Dylan; Maris, Gunter; Kievit, Rogier A.; Borsboom, Denny

    2011-01-01

    This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a 2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this line…

  12. On the Benefits of Latent Variable Modeling for Norming Scales: The Case of the "Supports Intensity Scale--Children's Version"

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.

    2016-01-01

    Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…

  13. Comparing Between- and Within-Group Variances in a Two-Level Study: A Latent Variable Modeling Approach to Evaluating Their Relationship

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Akaeze, Hope O.

    2017-01-01

    This note is concerned with examining the relationship between within-group and between-group variances in two-level nested designs. A latent variable modeling approach is outlined that permits point and interval estimation of their ratio and allows their comparison in a multilevel study. The procedure can also be used to test various hypotheses…

  14. The "g" Factor and Cognitive Test Session Behavior: Using a Latent Variable Approach in Examining Measurement Invariance Across Age Groups on the WJ III

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Wang, Ze

    2016-01-01

    Data from the standardization sample of the Woodcock-Johnson Psychoeducational Battery--Third Edition (WJ III) Cognitive standard battery and Test Session Observation Checklist items were analyzed to understand the relationship between g (general mental ability) and test session behavior (TSB; n = 5,769). Latent variable modeling methods were used…

  15. The Longitudinal Structure of General and Specific Anxiety Dimensions in Children: Testing a Latent Trait-State-Occasion Model

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Cole, David A.

    2009-01-01

    In an 8-wave, 4-year longitudinal study, 787 children (Grades 3-6) completed the Revised Children's Manifest Anxiety Scale (C. R. Reynolds & B. O. Richmond, 1985), a measure of the Physiological Reactivity, Worry-Oversensitivity, and Social Alienation dimensions of anxiety. A latent variable (trait-state-occasion) model and a latent growth curve…

  16. Causal Indicators Can Help to Interpret Factors

    ERIC Educational Resources Information Center

    Bentler, Peter M.

    2016-01-01

    The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…

  17. In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus.

    PubMed

    Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya

    2004-12-24

    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.

  18. Opioid withdrawal, craving, and use during and after outpatient buprenorphine stabilization and taper: A discrete survival and growth mixture model

    PubMed Central

    Stotts, Angela L.; Green, Charles; Potter, Jennifer S.; Marino, Elise N.; Walker, Robrina; Weiss, Roger D.; Trivedi, Madhukar

    2014-01-01

    Most patients relapse to opioids within one month of opioid agonist detoxification, making the antecedents and parallel processes of first use critical for investigation. Craving and withdrawal are often studied in relationship to opioid outcomes, and a novel analytic strategy applied to these two phenomena may indicate targeted intervention strategies. Specifically, this secondary data analysis of the Prescription Opioid Addiction Treatment Study used a discrete-time mixture analysis with time-to-first opioid use (survival) simultaneously predicted by craving and withdrawal growth trajectories. This analysis characterized heterogeneity among prescription opioid-dependent individuals (N=653) into latent classes (i.e., latent class analysis [LCA]) during and after buprenorphine/naloxone stabilization and taper. A 4-latent class solution was selected for overall model fit and clinical parsimony. In order of shortest to longest time-to-first use, the 4 classes were characterized as 1) high craving and withdrawal 2) intermediate craving and withdrawal 3) high initial craving with low craving and withdrawal trajectories and 4) a low initial craving with low craving and withdrawal trajectories. Odds ratio calculations showed statistically significant differences in time-to-first use across classes. Generally, participants with lower baseline levels and greater decreases in craving and withdrawal during stabilization combined with slower craving and withdrawal rebound during buprenorphine taper remained opioid-free longer. This exploratory work expanded on the importance of monitoring craving and withdrawal during buprenorphine induction, stabilization, and taper. Future research may allow individually tailored and timely interventions to be developed to extend time-to-first opioid use. PMID:25282598

  19. Effects of additional data on Bayesian clustering.

    PubMed

    Yamazaki, Keisuke

    2017-10-01

    Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Examining the temporal relationship between psychological climate, work attitude, and staff turnover.

    PubMed

    Garner, Bryan R; Hunter, Brooke D

    2013-02-01

    Relative to the broader industrial-organizational (I-O) psychology field, research on the turnover of substance use disorder (SUD) treatment staff is in its infancy. Despite its long and rich history, recent reviews of the turnover literature within I-O psychology have noted that there remains considerable room for improvement. In particular, recommendations have been made for research that considers time in the turnover process and explores more distal causes of staff turnover. Addressing these gaps, this article examined the temporal relationship between latent measures of psychological climate, work attitude, and staff turnover. Using data from 95 SUD treatment staff clustered within 29 treatment organizations, multilevel discrete-time survival analyses revealed that a latent measure of work attitude (e.g., job satisfaction, pay satisfaction, turnover intentions) fully mediated the temporal relationship between latent measures of psychological climate (e.g., supervisor support, coworker support, role conflict) and subsequent staff turnover. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Elucidating the functional relationship between working memory capacity and psychometric intelligence: a fixed-links modeling approach for experimental repeated-measures designs.

    PubMed

    Thomas, Philipp; Rammsayer, Thomas; Schweizer, Karl; Troche, Stefan

    2015-01-01

    Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.

  2. Variable Weight Fractional Collisions for Multiple Species Mixtures

    DTIC Science & Technology

    2017-08-28

    DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in

  3. Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Scheidat, Tobias; Vielhauer, Claus

    2015-03-01

    In digital crime scene forensics, contactless non-destructive detection and acquisition of latent fingerprints by means of optical devices such as a high-resolution digital camera, confocal microscope, or chromatic white-light sensor is the initial step prior to destructive chemical development. The applicability of an optical sensor to digitalize latent fingerprints primarily depends on reflection properties of a substrate. Metallic painted surfaces, for instance, pose a problem for conventional sensors which make use of visible light. Since metallic paint is a semi-transparent layer on top of the surface, visible light penetrates it and is reflected off of the metallic flakes randomly disposed in the paint. Fingerprint residues do not impede light beams making ridges invisible. Latent fingerprints can be revealed, however, using ultraviolet light which does not penetrate the paint. We apply a UV-VIS spectroscope that is capable of capturing images within the range from 163 to 844 nm using 2048 discrete levels. We empirically show that latent fingerprints left behind on metallic painted surfaces become clearly visible within the range from 205 to 385 nm. Our proposed streakiness score feature determining the proportion of a ridge-valley pattern in an image is applied for automatic assessment of a fingerprint's visibility and distinguishing between fingerprint and empty regions. The experiments are carried out with 100 fingerprint and 100 non-fingerprint samples.

  4. The job content questionnaire in various occupational contexts: applying a latent class model

    PubMed Central

    Santos, Kionna Oliveira Bernardes; de Araújo, Tânia Maria; Karasek, Robert

    2017-01-01

    Objective To evaluate Job Content Questionnaire(JCQ) performance using the latent class model. Methods We analysed cross-sectional studies conducted in Brazil and examined three occupational categories: petroleum industry workers (n=489), teachers (n=4392) and primary healthcare workers (3078)and 1552 urban workers from a representative sample of the city of Feira de Santana in Bahia, Brazil. An appropriate number of latent classes was extracted and described each occupational category using latent class analysis, a multivariate method that evaluates constructs and takes into account the latent characteristics underlying the structure of measurement scales. The conditional probabilities of workers belonging to each class were then analysed graphically. Results Initially, the latent class analysis extracted four classes corresponding to the four job types (active, passive, low strain and high strain) proposed by the Job-Strain model (JSM) and operationalised by the JCQ. However, after taking into consideration the adequacy criteria to evaluate the number of extracted classes, three classes (active, low strain and high strain) were extracted from the studies of urban workers and teachers and four classes (active, passive, low strain and high strain) from the study of primary healthcare and petroleum industry workers. Conclusion The four job types proposed by the JSM were identified among primary healthcare and petroleum industry workers—groups with relatively high levels of skill discretion and decision authority. Three job types were identified for teachers and urban workers; however, passive job situations were not found within these groups. The latent class analysis enabled us to describe the conditional standard responses of the job types proposed by the model, particularly in relation to active jobs and high and low strain situations. PMID:28515185

  5. Childhood malnutrition in Egypt using geoadditive Gaussian and latent variable models.

    PubMed

    Khatab, Khaled

    2010-04-01

    Major progress has been made over the last 30 years in reducing the prevalence of malnutrition amongst children less than 5 years of age in developing countries. However, approximately 27% of children under the age of 5 in these countries are still malnourished. This work focuses on the childhood malnutrition in one of the biggest developing countries, Egypt. This study examined the association between bio-demographic and socioeconomic determinants and the malnutrition problem in children less than 5 years of age using the 2003 Demographic and Health survey data for Egypt. In the first step, we use separate geoadditive Gaussian models with the continuous response variables stunting (height-for-age), underweight (weight-for-age), and wasting (weight-for-height) as indicators of nutritional status in our case study. In a second step, based on the results of the first step, we apply the geoadditive Gaussian latent variable model for continuous indicators in which the 3 measurements of the malnutrition status of children are assumed as indicators for the latent variable "nutritional status".

  6. The Theory of Planned Behavior within the Stages of the Transtheoretical Model: Latent Structural Modeling of Stage-Specific Prediction Patterns in Physical Activity

    ERIC Educational Resources Information Center

    Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.

    2007-01-01

    This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…

  7. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  8. Variable selection in discrete survival models including heterogeneity.

    PubMed

    Groll, Andreas; Tutz, Gerhard

    2017-04-01

    Several variable selection procedures are available for continuous time-to-event data. However, if time is measured in a discrete way and therefore many ties occur models for continuous time are inadequate. We propose penalized likelihood methods that perform efficient variable selection in discrete survival modeling with explicit modeling of the heterogeneity in the population. The method is based on a combination of ridge and lasso type penalties that are tailored to the case of discrete survival. The performance is studied in simulation studies and an application to the birth of the first child.

  9. A Two-Timescale Discretization Scheme for Collocation

    NASA Technical Reports Server (NTRS)

    Desai, Prasun; Conway, Bruce A.

    2004-01-01

    The development of a two-timescale discretization scheme for collocation is presented. This scheme allows a larger discretization to be utilized for smoothly varying state variables and a second finer discretization to be utilized for state variables having higher frequency dynamics. As such. the discretization scheme can be tailored to the dynamics of the particular state variables. In so doing. the size of the overall Nonlinear Programming (NLP) problem can be reduced significantly. Two two-timescale discretization architecture schemes are described. Comparison of results between the two-timescale method and conventional collocation show very good agreement. Differences of less than 0.5 percent are observed. Consequently. a significant reduction (by two-thirds) in the number of NLP parameters and iterations required for convergence can be achieved without sacrificing solution accuracy.

  10. On Latent Growth Models for Composites and Their Constituents.

    PubMed

    Hancock, Gregory R; Mao, Xiulin; Kher, Hemant

    2013-09-01

    Over the last decade and a half, latent growth modeling has become an extremely popular and versatile technique for evaluating longitudinal change and its determinants. Most common among the models applied are those for a single measured variable over time. This model has been extended in a variety of ways, most relevant for the current work being the multidomain and the second-order latent growth models. Whereas the former allows for growth function characteristics to be modeled for multiple outcomes simultaneously, with the degree of growth characteristics' relations assessed within the model (e.g., cross-domain slope factor correlations), the latter models growth in latent outcomes, each of which has effect indicators repeated over time. But what if one has an outcome that is believed to be formative relative to its indicator variables rather than latent? In this case, where the outcome is a composite of multiple constituents, modeling change over time is less straightforward. This article provides analytical and applied details for simultaneously modeling growth in composites and their constituent elements, including a real data example using a general computer self-efficacy questionnaire.

  11. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    PubMed Central

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  12. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    NASA Astrophysics Data System (ADS)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  13. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    PubMed

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  14. Inverse Ising problem in continuous time: A latent variable approach

    NASA Astrophysics Data System (ADS)

    Donner, Christian; Opper, Manfred

    2017-12-01

    We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

  15. A Latent Class Approach to Examining Forms of Peer Victimization

    PubMed Central

    Bradshaw, Catherine P.; Waasdorp, Tracy E.; O’Brennan, Lindsey M.

    2014-01-01

    There is growing interest in gender differences in the experience of various forms of peer victimization; however, much of the work to date has used traditional variable-centered approaches by focusing on scales or individual forms of victimization in isolation. The current study explored whether there were discrete groups of adolescents who experience distinct forms of peer victimization by bullying (e.g., physical, verbal, relational) among middle and high school-age youth, and whether membership in a particular victimization group was associated with internalizing problems and aggression. Latent class analyses examining 10 different forms of victimization were conducted on a diverse sample of middle school (n = 11,408) and high school (n = 5,790) students. All forms of victimization were less common among high school students, except cyberbullying and sexual comments/gestures. The analyses revealed that there were 4 distinct victimization patterns for middle school students (Verbal and Physical; Verbal and Relational; High Verbal, Physical, and Relational; and Low Victimization/Normative), whereas high school students fell into a similar pattern with the exception of a Verbal and Physical class. These patterns of victimization were functionally associated with co-occurring internalizing problems and aggression. There were also some notable gender and developmental differences in the pattern of victimization and its relation with adjustment problems. These findings enhance our understanding of the complex patterns of peer victimization that are experienced by middle and high school students. Implications for educational researchers and school-based bullying interventions are discussed. PMID:25414522

  16. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  17. A general theoretical framework for interpreting patient-reported outcomes estimated from ordinally scaled item responses.

    PubMed

    Massof, Robert W

    2014-10-01

    A simple theoretical framework explains patient responses to items in rating scale questionnaires. Fixed latent variables position each patient and each item on the same linear scale. Item responses are governed by a set of fixed category thresholds, one for each ordinal response category. A patient's item responses are magnitude estimates of the difference between the patient variable and the patient's estimate of the item variable, relative to his/her personally defined response category thresholds. Differences between patients in their personal estimates of the item variable and in their personal choices of category thresholds are represented by random variables added to the corresponding fixed variables. Effects of intervention correspond to changes in the patient variable, the patient's response bias, and/or latent item variables for a subset of items. Intervention effects on patients' item responses were simulated by assuming the random variables are normally distributed with a constant scalar covariance matrix. Rasch analysis was used to estimate latent variables from the simulated responses. The simulations demonstrate that changes in the patient variable and changes in response bias produce indistinguishable effects on item responses and manifest as changes only in the estimated patient variable. Changes in a subset of item variables manifest as intervention-specific differential item functioning and as changes in the estimated person variable that equals the average of changes in the item variables. Simulations demonstrate that intervention-specific differential item functioning produces inefficiencies and inaccuracies in computer adaptive testing. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. On Fitting a Multivariate Two-Part Latent Growth Model

    PubMed Central

    Xu, Shu; Blozis, Shelley A.; Vandewater, Elizabeth A.

    2017-01-01

    A 2-part latent growth model can be used to analyze semicontinuous data to simultaneously study change in the probability that an individual engages in a behavior, and if engaged, change in the behavior. This article uses a Monte Carlo (MC) integration algorithm to study the interrelationships between the growth factors of 2 variables measured longitudinally where each variable can follow a 2-part latent growth model. A SAS macro implementing Mplus is developed to estimate the model to take into account the sampling uncertainty of this simulation-based computational approach. A sample of time-use data is used to show how maximum likelihood estimates can be obtained using a rectangular numerical integration method and an MC integration method. PMID:29333054

  19. Interaction between Helicobacter pylori and latent toxoplasmosis and demographic variables on cognitive function in young to middle-aged adults.

    PubMed

    Gale, Shawn D; Erickson, Lance D; Brown, Bruce L; Hedges, Dawson W

    2015-01-01

    Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer's disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States' National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis - both of which appear to be common in the general population - appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults.

  20. Opioid withdrawal, craving, and use during and after outpatient buprenorphine stabilization and taper: a discrete survival and growth mixture model.

    PubMed

    Northrup, Thomas F; Stotts, Angela L; Green, Charles; Potter, Jennifer S; Marino, Elise N; Walker, Robrina; Weiss, Roger D; Trivedi, Madhukar

    2015-02-01

    Most patients relapse to opioids within one month of opioid agonist detoxification, making the antecedents and parallel processes of first use critical for investigation. Craving and withdrawal are often studied in relationship to opioid outcomes, and a novel analytic strategy applied to these two phenomena may indicate targeted intervention strategies. Specifically, this secondary data analysis of the Prescription Opioid Addiction Treatment Study used a discrete-time mixture analysis with time-to-first opioid use (survival) simultaneously predicted by craving and withdrawal growth trajectories. This analysis characterized heterogeneity among prescription opioid-dependent individuals (N=653) into latent classes (i.e., latent class analysis [LCA]) during and after buprenorphine/naloxone stabilization and taper. A 4-latent class solution was selected for overall model fit and clinical parsimony. In order of shortest to longest time-to-first use, the 4 classes were characterized as 1) high craving and withdrawal, 2) intermediate craving and withdrawal, 3) high initial craving with low craving and withdrawal trajectories and 4) a low initial craving with low craving and withdrawal trajectories. Odds ratio calculations showed statistically significant differences in time-to-first use across classes. Generally, participants with lower baseline levels and greater decreases in craving and withdrawal during stabilization combined with slower craving and withdrawal rebound during buprenorphine taper remained opioid-free longer. This exploratory work expanded on the importance of monitoring craving and withdrawal during buprenorphine induction, stabilization, and taper. Future research may allow individually tailored and timely interventions to be developed to extend time-to-first opioid use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Robustness of quantum key distribution with discrete and continuous variables to channel noise

    NASA Astrophysics Data System (ADS)

    Lasota, Mikołaj; Filip, Radim; Usenko, Vladyslav C.

    2017-06-01

    We study the robustness of quantum key distribution protocols using discrete or continuous variables to the channel noise. We introduce the model of such noise based on coupling of the signal to a thermal reservoir, typical for continuous-variable quantum key distribution, to the discrete-variable case. Then we perform a comparison of the bounds on the tolerable channel noise between these two kinds of protocols using the same noise parametrization, in the case of implementation which is perfect otherwise. Obtained results show that continuous-variable protocols can exhibit similar robustness to the channel noise when the transmittance of the channel is relatively high. However, for strong loss discrete-variable protocols are superior and can overcome even the infinite-squeezing continuous-variable protocol while using limited nonclassical resources. The requirement on the probability of a single-photon production which would have to be fulfilled by a practical source of photons in order to demonstrate such superiority is feasible thanks to the recent rapid development in this field.

  2. Latent lifestyle preferences and household location decisions

    NASA Astrophysics Data System (ADS)

    Walker, Joan L.; Li, Jieping

    2007-04-01

    Lifestyle, indicating preferences towards a particular way of living, is a key driver of the decision of where to live. We employ latent class choice models to represent this behavior, where the latent classes are the lifestyles and the choice model is the choice of residential location. Thus, we simultaneously estimate lifestyle groups and how lifestyle impacts location decisions. Empirical results indicate three latent lifestyle segments: suburban dwellers, urban dwellers, and transit-riders. The suggested lifestyle segments have intriguing policy implications. Lifecycle characteristics are used to predict lifestyle preferences, although there remain significant aspects that cannot be explained by observable variables.

  3. Quality of life and patient preferences: identification of subgroups of multiple sclerosis patients.

    PubMed

    Rosato, Rosalba; Testa, Silvia; Oggero, Alessandra; Molinengo, Giorgia; Bertolotto, Antonio

    2015-09-01

    The aim of this study was to estimate preferences related to quality of life attributes in people with multiple sclerosis, by keeping heterogeneity of patient preference in mind, using the latent class approach. A discrete choice experiment survey was developed using the following attributes: activities of daily living, instrumental activities of daily living, pain/fatigue, anxiety/depression and attention/concentration. Choice sets were presented as pairs of hypothetical health status, based upon a fractional factorial design. The latent class logit model estimated on 152 patients identified three subpopulations, which, respectively, attached more importance to: (1) the physical dimension; (2) pain/fatigue and anxiety/depression; and (3) instrumental activities of daily living impairments, anxiety/depression and attention/concentration. A posterior analysis suggests that the latent class membership may be related to an individual's age to some extent, or to diagnosis and treatment, while apart from energy dimension, no significant difference exists between latent groups, with regard to Multiple Sclerosis Quality of Life-54 scales. A quality of life preference-based utility measure for people with multiple sclerosis was developed. These utility values allow identification of a hierarchic priority among different aspects of quality of life and may allow physicians to develop a care programme tailored to patient needs.

  4. Social phobia: further evidence of dimensional structure.

    PubMed

    Crome, Erica; Baillie, Andrew; Slade, Tim; Ruscio, Ayelet Meron

    2010-11-01

    Social phobia is a common mental disorder associated with significant impairment. Current research and treatment models of social phobia rely on categorical diagnostic conceptualizations lacking empirical support. This study aims to further research exploring whether social phobia is best conceptualized as a dimension or a discrete categorical disorder. This study used three distinct taxometric techniques (mean above minus below a cut, maximum Eigen value and latent mode) to explore the latent structure of social phobia in two large epidemiological samples, using indicators derived from diagnostic criteria and associated avoidant personality traits. Overall, outcomes from multiple taxometric analyses supported dimensional structure. This is consistent with conceptualizations of social phobia as lying on a continuum with avoidant personality traits. Support for the dimensionality of social phobia has important implications for future research, assessment, treatment, and public policy.

  5. On the role of precipitation latent heating in modulating the strength and width of the Hadley circulation

    NASA Astrophysics Data System (ADS)

    Mathew, Sneha Susan; Kumar, Karanam Kishore

    2018-05-01

    The latent heat released in the clouds over the tropics plays a vital role in driving the Hadley circulation (HC). The present study discusses the influence of latent heating (LH) on the HC parameters viz., centre, strength and total width by using precipitation LH profiles derived from the space-borne observations of the Precipitation Radar (PR) onboard Tropical Rain Measuring Mission (TRMM) and meridional stream function (MSF) derived from ECMWF-Interim reanalysis. The latitude of peak latent heating, width of the latent heating distribution and the total LH released within the ascending limb of the HC are estimated and their influence on the HC centre, strength and width is quantified, for the first time. The present results show that the latitude of peak LH significantly influences the position of the HC centre with correlation coefficient of 0.90. This high correlation between these two quantities seems to be due to their co-variability with the apparent motion of the Sun across the latitudes. The intensity of the HC in the NH as well as SH shows high correlation with the latitude of peak LH with coefficients - 0.85 and - 0.78, respectively. These results indicate that farther the latitude of peak LH from the equator in the summer hemisphere, stronger is the HC intensity in the winter hemisphere. The present analysis also reveals that the total LH released within the ascending limb of HC substantially influence the total width of the HC, with correlation coefficient 0.52, as compared to the other two LH parameters. This observation can be attributed to the fact that the HC is sensitive to the latent heat release in the mid-tropospheric levels in the tropics. An attempt is also made to investigate the degree of variability of these parameters after deseasonalization and results are discussed in the light of present understanding. The significance of the present study lies in providing the observational evidence for the influence of latent heating on the HC strength/width variability, quantitatively, for the first time using TRMM observations of precipitation latent heating.

  6. Assessing factors related to waist circumference and obesity: application of a latent variable model.

    PubMed

    Dalvand, Sahar; Koohpayehzadeh, Jalil; Karimlou, Masoud; Asgari, Fereshteh; Rafei, Ali; Seifi, Behjat; Niksima, Seyed Hassan; Bakhshi, Enayatollah

    2015-01-01

    Because the use of BMI (Body Mass Index) alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome) and obesity (binary outcome) among Iranian adults. Data included 18,990 Iranian individuals aged 20-65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity) with independent variables including age, gender, PR (Place of Residence), PA (physical activity), smoking status, SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), CHOL (cholesterol), FBG (Fasting Blood Glucose), diabetes, and FHD (family history of diabetes). All variables were related to both obesity and waist circumference (WC). Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.

  7. Distinguishing State Variability From Trait Change in Longitudinal Data: The Role of Measurement (Non)Invariance in Latent State-Trait Analyses

    PubMed Central

    Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias

    2014-01-01

    Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650

  8. Latent variable modeling to analyze the effects of process parameters on the dissolution of paracetamol tablet

    PubMed Central

    Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Shi, Xinyuan; Qiao, Yanjiang

    2017-01-01

    ABSTRACT The dissolution is one of the critical quality attributes (CQAs) of oral solid dosage forms because it relates to the absorption of drug. In this paper, the influence of raw materials, granules and process parameters on the dissolution of paracetamol tablet was analyzed using latent variable modeling methods. The variability in raw materials and granules was understood based on the principle component analysis (PCA), respectively. A multi-block partial least squares (MBPLS) model was used to determine the critical factors affecting the dissolution. The results showed that the binder amount, the post granulation time, the API content in granule, the fill depth and the punch tip separation distance were the critical factors with variable importance in the projection (VIP) values larger than 1. The importance of each unit of the whole process was also ranked using the block importance in the projection (BIP) index. It was concluded that latent variable models (LVMs) were very useful tools to extract information from the available data and improve the understanding on dissolution behavior of paracetamol tablet. The obtained LVMs were also helpful to propose the process design space and to design control strategies in the further research. PMID:27689242

  9. Wavelet-based analysis of gastric microcirculation in rats with ulcer bleedings

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Rodionov, M. A.; Pavlova, O. N.; Semyachkina-Glushkovskaya, O. V.; Berdnikova, V. A.; Kuznetsova, Ya. V.; Semyachkin-Glushkovskij, I. A.

    2012-03-01

    Studying of nitric oxide (NO) dependent mechanisms of regulation of microcirculation in a stomach can provide important diagnostic markers of the development of stress-induced ulcer bleedings. In this work we use a multiscale analysis based on the discrete wavelet-transform to characterize a latent stage of illness formation in rats. A higher sensitivity of stomach vessels to the NO-level in ill rats is discussed.

  10. Multiple indicators, multiple causes measurement error models

    DOE PAGES

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...

    2014-06-25

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  11. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  12. Multiple indicators, multiple causes measurement error models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  13. Adolescent substance use behavior and suicidal behavior for boys and girls: a cross-sectional study by latent analysis approach.

    PubMed

    Wang, Peng-Wei; Yen, Cheng-Fang

    2017-12-08

    Adolescent suicidal behavior may consist of different symptoms, including suicidal ideation, suicidal planning and suicidal attempts. Adolescent substance use behavior may contribute to adolescent suicidal behavior. However, research on the relationships between specific substance use and individual suicidal behavior is insufficient, as adolescents may not use only one substance or develop only one facet of suicidal behavior. Latent variables permit us to describe the relationships between clusters of related behaviors more accurately than studying the relationships between specific behaviors. Thus, the aim of this study was to explore how adolescent substance use behavior contributes to suicidal behavior using latent variables representing adolescent suicidal and substance use behaviors. A total of 13,985 adolescents were recruited using a stratified random sampling strategy. The participants indicated whether they had experienced suicidal ideation, planning and attempts and reported their cigarette, alcohol, ketamine and MDMA use during the past year. Latent analysis was used to examine the relationship between substance use and suicidal behavior. Adolescents who used any one of the above substances exhibited more suicidal behavior. The results of latent variables analysis revealed that adolescent substance use contributed to suicidal behavior and that boys exhibited more severe substance use behavior than girls. However, there was no gender difference in the association between substance use and suicidal behavior. Substance use behavior in adolescents is related to more suicidal behavior. In addition, the contribution of substance use to suicidal behavior does not differ between genders.

  14. Examining the integrity of measurement of cognitive abilities in the prediction of achievement: Comparisons and contrasts across variables from higher-order and bifactor models.

    PubMed

    Benson, Nicholas F; Kranzler, John H; Floyd, Randy G

    2016-10-01

    Prior research examining cognitive ability and academic achievement relations have been based on different theoretical models, have employed both latent variables as well as observed variables, and have used a variety of analytic methods. Not surprisingly, results have been inconsistent across studies. The aims of this study were to (a) examine how relations between psychometric g, Cattell-Horn-Carroll (CHC) broad abilities, and academic achievement differ across higher-order and bifactor models; (b) examine how well various types of observed scores corresponded with latent variables; and (c) compare two types of observed scores (i.e., refined and non-refined factor scores) as predictors of academic achievement. Results suggest that cognitive-achievement relations vary across theoretical models and that both types of factor scores tend to correspond well with the models on which they are based. However, orthogonal refined factor scores (derived from a bifactor model) have the advantage of controlling for multicollinearity arising from the measurement of psychometric g across all measures of cognitive abilities. Results indicate that the refined factor scores provide more precise representations of their targeted constructs than non-refined factor scores and maintain close correspondence with the cognitive-achievement relations observed for latent variables. Thus, we argue that orthogonal refined factor scores provide more accurate representations of the relations between CHC broad abilities and achievement outcomes than non-refined scores do. Further, the use of refined factor scores addresses calls for the application of scores based on latent variable models. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory

    PubMed Central

    Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank

    2016-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957

  16. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory.

    PubMed

    Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank

    2017-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Cost-effectiveness of post-landing latent tuberculosis infection control strategies in new migrants to Canada.

    PubMed

    Campbell, Jonathon R; Johnston, James C; Sadatsafavi, Mohsen; Cook, Victoria J; Elwood, R Kevin; Marra, Fawziah

    2017-01-01

    The majority of tuberculosis in migrants to Canada occurs due to reactivation of latent TB infection. Risk of tuberculosis in those with latent tuberculosis infection can be significantly reduced with treatment. Presently, only 2.4% of new migrants are flagged for post-landing surveillance, which may include latent tuberculosis infection screening; no other migrants receive routine latent tuberculosis infection screening. To aid in reducing the tuberculosis burden in new migrants to Canada, we determined the cost-effectiveness of using different latent tuberculosis infection interventions in migrants under post-arrival surveillance and in all new migrants. A discrete event simulation model was developed that focused on a Canadian permanent resident cohort after arrival in Canada, utilizing a ten-year time horizon, healthcare system perspective, and 1.5% discount rate. Latent tuberculosis infection interventions were evaluated in the population under surveillance (N = 6100) and the total cohort (N = 260,600). In all evaluations, six different screening and treatment combinations were compared to the base case of tuberculin skin test screening followed by isoniazid treatment only in the population under surveillance. Quality adjusted life years, incident tuberculosis cases, and costs were recorded for each intervention and incremental cost-effectiveness ratios were calculated in relation to the base case. In the population under surveillance (N = 6100), using an interferon-gamma release assay followed by rifampin was dominant compared to the base case, preventing 4.90 cases of tuberculosis, a 4.9% reduction, adding 4.0 quality adjusted life years, and saving $353,013 over the ensuing ten-years. Latent tuberculosis infection screening in the total population (N = 260,600) was not cost-effective when compared to the base case, however could potentially prevent 21.8% of incident tuberculosis cases. Screening new migrants under surveillance with an interferon-gamma release assay and treating with rifampin is cost saving, but will not significantly impact TB incidence. Universal latent tuberculosis infection screening and treatment is cost-prohibitive. Research into using risk factors to target screening post-landing may provide alternate solutions.

  18. The Influence of Social Interaction and Physical Health on the Association Between Hearing and Depression With Age and Gender

    PubMed Central

    Seeto, Mark

    2017-01-01

    Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling. PMID:28752806

  19. The Influence of Social Interaction and Physical Health on the Association Between Hearing and Depression With Age and Gender.

    PubMed

    Keidser, Gitte; Seeto, Mark

    2017-01-01

    Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling.

  20. Refining the tobacco dependence phenotype using the Wisconsin Inventory of Smoking Dependence Motives (WISDM)

    PubMed Central

    Piper, Megan E.; Bolt, Daniel M.; Kim, Su-Young; Japuntich, Sandra J.; Smith, Stevens S.; Niederdeppe, Jeff; Cannon, Dale S.; Baker, Timothy B.

    2008-01-01

    The construct of tobacco dependence is important from both scientific and public health perspectives, but it is poorly understood. The current research integrates person-centered analyses (e.g., latent profile analysis) and variable-centered analyses (e.g., exploratory factor analysis) to understand better the latent structure of dependence and to guide distillation of the phenotype. Using data from four samples of smokers (including treatment and non-treatment samples), latent profiles were derived using the Wisconsin Inventory of Smoking Dependence Motives (WISDM) subscale scores. Across all four samples, results revealed a unique latent profile that had relative elevations on four dependence motive subscales (Automaticity, Craving, Loss of Control, and Tolerance). Variable-centered analyses supported the uniqueness of these four subscales both as measures of a common factor distinct from that underlying the other nine subscales, and as the strongest predictors of relapse, withdrawal and other dependence criteria. Conversely, the remaining nine motives carried little unique predictive validity regarding dependence. Applications of a factor mixture model further support the presence of a unique class of smokers in relation to a common factor underlying the four subscales. The results illustrate how person-centered analyses may be useful as a supplement to variable-centered analyses for uncovering variables that are necessary and/or sufficient predictors of disorder criteria, as they may uncover small segments of a population in which the variables are uniquely distributed. The results also suggest that severe dependence is associated with a pattern of smoking that is heavy, pervasive, automatic and relatively unresponsive to instrumental contingencies. PMID:19025223

  1. Dissociative features in posttraumatic stress disorder: A latent profile analysis.

    PubMed

    Műllerová, Jana; Hansen, Maj; Contractor, Ateka A; Elhai, Jon D; Armour, Cherie

    2016-09-01

    The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) characterizes the dissociative subtype of posttraumatic stress disorder (PTSD) in terms of the individual meeting the criteria for PTSD and additionally reporting symptoms of depersonalization and/or derealization. The current study aimed to examine whether a dissociative PTSD profile may include alternative features of dissociation and whether it could be differentiated from a nondissociative PTSD profile on certain psychopathologies and demographics. Data from 309 trauma-exposed participants, collected through Amazon Mechanical Turk, were subjected to latent profile analysis. Regression analyses were used to examine the predictors of latent classes. Three discrete profiles named Baseline, PTSD, and Dissociative profile were uncovered. All examined features of dissociation were significantly elevated in the Dissociative profile. Anxiety, male sex, being employed, and having a minority racial background significantly predicted the Dissociative profile relative to the PTSD profile. The study points to the importance of alternative symptoms of dissociation in the dissociative PTSD subtype beyond the symptoms of depersonalization and derealization. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Latent hardening size effect in small-scale plasticity

    NASA Astrophysics Data System (ADS)

    Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier

    2013-07-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

  3. Assessing Agreement between Multiple Raters with Missing Rating Information, Applied to Breast Cancer Tumour Grading

    PubMed Central

    Ellis, Ian O.; Green, Andrew R.; Hanka, Rudolf

    2008-01-01

    Background We consider the problem of assessing inter-rater agreement when there are missing data and a large number of raters. Previous studies have shown only ‘moderate’ agreement between pathologists in grading breast cancer tumour specimens. We analyse a large but incomplete data-set consisting of 24177 grades, on a discrete 1–3 scale, provided by 732 pathologists for 52 samples. Methodology/Principal Findings We review existing methods for analysing inter-rater agreement for multiple raters and demonstrate two further methods. Firstly, we examine a simple non-chance-corrected agreement score based on the observed proportion of agreements with the consensus for each sample, which makes no allowance for missing data. Secondly, treating grades as lying on a continuous scale representing tumour severity, we use a Bayesian latent trait method to model cumulative probabilities of assigning grade values as functions of the severity and clarity of the tumour and of rater-specific parameters representing boundaries between grades 1–2 and 2–3. We simulate from the fitted model to estimate, for each rater, the probability of agreement with the majority. Both methods suggest that there are differences between raters in terms of rating behaviour, most often caused by consistent over- or under-estimation of the grade boundaries, and also considerable variability in the distribution of grades assigned to many individual samples. The Bayesian model addresses the tendency of the agreement score to be biased upwards for raters who, by chance, see a relatively ‘easy’ set of samples. Conclusions/Significance Latent trait models can be adapted to provide novel information about the nature of inter-rater agreement when the number of raters is large and there are missing data. In this large study there is substantial variability between pathologists and uncertainty in the identity of the ‘true’ grade of many of the breast cancer tumours, a fact often ignored in clinical studies. PMID:18698346

  4. Scale Reliability Evaluation with Heterogeneous Populations

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A latent variable modeling approach for scale reliability evaluation in heterogeneous populations is discussed. The method can be used for point and interval estimation of reliability of multicomponent measuring instruments in populations representing mixtures of an unknown number of latent classes or subpopulations. The procedure is helpful also…

  5. Measurement of Psychological Disorders Using Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Templin, Jonathan L.; Henson, Robert A.

    2006-01-01

    Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article…

  6. Maximum-entropy probability distributions under Lp-norm constraints

    NASA Technical Reports Server (NTRS)

    Dolinar, S.

    1991-01-01

    Continuous probability density functions and discrete probability mass functions are tabulated which maximize the differential entropy or absolute entropy, respectively, among all probability distributions with a given L sub p norm (i.e., a given pth absolute moment when p is a finite integer) and unconstrained or constrained value set. Expressions for the maximum entropy are evaluated as functions of the L sub p norm. The most interesting results are obtained and plotted for unconstrained (real valued) continuous random variables and for integer valued discrete random variables. The maximum entropy expressions are obtained in closed form for unconstrained continuous random variables, and in this case there is a simple straight line relationship between the maximum differential entropy and the logarithm of the L sub p norm. Corresponding expressions for arbitrary discrete and constrained continuous random variables are given parametrically; closed form expressions are available only for special cases. However, simpler alternative bounds on the maximum entropy of integer valued discrete random variables are obtained by applying the differential entropy results to continuous random variables which approximate the integer valued random variables in a natural manner. All the results are presented in an integrated framework that includes continuous and discrete random variables, constraints on the permissible value set, and all possible values of p. Understanding such as this is useful in evaluating the performance of data compression schemes.

  7. An energy-stable method for solving the incompressible Navier-Stokes equations with non-slip boundary condition

    NASA Astrophysics Data System (ADS)

    Lee, Byungjoon; Min, Chohong

    2018-05-01

    We introduce a stable method for solving the incompressible Navier-Stokes equations with variable density and viscosity. Our method is stable in the sense that it does not increase the total energy of dynamics that is the sum of kinetic energy and potential energy. Instead of velocity, a new state variable is taken so that the kinetic energy is formulated by the L2 norm of the new variable. Navier-Stokes equations are rephrased with respect to the new variable, and a stable time discretization for the rephrased equations is presented. Taking into consideration the incompressibility in the Marker-And-Cell (MAC) grid, we present a modified Lax-Friedrich method that is L2 stable. Utilizing the discrete integration-by-parts in MAC grid and the modified Lax-Friedrich method, the time discretization is fully discretized. An explicit CFL condition for the stability of the full discretization is given and mathematically proved.

  8. Verbal task demands are key in explaining the relationship between paired-associate learning and reading ability.

    PubMed

    Clayton, Francina J; Sears, Claire; Davis, Alice; Hulme, Charles

    2018-07-01

    Paired-associate learning (PAL) tasks measure the ability to form a novel association between a stimulus and a response. Performance on such tasks is strongly associated with reading ability, and there is increasing evidence that verbal task demands may be critical in explaining this relationship. The current study investigated the relationships between different forms of PAL and reading ability. A total of 97 children aged 8-10 years completed a battery of reading assessments and six different PAL tasks (phoneme-phoneme, visual-phoneme, nonverbal-nonverbal, visual-nonverbal, nonword-nonword, and visual-nonword) involving both familiar phonemes and unfamiliar nonwords. A latent variable path model showed that PAL ability is captured by two correlated latent variables: auditory-articulatory and visual-articulatory. The auditory-articulatory latent variable was the stronger predictor of reading ability, providing support for a verbal account of the PAL-reading relationship. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A multilevel model for comorbid outcomes: obesity and diabetes in the US.

    PubMed

    Congdon, Peter

    2010-02-01

    Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk.

  10. Latent Variable Modeling of Brain Gray Matter Volume and Psychopathy in Incarcerated Offenders

    PubMed Central

    Baskin-Sommers, Arielle R.; Neumann, Craig S.; Cope, Lora M.; Kiehl, Kent A.

    2016-01-01

    Advanced statistical modeling has become a prominent feature in psychological science and can be a useful approach for representing the neural architecture linked to psychopathology. Psychopathy, a disorder characterized by dysfunction in interpersonal-affective and impulsive-antisocial domains, is associated with widespread neural abnormalities. Several imaging studies suggest that underlying structural deficits in paralimbic regions are associated with psychopathy. While these studies are useful, they make assumptions about the organization of the brain and its relevance to individuals displaying psychopathic features. Capitalizing on statistical modeling, the present study (N=254) used latent variable methods to examine the structure of gray matter volume in male offenders, and assessed the latent relations between psychopathy and gray matter factors reflecting paralimbic and non-paralimbic regions. Results revealed good fit for a four-factor gray matter paralimbic model and these first-order factors were accounted for by a super-ordinate paralimbic ‘system’ factor. Moreover, a super-ordinate psychopathy factor significantly predicted the paralimbic, but not the non-paralimbic factor. The latent variable paralimbic model, specifically linked with psychopathy, goes beyond understanding of single brain regions within the system and provides evidence for psychopathy-related gray matter volume reductions in the paralimbic system as a whole. PMID:27269123

  11. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    PubMed

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  12. Personal health records in the Netherlands: potential user preferences quantified by a discrete choice experiment.

    PubMed

    Determann, Domino; Lambooij, Mattijs S; Gyrd-Hansen, Dorte; de Bekker-Grob, Esther W; Steyerberg, Ewout W; Heldoorn, Marcel; Pedersen, Line Bjørnskov; de Wit, G Ardine

    2017-05-01

    To identify groups of potential users based on their preferences for characteristics of personal health records (PHRs) and to estimate potential PHR uptake. We performed a discrete choice experiment, which consisted of 12 choice scenarios, each comprising 2 hypothetical PHR alternatives and an opt-out. The alternatives differed based on 5 characteristics. The survey was administered to Internet panel members of the Dutch Federation of Patients and Consumer Organizations. We used latent class models to analyze the data. A total of 1,443 potential PHR users completed the discrete choice experiment. We identified 3 latent classes: "refusers" (class probability 43%), "eager adopters" (37%), and "reluctant adopters" (20%). The predicted uptake for the reluctant adopters ranged from 4% in the case of a PHR with the worst attribute levels to 68% in the best case. Those with 1 or more chronic diseases were significantly more likely to belong to the eager adopter class. The data storage provider was the most decisive aspect for the eager and reluctant adopters, while cost was most decisive for the refusers. Across all classes, health care providers and independent organizations were the most preferred data storage providers. We identified 3 groups, of which 1 group (more than one-third of potential PHR users) indicated great interest in a PHR irrespective of PHR characteristics. Policymakers who aim to expand the use of PHRs will be most successful when health care providers and health facilities or independent organizations store PHR data while refraining from including market parties. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Interaction between Helicobacter pylori and Latent Toxoplasmosis and Demographic Variables on Cognitive Function in Young to Middle-Aged Adults

    PubMed Central

    Gale, Shawn D.; Erickson, Lance D.; Brown, Bruce L.; Hedges, Dawson W.

    2015-01-01

    Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer’s disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States’ National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis – both of which appear to be common in the general population – appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults. PMID:25590622

  14. Analyzing Longitudinal Item Response Data via the Pairwise Fitting Method

    ERIC Educational Resources Information Center

    Fu, Zhi-Hui; Tao, Jian; Shi, Ning-Zhong; Zhang, Ming; Lin, Nan

    2011-01-01

    Multidimensional item response theory (MIRT) models can be applied to longitudinal educational surveys where a group of individuals are administered different tests over time with some common items. However, computational problems typically arise as the dimension of the latent variables increases. This is especially true when the latent variable…

  15. The job content questionnaire in various occupational contexts: applying a latent class model.

    PubMed

    Santos, Kionna Oliveira Bernardes; Araújo, Tânia Maria de; Carvalho, Fernando Martins; Karasek, Robert

    2017-05-17

    To evaluate Job Content Questionnaire(JCQ) performance using the latent class model. We analysed cross-sectional studies conducted in Brazil and examined three occupational categories: petroleum industry workers (n=489), teachers (n=4392) and primary healthcare workers (3078)and 1552 urban workers from a representative sample of the city of Feira de Santana in Bahia, Brazil. An appropriate number of latent classes was extracted and described each occupational category using latent class analysis, a multivariate method that evaluates constructs and takes into accountthe latent characteristics underlying the structure of measurement scales. The conditional probabilities of workers belonging to each class were then analysed graphically. Initially, the latent class analysis extracted four classes corresponding to the four job types (active, passive, low strain and high strain) proposed by the Job-Strain model (JSM) and operationalised by the JCQ. However, after taking into consideration the adequacy criteria to evaluate the number of extracted classes, three classes (active, low strain and high strain) were extracted from the studies of urban workers and teachers and four classes (active, passive, low strain and high strain) from the study of primary healthcare and petroleum industry workers. The four job types proposed by the JSM were identified among primary healthcare and petroleum industry workers-groups with relatively high levels of skill discretion and decision authority. Three job types were identified for teachers and urban workers; however, passive job situations were not found within these groups. The latent class analysis enabled us to describe the conditional standard responses of the job types proposed by the model, particularly in relation to active jobs and high and low strain situations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Structural Equations and Path Analysis for Discrete Data.

    ERIC Educational Resources Information Center

    Winship, Christopher; Mare, Robert D.

    1983-01-01

    Presented is an approach to causal models in which some or all variables are discretely measured, showing that path analytic methods permit quantification of causal relationships among variables with the same flexibility and power of interpretation as is feasible in models including only continuous variables. Examples are provided. (Author/IS)

  17. Association between latent toxoplasmosis and cognition in adults: a cross-sectional study.

    PubMed

    Gale, S D; Brown, B L; Erickson, L D; Berrett, A; Hedges, D W

    2015-04-01

    Latent infection from Toxoplasma gondii (T. gondii) is widespread worldwide and has been associated with cognitive deficits in some but not all animal models and in humans. We tested the hypothesis that latent toxoplasmosis is associated with decreased cognitive function in a large cross-sectional dataset, the National Health and Nutrition Examination Survey (NHANES). There were 4178 participants aged 20-59 years, of whom 19.1% had IgG antibodies against T. gondii. Two ordinary least squares (OLS) regression models adjusted for the NHANES complex sampling design and weighted to represent the US population were estimated for simple reaction time, processing speed and short-term memory or attention. The first model included only main effects of latent toxoplasmosis and demographic control variables, and the second added interaction terms between latent toxoplasmosis and the poverty-to-income ratio (PIR), educational attainment and race-ethnicity. We also used multivariate models to assess all three cognitive outcomes in the same model. Although the models evaluating main effects only demonstrated no association between latent toxoplasmosis and the cognitive outcomes, significant interactions between latent toxoplasmosis and the PIR, between latent toxoplasmosis and educational attainment, and between latent toxoplasmosis and race-ethnicity indicated that latent toxoplasmosis may adversely affect cognitive function in certain groups.

  18. Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners

    PubMed Central

    Ulery, Bradford T.; Hicklin, R. Austin; Buscaglia, JoAnn; Roberts, Maria Antonia

    2012-01-01

    The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases. PMID:22427888

  19. Child involvement, alliance, and therapist flexibility: process variables in cognitive-behavioural therapy for anxiety disorders in childhood.

    PubMed

    Hudson, Jennifer L; Kendall, Philip C; Chu, Brian C; Gosch, Elizabeth; Martin, Erin; Taylor, Alan; Knight, Ashleigh

    2014-01-01

    This study examined the relations between treatment process variables and child anxiety outcomes. Independent raters watched/listened to taped therapy sessions of 151 anxiety-disordered (6-14 yr-old; M = 10.71) children (43% boys) and assessed process variables (child alliance, therapist alliance, child involvement, therapist flexibility and therapist functionality) within a manual-based cognitive-behavioural treatment. Latent growth modelling examined three latent variables (intercept, slope, and quadratic) for each process variable. Child age, gender, family income and ethnicity were examined as potential antecedents. Outcome was analyzed using factorially derived clinician, mother, father, child and teacher scores from questionnaire and structured diagnostic interviews at pretreatment, posttreatment and 12-month follow-up. Latent growth models demonstrated a concave quadratic curve for child involvement and therapist flexibility over time. A predominantly linear, downward slope was observed for alliance, and functional flexibility remained consistent over time. Increased alliance, child involvement and therapist flexibility showed some albeit inconsistent, associations with positive treatment outcome. Findings support the notion that maintaining the initial high level of alliance or involvement is important for clinical improvement. There is some support that progressively increasing alliance/involvement also positively impacts on treatment outcome. These findings were not consistent across outcome measurement points or reporters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  1. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System

    PubMed Central

    2014-01-01

    Background The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. Methods This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. Results DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. Conclusions These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross. PMID:25038628

  2. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System.

    PubMed

    Zagelbaum, Nicole K; Heslin, Kevin C; Stein, Judith A; Ruzek, Josef; Smith, Robert E; Nyugen, Tam; Dobalian, Aram

    2014-07-19

    The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross.

  3. Investigating Factorial Invariance of Latent Variables Across Populations When Manifest Variables Are Missing Completely

    PubMed Central

    Widaman, Keith F.; Grimm, Kevin J.; Early, Dawnté R.; Robins, Richard W.; Conger, Rand D.

    2013-01-01

    Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group. PMID:24019738

  4. Exploratory factor analysis of pathway copy number data with an application towards the integration with gene expression data.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2011-05-01

    Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.

  5. Efficient Construction of Discrete Adjoint Operators on Unstructured Grids by Using Complex Variables

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Kleb, William L.

    2005-01-01

    A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.

  6. Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Kleb, William L.

    2005-01-01

    A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.

  7. Correcting Measurement Error in Latent Regression Covariates via the MC-SIMEX Method

    ERIC Educational Resources Information Center

    Rutkowski, Leslie; Zhou, Yan

    2015-01-01

    Given the importance of large-scale assessments to educational policy conversations, it is critical that subpopulation achievement is estimated reliably and with sufficient precision. Despite this importance, biased subpopulation estimates have been found to occur when variables in the conditioning model side of a latent regression model contain…

  8. On the Power of Multivariate Latent Growth Curve Models to Detect Correlated Change

    ERIC Educational Resources Information Center

    Hertzog, Christopher; Lindenberger, Ulman; Ghisletta, Paolo; Oertzen, Timo von

    2006-01-01

    We evaluated the statistical power of single-indicator latent growth curve models (LGCMs) to detect correlated change between two variables (covariance of slopes) as a function of sample size, number of longitudinal measurement occasions, and reliability (measurement error variance). Power approximations following the method of Satorra and Saris…

  9. Assessing Change in Latent Skills across Time with Longitudinal Cognitive Diagnosis Modeling: An Evaluation of Model Performance

    ERIC Educational Resources Information Center

    Kaya, Yasemin; Leite, Walter L.

    2017-01-01

    Cognitive diagnosis models are diagnostic models used to classify respondents into homogenous groups based on multiple categorical latent variables representing the measured cognitive attributes. This study aims to present longitudinal models for cognitive diagnosis modeling, which can be applied to repeated measurements in order to monitor…

  10. A Latent Variable Approach to Executive Control in Healthy Ageing

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Sese, Albert; Barcelo, Francisco; Palmer, Alfonso

    2012-01-01

    It is a well-established finding that the central executive is fractionated in at least three separable component processes: Updating, Shifting, and Inhibition of information (Miyake et al., 2000). However, the fractionation of the central executive among the elderly has been less well explored, and Miyake's et al. latent structure has not yet…

  11. On the Relation between the Linear Factor Model and the Latent Profile Model

    ERIC Educational Resources Information Center

    Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul

    2011-01-01

    The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…

  12. (Latent) Transitions to Learning at University: A Latent Profile Transition Analysis of First-Year Japanese Students

    ERIC Educational Resources Information Center

    Fryer, Luke K.

    2017-01-01

    During the past decade, quantitative researchers have examined the first-year university experience from both variable-centred and person-centred perspectives. These studies have, however, generally been cross-sectional and therefore often failed to address how student learning changes during this transition. Furthermore, research has been…

  13. A Comparison of Four Approaches to Account for Method Effects in Latent State-Trait Analyses

    ERIC Educational Resources Information Center

    Geiser, Christian; Lockhart, Ginger

    2012-01-01

    Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators…

  14. Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms

    PubMed Central

    Hankin, Benjamin L.; Snyder, Hannah R.; Gulley, Lauren D.; Schweizer, Tina H.; Bijttebier, Patricia; Nelis, Sabine; Toh, Gim; Vasey, Michael W.

    2016-01-01

    It is well known that comorbidity is the rule, not the exception, for categorically defined psychiatric disorders, and this is also the case for internalizing disorders of depression and anxiety. This theoretical review paper addresses the ubiquity of comorbidity among internalizing disorders. Our central thesis is that progress in understanding this co-occurrence can be made by employing latent dimensional structural models that organize both psychopathology as well as vulnerabilities and risk mechanisms and by connecting the multiple levels of risk and psychopathology outcomes together. Different vulnerabilities and risk mechanisms are hypothesized to predict different levels of the structural model of psychopathology. We review the present state of knowledge based on concurrent and developmental sequential comorbidity patterns among common discrete psychiatric disorders in youth, and then we advocate for the use of more recent bifactor dimensional models of psychopathology (e.g., p factor, Caspi et al., 2014) that can help to explain the co-occurrence among internalizing symptoms. In support of this relatively novel conceptual perspective, we review six exemplar vulnerabilities and risk mechanisms, including executive function, information processing biases, cognitive vulnerabilities, positive and negative affectivity aspects of temperament, and autonomic dysregulation, along with the developmental occurrence of stressors in different domains, to show how these vulnerabilities can predict the general latent psychopathology factor, a unique latent internalizing dimension, as well as specific symptom syndrome manifestations. PMID:27739389

  15. A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.

    PubMed

    Brusco, Michael J; Shireman, Emilie; Steinley, Douglas

    2017-09-01

    The problem of partitioning a collection of objects based on their measurements on a set of dichotomous variables is a well-established problem in psychological research, with applications including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. Latent class analysis and K-means clustering are popular methods for partitioning objects based on dichotomous measures in the psychological literature. The K-median clustering method has recently been touted as a potentially useful tool for psychological data and might be preferable to its close neighbor, K-means, when the variable measures are dichotomous. We conducted simulation-based comparisons of the latent class, K-means, and K-median approaches for partitioning dichotomous data. Although all 3 methods proved capable of recovering cluster structure, K-median clustering yielded the best average performance, followed closely by latent class analysis. We also report results for the 3 methods within the context of an application to transitive reasoning data, in which it was found that the 3 approaches can exhibit profound differences when applied to real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Variation in working memory capacity, fluid intelligence, and episodic recall: a latent variable examination of differences in the dynamics of free recall.

    PubMed

    Unsworth, Nash

    2009-09-01

    A latent variable analysis was conducted to examine the nature of individual differences in the dynamics of free recall and cognitive abilities. Participants performed multiple measures of free recall, working memory capacity (WMC), and fluid intelligence (gF). For each free recall task, recall accuracy, recall latency, and number of intrusion errors were determined, and latent factors were derived for each. It was found that recall accuracy was negatively related to both recall latency and number of intrusions, and recall latency and number of intrusions were positively related. Furthermore, latent WMC and gF factors were positively related to recall accuracy, but negatively related to recall latency and number of intrusions. Finally, a cluster analysis revealed that subgroups of participants with deficits in focusing the search had deficits in recovering degraded representations or deficits in monitoring the products of retrieval. The results are consistent with the idea that variation in the dynamics of free recall, WMC, and gF are primarily due to differences in search set size, but differences in recovery and monitoring are also important.

  17. Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.

  18. Weighing the Social and Ethical Considerations of Maternal-Fetal Surgery.

    PubMed

    Antiel, Ryan M; Flake, Alan W; Collura, Christopher A; Johnson, Mark P; Rintoul, Natalie E; Lantos, John D; Curlin, Farr A; Tilburt, Jon C; Brown, Stephen D; Feudtner, Chris

    2017-12-01

    The ethics of maternal-fetal surgery involves weighing the importance of potential benefits, risks, and other consequences involving the pregnant woman, fetus, and other family members. We assessed clinicians' ratings of the importance of 9 considerations relevant to maternal-fetal surgery. This study was a discrete choice experiment contained within a 2015 national mail-based survey of 1200 neonatologists, pediatric surgeons, and maternal-fetal medicine physicians, with latent class analysis subsequently used to identify groups of physicians with similar ratings. Of 1176 eligible participants, 660 (56%) completed the discrete choice experiment. The highest-ranked consideration was of neonatal benefits, which was followed by consideration of the risk of maternal complications. By using latent class analysis, we identified 4 attitudinal groups with similar patterns of prioritization: "fetocentric" ( n = 232), risk-sensitive ( n = 197), maternal autonomy ( n = 167), and family impact and social support ( n = 64). Neonatologists were more likely to be in the fetocentric group, whereas surgeons were more likely to be in the risk-sensitive group, and maternal-fetal medicine physicians made up the largest percentage of the family impact and social support group. Physicians vary in how they weigh the importance of social and ethical considerations regarding maternal-fetal surgery. Understanding these differences may help prevent or mitigate disagreements or tensions that may arise in the management of these patients. Copyright © 2017 by the American Academy of Pediatrics.

  19. From loss to loneliness: The relationship between bereavement and depressive symptoms.

    PubMed

    Fried, Eiko I; Bockting, Claudi; Arjadi, Retha; Borsboom, Denny; Amshoff, Maximilian; Cramer, Angélique O J; Epskamp, Sacha; Tuerlinckx, Francis; Carr, Deborah; Stroebe, Margaret

    2015-05-01

    Spousal bereavement can cause a rise in depressive symptoms. This study empirically evaluates 2 competing explanations concerning how this causal effect is brought about: (a) a traditional latent variable explanation, in which loss triggers depression which then leads to symptoms; and (b) a novel network explanation, in which bereavement directly affects particular depression symptoms which then activate other symptoms. We used data from the Changing Lives of Older Couples (CLOC) study and compared depressive symptomatology, assessed via the 11-item Center for Epidemiologic Studies Depression Scale (CES-D), among those who lost their partner (N = 241) with a still-married control group (N = 274). We modeled the effect of partner loss on depressive symptoms either as an indirect effect through a latent variable, or as a direct effect in a network constructed through a causal search algorithm. Compared to the control group, widow(er)s' scores were significantly higher for symptoms of loneliness, sadness, depressed mood, and appetite loss, and significantly lower for happiness and enjoyed life. The effect of partner loss on these symptoms was not mediated by a latent variable. The network model indicated that bereavement mainly affected loneliness, which in turn activated other depressive symptoms. The direct effects of spousal loss on particular symptoms are inconsistent with the predictions of latent variable models, but can be explained from a network perspective. The findings support a growing body of literature showing that specific adverse life events differentially affect depressive symptomatology, and suggest that future studies should examine interventions that directly target such symptoms. (c) 2015 APA, all rights reserved).

  20. The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues

    NASA Astrophysics Data System (ADS)

    Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa

    2009-01-01

    The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.

  1. Some applications of uncertainty relations in quantum information

    NASA Astrophysics Data System (ADS)

    Majumdar, A. S.; Pramanik, T.

    2016-08-01

    We discuss some applications of various versions of uncertainty relations for both discrete and continuous variables in the context of quantum information theory. The Heisenberg uncertainty relation enables demonstration of the Einstein, Podolsky and Rosen (EPR) paradox. Entropic uncertainty relations (EURs) are used to reveal quantum steering for non-Gaussian continuous variable states. EURs for discrete variables are studied in the context of quantum memory where fine-graining yields the optimum lower bound of uncertainty. The fine-grained uncertainty relation is used to obtain connections between uncertainty and the nonlocality of retrieval games for bipartite and tripartite systems. The Robertson-Schrödinger (RS) uncertainty relation is applied for distinguishing pure and mixed states of discrete variables.

  2. A longitudinal study of mortality and air pollution for São Paulo, Brazil.

    PubMed

    Botter, Denise A; Jørgensen, Bent; Peres, Antonieta A Q

    2002-09-01

    We study the effects of various air-pollution variables on the daily death counts for people over 65 years in São Paulo, Brazil, from 1991 to 1993, controlling for meteorological variables. We use a state space model where the air-pollution variables enter via the latent process, and the meteorological variables via the observation equation. The latent process represents the potential mortality due to air pollution, and is estimated by Kalman filter techniques. The effect of air pollution on mortality is found to be a function of the variation in the sulphur dioxide level for the previous 3 days, whereas the other air-pollution variables (total suspended particulates, nitrogen dioxide, carbon monoxide, ozone) are not significant when sulphur dioxide is in the equation. There are significant effects of humidity and up to lag 3 of temperature, and a significant seasonal variation.

  3. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults

    PubMed Central

    Neufeld, Sharon; Jones, Peter B.; Fonagy, Peter; Bullmore, Edward T.; Dolan, Raymond J.; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M.

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed ‘distress’ and five ‘distress independent’ specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits. PMID:28403164

  4. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults.

    PubMed

    St Clair, Michelle C; Neufeld, Sharon; Jones, Peter B; Fonagy, Peter; Bullmore, Edward T; Dolan, Raymond J; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed 'distress' and five 'distress independent' specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits.

  5. The Effects of Model Misspecification and Sample Size on LISREL Maximum Likelihood Estimates.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice

    The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…

  6. A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US

    PubMed Central

    Congdon, Peter

    2010-01-01

    Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk. PMID:20616977

  7. Discretization of 3d gravity in different polarizations

    NASA Astrophysics Data System (ADS)

    Dupuis, Maïté; Freidel, Laurent; Girelli, Florian

    2017-10-01

    We study the discretization of three-dimensional gravity with Λ =0 following the loop quantum gravity framework. In the process, we realize that different choices of polarization are possible. This allows us to introduce a new discretization based on the triad as opposed to the connection as in the standard loop quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity, namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).

  8. Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables.

    PubMed

    Fagerland, Morten W; Sandvik, Leiv; Mowinckel, Petter

    2011-04-13

    The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. The Welch U test (the T test with adjustment for unequal variances) and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group). The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.

  9. Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches

    ERIC Educational Resources Information Center

    Leite, Walter L.; Zuo, Youzhen

    2011-01-01

    Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…

  10. Multilevel Latent Class Analysis: An Application of Adolescent Smoking Typologies with Individual and Contextual Predictors

    ERIC Educational Resources Information Center

    Henry, Kimberly L.; Muthen, Bengt

    2010-01-01

    Latent class analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this…

  11. Using the Graded Response Model to Control Spurious Interactions in Moderated Multiple Regression

    ERIC Educational Resources Information Center

    Morse, Brendan J.; Johanson, George A.; Griffeth, Rodger W.

    2012-01-01

    Recent simulation research has demonstrated that using simple raw score to operationalize a latent construct can result in inflated Type I error rates for the interaction term of a moderated statistical model when the interaction (or lack thereof) is proposed at the latent variable level. Rescaling the scores using an appropriate item response…

  12. Randomization-Based Inference about Latent Variables from Complex Samples: The Case of Two-Stage Sampling

    ERIC Educational Resources Information Center

    Li, Tiandong

    2012-01-01

    In large-scale assessments, such as the National Assessment of Educational Progress (NAEP), plausible values based on Multiple Imputations (MI) have been used to estimate population characteristics for latent constructs under complex sample designs. Mislevy (1991) derived a closed-form analytic solution for a fixed-effect model in creating…

  13. Squeezing Interval Change From Ordinal Panel Data: Latent Growth Curves With Ordinal Outcomes

    ERIC Educational Resources Information Center

    Mehta, Paras D.; Neale, Michael C.; Flay, Brian R.

    2004-01-01

    A didactic on latent growth curve modeling for ordinal outcomes is presented. The conceptual aspects of modeling growth with ordinal variables and the notion of threshold invariance are illustrated graphically using a hypothetical example. The ordinal growth model is described in terms of 3 nested models: (a) multivariate normality of the…

  14. www.common-metrics.org: a web application to estimate scores from different patient-reported outcome measures on a common scale.

    PubMed

    Fischer, H Felix; Rose, Matthias

    2016-10-19

    Recently, a growing number of Item-Response Theory (IRT) models has been published, which allow estimation of a common latent variable from data derived by different Patient Reported Outcomes (PROs). When using data from different PROs, direct estimation of the latent variable has some advantages over the use of sum score conversion tables. It requires substantial proficiency in the field of psychometrics to fit such models using contemporary IRT software. We developed a web application ( http://www.common-metrics.org ), which allows estimation of latent variable scores more easily using IRT models calibrating different measures on instrument independent scales. Currently, the application allows estimation using six different IRT models for Depression, Anxiety, and Physical Function. Based on published item parameters, users of the application can directly estimate latent trait estimates using expected a posteriori (EAP) for sum scores as well as for specific response patterns, Bayes modal (MAP), Weighted likelihood estimation (WLE) and Maximum likelihood (ML) methods and under three different prior distributions. The obtained estimates can be downloaded and analyzed using standard statistical software. This application enhances the usability of IRT modeling for researchers by allowing comparison of the latent trait estimates over different PROs, such as the Patient Health Questionnaire Depression (PHQ-9) and Anxiety (GAD-7) scales, the Center of Epidemiologic Studies Depression Scale (CES-D), the Beck Depression Inventory (BDI), PROMIS Anxiety and Depression Short Forms and others. Advantages of this approach include comparability of data derived with different measures and tolerance against missing values. The validity of the underlying models needs to be investigated in the future.

  15. Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.

    PubMed

    Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N

    2017-08-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  16. Parent Prevention Communication Profiles and Adolescent Substance Use: A Latent Profile Analysis and Growth Curve Model

    PubMed Central

    Choi, Hye Jeong; Miller-Day, Michelle; Shin, YoungJu; Hecht, Michael L.; Pettigrew, Jonathan; Krieger, Janice L.; Lee, JeongKyu; Graham, John W.

    2017-01-01

    This current study identifies distinct parent prevention communication profiles and examines whether youth with different parental communication profiles have varying substance use trajectories over time. Eleven schools in two rural school districts in the Midwestern United States were selected, and 784 students were surveyed at three time points from the beginning of 7th grade to the end of 8th grade. A series of latent profile analyses were performed to identify discrete profiles/subgroups of substance-specific prevention communication (SSPC). The results revealed a 4-profile model of SSPC: Active-Open, Passive-Open, Active-Silent, and Passive-Silent. A growth curve model revealed different rates of lifetime substance use depending on the youth’s SSPC profile. These findings have implications for parenting interventions and tailoring messages for parents to fit specific SSPC profiles. PMID:29056872

  17. Latent structure analysis of the process variables and pharmaceutical responses of an orally disintegrating tablet.

    PubMed

    Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2012-01-01

    A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.

  18. Incorporating imperfect detection into joint models of communites: A response to Warton et al.

    USGS Publications Warehouse

    Beissinger, Steven R.; Iknayan, Kelly J.; Guillera-Arroita, Gurutzeta; Zipkin, Elise; Dorazio, Robert; Royle, Andy; Kery, Marc

    2016-01-01

    Warton et al. [1] advance community ecology by describing a statistical framework that can jointly model abundances (or distributions) across many taxa to quantify how community properties respond to environmental variables. This framework specifies the effects of both measured and unmeasured (latent) variables on the abundance (or occurrence) of each species. Latent variables are random effects that capture the effects of both missing environmental predictors and correlations in parameter values among different species. As presented in Warton et al., however, the joint modeling framework fails to account for the common problem of detection or measurement errors that always accompany field sampling of abundance or occupancy, and are well known to obscure species- and community-level inferences.

  19. A Stochastic Dynamic Programming Model With Fuzzy Storage States Applied to Reservoir Operation Optimization

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas

    2004-08-01

    Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.

  20. Variable Importance in Multivariate Group Comparisons.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Wisenbaker, Joseph M.

    1992-01-01

    Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)

  1. Using a constrained formulation based on probability summation to fit receiver operating characteristic (ROC) curves

    NASA Astrophysics Data System (ADS)

    Swensson, Richard G.; King, Jill L.; Good, Walter F.; Gur, David

    2000-04-01

    A constrained ROC formulation from probability summation is proposed for measuring observer performance in detecting abnormal findings on medical images. This assumes the observer's detection or rating decision on each image is determined by a latent variable that characterizes the specific finding (type and location) considered most likely to be a target abnormality. For positive cases, this 'maximum- suspicion' variable is assumed to be either the value for the actual target or for the most suspicious non-target finding, whichever is the greater (more suspicious). Unlike the usual ROC formulation, this constrained formulation guarantees a 'well-behaved' ROC curve that always equals or exceeds chance- level decisions and cannot exhibit an upward 'hook.' Its estimated parameters specify the accuracy for separating positive from negative cases, and they also predict accuracy in locating or identifying the actual abnormal findings. The present maximum-likelihood procedure (runs on PC with Windows 95 or NT) fits this constrained formulation to rating-ROC data using normal distributions with two free parameters. Fits of the conventional and constrained ROC formulations are compared for continuous and discrete-scale ratings of chest films in a variety of detection problems, both for localized lesions (nodules, rib fractures) and for diffuse abnormalities (interstitial disease, infiltrates or pnumothorax). The two fitted ROC curves are nearly identical unless the conventional ROC has an ill behaved 'hook,' below the constrained ROC.

  2. Generating Multivariate Ordinal Data via Entropy Principles.

    PubMed

    Lee, Yen; Kaplan, David

    2018-03-01

    When conducting robustness research where the focus of attention is on the impact of non-normality, the marginal skewness and kurtosis are often used to set the degree of non-normality. Monte Carlo methods are commonly applied to conduct this type of research by simulating data from distributions with skewness and kurtosis constrained to pre-specified values. Although several procedures have been proposed to simulate data from distributions with these constraints, no corresponding procedures have been applied for discrete distributions. In this paper, we present two procedures based on the principles of maximum entropy and minimum cross-entropy to estimate the multivariate observed ordinal distributions with constraints on skewness and kurtosis. For these procedures, the correlation matrix of the observed variables is not specified but depends on the relationships between the latent response variables. With the estimated distributions, researchers can study robustness not only focusing on the levels of non-normality but also on the variations in the distribution shapes. A simulation study demonstrates that these procedures yield excellent agreement between specified parameters and those of estimated distributions. A robustness study concerning the effect of distribution shape in the context of confirmatory factor analysis shows that shape can affect the robust [Formula: see text] and robust fit indices, especially when the sample size is small, the data are severely non-normal, and the fitted model is complex.

  3. Mapping common aphasia assessments to underlying cognitive processes and their neural substrates

    PubMed Central

    Lacey, Elizabeth H.; Skipper-Kallal, LM; Xing, S; Fama, ME; Turkeltaub, PE

    2017-01-01

    Background Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. Objective To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Methods 25 behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high resolution MRI was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. Results The principal components analysis yielded four dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. Conclusions An extensive clinical aphasia assessment identifies four independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual’s specific pattern of deficits and preserved abilities. PMID:28135902

  4. Multilevel Latent Class Analysis for Large-Scale Educational Assessment Data: Exploring the Relation between the Curriculum and Students' Mathematical Strategies

    ERIC Educational Resources Information Center

    Fagginger Auer, Marije F.; Hickendorff, Marian; Van Putten, Cornelis M.; Béguin, Anton A.; Heiser, Willem J.

    2016-01-01

    A first application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint influence of teacher and student variables.…

  5. Consequences of Ignoring Guessing when Estimating the Latent Density in Item Response Theory

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2008-01-01

    In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters. In extant Monte Carlo evaluations of RC-IRT, the item response function (IRF) used to fit the data is the same one used to generate the data. The present simulation study examines RC-IRT when the IRF is imperfectly…

  6. Students' Views on Mathematics in Single-Sex and Coed Classrooms in Ghana

    ERIC Educational Resources Information Center

    Bofah, Emmanuel Adu-tutu; Hannula, Markku S.

    2016-01-01

    In this study, we investigated students' views on themselves as learners of mathematics as a function of school-by-sex (N = 2034, MAge = 18.49, SDAge = 1.25; 12th-grade; 58.2% girls). Using latent variable Structural Equation Modeling (SEM), the measurement and structural equivalence as well as the equality of latent means of scores across…

  7. The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2007-01-01

    In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…

  8. An introduction to mixture item response theory models.

    PubMed

    De Ayala, R J; Santiago, S Y

    2017-02-01

    Mixture item response theory (IRT) allows one to address situations that involve a mixture of latent subpopulations that are qualitatively different but within which a measurement model based on a continuous latent variable holds. In this modeling framework, one can characterize students by both their location on a continuous latent variable as well as by their latent class membership. For example, in a study of risky youth behavior this approach would make it possible to estimate an individual's propensity to engage in risky youth behavior (i.e., on a continuous scale) and to use these estimates to identify youth who might be at the greatest risk given their class membership. Mixture IRT can be used with binary response data (e.g., true/false, agree/disagree, endorsement/not endorsement, correct/incorrect, presence/absence of a behavior), Likert response scales, partial correct scoring, nominal scales, or rating scales. In the following, we present mixture IRT modeling and two examples of its use. Data needed to reproduce analyses in this article are available as supplemental online materials at http://dx.doi.org/10.1016/j.jsp.2016.01.002. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  9. Latent Heating Structures Derived from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.

    2004-01-01

    Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval

  10. A priori discretization quality metrics for distributed hydrologic modeling applications

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita

    2016-04-01

    In distributed hydrologic modelling, a watershed is treated as a set of small homogeneous units that address the spatial heterogeneity of the watershed being simulated. The ability of models to reproduce observed spatial patterns firstly depends on the spatial discretization, which is the process of defining homogeneous units in the form of grid cells, subwatersheds, or hydrologic response units etc. It is common for hydrologic modelling studies to simply adopt a nominal or default discretization strategy without formally assessing alternative discretization levels. This approach lacks formal justifications and is thus problematic. More formalized discretization strategies are either a priori or a posteriori with respect to building and running a hydrologic simulation model. A posteriori approaches tend to be ad-hoc and compare model calibration and/or validation performance under various watershed discretizations. The construction and calibration of multiple versions of a distributed model can become a seriously limiting computational burden. Current a priori approaches are more formalized and compare overall heterogeneity statistics of dominant variables between candidate discretization schemes and input data or reference zones. While a priori approaches are efficient and do not require running a hydrologic model, they do not fully investigate the internal spatial pattern changes of variables of interest. Furthermore, the existing a priori approaches focus on landscape and soil data and do not assess impacts of discretization on stream channel definition even though its significance has been noted by numerous studies. The primary goals of this study are to (1) introduce new a priori discretization quality metrics considering the spatial pattern changes of model input data; (2) introduce a two-step discretization decision-making approach to compress extreme errors and meet user-specified discretization expectations through non-uniform discretization threshold modification. The metrics for the first time provides quantification of the routing relevant information loss due to discretization according to the relationship between in-channel routing length and flow velocity. Moreover, it identifies and counts the spatial pattern changes of dominant hydrological variables by overlaying candidate discretization schemes upon input data and accumulating variable changes in area-weighted way. The metrics are straightforward and applicable to any semi-distributed or fully distributed hydrological model with grid scales are greater than input data resolutions. The discretization metrics and decision-making approach are applied to the Grand River watershed located in southwestern Ontario, Canada where discretization decisions are required for a semi-distributed modelling application. Results show that discretization induced information loss monotonically increases as discretization gets rougher. With regards to routing information loss in subbasin discretization, multiple interesting points rather than just the watershed outlet should be considered. Moreover, subbasin and HRU discretization decisions should not be considered independently since subbasin input significantly influences the complexity of HRU discretization result. Finally, results show that the common and convenient approach of making uniform discretization decisions across the watershed domain performs worse compared to a metric informed non-uniform discretization approach as the later since is able to conserve more watershed heterogeneity under the same model complexity (number of computational units).

  11. Estimation of diagnostic test accuracy without full verification: a review of latent class methods

    PubMed Central

    Collins, John; Huynh, Minh

    2014-01-01

    The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172

  12. Fall Risk, Supports and Services, and Falls Following a Nursing Home Discharge.

    PubMed

    Noureldin, Marwa; Hass, Zachary; Abrahamson, Kathleen; Arling, Greg

    2017-09-04

    Falls are a major source of morbidity and mortality among older adults; however, little is known regarding fall occurrence during a nursing home (NH) to community transition. This study sought to examine whether the presence of supports and services impacts the relationship between fall-related risk factors and fall occurrence post NH discharge. Participants in the Minnesota Return to Community Initiative who were assisted in achieving a community discharge (N = 1459) comprised the study sample. The main outcome was fall occurrence within 30 days of discharge. Factor analyses were used to estimate latent models from variables of interest. A structural equation model (SEM) was estimated to determine the relationship between the emerging latent variables and falls. Fifteen percent of participants fell within 30 days of NH discharge. Factor analysis of fall-related risk factors produced three latent variables: fall concerns/history; activities of daily living impairments; and use of high-risk medications. A supports/services latent variable also emerged that included caregiver support frequency, medication management assistance, durable medical equipment use, discharge location, and receipt of home health or skilled nursing services. In the SEM model, high-risk medications use and fall concerns/history had direct positive effects on falling. Receiving supports/services did not affect falling directly; however, it reduced the effect of high-risk medication use on falling (p < .05). Within the context of a state-implemented transition program, findings highlight the importance of supports/services in mitigating against medication-related risk of falling post NH discharge. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Discrete factor approximations in simultaneous equation models: estimating the impact of a dummy endogenous variable on a continuous outcome.

    PubMed

    Mroz, T A

    1999-10-01

    This paper contains a Monte Carlo evaluation of estimators used to control for endogeneity of dummy explanatory variables in continuous outcome regression models. When the true model has bivariate normal disturbances, estimators using discrete factor approximations compare favorably to efficient estimators in terms of precision and bias; these approximation estimators dominate all the other estimators examined when the disturbances are non-normal. The experiments also indicate that one should liberally add points of support to the discrete factor distribution. The paper concludes with an application of the discrete factor approximation to the estimation of the impact of marriage on wages.

  14. Dual Formulations of Mixed Finite Element Methods with Applications

    PubMed Central

    Gillette, Andrew; Bajaj, Chandrajit

    2011-01-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. PMID:21984841

  15. Modeling the Trajectory of Analgesic Demand Over Time After Total Knee Arthroplasty Using the Latent Curve Analysis.

    PubMed

    Lo, Po-Han; Tsou, Mei-Yung; Chang, Kuang-Yi

    2015-09-01

    Patient-controlled epidural analgesia (PCEA) is commonly used for pain relief after total knee arthroplasty (TKA). This study aimed to model the trajectory of analgesic demand over time after TKA and explore its influential factors using latent curve analysis. Data were retrospectively collected from 916 patients receiving unilateral or bilateral TKA and postoperative PCEA. PCEA demands during 12-hour intervals for 48 hours were directly retrieved from infusion pumps. Potentially influential factors of PCEA demand, including age, height, weight, body mass index, sex, and infusion pump settings, were also collected. A latent curve analysis with 2 latent variables, the intercept (baseline) and slope (trend), was applied to model the changes in PCEA demand over time. The effects of influential factors on these 2 latent variables were estimated to examine how these factors interacted with time to alter the trajectory of PCEA demand over time. On average, the difference in analgesic demand between the first and second 12-hour intervals was only 15% of that between the first and third 12-hour intervals. No significant difference in PCEA demand was noted between the third and fourth 12-hour intervals. Aging tended to decrease the baseline PCEA demand but body mass index and infusion rate were positively correlated with the baseline. Only sex significantly affected the trend parameter and male individuals tended to have a smoother decreasing trend of analgesic demands over time. Patients receiving bilateral procedures did not consume more analgesics than their unilateral counterparts. Goodness of fit analysis indicated acceptable model fit to the observed data. Latent curve analysis provided valuable information about how analgesic demand after TKA changed over time and how patient characteristics affected its trajectory.

  16. Deconstructing sub-clinical psychosis into latent-state and trait variables over a 30-year time span.

    PubMed

    Rössler, Wulf; Hengartner, Michael P; Ajdacic-Gross, Vladeta; Haker, Helene; Angst, Jules

    2013-10-01

    Our aim was to deconstruct the variance underlying the expression of sub-clinical psychosis symptoms into portions associated with latent time-dependent states and time-invariant traits. We analyzed data of 335 subjects from the general population of Zurich, Switzerland, who had been repeatedly measured between 1979 (age 20/21) and 2008 (age 49/50). We applied two measures of sub-clinical psychosis derived from the SCL-90-R, namely schizotypal signs (STS) and schizophrenia nuclear symptoms (SNS). Variance was decomposed with latent state-trait analysis and associations with covariates were examined with generalized linear models. At ages 19/20 and 49/50, the latent states underlying STS accounted for 48% and 51% of variance, whereas for SNS those estimates were 62% and 50%. Between those age classes, however, expression of sub-clinical psychosis was strongly associated with stable traits (75% and 89% of total variance in STS and SNS, respectively, at age 27/28). Latent states underlying variance in STS and SNS were particularly related to partnership problems over almost the entire observation period. STS was additionally related to employment problems, whereas drug-use was a strong predictor of states underlying both syndromes at age 19/20. The latent trait underlying expression of STS and SNS was particularly related to low sense of mastery and self-esteem and to high depressiveness. Although most psychosis symptoms are transient and episodic in nature, the variability in their expression is predominantly caused by stable traits. Those time-invariant and rather consistent effects are particularly influential around age 30, whereas the occasion-specific states appear to be particularly influential at ages 20 and 50. © 2013.

  17. Fitting a Mixture Rasch Model to English as a Foreign Language Listening Tests: The Role of Cognitive and Background Variables in Explaining Latent Differential Item Functioning

    ERIC Educational Resources Information Center

    Aryadoust, Vahid

    2015-01-01

    The present study uses a mixture Rasch model to examine latent differential item functioning in English as a foreign language listening tests. Participants (n = 250) took a listening and lexico-grammatical test and completed the metacognitive awareness listening questionnaire comprising problem solving (PS), planning and evaluation (PE), mental…

  18. An All-Fragments Grammar for Simple and Accurate Parsing

    DTIC Science & Technology

    2012-03-21

    Tsujii. Probabilistic CFG with latent annotations. In Proceedings of ACL, 2005. Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In...Proceedings of NAACL-HLT, 2007. Slav Petrov and Dan Klein. Sparse Multi-Scale Grammars for Discriminative Latent Variable Parsing. In Proceedings of...EMNLP, 2008. Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accurate, Compact, and Interpretable Tree Annotation. In Proceedings

  19. Stability of Language in Childhood: A Multi-Age, -Domain, -Measure, and -Source Study

    PubMed Central

    Bornstein, Marc H.; Putnick, Diane L.

    2011-01-01

    The stability of language across childhood is traditionally assessed by exploring longitudinal relations between individual language measures. However, language encompasses many domains and varies with different sources (child speech, parental report, experimenter assessment). This study evaluated individual variation in multiple age-appropriate measures of child language derived from multiple sources and stability between their latent variables in 192 young children across more than 2 years. Structural equation modeling demonstrated the loading of multiple measures of child language from different sources on single latent variables of language at ages 20 and 48 months. A large stability coefficient (r = .84) obtained between the 2 language latent variables. This stability obtained even when accounting for family socioeconomic status, maternal verbal intelligence, education, speech, and tendency to respond in a socially desirable fashion, and child social competence. Stability was also equivalent for children in diverse childcare situations and for girls and boys. Across age, from the beginning of language acquisition to just before school entry, aggregating multiple age-appropriate methods and measures at each age and multiple reporters, children show strong stability of individual differences in general language development. PMID:22004343

  20. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  1. Valuing QALYs in Relation to Equity Considerations Using a Discrete Choice Experiment.

    PubMed

    van de Wetering, Liesbet; van Exel, Job; Bobinac, Ana; Brouwer, Werner B F

    2015-12-01

    To judge whether an intervention offers value for money, the incremental costs per gained quality-adjusted life-year (QALY) need to be compared with some relevant threshold, which ideally reflects the monetary value of health gains. Literature suggests that this value may depend on the equity context in which health gains are produced, but the value of a QALY in relation to equity considerations has remained largely unexplored. The objective of this study was to estimate the social marginal willingness to pay (MWTP) for QALY gains in different equity subgroups, using a discrete choice experiment (DCE). Both severity of illness (operationalized as proportional shortfall) and fair innings (operationalized as age) were considered as grounds for differentiating the value of health gains. We obtained a sample of 1205 respondents, representative of the adult population of the Netherlands. The data was analysed using panel mixed multinomial logit (MMNL) and latent class models. The panel MMNL models showed counterintuitive results, with more severe health states reducing the probability of receiving treatment. The latent class models revealed distinct preference patterns in the data. MWTP per QALY was sensitive to severity of disease among a substantial proportion of the public, but not to the age of care recipients. These findings emphasize the importance of accounting for preference heterogeneity among the public on value-laden issues such as prioritizing health care, both in research and decision making. This study emphasises the need to further explore the monetary value of a QALY in relation to equity considerations.

  2. Data-driven subtypes of major depressive disorder: a systematic review

    PubMed Central

    2012-01-01

    Background According to current classification systems, patients with major depressive disorder (MDD) may have very different combinations of symptoms. This symptomatic diversity hinders the progress of research into the causal mechanisms and treatment allocation. Theoretically founded subtypes of depression such as atypical, psychotic, and melancholic depression have limited clinical applicability. Data-driven analyses of symptom dimensions or subtypes of depression are scarce. In this systematic review, we examine the evidence for the existence of data-driven symptomatic subtypes of depression. Methods We undertook a systematic literature search of MEDLINE, PsycINFO and Embase in May 2012. We included studies analyzing the depression criteria of the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) of adults with MDD in latent variable analyses. Results In total, 1176 articles were retrieved, of which 20 satisfied the inclusion criteria. These reports described a total of 34 latent variable analyses: 6 confirmatory factor analyses, 6 exploratory factor analyses, 12 principal component analyses, and 10 latent class analyses. The latent class techniques distinguished 2 to 5 classes, which mainly reflected subgroups with different overall severity: 62 of 71 significant differences on symptom level were congruent with a latent class solution reflecting severity. The latent class techniques did not consistently identify specific symptom clusters. Latent factor techniques mostly found a factor explaining the variance in the symptoms depressed mood and interest loss (11 of 13 analyses), often complemented by psychomotor retardation or fatigue (8 of 11 analyses). However, differences in found factors and classes were substantial. Conclusions The studies performed to date do not provide conclusive evidence for the existence of depressive symptom dimensions or symptomatic subtypes. The wide diversity of identified factors and classes might result either from the absence of patterns to be found, or from the theoretical and modeling choices preceding analysis. PMID:23210727

  3. Epstein-Barr Virus Latent Membrane Protein 1 Genetic Variability in Peripheral Blood B Cells and Oropharyngeal Fluids

    PubMed Central

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R.; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F.

    2014-01-01

    ABSTRACT We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed. PMID:24429365

  4. Latent variable model for suicide risk in relation to social capital and socio-economic status.

    PubMed

    Congdon, Peter

    2012-08-01

    There is little evidence on the association between suicide outcomes (ideation, attempts, self-harm) and social capital. This paper investigates such associations using a structural equation model based on health survey data, and allowing for both individual and contextual risk factors. Social capital and other major risk factors for suicide, namely socioeconomic status and social isolation, are modelled as latent variables that are proxied (or measured) by observed indicators or question responses for survey subjects. These latent scales predict suicide risk in the structural component of the model. Also relevant to explaining suicide risk are contextual variables, such as area deprivation and region of residence, as well as the subject's demographic status. The analysis is based on the 2007 Adult Psychiatric Morbidity Survey and includes 7,403 English subjects. A Bayesian modelling strategy is used. Models with and without social capital as a predictor of suicide risk are applied. A benefit to statistical fit is demonstrated when social capital is added as a predictor. Social capital varies significantly by geographic context variables (neighbourhood deprivation, region), and this impacts on the direct effects of these contextual variables on suicide risk. In particular, area deprivation is not confirmed as a distinct significant influence. The model develops a suicidality risk score incorporating social capital, and the success of this risk score in predicting actual suicide events is demonstrated. Social capital as reflected in neighbourhood perceptions is a significant factor affecting risks of different types of self-harm and may mediate the effects of other contextual variables such as area deprivation.

  5. Epstein-Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids.

    PubMed

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F; Luzuriaga, Katherine

    2014-04-01

    We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.

  6. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect.

    PubMed

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.

  7. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect

    PubMed Central

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT. PMID:27499744

  8. A latent class distance association model for cross-classified data with a categorical response variable.

    PubMed

    Vera, José Fernando; de Rooij, Mark; Heiser, Willem J

    2014-11-01

    In this paper we propose a latent class distance association model for clustering in the predictor space of large contingency tables with a categorical response variable. The rows of such a table are characterized as profiles of a set of explanatory variables, while the columns represent a single outcome variable. In many cases such tables are sparse, with many zero entries, which makes traditional models problematic. By clustering the row profiles into a few specific classes and representing these together with the categories of the response variable in a low-dimensional Euclidean space using a distance association model, a parsimonious prediction model can be obtained. A generalized EM algorithm is proposed to estimate the model parameters and the adjusted Bayesian information criterion statistic is employed to test the number of mixture components and the dimensionality of the representation. An empirical example highlighting the advantages of the new approach and comparing it with traditional approaches is presented. © 2014 The British Psychological Society.

  9. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis.

    PubMed

    Sakhanenko, Nikita A; Kunert-Graf, James; Galas, David J

    2017-12-01

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. We present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discrete variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis-that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. We illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.

  10. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  11. Spatial path models with multiple indicators and multiple causes: mental health in US counties.

    PubMed

    Congdon, Peter

    2011-06-01

    This paper considers a structural model for the impact on area mental health outcomes (poor mental health, suicide) of spatially structured latent constructs: deprivation, social capital, social fragmentation and rurality. These constructs are measured by multiple observed effect indicators, with the constructs allowed to be correlated both between and within areas. However, in the scheme developed here, particular latent constructs may also be influenced by known variables, or, via path sequences, by other constructs, possibly nonlinearly. For example, area social capital may be measured by effect indicators (e.g. associational density, charitable activity), but influenced as causes by other constructs (e.g. area deprivation), and by observed features of the socio-ethnic structure of areas. A model incorporating these features is applied to suicide mortality and the prevalence of poor mental health in 3141 US counties, which are related to the latent spatial constructs and to observed variables (e.g. county ethnic mix). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A Bayesian Approach to More Stable Estimates of Group-Level Effects in Contextual Studies.

    PubMed

    Zitzmann, Steffen; Lüdtke, Oliver; Robitzsch, Alexander

    2015-01-01

    Multilevel analyses are often used to estimate the effects of group-level constructs. However, when using aggregated individual data (e.g., student ratings) to assess a group-level construct (e.g., classroom climate), the observed group mean might not provide a reliable measure of the unobserved latent group mean. In the present article, we propose a Bayesian approach that can be used to estimate a multilevel latent covariate model, which corrects for the unreliable assessment of the latent group mean when estimating the group-level effect. A simulation study was conducted to evaluate the choice of different priors for the group-level variance of the predictor variable and to compare the Bayesian approach with the maximum likelihood approach implemented in the software Mplus. Results showed that, under problematic conditions (i.e., small number of groups, predictor variable with a small ICC), the Bayesian approach produced more accurate estimates of the group-level effect than the maximum likelihood approach did.

  13. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  14. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation.

    PubMed

    Leverrier, Anthony; Grangier, Philippe

    2009-05-08

    We present a continuous-variable quantum key distribution protocol combining a discrete modulation and reverse reconciliation. This protocol is proven unconditionally secure and allows the distribution of secret keys over long distances, thanks to a reverse reconciliation scheme efficient at very low signal-to-noise ratio.

  15. Anxiety, bulimia, drug and alcohol addiction, depression, and schizophrenia: what do you think about their aetiology, dangerousness, social distance, and treatment? A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Boffo, Marilisa

    2015-01-01

    Mental illness stigma is a serious societal problem and a critical impediment to treatment seeking for mentally ill people. To improve the understanding of mental illness stigma, this study focuses on the simultaneous analysis of people's aetiological beliefs, attitudes (i.e. perceived dangerousness and social distance), and recommended treatments related to several mental disorders by devising an over-arching latent structure that could explain the relations among these variables. Three hundred and sixty university students randomly received an unlabelled vignette depicting one of six mental disorders to be evaluated on the four variables on a Likert-type scale. A one-factor Latent Class Analysis (LCA) model was hypothesized, which comprised the four manifest variables as indicators and the mental disorder as external variable. The main findings were the following: (a) a one-factor LCA model was retrieved; (b) alcohol and drug addictions are the most strongly stigmatized; (c) a realistic opinion about the causes and treatment of schizophrenia, anxiety, bulimia, and depression was associated to lower prejudicial attitudes and social rejection. Beyond the general appraisal of mental illness an individual might have, the results generally point to the acknowledgement of the specific features of different diagnostic categories. The implications of the present results are discussed in the framework of a better understanding of mental illness stigma.

  16. Robust Bayesian clustering.

    PubMed

    Archambeau, Cédric; Verleysen, Michel

    2007-01-01

    A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.

  17. Modeling the mental health service utilization decisions of university undergraduates: A discrete choice conjoint experiment.

    PubMed

    Cunningham, Charles E; Zipursky, Robert B; Christensen, Bruce K; Bieling, Peter J; Madsen, Victoria; Rimas, Heather; Mielko, Stephanie; Wilson, Fiona; Furimsky, Ivana; Jeffs, Lisa; Munn, Catharine

    2017-01-01

    We modeled design factors influencing the intent to use a university mental health service. Between November 2012 and October 2014, 909 undergraduates participated. Using a discrete choice experiment, participants chose between hypothetical campus mental health services. Latent class analysis identified three segments. A Psychological/Psychiatric Service segment (45.5%) was most likely to contact campus health services delivered by psychologists or psychiatrists. An Alternative Service segment (39.3%) preferred to talk to peer-counselors who had experienced mental health problems. A Hesitant segment (15.2%) reported greater distress but seemed less intent on seeking help. They preferred services delivered by psychologists or psychiatrists. Simulations predicted that, rather than waiting for standard counseling, the Alternative Service segment would prefer immediate access to E-Mental health. The Usual Care and Hesitant segments would wait 6 months for standard counseling. E-Mental Health options could engage students who may not wait for standard services.

  18. Identifying latent profiles of posttraumatic stress and major depression symptoms in Canadian veterans: Exploring differences across profiles in health related functioning.

    PubMed

    Armour, Cherie; Contractor, Ateka; Elhai, Jon D; Stringer, Maurice; Lyle, Gary; Forbes, David; Richardson, J Don

    2015-07-30

    Posttraumatic stress disorder (PTSD) has been consistently reported as being highly comorbid with major depressive disorder (MDD) and as being associated with health related functional impairment (HRF). We used archival data from 283 previously war-zone deployed Canadian veterans. Latent profile analysis (LPA) was used to uncover patterns of PTSD and MDD comorbidity as measured via the PTSD Checklist-Military version (PCL-M) and the Patient Health Questionnaire-9 (PHQ-9). Individual membership of latent classes was used in a series of one-way ANOVAs to ascertain group differences related to HRF as measured via the Short-Form-36 Health Survey (SF-36). LPA resulted in three discrete patterns of PTSD and MDD comorbidity which were characterized by high symptoms of PTSD and MDD, moderate symptoms, and low symptoms. All ANOVAs comparing class membership on the SF-36 subscales were statistically significant demonstrating group differences across levels of HRF. The group with the highest symptoms reported the worst HRF followed by the medium and low symptom groups. These findings are clinically relevant as they demonstrate the need for continual assessment and targeted treatment of co-occurring PTSD and MDD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Identifying Useful Auxiliary Variables for Incomplete Data Analyses: A Note on a Group Difference Examination Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2014-01-01

    This research note contributes to the discussion of methods that can be used to identify useful auxiliary variables for analyses of incomplete data sets. A latent variable approach is discussed, which is helpful in finding auxiliary variables with the property that if included in subsequent maximum likelihood analyses they may enhance considerably…

  20. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  1. Causal Models with Unmeasured Variables: An Introduction to LISREL.

    ERIC Educational Resources Information Center

    Wolfle, Lee M.

    Whenever one uses ordinary least squares regression, one is making an implicit assumption that all of the independent variables have been measured without error. Such an assumption is obviously unrealistic for most social data. One approach for estimating such regression models is to measure implied coefficients between latent variables for which…

  2. Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.

    ERIC Educational Resources Information Center

    Olson, Jeffery E.

    Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…

  3. A priori discretization error metrics for distributed hydrologic modeling applications

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Tolson, Bryan A.; Craig, James R.; Shafii, Mahyar

    2016-12-01

    Watershed spatial discretization is an important step in developing a distributed hydrologic model. A key difficulty in the spatial discretization process is maintaining a balance between the aggregation-induced information loss and the increase in computational burden caused by the inclusion of additional computational units. Objective identification of an appropriate discretization scheme still remains a challenge, in part because of the lack of quantitative measures for assessing discretization quality, particularly prior to simulation. This study proposes a priori discretization error metrics to quantify the information loss of any candidate discretization scheme without having to run and calibrate a hydrologic model. These error metrics are applicable to multi-variable and multi-site discretization evaluation and provide directly interpretable information to the hydrologic modeler about discretization quality. The first metric, a subbasin error metric, quantifies the routing information loss from discretization, and the second, a hydrological response unit (HRU) error metric, improves upon existing a priori metrics by quantifying the information loss due to changes in land cover or soil type property aggregation. The metrics are straightforward to understand and easy to recode. Informed by the error metrics, a two-step discretization decision-making approach is proposed with the advantage of reducing extreme errors and meeting the user-specified discretization error targets. The metrics and decision-making approach are applied to the discretization of the Grand River watershed in Ontario, Canada. Results show that information loss increases as discretization gets coarser. Moreover, results help to explain the modeling difficulties associated with smaller upstream subbasins since the worst discretization errors and highest error variability appear in smaller upstream areas instead of larger downstream drainage areas. Hydrologic modeling experiments under candidate discretization schemes validate the strong correlation between the proposed discretization error metrics and hydrologic simulation responses. Discretization decision-making results show that the common and convenient approach of making uniform discretization decisions across the watershed performs worse than the proposed non-uniform discretization approach in terms of preserving spatial heterogeneity under the same computational cost.

  4. Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing

    USGS Publications Warehouse

    Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin

    2014-01-01

    Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.

  5. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Latent Variable Regression in a Three-Level Hierarchical Model. CSE Report 647

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2005-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a time period of substantive interest relate to differences in subsequent change. This report presents a fully Bayesian approach to estimating three-level hierarchical models in which latent variable…

  6. Epilepsy and the Wnt Signaling Pathway

    DTIC Science & Technology

    2015-06-01

    status epilepticus (SE), head injury, infection or stroke). This is followed by a variable (months to years in humans) “latent period” followed by the...TERMS Status Epilepticus , Wnt Signaling, Epileptogenesis 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACTU U 18. NUMBER OF PAGES 4...disease sub-type. In this grant, we will investigate the mechanisms of Status Epilepticus (SE) and the ensuing latent period in animal models of

  7. Discrete-time bidirectional associative memory neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.

    2005-02-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.

  8. Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate

    PubMed Central

    Chambert, Thierry; Rotella, Jay J; Higgs, Megan D; Garrott, Robert A

    2013-01-01

    Individual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated. Here, we assessed (i) the potential existence of latent individual heterogeneity and (ii) the nature of its expression (fixed vs. variable) in a population of female Weddell seals (Leptonychotes weddellii), using a hierarchical modeling approach on a 30-year mark–recapture data set consisting of 954 individual encounter histories. We found strong support for the existence of latent individual heterogeneity in the population, with “robust” individuals expected to produce twice as many pups as “frail” individuals. Moreover, the expression of individual heterogeneity appeared consistent, with only mild evidence that it might be amplified when environmental conditions are severe. Finally, the explicit modeling of individual heterogeneity allowed us to detect a substantial cost of reproduction that was not evidenced when the heterogeneity was ignored. PMID:23919151

  9. Comparison of CTT and Rasch-based approaches for the analysis of longitudinal Patient Reported Outcomes.

    PubMed

    Blanchin, Myriam; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Blanchard, Claire; Mirallié, Eric; Sébille, Véronique

    2011-04-15

    Health sciences frequently deal with Patient Reported Outcomes (PRO) data for the evaluation of concepts, in particular health-related quality of life, which cannot be directly measured and are often called latent variables. Two approaches are commonly used for the analysis of such data: Classical Test Theory (CTT) and Item Response Theory (IRT). Longitudinal data are often collected to analyze the evolution of an outcome over time. The most adequate strategy to analyze longitudinal latent variables, which can be either based on CTT or IRT models, remains to be identified. This strategy must take into account the latent characteristic of what PROs are intended to measure as well as the specificity of longitudinal designs. A simple and widely used IRT model is the Rasch model. The purpose of our study was to compare CTT and Rasch-based approaches to analyze longitudinal PRO data regarding type I error, power, and time effect estimation bias. Four methods were compared: the Score and Mixed models (SM) method based on the CTT approach, the Rasch and Mixed models (RM), the Plausible Values (PV), and the Longitudinal Rasch model (LRM) methods all based on the Rasch model. All methods have shown comparable results in terms of type I error, all close to 5 per cent. LRM and SM methods presented comparable power and unbiased time effect estimations, whereas RM and PV methods showed low power and biased time effect estimations. This suggests that RM and PV methods should be avoided to analyze longitudinal latent variables. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Illustration of Step-Wise Latent Class Modeling With Covariates and Taxometric Analysis in Research Probing Children's Mental Models in Learning Sciences

    PubMed Central

    Stamovlasis, Dimitrios; Papageorgiou, George; Tsitsipis, Georgios; Tsikalas, Themistoklis; Vaiopoulou, Julie

    2018-01-01

    This paper illustrates two psychometric methods, latent class analysis (LCA) and taxometric analysis (TA) using empirical data from research probing children's mental representation in science learning. LCA is used to obtain a typology based on observed variables and to further investigate how the encountered classes might be related to external variables, where the effectiveness of classification process and the unbiased estimations of parameters become the main concern. In the step-wise LCA, the class membership is assigned and subsequently its relationship with covariates is established. This leading-edge modeling approach suffers from severe downward-biased estimations. The illustration of LCA is focused on alternative bias correction approaches and demonstrates the effect of modal and proportional class-membership assignment along with BCH and ML correction procedures. The illustration of LCA is presented with three covariates, which are psychometric variables operationalizing formal reasoning, divergent thinking and field dependence-independence, respectively. Moreover, taxometric analysis, a method designed to detect the type of the latent structural model, categorical or dimensional, is introduced, along with the relevant basic concepts and tools. TA was applied complementarily in the same data sets to answer the fundamental hypothesis about children's naïve knowledge on the matters under study and it comprises an additional asset in building theory which is fundamental for educational practices. Taxometric analysis provided results that were ambiguous as far as the type of the latent structure. This finding initiates further discussion and sets a problematization within this framework rethinking fundamental assumptions and epistemological issues. PMID:29713300

  11. Controllability of discrete bilinear systems with bounded control.

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Elliott, D. L.; Goka, T.

    1973-01-01

    The subject of this paper is the controllability of time-invariant discrete-time bilinear systems. Bilinear systems are classified into two categories; homogeneous and inhomogeneous. Sufficient conditions which ensure the global controllability of discrete-time bilinear systems are obtained by localized analysis in control variables.

  12. Discrete-time BAM neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi

    2007-07-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.

  13. Polydrug Use and HIV Risk Among People Who Inject Heroin in Tijuana, Mexico: A Latent Class Analysis.

    PubMed

    Meacham, Meredith C; Rudolph, Abby E; Strathdee, Steffanie A; Rusch, Melanie L; Brouwer, Kimberly C; Patterson, Thomas L; Vera, Alicia; Rangel, Gudelia; Roesch, Scott C

    2015-01-01

    Although most people who inject drugs (PWID) in Tijuana, Mexico, primarily inject heroin, injection and non-injection use of methamphetamine and cocaine is common. We examined patterns of polydrug use among heroin injectors to inform prevention and treatment of drug use and its health and social consequences. Participants were PWID residing in Tijuana, aged ≥18 years who reported heroin injection in the past six months and were recruited through respondent-driven sampling (n = 1,025). Latent class analysis was conducted to assign individuals to classes on a probabilistic basis, using four indicators of past six-month polydrug and polyroute use: cocaine injecting, cocaine smoking or snorting, methamphetamine injecting, and methamphetamine smoking or snorting. Latent class membership was regressed onto covariates in a multinomial logistic regression. Latent class analyses testing 1, 2, 3, and 4 classes were fit, with the 3-class solution fitting best. Class 1 was defined by predominantly heroin use (50.2%, n = 515); class 2 by methamphetamine and heroin use (43.7%, n = 448), and class 3 by methamphetamine, cocaine, and heroin use (6.0%, n = 62). Bivariate and multivariate analyses indicated a group of methamphetamine and cocaine users that exhibited higher-risk sexual practices and lower heroin injecting frequency, and a group of methamphetamine users who were younger and more likely to be female. Discrete subtypes of heroin PWID were identified based on methamphetamine and cocaine use patterns. These findings have identified subtypes of heroin injectors who require more tailored interventions to reduce the health and social harms of injecting drug use.

  14. Polydrug use and HIV risk among people who inject heroin in Tijuana, Mexico: A Latent class analysis

    PubMed Central

    Meacham, M.C.; Rudolph, A.E.; Strathdee, S.A.; Rusch, M.L.; Brouwer, K.C.; Patterson, T.L.; Vera, A.; Rangel, G.; Roesch, S.C.

    2016-01-01

    Background Although most people who inject drugs (PWID) in Tijuana, Mexico, primarily inject heroin, injection and non-injection use of methamphetamine and cocaine is common. We examined patterns of polydrug use among heroin injectors to inform prevention and treatment of drug use and its health and social consequences. Methods Participants were PWID residing in Tijuana aged ≥ 18 years who reported heroin injection in the past 6 months and were recruited through respondent driven sampling (n=1025). Latent class analysis was conducted to assign individuals to classes on a probabilistic basis, using four indicators of past 6 month polydrug and polyroute use: cocaine injecting, cocaine smoking or snorting, methamphetamine injecting, methamphetamine smoking or snorting. Latent class membership was regressed onto covariates in a multinomial logistic regression. Results Latent class analyses testing 1, 2, 3, and 4 classes were fit, with the 3-class solution fitting best. Class 1 was defined by predominantly heroin use (50.2%, n=515); class 2 by methamphetamine and heroin use (43.7%, n=448), and class 3 by methamphetamine, cocaine, and heroin use (6.0%, n=62). Bivariate and multivariate analyses indicated a group of methamphetamine and cocaine users that exhibited higher risk sexual practices and lower heroin injecting frequency, and a group of methamphetamine users who were younger and more likely to be female. Conclusions Discrete subtypes of heroin PWID were identified based on methamphetamine and cocaine use patterns. These findings have identified subtypes of heroin injectors who require more tailored interventions to reduce the health and social harms of injecting drug use. PMID:26444185

  15. On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables.

    DOT National Transportation Integrated Search

    2015-12-01

    We develop an econometric framework for incorporating spatial dependence in integrated model systems of latent variables and multidimensional mixed data outcomes. The framework combines Bhats Generalized Heterogeneous Data Model (GHDM) with a spat...

  16. Should "Multiple Imputations" Be Treated as "Multiple Indicators"?

    ERIC Educational Resources Information Center

    Mislevy, Robert J.

    1993-01-01

    Multiple imputations for latent variables are constructed so that analyses treating them as true variables have the correct expectations for population characteristics. Analyzing multiple imputations in accordance with their construction yields correct estimates of population characteristics, whereas analyzing them as multiple indicators generally…

  17. Measurement Models for Reasoned Action Theory.

    PubMed

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-03-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach.

  18. Application of latent variable model in Rosenberg self-esteem scale.

    PubMed

    Leung, Shing-On; Wu, Hui-Ping

    2013-01-01

    Latent Variable Models (LVM) are applied to Rosenberg Self-Esteem Scale (RSES). Parameter estimations automatically give negative signs hence no recoding is necessary for negatively scored items. Bad items can be located through parameter estimate, item characteristic curves and other measures. Two factors are extracted with one on self-esteem and the other on the degree to take moderate views, with the later not often being covered in previous studies. A goodness-of-fit measure based on two-way margins is used but more works are needed. Results show that scaling provided by models with more formal statistical ground correlated highly with conventional method, which may provide justification for usual practice.

  19. Improved robustness and performance of discrete time sliding mode control systems.

    PubMed

    Chakrabarty, Sohom; Bartoszewicz, Andrzej

    2016-11-01

    This paper presents a theoretical analysis along with simulations to show that increased robustness can be achieved for discrete time sliding mode control systems by choosing the sliding variable, or the output, to be of relative degree two instead of relative degree one. In other words it successfully reduces the ultimate bound of the sliding variable compared to the ultimate bound for standard discrete time sliding mode control systems. It is also found out that for such a selection of relative degree two output of the discrete time system, the reduced order system during sliding becomes finite time stable in absence of disturbance. With disturbance, it becomes finite time ultimately bounded. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Uncertainty relation for the discrete Fourier transform.

    PubMed

    Massar, Serge; Spindel, Philippe

    2008-05-16

    We derive an uncertainty relation for two unitary operators which obey a commutation relation of the form UV=e(i phi) VU. Its most important application is to constrain how much a quantum state can be localized simultaneously in two mutually unbiased bases related by a discrete fourier transform. It provides an uncertainty relation which smoothly interpolates between the well-known cases of the Pauli operators in two dimensions and the continuous variables position and momentum. This work also provides an uncertainty relation for modular variables, and could find applications in signal processing. In the finite dimensional case the minimum uncertainty states, discrete analogues of coherent and squeezed states, are minimum energy solutions of Harper's equation, a discrete version of the harmonic oscillator equation.

  1. Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition

    PubMed Central

    Jones, Michael N.

    2017-01-01

    A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. PMID:29059185

  2. Self-Consciousness and Assertiveness as Explanatory Variables of L2 Oral Ability: A Latent Variable Approach

    ERIC Educational Resources Information Center

    Ockey, Gary

    2011-01-01

    Drawing on current theories in personality, second-language (L2) oral ability, and psychometrics, this study investigates the extent to which self-consciousness and assertiveness are explanatory variables of L2 oral ability. Three hundred sixty first-year Japanese university students who were studying English as a foreign language participated in…

  3. Does subtype matter? Assessing the effects of maltreatment on functioning in preadolescent youth in out-of-home care

    PubMed Central

    Petrenko, Christie L. M.; Friend, Angela; Garrido, Edward F.; Taussig, Heather N.; Culhane, Sara E.

    2012-01-01

    Objectives Attempts to understand the effects of maltreatment subtypes on childhood functioning are complicated by the fact that children often experience multiple subtypes. This study assessed the effects of maltreatment subtypes on the cognitive, academic, and mental health functioning of preadolescent youth in out-of-home care using both “variable-centered” and “person-centered” statistical analytic approaches to modeling multiple subtypes of maltreatment. Methods Participants included 334 preadolescent youth (ages 9 to 11) placed in out-of-home care due to maltreatment. The occurrence and severity of maltreatment subtypes (physical abuse, sexual abuse, physical neglect, and supervisory neglect) were coded from child welfare records. The relationships between maltreatment subtypes and children’s cognitive, academic, and mental health functioning were evaluated with the following approaches: “Variable-centered” analytic methods: Regression approach: Multiple regression was used to estimate the effects of each maltreatment subtype (separate analyses for occurrence and severity), controlling for the other subtypes. Hierarchical approach: Contrast coding was used in regression analyses to estimate the effects of discrete maltreatment categories that were assigned based on a subtype occurrence hierarchy (sexual abuse > physical abuse > physical neglect > supervisory neglect). “Person-centered” analytic method: Latent class analysis was used to group children with similar maltreatment severity profiles into discrete classes. The classes were then compared to determine if they differed in terms of their ability to predict functioning. Results The approaches identified similar relationships between maltreatment subtypes and children’s functioning. The most consistent findings indicated that maltreated children who experienced physical or sexual abuse were at highest risk for caregiver-reported externalizing behavior problems, and those who experienced physical abuse and/or physical neglect were more likely to have higher levels of caregiver-reported internalizing problems. Children experiencing predominantly low severity supervisory neglect had relatively better functioning than other maltreated youth. Conclusions Many of the maltreatment subtype differences identified within the maltreated sample in the current study are consistent with those from previous research comparing maltreated youth to non-maltreated comparison groups. Results do not support combining supervisory and physical neglect. The “variable-centered” and “person-centered” analytic approaches produced complementary results. Advantages and disadvantages of each approach are discussed. PMID:22947490

  4. Accelerometry in persons with multiple sclerosis: measurement of physical activity or walking mobility?

    PubMed

    Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel

    2010-03-15

    Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.

  5. A call for theory to support the use of causal-formative indicators: A commentary on Bollen and Diamantopoulos (2017).

    PubMed

    Hardin, Andrew

    2017-09-01

    In this issue, Bollen and Diamantopoulos (2017) defend causal-formative indicators against several common criticisms leveled by scholars who oppose their use. In doing so, the authors make several convincing assertions: Constructs exist independently from their measures; theory determines whether indicators cause or measure latent variables; and reflective and causal-formative indicators are both subject to interpretational confounding. However, despite being a well-reasoned, comprehensive defense of causal-formative indicators, no single article can address all of the issues associated with this debate. Thus, Bollen and Diamantopoulos leave a few fundamental issues unresolved. For example, how can researchers establish the reliability of indicators that may include measurement error? Moreover, how should researchers interpret disturbance terms that capture sources of influence related to both the empirical definition of the latent variable and to the theoretical definition of the construct? Relatedly, how should researchers reconcile the requirement for a census of causal-formative indicators with the knowledge that indicators are likely missing from the empirically estimated latent variable? This commentary develops 6 related research questions to draw attention to these fundamental issues, and to call for future research that can lead to the development of theory to guide the use of causal-formative indicators. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Comparing hierarchical models via the marginalized deviance information criterion.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  7. The efficiency of parameter estimation of latent path analysis using summated rating scale (SRS) and method of successive interval (MSI) for transformation of score to scale

    NASA Astrophysics Data System (ADS)

    Solimun, Fernandes, Adji Achmad Rinaldo; Arisoesilaningsih, Endang

    2017-12-01

    Research in various fields generally investigates systems and involves latent variables. One method to analyze the model representing the system is path analysis. The data of latent variables measured using questionnaires by applying attitude scale model yields data in the form of score, before analyzed should be transformation so that it becomes data of scale. Path coefficient, is parameter estimator, calculated from scale data using method of successive interval (MSI) and summated rating scale (SRS). In this research will be identifying which data transformation method is better. Path coefficients have smaller varieties are said to be more efficient. The transformation method that produces scaled data and used in path analysis capable of producing path coefficients (parameter estimators) with smaller varieties is said to be better. The result of analysis using real data shows that on the influence of Attitude variable to Intention Entrepreneurship, has relative efficiency (ER) = 1, where it shows that the result of analysis using data transformation of MSI and SRS as efficient. On the other hand, for simulation data, at high correlation between items (0.7-0.9), MSI method is more efficient 1.3 times better than SRS method.

  8. Prevalence and risk factors for latent tuberculosis infection among healthcare workers in Nampula Central Hospital, Mozambique.

    PubMed

    Belo, Celso; Naidoo, Saloshni

    2017-06-08

    Healthcare workers in high tuberculosis burdened countries are occupationally exposed to the tuberculosis disease with uncomplicated and complicated tuberculosis on the increase among them. Most of them acquire Mycobacterium tuberculosis but do not progress to the active disease - latent tuberculosis infection. The objective of this study was to assess the prevalence and risk factors associated with latent tuberculosis infection among healthcare workers in Nampula Central Hospital, Mozambique. This cross-sectional study of healthcare workers was conducted between 2014 and 2015. Participants (n = 209) were administered a questionnaire on demographics and occupational tuberculosis exposure and had a tuberculin skin test administered. Multivariate linear and logistic regression tested for associations between independent variables and dependent outcomes (tuberculin skin test induration and latent tuberculosis infection status). The prevalence of latent tuberculosis infection was 34.4%. Latent tuberculosis infection was highest in those working for more than eight years (39.3%), those who had no BCG vaccination (39.6%) and were immunocompromised (78.1%). Being immunocompromised was significantly associated with latent tuberculosis infection (OR 5.97 [95% CI 1.89; 18.87]). Positive but non-significant associations occurred with working in the medical domain (OR 1.02 [95% CI 0.17; 6.37]), length of employment > eight years (OR 1.97 [95% CI 0.70; 5.53]) and occupational contact with tuberculosis patients (OR 1.24 [95% CI 0.47; 3.27]). Personal and occupational factors were positively associated with latent tuberculosis infection among healthcare workers in Mozambique.

  9. Examining the DSM-5 Section III Criteria for Obsessive-Compulsive Personality Disorder in a Community Sample.

    PubMed

    Liggett, Jacqueline; Sellbom, Martin; Carmichael, Kieran L C

    2017-12-01

    The current study examined the extent to which the trait-based operationalization of obsessive-compulsive personality disorder (OCPD) in Section III of the DSM-5 describes the same construct as the one described in Section II. A community sample of 313 adults completed a series of personality inventories indexing the DSM-5 Sections II and III diagnostic criteria for OCPD, in addition to a measure of functional impairment modelled after the criteria in Section III. Results indicated that latent constructs representing Section II and Section III OCPD overlapped substantially (r = .75, p < .001). Hierarchical latent regression models revealed that at least three of the four DSM-5 Section III facets (Rigid Perfectionism, Perseveration, and Intimacy Avoidance) uniquely accounted for a large proportion of variance (53%) in a latent Section II OCPD variable. Further, Anxiousness and (low) Impulsivity, as well as self and interpersonal impairment, augmented the prediction of latent OCPD scores.

  10. Estimating Interaction Effects With Incomplete Predictor Variables

    PubMed Central

    Enders, Craig K.; Baraldi, Amanda N.; Cham, Heining

    2014-01-01

    The existing missing data literature does not provide a clear prescription for estimating interaction effects with missing data, particularly when the interaction involves a pair of continuous variables. In this article, we describe maximum likelihood and multiple imputation procedures for this common analysis problem. We outline 3 latent variable model specifications for interaction analyses with missing data. These models apply procedures from the latent variable interaction literature to analyses with a single indicator per construct (e.g., a regression analysis with scale scores). We also discuss multiple imputation for interaction effects, emphasizing an approach that applies standard imputation procedures to the product of 2 raw score predictors. We thoroughly describe the process of probing interaction effects with maximum likelihood and multiple imputation. For both missing data handling techniques, we outline centering and transformation strategies that researchers can implement in popular software packages, and we use a series of real data analyses to illustrate these methods. Finally, we use computer simulations to evaluate the performance of the proposed techniques. PMID:24707955

  11. Psychological Processes Mediate the Impact of Familial Risk, Social Circumstances and Life Events on Mental Health

    PubMed Central

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Background Despite widespread acceptance of the ‘biopsychosocial model’, the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Methods and Findings Participants were 32,827 (age 18–85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ2 (3199, N = 23,397) = 126654·8, p<·001; RCFI = ·97; RMSEA = ·04 (·038–·039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. Conclusion These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies. PMID:24146890

  12. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    PubMed

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.

  13. Psychological processes mediate the impact of familial risk, social circumstances and life events on mental health.

    PubMed

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Despite widespread acceptance of the 'biopsychosocial model', the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Participants were 32,827 (age 18-85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ(2) (3199, N = 23,397) = 126654.8, p<.001; RCFI = .97; RMSEA = .04 (.038-.039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies.

  14. Genetic-evolution-based optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  15. Forest structure estimation and pattern exploration from discrete return lidar in subalpine forests of the Central Rockies

    Treesearch

    K. R. Sherrill; M. A. Lefsky; J. B. Bradford; M. G. Ryan

    2008-01-01

    This study evaluates the relative ability of simple light detection and ranging (lidar) indices (i.e., mean and maximum heights) and statistically derived canonical correlation analysis (CCA) variables attained from discrete-return lidar to estimate forest structure and forest biomass variables for three temperate subalpine forest sites. Both lidar and CCA explanatory...

  16. Forest structure estimation and pattern exploration from discrete-return lidar in subalpine forests of the central Rockies

    Treesearch

    K.R. Sherrill; M.A. Lefsky; J.B. Bradford; M.G. Ryan

    2008-01-01

    This study evaluates the relative ability of simple light detection and ranging (lidar) indices (i.e., mean and maximum heights) and statistically derived canonical correlation analysis (CCA) variables attained from discrete-return lidar to estimate forest structure and forest biomass variables for three temperate subalpine forest sites. Both lidar and CCA explanatory...

  17. Discrete Choice Modeling (DCM): An Exciting Marketing Research Survey Method for Educational Researchers.

    ERIC Educational Resources Information Center

    Berdie, Doug R.

    Discrete Choice Marketing (DCM), a research technique that has become more popular in recent marketing research, is described. DCM is a method that forces people to look at the combination of relevant variables within each choice domain and, with each option fully defined in terms of the values for those variables, make a choice of options. DCM…

  18. Accounting for measurement error in human life history trade-offs using structural equation modeling.

    PubMed

    Helle, Samuli

    2018-03-01

    Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.

  19. Characterizing outcome preferences in patients with psychotic disorders: a discrete choice conjoint experiment.

    PubMed

    Zipursky, Robert B; Cunningham, Charles E; Stewart, Bailey; Rimas, Heather; Cole, Emily; Vaz, Stephanie McDermid

    2017-07-01

    The majority of individuals with schizophrenia will achieve a remission of psychotic symptoms, but few will meet criteria for recovery. Little is known about what outcomes are important to patients. We carried out a discrete choice experiment to characterize the outcome preferences of patients with psychotic disorders. Participants (N=300) were recruited from two clinics specializing in psychotic disorders. Twelve outcomes were each defined at three levels and incorporated into a computerized survey with 15 choice tasks. Utility values and importance scores were calculated for each outcome level. Latent class analysis was carried out to determine whether participants were distributed into segments with different preferences. Multinomial logistic regression was used to identify predictors of segment membership. Latent class analysis revealed three segments of respondents. The first segment (48%), which we labeled "Achievement-focused," preferred to have a full-time job, to live independently, to be in a long-term relationship, and to have no psychotic symptoms. The second segment (29%), labeled "Stability-focused," preferred to not have a job, to live independently, and to have some ongoing psychotic symptoms. The third segment (23%), labeled "Health-focused," preferred to not have a job, to live in supervised housing, and to have no psychotic symptoms. Segment membership was predicted by education, socioeconomic status, psychotic symptom severity, and work status. This study has revealed that patients with psychotic disorders are distributed between segments with different outcome preferences. New approaches to improve outcomes for patients with psychotic disorders should be informed by a greater understanding of patient preferences and priorities. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    PubMed

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  1. Farmers' valuation of incentives to produce genetically modified organism-free milk: Insights from a discrete choice experiment in Germany.

    PubMed

    Schreiner, J A; Latacz-Lohmann, U

    2015-11-01

    This paper investigates farmers' willingness to participate in a genetically modified organism (GMO)-free milk production scheme offered by some German dairy companies. The empirical analysis is based upon discrete choice experiments with 151 dairy farmers from 2 regions in Germany. A conditional logit estimation reveals a strong positive effect of the price premium on offer. Reliable feed monitoring and free technical support increase the likelihood of scheme adoption, the latter however only in farms that have been receiving technical support in other fields. By contrast, any interference with the entrepreneurial autonomy of farmers, through pre-arranged feed procurement or prescriptive advice on the part of the dairy company, lowers acceptance probabilities. Farmers' attitudes toward cultivation of genetically modified soy, their assessment of the market potential of GMO-free milk and future feed prices were found to be significant determinants of adoption, as are farmer age, educational status, and current feeding regimens. Respondents requested on average a mark-up of 0.80 eurocents per kilogram of milk to accept a contract. Comparison of the estimates for the 2 regions suggests that farmers in northern Germany are, on average, more likely to convert to genetically modified-free production; however, farmers in the south are, ceteris paribus, more responsive to an increase in the price premium offered. A latent class model reveals significant differences in the valuation of scheme attributes between 2 latent classes of adopters and nonadopters. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Physician communication in the operating room.

    PubMed

    Kirschbaum, Kristin A; Rask, John P; Fortner, Sally A; Kulesher, Robert; Nelson, Michael T; Yen, Tony; Brennan, Matthew

    2015-01-01

    In this study, communication research was conducted with multidisciplinary groups of operating-room physicians. Theoretical frameworks from intercultural communication and rhetoric were used to (a) measure latent cultural communication variables and (b) conduct communication training with the physicians. A six-step protocol guided the research with teams of physicians from different surgical specialties: anesthesiologists, general surgeons, and obstetrician-gynecologists (n = 85). Latent cultural communication variables were measured by surveys administered to physicians before and after completion of the protocol. The centerpiece of the 2-hour research protocol was an instructional session that informed the surgical physicians about rhetorical choices that support participatory communication. Post-training results demonstrated scores increased on communication variables that contribute to collaborative communication and teamwork among the physicians. This study expands health communication research through application of combined intercultural and rhetorical frameworks, and establishes new ways communication theory can contribute to medical education.

  3. Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.

    PubMed

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S

    2016-06-01

    We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.

  4. Latent class analysis derived subgroups of low back pain patients - do they have prognostic capacity?

    PubMed

    Molgaard Nielsen, Anne; Hestbaek, Lise; Vach, Werner; Kent, Peter; Kongsted, Alice

    2017-08-09

    Heterogeneity in patients with low back pain is well recognised and different approaches to subgrouping have been proposed. One statistical technique that is increasingly being used is Latent Class Analysis as it performs subgrouping based on pattern recognition with high accuracy. Previously, we developed two novel suggestions for subgrouping patients with low back pain based on Latent Class Analysis of patient baseline characteristics (patient history and physical examination), which resulted in 7 subgroups when using a single-stage analysis, and 9 subgroups when using a two-stage approach. However, their prognostic capacity was unexplored. This study (i) determined whether the subgrouping approaches were associated with the future outcomes of pain intensity, pain frequency and disability, (ii) assessed whether one of these two approaches was more strongly or more consistently associated with these outcomes, and (iii) assessed the performance of the novel subgroupings as compared to the following variables: two existing subgrouping tools (STarT Back Tool and Quebec Task Force classification), four baseline characteristics and a group of previously identified domain-specific patient categorisations (collectively, the 'comparator variables'). This was a longitudinal cohort study of 928 patients consulting for low back pain in primary care. The associations between each subgroup approach and outcomes at 2 weeks, 3 and 12 months, and with weekly SMS responses were tested in linear regression models, and their prognostic capacity (variance explained) was compared to that of the comparator variables listed above. The two previously identified subgroupings were similarly associated with all outcomes. The prognostic capacity of both subgroupings was better than that of the comparator variables, except for participants' recovery beliefs and the domain-specific categorisations, but was still limited. The explained variance ranged from 4.3%-6.9% for pain intensity and from 6.8%-20.3% for disability, and highest at the 2 weeks follow-up. Latent Class-derived subgroups provided additional prognostic information when compared to a range of variables, but the improvements were not substantial enough to warrant further development into a new prognostic tool. Further research could investigate if these novel subgrouping approaches may help to improve existing tools that subgroup low back pain patients.

  5. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.

    PubMed

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-03-12

    Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.

  6. Mean Comparison: Manifest Variable versus Latent Variable

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Bentler, Peter M.

    2006-01-01

    An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…

  7. The choice of product indicators in latent variable interaction models: post hoc analyses.

    PubMed

    Foldnes, Njål; Hagtvet, Knut Arne

    2014-09-01

    The unconstrained product indicator (PI) approach is a simple and popular approach for modeling nonlinear effects among latent variables. This approach leaves the practitioner to choose the PIs to be included in the model, introducing arbitrariness into the modeling. In contrast to previous Monte Carlo studies, we evaluated the PI approach by 3 post hoc analyses applied to a real-world case adopted from a research effort in social psychology. The measurement design applied 3 and 4 indicators for the 2 latent 1st-order variables, leaving the researcher with a choice among more than 4,000 possible PI configurations. Sixty so-called matched-pair configurations that have been recommended in previous literature are of special interest. In the 1st post hoc analysis we estimated the interaction effect for all PI configurations, keeping the real-world sample fixed. The estimated interaction effect was substantially affected by the choice of PIs, also across matched-pair configurations. Subsequently, a post hoc Monte Carlo study was conducted, with varying sample sizes and data distributions. Convergence, bias, Type I error and power of the interaction test were investigated for each matched-pair configuration and the all-pairs configuration. Variation in estimates across matched-pair configurations for a typical sample was substantial. The choice of specific configuration significantly affected convergence and the interaction test's outcome. The all-pairs configuration performed overall better than the matched-pair configurations. A further advantage of the all-pairs over the matched-pairs approach is its unambiguity. The final study evaluates the all-pairs configuration for small sample sizes and compares it to the non-PI approach of latent moderated structural equations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Interpreting Significant Discrete-Time Periods in Survival Analysis.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.; Denson, Kathleen B.

    Discrete-time survival analysis is a new method for educational researchers to employ when looking at the timing of certain educational events. Previous continuous-time methods do not allow for the flexibility inherent in a discrete-time method. Because both time-invariant and time-varying predictor variables can now be used, the interaction of…

  9. Metric and structural equivalence of core cognitive abilities measured with the Wechsler Adult Intelligence Scale-III in the United States and Australia.

    PubMed

    Bowden, Stephen C; Lissner, Dianne; McCarthy, Kerri A L; Weiss, Lawrence G; Holdnack, James A

    2007-10-01

    Equivalence of the psychological model underlying Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) scores obtained in the United States and Australia was examined in this study. Examination of metric invariance involves testing the hypothesis that all components of the measurement model relating observed scores to latent variables are numerically equal in different samples. The assumption of metric invariance is necessary for interpretation of scores derived from research studies that seek to generalize patterns of convergent and divergent validity and patterns of deficit or disability. An Australian community volunteer sample was compared to the US standardization data. A pattern of strict metric invariance was observed across samples. In addition, when the effects of different demographic characteristics of the US and Australian samples were included, structural parameters reflecting values of the latent cognitive variables were found not to differ. These results provide important evidence for the equivalence of measurement of core cognitive abilities with the WAIS-III and suggest that latent cognitive abilities in the US and Australia do not differ.

  10. Discriminative latent models for recognizing contextual group activities.

    PubMed

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N; Mori, Greg

    2012-08-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.

  11. Discriminative Latent Models for Recognizing Contextual Group Activities

    PubMed Central

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N.; Mori, Greg

    2012-01-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities. PMID:22144516

  12. Disgust proneness predicts obsessive-compulsive disorder symptom severity in a clinical sample of youth: Distinctions from negative affect.

    PubMed

    Olatunji, Bunmi O; Ebesutani, Chad; Kim, Jingu; Riemann, Bradley C; Jacobi, David M

    2017-04-15

    Although studies have linked disgust proneness to the etiology and maintenance of obsessive-compulsive disorder (OCD) in adults, there remains a paucity of research examining the specificity of this association among youth. The present study employed structural equation modeling to examine the association between disgust proneness, negative affect, and OCD symptom severity in a clinical sample of youth admitted to a residential treatment facility (N =471). Results indicate that disgust proneness and negative affect latent factors independently predicted an OCD symptom severity latent factor. However, when both variables were modeled as predictors simultaneously, latent disgust proneness remained significantly associated with OCD symptom severity, whereas the association between latent negative affect and OCD symptom severity became nonsignificant. Tests of mediation converged in support of disgust proneness as a significant intervening variable between negative affect and OCD symptom severity. Subsequent analysis showed that the path from disgust proneness to OCD symptom severity in the structural model was significantly stronger among those without a primary diagnosis of OCD compared to those with a primary diagnosis of OCD. Given the cross-sectional design, the causal inferences that can be made are limited. The present study is also limited by the exclusive reliance on self-report measures. Disgust proneness may play a uniquely important role in OCD among youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Families as Natural Experiments: A Procedure for Estimating the Potentially Biasing Influence of Families on Relationships Between Variables.

    ERIC Educational Resources Information Center

    Teachman, Jay D.

    1995-01-01

    Argues that data on siblings provide a way to account for the impact of unmeasured, omitted variables on relationships of interest because families form a sort of natural experiment, with similar experiences and common genetic heritage. Proposes a latent-variable structural equation approach to the problem, which provides estimates of both within-…

  14. Measurement Models for Reasoned Action Theory

    PubMed Central

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-01-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach. PMID:23243315

  15. Sentient Structures: Optimising Sensor Layouts for Direct Measurement of Discrete Variables

    DTIC Science & Technology

    2008-11-01

    1 Sentient Structures Optimising Sensor Layouts for Direct Measurement of Discrete Variables Report to US Air Force...TITLE AND SUBTITLE Sentient Structures 5a. CONTRACT NUMBER FA48690714045 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Donald Price...optimal sensor placements is an important requirement for the development of sentient structures. An optimal sensor layout is attained when a limited

  16. Non-equilibrium Green's functions study of discrete dopants variability on an ultra-scaled FinFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valin, R., E-mail: r.valinferreiro@swansea.ac.uk; Martinez, A., E-mail: a.e.Martinez@swansea.ac.uk; Barker, J. R., E-mail: john.barker@glasgow.ac.uk

    In this paper, we study the effect of random discrete dopants on the performance of a 6.6 nm channel length silicon FinFET. The discrete dopants have been distributed randomly in the source/drain region of the device. Due to the small dimensions of the FinFET, a quantum transport formalism based on the non-equilibrium Green's functions has been deployed. The transfer characteristics for several devices that differ in location and number of dopants have been calculated. Our results demonstrate that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. Thismore » effect becomes more significant at high drain bias. As a consequence, there is a strong effect on the variability of the on-current, off-current, sub-threshold slope, and threshold voltage. Finally, we have also calculated the mean and standard deviation of these parameters to quantify their variability. The obtained results show that the variability at high drain bias is 1.75 larger than at low drain bias. However, the variability of the on-current, off-current, and sub-threshold slope remains independent of the drain bias. In addition, we have found that a large source to drain current by tunnelling current occurs at low gate bias.« less

  17. A Two-Step Approach to Analyze Satisfaction Data

    ERIC Educational Resources Information Center

    Ferrari, Pier Alda; Pagani, Laura; Fiorio, Carlo V.

    2011-01-01

    In this paper a two-step procedure based on Nonlinear Principal Component Analysis (NLPCA) and Multilevel models (MLM) for the analysis of satisfaction data is proposed. The basic hypothesis is that observed ordinal variables describe different aspects of a latent continuous variable, which depends on covariates connected with individual and…

  18. Factorial versus Typological Models: A Comparison of Methods for Personality Data

    ERIC Educational Resources Information Center

    von Davier, Matthias; Naemi, Bobby; Roberts, Richard D.

    2012-01-01

    This article describes an exploration of the distinction between typological and factorial latent variables in the domain of personality theory. Traditionally, many personality variables have been considered to be factorial in nature, even though there are examples of typological constructs dating back to Hippocrates. Recently, some…

  19. A Latent-Variable Causal Model of Faculty Reputational Ratings.

    ERIC Educational Resources Information Center

    King, Suzanne; Wolfle, Lee M.

    A reanalysis was conducted of Saunier's research (1985) on sources of variation in the National Research Council (NRC) reputational ratings of university faculty. Saunier conducted a stepwise regression analysis using 12 predictor variables. Due to problems with multicollinearity and because of the atheoretical nature of stepwise regression,…

  20. Specifying and Refining a Complex Measurement Model.

    ERIC Educational Resources Information Center

    Levy, Roy; Mislevy, Robert J.

    This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…

  1. Undergraduate Nurse Variables that Predict Academic Achievement and Clinical Competence in Nursing

    ERIC Educational Resources Information Center

    Blackman, Ian; Hall, Margaret; Darmawan, I Gusti Ngurah.

    2007-01-01

    A hypothetical model was formulated to explore factors that influenced academic and clinical achievement for undergraduate nursing students. Sixteen latent variables were considered including the students' background, gender, type of first language, age, their previous successes with their undergraduate nursing studies and status given for…

  2. Paths to tobacco abstinence: A repeated-measures latent class analysis.

    PubMed

    McCarthy, Danielle E; Ebssa, Lemma; Witkiewitz, Katie; Shiffman, Saul

    2015-08-01

    Knowledge of smoking change processes may be enhanced by identifying pathways to stable abstinence. We sought to identify latent classes of smokers based on their day-to-day smoking status in the first weeks of a cessation attempt. We examined treatment effects on class membership and compared classes on baseline individual differences and 6-month abstinence rates. In this secondary analysis of a double-blind randomized placebo-controlled clinical trial (N = 1,433) of 5 smoking cessation pharmacotherapies (nicotine patch, nicotine lozenge, bupropion SR, patch and lozenge, or bupropion SR and lozenge), we conducted repeated-measures latent class analysis of daily smoking status (any smoking vs. none) for the first 27 days of a quit attempt. Treatment and covariate relations with latent class membership were examined. Distal outcome analysis compared confirmed 6-month abstinence rates among the latent classes. A 5-class solution was selected. Three-quarters of smokers were in stable smoking or abstinent classes, but 25% were in classes with unstable abstinence probabilities over time. Active treatment (compared to placebo), and particularly the patch and lozenge combination, promoted early quitting. Latent classes differed in 6-month abstinence rates and on several baseline variables, including nicotine dependence, quitting history, self-efficacy, sleep disturbance, and minority status. Repeated-measures latent class analysis identified latent classes of smoking change patterns affected by treatment, related to known risk factors, and predictive of distal outcomes. Tracking behavior early in a change attempt may identify prognostic patterns of change and facilitate adaptive treatment planning. (c) 2015 APA, all rights reserved).

  3. Stochastic Dual Algorithm for Voltage Regulation in Distribution Networks with Discrete Loads: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhou, Xinyang; Liu, Zhiyuan

    This paper considers distribution networks with distributed energy resources and discrete-rate loads, and designs an incentive-based algorithm that allows the network operator and the customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Four major challenges include: (1) the non-convexity from discrete decision variables, (2) the non-convexity due to a Stackelberg game structure, (3) unavailable private information from customers, and (4) different update frequency from two types of devices. In this paper, we first make convex relaxation for discrete variables, then reformulate the non-convex structure into a convex optimization problem together withmore » pricing/reward signal design, and propose a distributed stochastic dual algorithm for solving the reformulated problem while restoring feasible power rates for discrete devices. By doing so, we are able to statistically achieve the solution of the reformulated problem without exposure of any private information from customers. Stability of the proposed schemes is analytically established and numerically corroborated.« less

  4. Adjoint-Based Methodology for Time-Dependent Optimization

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2008-01-01

    This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.

  5. Environmental, morphological, and productive characterization of Sardinian goats and use of latent explanatory factors for population analysis.

    PubMed

    Vacca, G M; Paschino, P; Dettori, M L; Bergamaschi, M; Cipolat-Gotet, C; Bittante, G; Pazzola, M

    2016-09-01

    Dairy goat farming is practiced worldwide, within a range of different farming systems. Here we investigated the effects of environmental factors and morphology on milk traits of the Sardinian goat population. Sardinian goats are currently reared in Sardinia (Italy) in a low-input context, similar to many goat farming systems, especially in developing countries. Milk and morphological traits from 1,050 Sardinian goats from 42 farms were recorded. We observed a high variability regarding morphological traits, such as coat color, ear length and direction, horn presence, and udder shape. Such variability derived partly from the unplanned repeated crossbreeding of the native Sardinian goats with exotic breeds, especially Maltese goats. The farms located in the mountains were characterized by the traditional farming system and the lowest percentage of crossbred goats. Explanatory factors analysis was used to summarize the interrelated measured milk variables. The explanatory factor related to fat, protein, and energy content of milk (the "Quality" latent variable) explained about 30% of the variance of the whole data set of measured milk traits followed by the "Hygiene" (19%), "Production" (19%), and "Acidity" (11%) factors. The "Quality" and "Hygiene" factors were not affected by any of the farm classification items, whereas "Production" and "Acidity" were affected only by altitude and size of herds, respectively, indicating the adaptation of the local goat population to different environmental conditions. The use of latent explanatory factor analysis allowed us to clearly explain the large variability of milk traits, revealing that the Sardinian goat population cannot be divided into subpopulations based on milk attitude The factors, properly integrated with genetic data, may be useful tools in future selection programs.

  6. Individual Differences in Childhood Sleep Problems Predict Later Cognitive Executive Control

    PubMed Central

    Friedman, Naomi P.; Corley, Robin P.; Hewitt, John K.; Wright, Kenneth P.

    2009-01-01

    Study Objective: To determine whether individual differences in developmental patterns of general sleep problems are associated with 3 executive function abilities—inhibiting, updating working memory, and task shifting—in late adolescence. Participants: 916 twins (465 female, 451 male) and parents from the Colorado Longitudinal Twin Study. Measurements and Results: Parents reported their children's sleep problems at ages 4 years, 5 y, 7 y, and 9–16 y based on a 7-item scale from the Child-Behavior Checklist; a subset of children (n = 568) completed laboratory assessments of executive functions at age 17. Latent variable growth curve analyses were used to model individual differences in longitudinal trajectories of childhood sleep problems. Sleep problems declined over time, with ~70% of children having ≥ 1 problem at age 4 and ~33% of children at age 16. However, significant individual differences in both the initial levels of problems (intercept) and changes across time (slope) were observed. When executive function latent variables were added to the model, the intercept did not significantly correlate with the later executive function latent variables; however, the slope variable significantly (P < 0.05) negatively correlated with inhibiting (r = −0.27) and updating (r = −0.21), but not shifting (r = −0.10) abilities. Further analyses suggested that the slope variable predicted the variance common to the 3 executive functions (r = −0.29). Conclusions: Early levels of sleep problems do not seem to have appreciable implications for later executive functioning. However, individuals whose sleep problems decrease more across time show better general executive control in late adolescence. Citation: Friedman NP; Corley RP; Hewitt JK; Wright KP. Individual differences in childhood sleep problems predict later cognitive executive control. SLEEP 2009;32(3):323-333. PMID:19294952

  7. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood.

    PubMed

    Donnellan, M Brent; Kenny, David A; Trzesniewski, Kali H; Lucas, Richard E; Conger, Rand D

    2012-12-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development.

  8. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    PubMed Central

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development. PMID:23180899

  9. Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.

    PubMed

    Conley, Samantha

    2017-12-01

    The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.

  10. Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ju, E-mail: jliu@ices.utexas.edu; Gomez, Hector; Evans, John A.

    2013-09-01

    We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionallymore » stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.« less

  11. Affective norms of 875 Spanish words for five discrete emotional categories and two emotional dimensions.

    PubMed

    Hinojosa, J A; Martínez-García, N; Villalba-García, C; Fernández-Folgueiras, U; Sánchez-Carmona, A; Pozo, M A; Montoro, P R

    2016-03-01

    In the present study, we introduce affective norms for a new set of Spanish words, the Madrid Affective Database for Spanish (MADS), that were scored on two emotional dimensions (valence and arousal) and on five discrete emotional categories (happiness, anger, sadness, fear, and disgust), as well as on concreteness, by 660 Spanish native speakers. Measures of several objective psycholinguistic variables--grammatical class, word frequency, number of letters, and number of syllables--for the words are also included. We observed high split-half reliabilities for every emotional variable and a strong quadratic relationship between valence and arousal. Additional analyses revealed several associations between the affective dimensions and discrete emotions, as well as with some psycholinguistic variables. This new corpus complements and extends prior databases in Spanish and allows for designing new experiments investigating the influence of affective content in language processing under both dimensional and discrete theoretical conceptions of emotion. These norms can be downloaded as supplemental materials for this article from www.dropbox.com/s/o6dpw3irk6utfhy/Hinojosa%20et%20al_Supplementary%20materials.xlsx?dl=0 .

  12. Improvement in latent variable indirect response joint modeling of a continuous and a categorical clinical endpoint in rheumatoid arthritis.

    PubMed

    Hu, Chuanpu; Zhou, Honghui

    2016-02-01

    Improving the quality of exposure-response modeling is important in clinical drug development. The general joint modeling of multiple endpoints is made possible in part by recent progress on the latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate, when modeling a continuous and a categorical clinical endpoint, the level of improvement achievable by joint modeling in the latent variable IDR modeling framework through the sharing of model parameters for the individual endpoints, guided by the appropriate representation of drug and placebo mechanism. This was illustrated with data from two phase III clinical trials of intravenously administered mAb X for the treatment of rheumatoid arthritis, with the 28-joint disease activity score (DAS28) and 20, 50, and 70% improvement in the American College of Rheumatology (ACR20, ACR50, and ACR70) disease severity criteria were used as efficacy endpoints. The joint modeling framework led to a parsimonious final model with reasonable performance, evaluated by visual predictive check. The results showed that, compared with the more common approach of separately modeling the endpoints, it is possible for the joint model to be more parsimonious and yet better describe the individual endpoints. In particular, the joint model may better describe one endpoint through subject-specific random effects that would not have been estimable from data of this endpoint alone.

  13. The Depression Anxiety Stress Scales (DASS): normative data and latent structure in a large non-clinical sample.

    PubMed

    Crawford, John R; Henry, Julie D

    2003-06-01

    To provide UK normative data for the Depression Anxiety and Stress Scale (DASS) and test its convergent, discriminant and construct validity. Cross-sectional, correlational and confirmatory factor analysis (CFA). The DASS was administered to a non-clinical sample, broadly representative of the general adult UK population (N = 1,771) in terms of demographic variables. Competing models of the latent structure of the DASS were derived from theoretical and empirical sources and evaluated using confirmatory factor analysis. Correlational analysis was used to determine the influence of demographic variables on DASS scores. The convergent and discriminant validity of the measure was examined through correlating the measure with two other measures of depression and anxiety (the HADS and the sAD), and a measure of positive and negative affectivity (the PANAS). The best fitting model (CFI =.93) of the latent structure of the DASS consisted of three correlated factors corresponding to the depression, anxiety and stress scales with correlated error permitted between items comprising the DASS subscales. Demographic variables had only very modest influences on DASS scores. The reliability of the DASS was excellent, and the measure possessed adequate convergent and discriminant validity Conclusions: The DASS is a reliable and valid measure of the constructs it was intended to assess. The utility of this measure for UK clinicians is enhanced by the provision of large sample normative data.

  14. Enterprise Systems Analysis

    DTIC Science & Technology

    2017-04-30

    practices in latent variable theory, it is not surprising that effective measurement programs present methodological typing and considering of experimental ...7 3.3 Methodology ...8 Revised Enterprise Modeling Methodology ................................................................ 128 9 Conclusions

  15. Models of multidimensional discrete distribution of probabilities of random variables in information systems

    NASA Astrophysics Data System (ADS)

    Gromov, Yu Yu; Minin, Yu V.; Ivanova, O. G.; Morozova, O. N.

    2018-03-01

    Multidimensional discrete distributions of probabilities of independent random values were received. Their one-dimensional distribution is widely used in probability theory. Producing functions of those multidimensional distributions were also received.

  16. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.

    PubMed

    Yu, Fajun

    2015-03-01

    We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.

  17. Sleep schedules and school performance in Indigenous Australian children.

    PubMed

    Blunden, Sarah; Magee, Chris; Attard, Kelly; Clarkson, Larissa; Caputi, Peter; Skinner, Timothy

    2018-04-01

    Sleep duration and sleep schedule variability have been related to negative health and well-being outcomes in children, but little is known about Australian Indigenous children. Data for children aged 7-9 years came from the Australian Longitudinal Study of Indigenous Children and the National Assessment Program-Literacy and Numeracy (NAPLAN). Latent class analysis determined sleep classes taking into account sleep duration, bedtimes, waketimes, and variability in bedtimes from weekdays to weekends. Regression models tested whether the sleep classes were cross-sectionally associated with grade 3 NAPLAN scores. Latent change score modeling then examined whether the sleep classes predicted changes in NAPLAN performance from grades 3 to 5. Five sleep schedule classes were identified: normative sleep, early risers, long sleep, variable sleep, and short sleep. Overall, long sleepers performed best, with those with reduced sleep (short sleepers and early risers) performing the worse on grammar, numeracy, and writing performance. Latent change score results also showed that long sleepers performed best in spelling and writing and short sleepers and typical sleepers performed the worst over time. In this sample of Australian Indigenous children, short sleep was associated with poorer school performance compared with long sleep, with this performance worsening over time for some performance indicators. Other sleep schedules (eg, early wake times and variable sleep) also had some relationships with school performance. As sleep scheduling is modifiable, this offers opportunity for improvement in sleep and thus performance outcomes for these and potentially all children. Copyright © 2018 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  18. Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment

    NASA Astrophysics Data System (ADS)

    Koskela, J. J.; Croke, B. W. F.; Koivusalo, H.; Jakeman, A. J.; Kokkonen, T.

    2012-11-01

    Bayesian inference is used to study the effect of precipitation and model structural uncertainty on estimates of model parameters and confidence limits of predictive variables in a conceptual rainfall-runoff model in the snow-fed Rudbäck catchment (142 ha) in southern Finland. The IHACRES model is coupled with a simple degree day model to account for snow accumulation and melt. The posterior probability distribution of the model parameters is sampled by using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) algorithm and the generalized likelihood function. Precipitation uncertainty is taken into account by introducing additional latent variables that were used as multipliers for individual storm events. Results suggest that occasional snow water equivalent (SWE) observations together with daily streamflow observations do not contain enough information to simultaneously identify model parameters, precipitation uncertainty and model structural uncertainty in the Rudbäck catchment. The addition of an autoregressive component to account for model structure error and latent variables having uniform priors to account for input uncertainty lead to dubious posterior distributions of model parameters. Thus our hypothesis that informative priors for latent variables could be replaced by additional SWE data could not be confirmed. The model was found to work adequately in 1-day-ahead simulation mode, but the results were poor in the simulation batch mode. This was caused by the interaction of parameters that were used to describe different sources of uncertainty. The findings may have lessons for other cases where parameterizations are similarly high in relation to available prior information.

  19. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  20. Demands, skill discretion, decision authority and social climate at work as determinants of major depression in a 3-year follow-up study.

    PubMed

    Fandiño-Losada, Andrés; Forsell, Yvonne; Lundberg, Ingvar

    2013-07-01

    The psychosocial work environment may be a determinant of the development and course of depressive disorders, but the literature shows inconsistent findings. Thus, the aim of this study is to determine longitudinal effects of the job demands-control-support model (JDCSM) variables on the occurrence of major depression among working men and women from the general population. The sample comprised 4,710 working women and men living in Stockholm, who answered the same questionnaire twice, 3 years apart, who were not depressed during the first wave and had the same job in both waves. The questionnaire included JDCSM variables (demands, skill discretion, decision authority and social climate) and other co-variables (income, education, occupational group, social support, help and small children at home, living with an adult and depressive symptoms at time 1; and negative life events at time 2). Multiple logistic regressions were run to calculate odds ratios of having major depression at time 2, after adjustment for other JDCSM variables and co-variables. Among women, inadequate work social climate was the only significant risk indicator for major depression. Surprisingly, among men, high job demands and low skill discretion appeared as protective factors against major depression. The results showed a strong relationship between inadequate social climate and major depression among women, while there were no certain effects for the remaining exposure variables. Among men, few cases of major depression hampered well-founded conclusions regarding our findings of low job demands and high skill discretion as related to major depression.

  1. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis

    DOE PAGES

    Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.

    2017-10-13

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less

  2. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less

  3. Obtaining systematic teacher reports of disruptive behavior disorders utilizing DSM-IV.

    PubMed

    Wolraich, M L; Feurer, I D; Hannah, J N; Baumgaertel, A; Pinnock, T Y

    1998-04-01

    This study examines the psychometric properties of the Vanderbilt AD/HD Diagnostic Teacher Rating Scale (VADTRS) and provides preliminary normative data from a large, geographically defined population. The VADTRS consists of the complete list of DSM-IV AD/HD symptoms, a screen for other disruptive behavior disorders, anxiety and depression, and ratings of academic and classroom behavior performance. Teachers in one suburban county completed the scale for their students during 2 consecutive years. Statistical methods included (a) exploratory and confirmatory latent variable analyses of item data, (b) evaluation of the internal consistency of the latent dimensions, (c) evaluation of latent structure concordance between school year samples, and (d) preliminary evaluation of criterion-related validity. The instrument comprises four behavioral dimensions and two performance dimensions. The behavioral dimensions were concordant between school years and were consistent with a priori DSM-IV diagnostic criteria. Correlations between latent dimensions and relevant, known disorders or problems varied from .25 to .66.

  4. An IRT Model with a Parameter-Driven Process for Change

    ERIC Educational Resources Information Center

    Rijmen, Frank; De Boeck, Paul; van der Maas, Han L. J.

    2005-01-01

    An IRT model with a parameter-driven process for change is proposed. Quantitative differences between persons are taken into account by a continuous latent variable, as in common IRT models. In addition, qualitative inter-individual differences and auto-dependencies are accounted for by assuming within-subject variability with respect to the…

  5. Beyond IQ: A Latent State-Trait Analysis of General Intelligence, Dynamic Decision Making, and Implicit Learning

    ERIC Educational Resources Information Center

    Danner, Daniel; Hagemann, Dirk; Schankin, Andrea; Hager, Marieke; Funke, Joachim

    2011-01-01

    The present study investigated cognitive performance measures beyond IQ. In particular, we investigated the psychometric properties of dynamic decision making variables and implicit learning variables and their relation with general intelligence and professional success. N = 173 employees from different companies and occupational groups completed…

  6. Characterizing Student Expectations: A Small Empirical Study

    ERIC Educational Resources Information Center

    Warwick, Jonathan

    2016-01-01

    This paper describes the results of a small empirical study (n = 130), in which undergraduate students in the Business Faculty of a UK university were asked to express views and expectations relating to the study of a mathematics. Factor analysis is used to identify latent variables emerging from clusters of the measured variables and these are…

  7. Adolescent Substance Use, Sleep, and Academic Achievement: Evidence of Harm Due to Caffeine

    ERIC Educational Resources Information Center

    James, Jack E.; Kristjansson, Alfgeir Logi; Sigfusdottir, Inga Dora

    2011-01-01

    Using academic achievement as the key outcome variable, 7377 Icelandic adolescents were surveyed for cigarette smoking, alcohol use, daytime sleepiness, caffeine use, and potential confounders. Structural equation modeling (SEM) was used to examine direct and indirect effects of measured and latent variables in two models: the first with caffeine…

  8. Evaluating the Effectiveness of Two Commonly Used Discrete Trial Procedures for Teaching Receptive Discrimination to Young Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Gutierrez, Anibal, Jr.; Hale, Melissa N.; O'Brien, Heather A.; Fischer, Aaron J.; Durocher, Jennifer S.; Alessandri, Michael

    2009-01-01

    Discrete trial teaching procedures have been demonstrated to be effective in teaching a variety of important skills for children with autism spectrum disorders (ASD). Although all discrete trial programs are based in the principles of applied behavior analysis, some variability exists between programs with regards to the precise teaching…

  9. Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data.

    PubMed

    Chakraborty, Sutirtha

    2018-05-26

    RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. Copyright © 2017. Published by Elsevier Inc.

  10. A survival tree method for the analysis of discrete event times in clinical and epidemiological studies.

    PubMed

    Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard

    2016-02-28

    Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Stability of Core Language Skill Stability of Core Language Skill from Early Childhood to Adolescence: A Latent Variable Approach

    PubMed Central

    Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.; Suwalsky, Joan T. D.

    2014-01-01

    This four-wave prospective longitudinal study evaluated stability of language in 324 children from early childhood to adolescence. Structural equation modeling supported loadings of multiple age-appropriate multi-source measures of child language on single-factor core language skills at 20 months and 4, 10, and 14 years. Large stability coefficients (standardized indirect effect = .46) were obtained between language latent variables from early childhood to adolescence and accounting for child nonverbal intelligence and social competence and maternal verbal intelligence, education, speech, and social desirability. Stability coefficients were similar for girls and boys. Stability of core language skill was stronger from 4 to 10 to 14 years than from 20 months to 4 years, so early intervention to improve lagging language is recommended. PMID:25165797

  12. Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills

    PubMed Central

    Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.

    2016-01-01

    This four-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures of child language on single latent variables of core language skill at 15 and 25 months and 5 and 11 years. Significant stability coefficients were obtained between language latent variables for children of low and average-to-high language skill, even accounting for child positive social interaction and nonverbal intelligence, maternal education and language, and family home environment. Prospects for children with different language skills and intervention implications are discussed. PMID:26998572

  13. CORRECTING FOR MEASUREMENT ERROR IN LATENT VARIABLES USED AS PREDICTORS*

    PubMed Central

    Schofield, Lynne Steuerle

    2015-01-01

    This paper represents a methodological-substantive synergy. A new model, the Mixed Effects Structural Equations (MESE) model which combines structural equations modeling and item response theory is introduced to attend to measurement error bias when using several latent variables as predictors in generalized linear models. The paper investigates racial and gender disparities in STEM retention in higher education. Using the MESE model with 1997 National Longitudinal Survey of Youth data, I find prior mathematics proficiency and personality have been previously underestimated in the STEM retention literature. Pre-college mathematics proficiency and personality explain large portions of the racial and gender gaps. The findings have implications for those who design interventions aimed at increasing the rates of STEM persistence among women and under-represented minorities. PMID:26977218

  14. Do recognizable lifetime eating disorder phenotypes naturally occur in a culturally asian population? A combined latent profile and taxometric approach.

    PubMed

    Thomas, Jennifer J; Eddy, Kamryn T; Ruscio, John; Ng, King Lam; Casale, Kristen E; Becker, Anne E; Lee, Sing

    2015-05-01

    We examined whether empirically derived eating disorder (ED) categories in Hong Kong Chinese patients (N = 454) would be consistent with recognizable lifetime ED phenotypes derived from latent structure models of European and American samples. We performed latent profile analysis (LPA) using indicator variables from data collected during routine assessment, and then applied taxometric analysis to determine whether latent classes were qualitatively versus quantitatively distinct. Latent profile analysis identified four classes: (i) binge/purge (47%); (ii) non-fat-phobic low-weight (34%); (iii) fat-phobic low-weight (12%); and (iv) overweight disordered eating (6%). Taxometric analysis identified qualitative (categorical) distinctions between the binge/purge and non-fat-phobic low-weight classes, and also between the fat-phobic and non-fat-phobic low-weight classes. Distinctions between the fat-phobic low-weight and binge/purge classes were indeterminate. Empirically derived categories in Hong Kong showed recognizable correspondence with recognizable lifetime ED phenotypes. Although taxometric findings support two distinct classes of low weight EDs, LPA findings also support heterogeneity among non-fat-phobic individuals. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  15. Effects of categorization method, regression type, and variable distribution on the inflation of Type-I error rate when categorizing a confounding variable.

    PubMed

    Barnwell-Ménard, Jean-Louis; Li, Qing; Cohen, Alan A

    2015-03-15

    The loss of signal associated with categorizing a continuous variable is well known, and previous studies have demonstrated that this can lead to an inflation of Type-I error when the categorized variable is a confounder in a regression analysis estimating the effect of an exposure on an outcome. However, it is not known how the Type-I error may vary under different circumstances, including logistic versus linear regression, different distributions of the confounder, and different categorization methods. Here, we analytically quantified the effect of categorization and then performed a series of 9600 Monte Carlo simulations to estimate the Type-I error inflation associated with categorization of a confounder under different regression scenarios. We show that Type-I error is unacceptably high (>10% in most scenarios and often 100%). The only exception was when the variable categorized was a continuous mixture proxy for a genuinely dichotomous latent variable, where both the continuous proxy and the categorized variable are error-ridden proxies for the dichotomous latent variable. As expected, error inflation was also higher with larger sample size, fewer categories, and stronger associations between the confounder and the exposure or outcome. We provide online tools that can help researchers estimate the potential error inflation and understand how serious a problem this is. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems.

    PubMed

    Zhang, Zheshen; Voss, Paul L

    2009-07-06

    We propose a continuous variable based quantum key distribution protocol that makes use of discretely signaled coherent light and reverse error reconciliation. We present a rigorous security proof against collective attacks with realistic lossy, noisy quantum channels, imperfect detector efficiency, and detector electronic noise. This protocol is promising for convenient, high-speed operation at link distances up to 50 km with the use of post-selection.

  17. Decision heuristic or preference? Attribute non-attendance in discrete choice problems.

    PubMed

    Heidenreich, Sebastian; Watson, Verity; Ryan, Mandy; Phimister, Euan

    2018-01-01

    This paper investigates if respondents' choice to not consider all characteristics of a multiattribute health service may represent preferences. Over the last decade, an increasing number of studies account for attribute non-attendance (ANA) when using discrete choice experiments to elicit individuals' preferences. Most studies assume such behaviour is a heuristic and therefore uninformative. This assumption may result in misleading welfare estimates if ANA reflects preferences. This is the first paper to assess if ANA is a heuristic or genuine preference without relying on respondents' self-stated motivation and the first study to explore this question within a health context. Based on findings from cognitive psychology, we expect that familiar respondents are less likely to use a decision heuristic to simplify choices than unfamiliar respondents. We employ a latent class model of discrete choice experiment data concerned with National Health Service managers' preferences for support services that assist with performance concerns. We present quantitative and qualitative evidence that in our study ANA mostly represents preferences. We also show that wrong assumptions about ANA result in inadequate welfare measures that can result in suboptimal policy advice. Future research should proceed with caution when assuming that ANA is a heuristic. Copyright © 2017 John Wiley & Sons, Ltd.

  18. The three latent classes of adolescent delinquency and the risk factors for membership in each class.

    PubMed

    Hasking, Penelope Anne; Scheier, Lawrence M; Abdallah, Arbi Ben

    2011-01-01

    This study used latent class analysis to examine subpopulation membership based on self-reports of delinquent behaviors obtained from Australian youth. Three discrete identifiable classes were derived based on 51 indicators of physical violence, property damage, minor infractions, drug use, and social delinquency. One class of youth engaged in primarily rule breaking and norm violations including underage alcohol use, typical of this age period. A second class was more actively delinquent emphasizing drug use, trespassing, and various forms of disobedience. A third class of highly delinquent youth differed from their counterparts by endorsing drug use, thievery that involved stealing money, goods, and cars, property damage, gambling, precocious sexual experiences, involvement with pornographic materials, and fighting. Multinomial logistic regression predicting class membership indicated highly delinquent youth were more likely to be older males, use venting coping strategies, and be fun or novelty seeking compared with rule breakers. Findings are discussed in terms of refining current taxonomic arguments regarding the structure of delinquency and implications for prevention of early-stage antisocial behavior. © 2010 Wiley-Liss, Inc.

  19. The choice and preference for public-private health care among urban residents in China: evidence from a discrete choice experiment.

    PubMed

    Tang, Chengxiang; Xu, Judy; Zhang, Meng

    2016-10-18

    Public health care dominated the services provision in China before 1980s. However, the number of private health care providers in China has been increasing since then. The growth of private hospitals escalated after a market-oriented reform was implemented in 2001. Through an experimental approach, this study aims to a better understanding of the dynamic change in preference of health care utilisation among the residents in urban China. Based on a discrete choice experiment (DCE) from a random sample of respondents in urban China, the study evaluated preference over health care attributes affecting individuals' choice for the utilisation of hospital health care. The marginal willingness-to-pay for five health care attributes was estimated, including public/private provision of health care, by analysing mixed logit and latent class models. The results indicated a significantly negative marginal willingness-to-pay for private health care, which was interpreted as representing people's previous interactions with the health care system. The latent class model further suggested preference heterogeneity across our sample. We found that Hukou type, a typical indicator of socioeconomic background, was significantly related to respondents' preference for health care utilisation. Permanent urban residents (urban Hukou) valued private health care less; in contrast rural migrants (rural Hukou) were more likely to be indifferent between public/private provision. Urban residents in China showed a high disposition to obtain health care from the public providers of health care. Our results have implications in the context of the Chinese government attempts to expand the private health care sector in the short term. Policy makers need to consider residents' preference for health care in health policy development as the preference can only change in the long term.

  20. Understanding HIV-positive patients' preferences for healthcare services: a protocol for a discrete choice experiment

    PubMed Central

    Youssef, Elaney; Cooper, Vanessa; Miners, Alec; Llewellyn, Carrie; Pollard, Alex; Lagarde, Mylene; Sachikonye, Memory; Sabin, Caroline; Foreman, Claire; Perry, Nicky; Nixon, Eileen; Fisher, Martin

    2016-01-01

    Introduction While the care of HIV-positive patients, including the detection and management of comorbidities, has historically been provided in HIV specialist outpatient clinics, recent years have seen a greater involvement of non-HIV specialists and general practitioners (GPs). The aim of this study is to determine whether patients would prefer to see their GP or HIV physician given general symptoms, and to understand what aspects of care influence their preferences. Methods/analysis We have developed and piloted a discrete choice experiment (DCE) to better understand patients' preferences for care of non-HIV-related acute symptoms. The design of the DCE was informed by our exploratory research, including the findings of a systematic literature review and a qualitative study. Additional questionnaire items have been included to measure demographics, service use and experience of non-HIV illnesses and quality of life (EQ5D). We plan to recruit 1000 patients from 14 HIV clinics across South East England. Data will be analysed using random-effects logistic regression and latent class analysis. ORs and 95% CIs will be used to estimate the relative importance of each of the attribute levels. Latent class analysis will identify whether particular groups of people value the service attribute levels differently. Ethics/dissemination Ethical approval for this study was obtained from the Newcastle and North Tyneside Research Ethics Committee (reference number 14/NE/1193). The results will be disseminated at national and international conferences and peer-reviewed publications. A study report, written in plain English, will be made available to all participants. The Patient Advisory Group will develop a strategy for wider dissemination of the findings to patients and the public. PMID:27431895

  1. Economic considerations and patients' preferences affect treatment selection for patients with rheumatoid arthritis: a discrete choice experiment among European rheumatologists.

    PubMed

    Hifinger, M; Hiligsmann, M; Ramiro, S; Watson, V; Severens, J L; Fautrel, B; Uhlig, T; van Vollenhoven, R; Jacques, P; Detert, J; Canas da Silva, J; Scirè, C A; Berghea, F; Carmona, L; Péntek, M; Keat, A; Boonen, A

    2017-01-01

    To compare the value that rheumatologists across Europe attach to patients' preferences and economic aspects when choosing treatments for patients with rheumatoid arthritis. In a discrete choice experiment, European rheumatologists chose between two hypothetical drug treatments for a patient with moderate disease activity. Treatments differed in five attributes: efficacy (improvement and achieved state on disease activity), safety (probability of serious adverse events), patient's preference (level of agreement), medication costs and cost-effectiveness (incremental cost-effectiveness ratio (ICER)). A Bayesian efficient design defined 14 choice sets, and a random parameter logit model was used to estimate relative preferences for rheumatologists across countries. Cluster analyses and latent class models were applied to understand preference patterns across countries and among individual rheumatologists. Responses of 559 rheumatologists from 12 European countries were included in the analysis (49% females, mean age 48 years). In all countries, efficacy dominated treatment decisions followed by economic considerations and patients' preferences. Across countries, rheumatologists avoided selecting a treatment that patients disliked. Latent class models revealed four respondent profiles: one traded off all attributes except safety, and the remaining three classes disregarded ICER. Among individual rheumatologists, 57% disregarded ICER and these were more likely from Italy, Romania, Portugal or France, whereas 43% disregarded uncommon/rare side effects and were more likely from Belgium, Germany, Hungary, the Netherlands, Norway, Spain, Sweden or UK. Overall, European rheumatologists are willing to trade between treatment efficacy, patients' treatment preferences and economic considerations. However, the degree of trade-off differs between countries and among individuals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Using Latent Sleepiness to Evaluate an Important Effect of Promethazine

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Hayat, Matthew; Vksman, Zalman; Putcha, Laksmi

    2007-01-01

    Astronauts often use promethazine (PMZ) to counteract space motion sickness; however PMZ may cause drowsiness, which might impair cognitive function. In a NASA ground study, subjects received PMZ and their cognitive performance was then monitored over time. Subjects also reported sleepiness using the Karolinska Sleepiness Score (KSS), which ranges from 1 - 9. A problem arises when using KSS to establish an association between true sleepiness and performance because KSS scores tend to overly concentrate on the values 3 (fairly awake) and 7 (moderately tired). Therefore, we defined a latent sleepiness measure as a continuous random variable describing a subject s actual, but unobserved true state of sleepiness through time. The latent sleepiness and observed KSS are associated through a conditional probability model, which when coupled with demographic factors, predicts performance.

  3. Factor Models for Ordinal Variables With Covariate Effects on the Manifest and Latent Variables: A Comparison of LISREL and IRT Approaches

    ERIC Educational Resources Information Center

    Moustaki, Irini; Joreskog, Karl G.; Mavridis, Dimitris

    2004-01-01

    We consider a general type of model for analyzing ordinal variables with covariate effects and 2 approaches for analyzing data for such models, the item response theory (IRT) approach and the PRELIS-LISREL (PLA) approach. We compare these 2 approaches on the basis of 2 examples, 1 involving only covariate effects directly on the ordinal variables…

  4. Comment on "Route from discreteness to the continuum for the Tsallis q -entropy"

    NASA Astrophysics Data System (ADS)

    Ou, Congjie; Abe, Sumiyoshi

    2018-06-01

    Several years ago, it had been discussed that nonlogarithmic entropies, such as the Tsallis q -entropy cannot be applied to systems with continuous variables. Now, in their recent paper [Phys. Rev. E 97, 012104 (2018), 10.1103/PhysRevE.97.012104], Oikonomou and Bagci have modified the form of the q -entropy for discrete variables in such a way that its continuum limit exists. Here, it is shown that this modification violates the expandability property of entropy, and their work is actually supporting evidence for the absence of the q -entropy for systems with continuous variables.

  5. Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables.

    PubMed

    Heck, Daniel W; Erdfelder, Edgar; Kieslich, Pascal J

    2018-05-24

    Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.

  6. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    NASA Astrophysics Data System (ADS)

    Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.

    2017-07-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.

  7. A holistic measurement model of movement competency in children.

    PubMed

    Rudd, J; Butson, M L; Barnett, L; Farrow, D; Berry, J; Borkoles, E; Polman, R

    2016-01-01

    Different countries have different methods for assessing movement competence in children; however, it is unclear whether the test batteries that are used measure the same aspects of movement competence. The aim of this paper was to (1) investigate whether the Test of Gross Motor Development (TGMD-2) and Körperkoordinations Test für Kinder (KTK) measure the same aspects of children's movement competence and (2) examine the factorial structure of the TGMD-2 and KTK in a sample of Australian children. A total of 158 children participated (M age = 9.5; SD = 2.2). First, confirmatory factor analysis examined the independent factorial structure of the KTK and TGMD-2. Second, it was investigated whether locomotor, object control and body coordination loaded on the latent variable Movement Competency. Confirmatory factor analysis indicated an adequate fit for both the KTK and TGMD-2. An adequate fit was also achieved for the final model. In this model, locomotor (r = .86), object control (r = .71) and body coordination (r = .52) loaded on movement competence. Findings support our hypothesis that the TGMD-2 and KTK measure discrete aspects of movement competence. Future researchers and practitioners should consider using a wider range of test batteries to assess movement competence.

  8. The construct of sexual openness for females in steady intimate relationships.

    PubMed

    Rausch, Diana; Dekker, Arne; Rettenberger, Martin

    2017-01-01

    The analysis of open-minded attitudes towards sexuality in general requires a construct based on attitudinal dimensions. Although several existing studies involve sexual attitudes, they differ substantially and standardized conceptual work is missing. Thus, the authors introduce the latent variable sexual openness to develop a construct based on self-oriented attitudes towards different sexual topics. Available survey data of female German students in a steady relationship allowed providing a first empirical test for the applicability of this construct. Five subdimensions are acknowledged central for sexual openness: sexual practices, masturbation, bisexuality, permissiveness, and pornography consumption. Confirmatory factor analysis and correlations confirmed the idea of an underlying mechanism with an impact on all five variables. Though further validation of the construct of sexual openness is required, the findings strongly support the notion of an overarching latent attitude variable, which influences the individual relation to everything sexual. The results were compared to other studies and potential approaches for future analyses were proposed.

  9. Estimating Causal Effects with Ancestral Graph Markov Models

    PubMed Central

    Malinsky, Daniel; Spirtes, Peter

    2017-01-01

    We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244

  10. The construct of sexual openness for females in steady intimate relationships

    PubMed Central

    Rausch, Diana; Dekker, Arne; Rettenberger, Martin

    2017-01-01

    The analysis of open-minded attitudes towards sexuality in general requires a construct based on attitudinal dimensions. Although several existing studies involve sexual attitudes, they differ substantially and standardized conceptual work is missing. Thus, the authors introduce the latent variable sexual openness to develop a construct based on self-oriented attitudes towards different sexual topics. Available survey data of female German students in a steady relationship allowed providing a first empirical test for the applicability of this construct. Five subdimensions are acknowledged central for sexual openness: sexual practices, masturbation, bisexuality, permissiveness, and pornography consumption. Confirmatory factor analysis and correlations confirmed the idea of an underlying mechanism with an impact on all five variables. Though further validation of the construct of sexual openness is required, the findings strongly support the notion of an overarching latent attitude variable, which influences the individual relation to everything sexual. The results were compared to other studies and potential approaches for future analyses were proposed. PMID:28636608

  11. Measurement of psychological disorders using cognitive diagnosis models.

    PubMed

    Templin, Jonathan L; Henson, Robert A

    2006-09-01

    Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article presents the development of a new cognitive diagnosis model for use in psychological assessment--the DINO (deterministic input; noisy "or" gate) model--which, as an illustrative example, is applied to evaluate and diagnose pathological gamblers. As part of this example, a demonstration of the estimates obtained by cognitive diagnosis models is provided. Such estimates include the probability an individual meets each of a set of dichotomous Diagnostic and Statistical Manual of Mental Disorders (text revision [DSM-IV-TR]; American Psychiatric Association, 2000) criteria, resulting in an estimate of the probability an individual meets the DSM-IV-TR definition for being a pathological gambler. Furthermore, a demonstration of how the hypothesized underlying factors contributing to pathological gambling can be measured with the DINO model is presented, through use of a covariance structure model for the tetrachoric correlation matrix of the dichotomous latent variables representing DSM-IV-TR criteria. Copyright 2006 APA

  12. Multilevel structural equation models for assessing moderation within and across levels of analysis.

    PubMed

    Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J

    2016-06-01

    Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Human Life History Strategies.

    PubMed

    Chua, Kristine J; Lukaszewski, Aaron W; Grant, DeMond M; Sng, Oliver

    2017-01-01

    Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity-mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e., health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes.

  14. The consequences of ignoring measurement invariance for path coefficients in structural equation models

    PubMed Central

    Guenole, Nigel; Brown, Anna

    2014-01-01

    We report a Monte Carlo study examining the effects of two strategies for handling measurement non-invariance – modeling and ignoring non-invariant items – on structural regression coefficients between latent variables measured with item response theory models for categorical indicators. These strategies were examined across four levels and three types of non-invariance – non-invariant loadings, non-invariant thresholds, and combined non-invariance on loadings and thresholds – in simple, partial, mediated and moderated regression models where the non-invariant latent variable occupied predictor, mediator, and criterion positions in the structural regression models. When non-invariance is ignored in the latent predictor, the focal group regression parameters are biased in the opposite direction to the difference in loadings and thresholds relative to the referent group (i.e., lower loadings and thresholds for the focal group lead to overestimated regression parameters). With criterion non-invariance, the focal group regression parameters are biased in the same direction as the difference in loadings and thresholds relative to the referent group. While unacceptable levels of parameter bias were confined to the focal group, bias occurred at considerably lower levels of ignored non-invariance than was previously recognized in referent and focal groups. PMID:25278911

  15. Why aren’t they happy? An analysis of end-user satisfaction with Electronic health records

    PubMed Central

    Unni, Prasad; Staes, Catherine; Weeks, Howard; Kramer, Heidi; Borbolla, Damion; Slager, Stacey; Taft, Teresa; Chidambaram, Valliammai; Weir, Charlene

    2016-01-01

    Introduction. Implementations of electronic health records (EHR) have been met with mixed outcome reviews. Complaints about these systems have led to many attempts to have useful measures of end-user satisfaction. However, most user satisfaction assessments do not focus on high-level reasoning, despite the complaints of many physicians. Our study attempts to identify some of these determinants. Method. We developed a user satisfaction survey instrument, based on pre-identified and important clinical and non-clinical clinician tasks. We surveyed a sample of in-patient physicians and focused on using exploratory factor analyses to identify underlying high-level cognitive tasks. We used the results to create unique, orthogonal variables representative of latent structure predictive of user satisfaction. Results. Our findings identified 3 latent high-level tasks that were associated with end-user satisfaction: a) High- level clinical reasoning b) Communicate/coordinate care and c) Follow the rules/compliance. Conclusion: We were able to successfully identify latent variables associated with satisfaction. Identification of communicability and high-level clinical reasoning as important factors determining user satisfaction can lead to development and design of more usable electronic health records with higher user satisfaction. PMID:28269962

  16. Causal mediation analysis with a latent mediator.

    PubMed

    Albert, Jeffrey M; Geng, Cuiyu; Nelson, Suchitra

    2016-05-01

    Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum-likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Discrete structures in continuum descriptions of defective crystals.

    PubMed

    Parry, G P

    2016-04-28

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of 'plastic strain variables', which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. © 2016 The Author(s).

  18. On multiple orthogonal polynomials for discrete Meixner measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, Vladimir N

    2010-12-07

    The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.

  19. Biomechanical symmetry in elite rugby union players during dynamic tasks: an investigation using discrete and continuous data analysis techniques.

    PubMed

    Marshall, Brendan; Franklyn-Miller, Andrew; Moran, Kieran; King, Enda; Richter, Chris; Gore, Shane; Strike, Siobhán; Falvey, Éanna

    2015-01-01

    While measures of asymmetry may provide a means of identifying individuals predisposed to injury, normative asymmetry values for challenging sport specific movements in elite athletes are currently lacking in the literature. In addition, previous studies have typically investigated symmetry using discrete point analyses alone. This study examined biomechanical symmetry in elite rugby union players using both discrete point and continuous data analysis techniques. Twenty elite injury free international rugby union players (mean ± SD: age 20.4 ± 1.0 years; height 1.86 ± 0.08 m; mass 98.4 ± 9.9 kg) underwent biomechanical assessment. A single leg drop landing, a single leg hurdle hop, and a running cut were analysed. Peak joint angles and moments were examined in the discrete point analysis while analysis of characterising phases (ACP) techniques were used to examine the continuous data. Dominant side was compared to non-dominant side using dependent t-tests for normally distributed data or Wilcoxon signed-rank test for non-normally distributed data. The significance level was set at α = 0.05. The majority of variables were found to be symmetrical with a total of 57/60 variables displaying symmetry in the discrete point analysis and 55/60 in the ACP. The five variables that were found to be asymmetrical were hip abductor moment in the drop landing (p = 0.02), pelvis lift/drop in the drop landing (p = 0.04) and hurdle hop (p = 0.02), ankle internal rotation moment in the cut (p = 0.04) and ankle dorsiflexion angle also in the cut (p = 0.01). The ACP identified two additional asymmetries not identified in the discrete point analysis. Elite injury free rugby union players tended to exhibit bi-lateral symmetry across a range of biomechanical variables in a drop landing, hurdle hop and cut. This study provides useful normative values for inter-limb symmetry in these movement tests. When examining symmetry it is recommended to incorporate continuous data analysis techniques rather than a discrete point analysis alone; a discrete point analysis was unable to detect two of the five asymmetries identified.

  20. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-04-29

    We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less

  1. Dissociative Experiences are Associated with Obsessive-Compulsive Symptoms in a Non-clinical Sample: A Latent Profile Analysis

    PubMed Central

    BOYSAN, Murat

    2014-01-01

    Introduction There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Method Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson’s product-moment correlation coefficients. Results The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. Conclusion It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism. PMID:28360635

  2. Dissociative Experiences are Associated with Obsessive-Compulsive Symptoms in a Non-clinical Sample: A Latent Profile Analysis.

    PubMed

    Boysan, Murat

    2014-09-01

    There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson's product-moment correlation coefficients. The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism.

  3. Relevance and acceptability of using the Quantiferon gold test (QGIT) to screen CD4 blood draws for latent TB infection among PLHIV in South Africa: formative qualitative research findings from the TEKO trial.

    PubMed

    Kerrigan, Deanna; Tudor, Carrie; Motlhaoleng, Katlego; Lebina, Limakatso; Qomfu, Cokiswa; Variava, Ebrahim; Chon, Sandy; Martinson, Neil; Golub, Jonathan E

    2018-04-16

    Tuberculosis (TB) is the leading cause of mortality among people living with HIV (PLHIV), despite the availability of effective preventive therapy. The TEKO trial is assessing the impact of using a blood test, Quantiferon-TB Gold In-Tube Test (QGIT), to screen for latent TB compared to the Tuberculin Screening Test (TST) among PLHIV in South Africa. Fifty-six qualitative interviews were conducted with PLHIV and clinical providers participating in the TEKO trial. We explored TB screening, diagnosis, and treatment guidelines and processes and the use of the QGIT to screen for latent TB infection at the time of CD4 blood draw. Thematic content analysis was conducted. Considerable variability in TB screening procedures was documented due to lack of personnel and clarity regarding current national TB guidelines for PLHIV. Few clinics had started using the TST per national guidelines and many patients had never heard of isoniazid preventive therapy (IPT). Nearly all participants supported the idea of latent TB screening using routine blood drawn for CD4 counts. Findings indicate that screening for latent TB infection using QGIT from blood drawn for CD4 counts among PLHIV is an acceptable approach to increase latent TB detection given the challenges associated with ensuring systematic latent TB screening in overburdened public clinics. The results presented here were from formative research related to the TEKO trial (Identifier NCT02119130 , registered 10 April 2014).

  4. The Rasch Rating Model and the Disordered Threshold Controversy

    ERIC Educational Resources Information Center

    Adams, Raymond J.; Wu, Margaret L.; Wilson, Mark

    2012-01-01

    The Rasch rating (or partial credit) model is a widely applied item response model that is used to model ordinal observed variables that are assumed to collectively reflect a common latent variable. In the application of the model there is considerable controversy surrounding the assessment of fit. This controversy is most notable when the set of…

  5. Testing for Two-Way Interactions in the Multigroup Common Factor Model

    ERIC Educational Resources Information Center

    van Smeden, Maarten; Hessen, David J.

    2013-01-01

    In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…

  6. Collinear Latent Variables in Multilevel Confirmatory Factor Analysis: A Comparison of Maximum Likelihood and Bayesian Estimations

    ERIC Educational Resources Information Center

    Can, Seda; van de Schoot, Rens; Hox, Joop

    2015-01-01

    Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…

  7. Structural Modeling of Variables Related to Parental Support in Mexican Children's Perfomance on Reading and Writing

    ERIC Educational Resources Information Center

    Bazan-Ramirez, Aldo; Castellanos-Simons, Doris; Lopez-Valenzuela, Mercedes

    2010-01-01

    This paper aims at analysing the structural relationships among some latent and observed variables related to the assessment of written language performance in 139 fourth grade students of Elementary School selected from nine public schools of the northwest of Mexico. Questionnaires were also applied to the children's parents and teachers. The…

  8. Improving the Quality of Ability Estimates through Multidimensional Scoring and Incorporation of Ancillary Variables

    ERIC Educational Resources Information Center

    de la Torre, Jimmy

    2009-01-01

    For one reason or another, various sources of information, namely, ancillary variables and correlational structure of the latent abilities, which are usually available in most testing situations, are ignored in ability estimation. A general model that incorporates these sources of information is proposed in this article. The model has a general…

  9. Measuring Student Variables Useful in the Study of Performance in an Online Learning Environment.

    ERIC Educational Resources Information Center

    Kennedy, Cathleen A.

    This paper discusses the measurement of unobservable or latent variables of students and how they contribute to learning in an online environment. It also examines the construct validity of two questionnaires: the College Experience Survey and the Computer Experience Study, which both measure different aspects of student attitudes and behavior…

  10. Progression to dementia in memory clinic patients without dementia: a latent profile analysis.

    PubMed

    Köhler, Sebastian; Hamel, Renske; Sistermans, Nicole; Koene, Ted; Pijnenburg, Yolande A L; van der Flier, Wiesje M; Scheltens, Philip; Visser, Pieter-Jelle; Aalten, Pauline; Verhey, Frans R J; Ramakers, Inez

    2013-10-08

    To identify the existence of discrete cognitive subtypes among memory clinic patients without dementia and test their prognostic values. In a retrospective cohort study of 635 patients without dementia visiting the Alzheimer centers in Maastricht or Amsterdam, latent profile analysis identified cognitive subtypes based on immediate and delayed memory recall, delayed recognition, information-processing speed, attention, verbal fluency, and executive functions. Time to dementia was tested in weighted Cox proportional hazard models adjusted for confounders. Five latent classes represented participants with high-normal cognition (15%), low-normal cognition (37%), primary memory impairment in recall (MI) (36%), memory impairment in recall and recognition (MI+) (5%), and primary nonmemory impairment (NMI) (6%). Compared with low-normal cognition, participants with NMI had the highest risk of dementia (hazard ratio [HR] = 5.94, 95% confidence interval [CI] = 3.46-10.18) followed by MI (HR = 3.05, 95% CI = 2.09-4.46) and MI+ (HR = 3.26, 95% CI = 1.72-6.17), while participants with high-normal cognition had the lowest risk (HR = 0.24, 95% CI = 0.07-0.80). Subtypes further showed differential relationships with dementia types, with MI and MI+ most often converting to Alzheimer-type dementia and NMI to other forms of dementia. Cognitive subtypes can be empirically identified in otherwise heterogeneous samples of memory clinic patients and largely confirm current strategies to distinguish between amnestic and nonamnestic impairment. Studying more homogeneous cognitive subtypes may improve understanding of disease mechanisms and outcomes.

  11. Development of fraction comparison strategies: A latent transition analysis.

    PubMed

    Rinne, Luke F; Ye, Ai; Jordan, Nancy C

    2017-04-01

    The present study investigated the development of fraction comparison strategies through a longitudinal analysis of children's responses to a fraction comparison task in 4th through 6th grades (N = 394). Participants were asked to choose the larger value for 24 fraction pairs blocked by fraction type. Latent class analysis of performance over item blocks showed that most children initially exhibited a "whole number bias," indicating that larger numbers in numerators and denominators produce larger fraction values. However, some children instead chose fractions with smaller numerators and denominators, demonstrating a partial understanding that smaller numbers can yield larger fractions. Latent transition analysis showed that most children eventually adopted normative comparison strategies. Children who exhibited a partial understanding by choosing fractions with smaller numbers were more likely to adopt normative comparison strategies earlier than those with larger number biases. Controlling for general math achievement and other cognitive abilities, whole number line estimation accuracy predicted the probability of transitioning to normative comparison strategies. Exploratory factor analyses showed that over time, children appeared to increasingly represent fractions as discrete magnitudes when simpler strategies were unavailable. These results support the integrated theory of numerical development, which posits that an understanding of numbers as magnitudes unifies the process of learning whole numbers and fractions. The findings contrast with conceptual change theories, which propose that children must move from a view of numbers as counting units to a new view that accommodates fractions to overcome whole number bias. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. The Wronskian solution of the constrained discrete Kadomtsev-Petviashvili hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Maohua; He, Jingsong

    2016-05-01

    From the constrained discrete Kadomtsev-Petviashvili (cdKP) hierarchy, the discrete nonlinear Schrödinger (DNLS) equations have been derived. By means of the gauge transformation, the Wronskian solution of DNLS equations have been given. The u1 of the cdKP hierarchy is a Y-type soliton solution for odd times of the gauge transformation, but it becomes a dark-bright soliton solution for even times of the gauge transformation. The role of the discrete variable n in the profile of the u1 is discussed.

  13. Cognitive declines in healthy aging: evidence from multiple aspects of interference resolution.

    PubMed

    Pettigrew, Corinne; Martin, Randi C

    2014-06-01

    The present study tested the hypothesis that older adults show age-related deficits in interference resolution, also referred to as inhibitory control. Although oftentimes considered as a unitary aspect of executive function, various lines of work support the notion that interference resolution may be better understood as multiple constructs, including resistance to proactive interference (PI) and response-distractor inhibition (e.g., Friedman & Miyake, 2004). Using this dichotomy, the present study assessed whether older adults (relative to younger adults) show impaired performance across both, 1, or neither of these interference resolution constructs. To do so, we used multiple tasks to tap each construct and examined age effects at both the single task and latent variable levels. Older adults consistently demonstrated exaggerated interference effects across resistance to PI tasks. Although the results for the response-distractor inhibition tasks were less consistent at the individual task level analyses, age effects were evident on multiple tasks, as well as at the latent variable level. However, results of the latent variable modeling suggested declines in interference resolution are best explained by variance that is common to the 2 interference resolution constructs measured herein. Furthermore, the effect of age on interference resolution was found to be both distinct from declines in working memory, and independent of processing speed. These findings suggest multiple cognitive domains are independently sensitive to age, but that declines in the interference resolution constructs measured herein may originate from a common cause. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS

    PubMed Central

    McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H.; Clark, Samuel J.; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A.

    2014-01-01

    The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure—this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026

  15. Does partial Granger causality really eliminate the influence of exogenous inputs and latent variables?

    PubMed

    Roelstraete, Bjorn; Rosseel, Yves

    2012-04-30

    Partial Granger causality was introduced by Guo et al. (2008) who showed that it could better eliminate the influence of latent variables and exogenous inputs than conditional G-causality. In the recent literature we can find some reviews and applications of this type of Granger causality (e.g. Smith et al., 2011; Bressler and Seth, 2010; Barrett et al., 2010). These articles apparently do not take into account a serious flaw in the original work on partial G-causality, being the negative F values that were reported and even proven to be plausible. In our opinion, this undermines the credibility of the obtained results and thus the validity of the approach. Our study is aimed to further validate partial G-causality and to find an answer why negative partial Granger causality estimates were reported. Time series were simulated from the same toy model as used in the original paper and partial and conditional causal measures were compared in the presence of confounding variables. Inference was done parametrically and using non-parametric block bootstrapping. We counter the proof that partial Granger F values can be negative, but the main conclusion of the original article remains. In the presence of unknown latent and exogenous influences, it appears that partial G-causality will better eliminate their influence than conditional G-causality, at least when non-parametric inference is used. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  17. Discrete optimal control approach to a four-dimensional guidance problem near terminal areas

    NASA Technical Reports Server (NTRS)

    Nagarajan, N.

    1974-01-01

    Description of a computer-oriented technique to generate the necessary control inputs to guide an aircraft in a given time from a given initial state to a prescribed final state subject to the constraints on airspeed, acceleration, and pitch and bank angles of the aircraft. A discrete-time mathematical model requiring five state variables and three control variables is obtained, assuming steady wind and zero sideslip. The guidance problem is posed as a discrete nonlinear optimal control problem with a cost functional of Bolza form. A solution technique for the control problem is investigated, and numerical examples are presented. It is believed that this approach should prove to be useful in automated air traffic control schemes near large terminal areas.

  18. Low energy physical activity recognition system on smartphones.

    PubMed

    Soria Morillo, Luis Miguel; Gonzalez-Abril, Luis; Ortega Ramirez, Juan Antonio; de la Concepcion, Miguel Angel Alvarez

    2015-03-03

    An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy.

  19. Variability in Proactive and Reactive Cognitive Control Processes Across the Adult Lifespan

    PubMed Central

    Karayanidis, Frini; Whitson, Lisa Rebecca; Heathcote, Andrew; Michie, Patricia T.

    2011-01-01

    Task-switching paradigms produce a highly consistent age-related increase in mixing cost [longer response time (RT) on repeat trials in mixed-task than single-task blocks] but a less consistent age effect on switch cost (longer RT on switch than repeat trials in mixed-task blocks). We use two approaches to examine the adult lifespan trajectory of control processes contributing to mixing cost and switch cost: latent variables derived from an evidence accumulation model of choice, and event-related potentials (ERP) that temporally differentiate proactive (cue-driven) and reactive (target-driven) control processes. Under highly practiced and prepared task conditions, aging was associated with increasing RT mixing cost but reducing RT switch cost. Both effects were largely due to the same cause: an age effect for mixed-repeat trials. In terms of latent variables, increasing age was associated with slower non-decision processes, slower rate of evidence accumulation about the target, and higher response criterion. Age effects on mixing costs were evident only on response criterion, the amount of evidence required to trigger a decision, whereas age effects on switch cost were present for all three latent variables. ERPs showed age-related increases in preparation for mixed-repeat trials, anticipatory attention, and post-target interference. Cue-locked ERPs that are linked to proactive control were associated with early emergence of age differences in response criterion. These results are consistent with age effects on strategic processes controlling decision caution. Consistent with an age-related decline in cognitive flexibility, younger adults flexibly adjusted response criterion from trial-to-trial on mixed-task blocks, whereas older adults maintained a high criterion for all trials. PMID:22073037

  20. Evaluation of the Navys Sea/Shore Flow Policy

    DTIC Science & Technology

    2016-06-01

    Std. Z39.18 i Abstract CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of...a more steady manning level, but the variability remains, even if the system is optimized. In building a Discrete -Event Simulation model, we...steady-state model. In FY 2014, CNA developed a Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model

Top