An improved switching converter model using discrete and average techniques
NASA Technical Reports Server (NTRS)
Shortt, D. J.; Lee, F. C.
1982-01-01
The nonlinear modeling and analysis of dc-dc converters has been done by averaging and discrete-sampling techniques. The averaging technique is simple, but inaccurate as the modulation frequencies approach the theoretical limit of one-half the switching frequency. The discrete technique is accurate even at high frequencies, but is very complex and cumbersome. An improved model is developed by combining the aforementioned techniques. This new model is easy to implement in circuit and state variable forms and is accurate to the theoretical limit.
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
Harte, Philip T.
1994-01-01
Proper discretization of a ground-water-flow field is necessary for the accurate simulation of ground-water flow by models. Although discretiza- tion guidelines are available to ensure numerical stability, current guidelines arc flexible enough (particularly in vertical discretization) to allow for some ambiguity of model results. Testing of two common types of vertical-discretization schemes (horizontal and nonhorizontal-model-layer approach) were done to simulate sloping hydrogeologic units characteristic of New England. Differences of results of model simulations using these two approaches are small. Numerical errors associated with use of nonhorizontal model layers are small (4 percent). even though this discretization technique does not adhere to the strict formulation of the finite-difference method. It was concluded that vertical discretization by means of the nonhorizontal layer approach has advantages in representing the hydrogeologic units tested and in simplicity of model-data input. In addition, vertical distortion of model cells by this approach may improve the representation of shallow flow processes.
An improved switching converter model. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Shortt, D. J.
1982-01-01
The nonlinear modeling and analysis of dc-dc converters in the continuous mode and discontinuous mode was done by averaging and discrete sampling techniques. A model was developed by combining these two techniques. This model, the discrete average model, accurately predicts the envelope of the output voltage and is easy to implement in circuit and state variable forms. The proposed model is shown to be dependent on the type of duty cycle control. The proper selection of the power stage model, between average and discrete average, is largely a function of the error processor in the feedback loop. The accuracy of the measurement data taken by a conventional technique is affected by the conditions at which the data is collected.
Techniques for forced response involving discrete nonlinearities. I - Theory. II - Applications
NASA Astrophysics Data System (ADS)
Avitabile, Peter; Callahan, John O.
Several new techniques developed for the forced response analysis of systems containing discrete nonlinear connection elements are presented and compared to the traditional methods. In particular, the techniques examined are the Equivalent Reduced Model Technique (ERMT), Modal Modification Response Technique (MMRT), and Component Element Method (CEM). The general theory of the techniques is presented, and applications are discussed with particular reference to the beam nonlinear system model using ERMT, MMRT, and CEM; frame nonlinear response using the three techniques; and comparison of the results obtained by using the ERMT, MMRT, and CEM models.
Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Karimi-Fard, M.; Lapene, A.; Pauget, L.
2012-12-01
During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible. Karimi-Fard et al. [2] have developed an upscaling technique based on DFM representation. The original version of this technique was developed to construct a dual-porosity model from a discrete fracture description. This technique has been extended and generalized so it can be applied to a wide range of problems from reservoirs with a few or no fracture to highly fractured reservoirs. In this work, we present the application of these techniques to two three-dimensional fractured reservoirs constructed using real data. The first model contains more than 600 medium and large scale fractures. The fractures are not always connected which requires a general modeling technique. The reservoir has 50 wells (injectors and producers) and water flooding simulations are performed. The second test case is a larger reservoir with sparsely distributed faults. Single-phase simulations are performed with 5 producing wells. [1] Karimi-Fard M., Durlofsky L.J., and Aziz K. 2004. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE Journal, 9(2): 227-236. [2] Karimi-Fard M., Gong B., and Durlofsky L.J. 2006. Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research, 42(10): W10423.
Investigation into discretization methods of the six-parameter Iwan model
NASA Astrophysics Data System (ADS)
Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo
2017-02-01
Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.
Discrete event simulation: the preferred technique for health economic evaluations?
Caro, Jaime J; Möller, Jörgen; Getsios, Denis
2010-12-01
To argue that discrete event simulation should be preferred to cohort Markov models for economic evaluations in health care. The basis for the modeling techniques is reviewed. For many health-care decisions, existing data are insufficient to fully inform them, necessitating the use of modeling to estimate the consequences that are relevant to decision-makers. These models must reflect what is known about the problem at a level of detail sufficient to inform the questions. Oversimplification will result in estimates that are not only inaccurate, but potentially misleading. Markov cohort models, though currently popular, have so many limitations and inherent assumptions that they are inadequate to inform most health-care decisions. An event-based individual simulation offers an alternative much better suited to the problem. A properly designed discrete event simulation provides more accurate, relevant estimates without being computationally prohibitive. It does require more data and may be a challenge to convey transparently, but these are necessary trade-offs to provide meaningful and valid results. In our opinion, discrete event simulation should be the preferred technique for health economic evaluations today. © 2010, International Society for Pharmacoeconomics and Outcomes Research (ISPOR).
Haslinger, Robert; Pipa, Gordon; Brown, Emery
2010-10-01
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem.
Video modeling to train staff to implement discrete-trial instruction.
Catania, Cynthia N; Almeida, Daniel; Liu-Constant, Brian; DiGennaro Reed, Florence D
2009-01-01
Three new direct-service staff participated in a program that used a video model to train target skills needed to conduct a discrete-trial session. Percentage accuracy in completing a discrete-trial teaching session was evaluated using a multiple baseline design across participants. During baseline, performances ranged from a mean of 12% to 63% accuracy. During video modeling, there was an immediate increase in accuracy to a mean of 98%, 85%, and 94% for each participant. Performance during maintenance and generalization probes remained at high levels. Results suggest that video modeling can be an effective technique to train staff to conduct discrete-trial sessions.
Haslinger, Robert; Pipa, Gordon; Brown, Emery
2010-01-01
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time rescaling theorem provides a goodness of fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model’s spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies upon assumptions of continuously defined time and instantaneous events. However spikes have finite width and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time rescaling theorem which analytically corrects for the effects of finite resolution. This allows us to define a rescaled time which is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting Generalized Linear Models (GLMs) to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false positive rate of the KS test and greatly increasing the reliability of model evaluation based upon the time rescaling theorem. PMID:20608868
A discrete control model of PLANT
NASA Technical Reports Server (NTRS)
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; Wang, Cong; Winterfeld, Philip
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less
Discretization and control of an SEIR epidemic model under equilibrium Wiener noise disturbances
NASA Astrophysics Data System (ADS)
Alonso, Santiago; De la Sen, Manuel; Nistal, Raul; Ibeas, Asier
2017-11-01
A discretized SEIR epidemic model, subject to Wiener noise disturbances of the equilibrium points, is studied. The discrete-time model is got from a general discretization technique applied to its continuous-time counterpart so that its behaviour be close to its continuous-time counterpart irrespective of the size of the discretization period. The positivity and stability of a normalized version of such a discrete-time model are emphasized. The paper also proposes the design of a periodic impulsive vaccination which is periodically injected to the susceptible subpopulation in order to eradicate the propagation of the disease or, at least, to reduce its unsuitable infective effects within the potentially susceptible subpopulation. The existence and asymptotic stability of a disease-free periodic solution are proved. In particular, both the exposed and infectious subpopulations converge asymptotically to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization oscillate.
Stable cycling in discrete-time genetic models.
Hastings, A
1981-11-01
Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.
Discrete-time modelling of musical instruments
NASA Astrophysics Data System (ADS)
Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti
2006-01-01
This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevrekidis, Ioannis G.
The work explored the linking of modern developing machine learning techniques (manifold learning and in particular diffusion maps) with traditional PDE modeling/discretization/scientific computation techniques via the equation-free methodology developed by the PI. The result (in addition to several PhD degrees, two of them by CSGF Fellows) was a sequence of strong developments - in part on the algorithmic side, linking data mining with scientific computing, and in part on applications, ranging from PDE discretizations to molecular dynamics and complex network dynamics.
NASA Astrophysics Data System (ADS)
Bonaventura, Luca; Fernández-Nieto, Enrique D.; Garres-Díaz, José; Narbona-Reina, Gladys
2018-07-01
We propose an extension of the discretization approaches for multilayer shallow water models, aimed at making them more flexible and efficient for realistic applications to coastal flows. A novel discretization approach is proposed, in which the number of vertical layers and their distribution are allowed to change in different regions of the computational domain. Furthermore, semi-implicit schemes are employed for the time discretization, leading to a significant efficiency improvement for subcritical regimes. We show that, in the typical regimes in which the application of multilayer shallow water models is justified, the resulting discretization does not introduce any major spurious feature and allows again to reduce substantially the computational cost in areas with complex bathymetry. As an example of the potential of the proposed technique, an application to a sediment transport problem is presented, showing a remarkable improvement with respect to standard discretization approaches.
Method for distributed agent-based non-expert simulation of manufacturing process behavior
Ivezic, Nenad; Potok, Thomas E.
2004-11-30
A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.
Analyzing neuronal networks using discrete-time dynamics
NASA Astrophysics Data System (ADS)
Ahn, Sungwoo; Smith, Brian H.; Borisyuk, Alla; Terman, David
2010-05-01
We develop mathematical techniques for analyzing detailed Hodgkin-Huxley like models for excitatory-inhibitory neuronal networks. Our strategy for studying a given network is to first reduce it to a discrete-time dynamical system. The discrete model is considerably easier to analyze, both mathematically and computationally, and parameters in the discrete model correspond directly to parameters in the original system of differential equations. While these networks arise in many important applications, a primary focus of this paper is to better understand mechanisms that underlie temporally dynamic responses in early processing of olfactory sensory information. The models presented here exhibit several properties that have been described for olfactory codes in an insect’s Antennal Lobe. These include transient patterns of synchronization and decorrelation of sensory inputs. By reducing the model to a discrete system, we are able to systematically study how properties of the dynamics, including the complex structure of the transients and attractors, depend on factors related to connectivity and the intrinsic and synaptic properties of cells within the network.
Sparse Matrix Motivated Reconstruction of Far-Field Radiation Patterns
2015-03-01
method for base - station antenna radiation patterns. IEEE Antennas Propagation Magazine. 2001;43(2):132. 4. Vasiliadis TG, Dimitriou D, Sergiadis JD...algorithm based on sparse representations of radiation patterns using the inverse Discrete Fourier Transform (DFT) and the inverse Discrete Cosine...patterns using a Model- Based Parameter Estimation (MBPE) technique that reduces the computational time required to model radiation patterns. Another
Hybrid Discrete-Continuous Markov Decision Processes
NASA Technical Reports Server (NTRS)
Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich
2003-01-01
This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.
Discrete disorder models for many-body localization
NASA Astrophysics Data System (ADS)
Janarek, Jakub; Delande, Dominique; Zakrzewski, Jakub
2018-04-01
Using exact diagonalization technique, we investigate the many-body localization phenomenon in the 1D Heisenberg chain comparing several disorder models. In particular we consider a family of discrete distributions of disorder strengths and compare the results with the standard uniform distribution. Both statistical properties of energy levels and the long time nonergodic behavior are discussed. The results for different discrete distributions are essentially identical to those obtained for the continuous distribution, provided the disorder strength is rescaled by the standard deviation of the random distribution. Only for the binary distribution significant deviations are observed.
MESA: An Interactive Modeling and Simulation Environment for Intelligent Systems Automation
NASA Technical Reports Server (NTRS)
Charest, Leonard
1994-01-01
This report describes MESA, a software environment for creating applications that automate NASA mission opterations. MESA enables intelligent automation by utilizing model-based reasoning techniques developed in the field of Artificial Intelligence. Model-based reasoning techniques are realized in Mesa through native support of causal modeling and discrete event simulation.
Active control of turbomachine discrete tones
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1994-01-01
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Active control of turbomachine discrete tones
NASA Astrophysics Data System (ADS)
Fleeter, Sanford
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Modeling discrete and rhythmic movements through motor primitives: a review.
Degallier, Sarah; Ijspeert, Auke
2010-10-01
Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.
New Statistical Techniques for Evaluating Longitudinal Models.
ERIC Educational Resources Information Center
Murray, James R.; Wiley, David E.
A basic methodological approach in developmental studies is the collection of longitudinal data. Behavioral data cen take at least two forms, qualitative (or discrete) and quantitative. Both types are fallible. Measurement errors can occur in quantitative data and measures of these are based on error variance. Qualitative or discrete data can…
NASA Astrophysics Data System (ADS)
Suppachoknirun, Theerapat; Tutuncu, Azra N.
2017-12-01
With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize the cumulative production and for the three wells individually. Significant reduction in the production rate in early production times is anticipated in tight reservoirs regardless of the fracturing techniques implemented. The simulations conducted using the alternating fracturing technique led to more oil production than when zipper fracturing was used for a 20-year production period. Yet, due to the decline experienced, the differences in cumulative production get smaller, and the alternating fracturing is not practically implementable while field application of zipper fracturing technique is more practical and widely used.
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
NASA Astrophysics Data System (ADS)
Karimi-Fard, M.; Durlofsky, L. J.
2016-10-01
A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.
Ensemble-type numerical uncertainty information from single model integrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M
2016-05-01
The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.
Application of an enhanced discrete element method to oil and gas drilling processes
NASA Astrophysics Data System (ADS)
Ubach, Pere Andreu; Arrufat, Ferran; Ring, Lev; Gandikota, Raju; Zárate, Francisco; Oñate, Eugenio
2016-03-01
The authors present results on the use of the discrete element method (DEM) for the simulation of drilling processes typical in the oil and gas exploration industry. The numerical method uses advanced DEM techniques using a local definition of the DEM parameters and combined FEM-DEM procedures. This paper presents a step-by-step procedure to build a DEM model for analysis of the soil region coupled to a FEM model for discretizing the drilling tool that reproduces the drilling mechanics of a particular drill bit. A parametric study has been performed to determine the model parameters in order to maintain accurate solutions with reduced computational cost.
Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case
Haney, M.M.
2007-01-01
Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.
NASA Technical Reports Server (NTRS)
Goodrich, Charles H.; Kurien, James; Clancy, Daniel (Technical Monitor)
2001-01-01
We present some diagnosis and control problems that are difficult to solve with discrete or purely qualitative techniques. We analyze the nature of the problems, classify them and explain why they are frequently encountered in systems with closed loop control. This paper illustrates the problem with several examples drawn from industrial and aerospace applications and presents detailed information on one important application: In-Situ Resource Utilization (ISRU) on Mars. The model for an ISRU plant is analyzed showing where qualitative techniques are inadequate to identify certain failure modes and to maintain control of the system in degraded environments. We show why the solution to the problem will result in significantly more robust and reliable control systems. Finally, we illustrate requirements for a solution to the problem by means of examples.
Phase computations and phase models for discrete molecular oscillators.
Suvak, Onder; Demir, Alper
2012-06-11
Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.
Phase computations and phase models for discrete molecular oscillators
2012-01-01
Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.
Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K
2007-07-07
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.
Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica
NASA Astrophysics Data System (ADS)
Turco, Emilio
2018-04-01
Complex problems such as those concerning the mechanics of materials can be confronted only by considering numerical simulations. Analytical methods are useful to build guidelines or reference solutions but, for general cases of technical interest, they have to be solved numerically, especially in the case of large displacements and deformations. Probably continuous models arose for producing inspiring examples and stemmed from homogenization techniques. These techniques allowed for the solution of some paradigmatic examples but, in general, always require a discretization method for solving problems dictated by the applications. Therefore, and also by taking into account that computing powers are nowadays more largely available and cheap, the question arises: why not using directly a discrete model for 3D beams? In other words, it could be interesting to formulate a discrete model without using an intermediate continuum one, as this last, at the end, has to be discretized in any case. These simple considerations immediately evoke some very basic models developed many years ago when the computing powers were practically inexistent but the problem of finding simple solutions to beam deformation problem was already an emerging one. Actually, in recent years, the keynotes of Hencky and Piola attracted a renewed attention [see, one for all, the work (Turco et al. in Zeitschrift für Angewandte Mathematik und Physik 67(4):1-28, 2016)]: generalizing their results, in the present paper, a novel directly discrete three-dimensional beam model is presented and discussed, in the framework of geometrically nonlinear analysis. Using a stepwise algorithm based essentially on Newton's method to compute the extrapolations and on the Riks' arc-length method to perform the corrections, we could obtain some numerical simulations showing the computational effectiveness of presented model: Indeed, it presents a convenient balance between accuracy and computational cost.
An adaptive discontinuous Galerkin solver for aerodynamic flows
NASA Astrophysics Data System (ADS)
Burgess, Nicholas K.
This work considers the accuracy, efficiency, and robustness of an unstructured high-order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD). Recently, there has been a drive to reduce the discretization error of CFD simulations using high-order methods on unstructured grids. However, high-order methods are often criticized for lacking robustness and having high computational cost. The goal of this work is to investigate methods that enhance the robustness of high-order discontinuous Galerkin (DG) methods on unstructured meshes, while maintaining low computational cost and high accuracy of the numerical solutions. This work investigates robustness enhancement of high-order methods by examining effective non-linear solvers, shock capturing methods, turbulence model discretizations and adaptive refinement techniques. The goal is to develop an all encompassing solver that can simulate a large range of physical phenomena, where all aspects of the solver work together to achieve a robust, efficient and accurate solution strategy. The components and framework for a robust high-order accurate solver that is capable of solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented. In particular, this work discusses robust discretizations of the turbulence model equation used to close the RANS equations, as well as stable shock capturing strategies that are applicable across a wide range of discretization orders and applicable to very strong shock waves. Furthermore, refinement techniques are considered as both efficiency and robustness enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the solver is demonstrated using a variety of challenging aerodynamic test problems, which include turbulent high-lift and viscous hypersonic flows. Adaptive mesh refinement was found to play a critical role in obtaining a robust and efficient high-order accurate flow solver. A goal-oriented error estimation technique has been developed to estimate the discretization error of simulation outputs. For high-order discretizations, it is shown that functional output error super-convergence can be obtained, provided the discretization satisfies a property known as dual consistency. The dual consistency of the DG methods developed in this work is shown via mathematical analysis and numerical experimentation. Goal-oriented error estimation is also used to drive an hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and order or p-enrichment, is employed based on the smoothness of the solution. The results demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic flows including flows with strong shock waves. This work demonstrates that DG discretizations can be the basis of an accurate, efficient, and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not adversely impact the accuracy or efficiency of the solver for challenging and complex flow problems. In particular, when considering the computation of shocked flows, this work demonstrates that the available shock capturing techniques are sufficiently accurate and robust, particularly when used in conjunction with adaptive mesh refinement . This work also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS) and turbulence model equations can be obtained for complex and challenging aerodynamic flows. In this context, the most robust strategy was determined to be a low-order turbulence model discretization coupled to a high-order discretization of the RANS equations. Although RANS solutions using high-order accurate discretizations of the turbulence model were obtained, the behavior of current-day RANS turbulence models discretized to high-order was found to be problematic, leading to solver robustness issues. This suggests that future work is warranted in the area of turbulence model formulation for use with high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid scale models with high-order DG methods offers the potential to leverage the high accuracy of these methods for very high fidelity turbulent simulations. This thesis has developed the algorithmic improvements that will lay the foundation for the development of a three-dimensional high-order flow solution strategy that can be used as the basis for future LES simulations.
A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems
NASA Astrophysics Data System (ADS)
Vassilyev, Stanislav; Ulyanov, Sergey; Maksimkin, Nikolay
2017-01-01
In this paper, a technique for rigorous analysis and design of nonlinear multirate digital control systems on the basis of the reduction method and sublinear vector Lyapunov functions is proposed. The control system model under consideration incorporates continuous-time dynamics of the plant and discrete-time dynamics of the controller and takes into account uncertainties of the plant, bounded disturbances, nonlinear characteristics of sensors and actuators. We consider a class of multirate systems where the control update rate is slower than the measurement sampling rates and periodic non-uniform sampling is admitted. The proposed technique does not use the preliminary discretization of the system, and, hence, allows one to eliminate the errors associated with the discretization and improve the accuracy of analysis. The technique is applied to synthesis of digital controller for a flexible spacecraft in the fine stabilization mode and decentralized controller for a formation of autonomous underwater vehicles. Simulation results are provided to validate the good performance of the designed controllers.
ARMA models for earthquake ground motions. Seismic safety margins research program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.
1981-02-01
Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulatingmore » earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.« less
Discrete optimal control approach to a four-dimensional guidance problem near terminal areas
NASA Technical Reports Server (NTRS)
Nagarajan, N.
1974-01-01
Description of a computer-oriented technique to generate the necessary control inputs to guide an aircraft in a given time from a given initial state to a prescribed final state subject to the constraints on airspeed, acceleration, and pitch and bank angles of the aircraft. A discrete-time mathematical model requiring five state variables and three control variables is obtained, assuming steady wind and zero sideslip. The guidance problem is posed as a discrete nonlinear optimal control problem with a cost functional of Bolza form. A solution technique for the control problem is investigated, and numerical examples are presented. It is believed that this approach should prove to be useful in automated air traffic control schemes near large terminal areas.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817
Material point method modeling in oil and gas reservoirs
Vanderheyden, William Brian; Zhang, Duan
2016-06-28
A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.
Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models
NASA Astrophysics Data System (ADS)
Giesen, Joachim; Mueller, Klaus; Taneva, Bilyana; Zolliker, Peter
Conjoint analysis is a family of techniques that originated in psychology and later became popular in market research. The main objective of conjoint analysis is to measure an individual's or a population's preferences on a class of options that can be described by parameters and their levels. We consider preference data obtained in choice-based conjoint analysis studies, where one observes test persons' choices on small subsets of the options. There are many ways to analyze choice-based conjoint analysis data. Here we discuss the intuition behind a classification based approach, and compare this approach to one based on statistical assumptions (discrete choice models) and to a regression approach. Our comparison on real and synthetic data indicates that the classification approach outperforms the discrete choice models.
Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M
2018-07-01
Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
NASA Astrophysics Data System (ADS)
Hartmann, Timo; Tanner, Gregor; Xie, Gang; Chappell, David; Bajars, Janis
2016-09-01
Dynamical Energy Analysis (DEA) combined with the Discrete Flow Mapping technique (DFM) has recently been introduced as a mesh-based high frequency method modelling structure borne sound for complex built-up structures. This has proven to enhance vibro-acoustic simulations considerably by making it possible to work directly on existing finite element meshes circumventing time-consuming and costly re-modelling strategies. In addition, DFM provides detailed spatial information about the vibrational energy distribution within a complex structure in the mid-to-high frequency range. We will present here progress in the development of the DEA method towards handling complex FEM-meshes including Rigid Body Elements. In addition, structure borne transmission paths due to spot welds are considered. We will present applications for a car floor structure.
Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
NASA Astrophysics Data System (ADS)
Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.
2017-04-01
Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard
2016-02-28
Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. Copyright © 2015 John Wiley & Sons, Ltd.
Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements
NASA Astrophysics Data System (ADS)
Molina García, Víctor; Sasi, Sruthy; Efremenko, Dmitry S.; Doicu, Adrian; Loyola, Diego
2018-07-01
In this paper we analyze the accuracy and efficiency of several radiative transfer models for inferring cloud parameters from radiances measured by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR). The radiative transfer models are the exact discrete ordinate and matrix operator methods with matrix exponential, and the approximate asymptotic and equivalent Lambertian cloud models. To deal with the computationally expensive radiative transfer calculations, several acceleration techniques such as, for example, the telescoping technique, the method of false discrete ordinate, the correlated k-distribution method and the principal component analysis (PCA) are used. We found that, for the EPIC oxygen A-band absorption channel at 764 nm, the exact models using the correlated k-distribution in conjunction with PCA yield an accuracy better than 1.5% and a computation time of 18 s for radiance calculations at 5 viewing zenith angles.
Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach
NASA Astrophysics Data System (ADS)
Ramachandran, Nirmal; Ganguli, Ranjan
2018-06-01
A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.
ERIC Educational Resources Information Center
Berdie, Doug R.
Discrete Choice Marketing (DCM), a research technique that has become more popular in recent marketing research, is described. DCM is a method that forces people to look at the combination of relevant variables within each choice domain and, with each option fully defined in terms of the values for those variables, make a choice of options. DCM…
Determining A Purely Symbolic Transfer Function from Symbol Streams: Theory and Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Christopher H
Transfer function modeling is a \\emph{standard technique} in classical Linear Time Invariant and Statistical Process Control. The work of Box and Jenkins was seminal in developing methods for identifying parameters associated with classicalmore » $(r,s,k)$$ transfer functions. Discrete event systems are often \\emph{used} for modeling hybrid control structures and high-level decision problems. \\emph{Examples include} discrete time, discrete strategy repeated games. For these games, a \\emph{discrete transfer function in the form of} an accurate hidden Markov model of input-output relations \\emph{could be used to derive optimal response strategies.} In this paper, we develop an algorithm \\emph{for} creating probabilistic \\textit{Mealy machines} that act as transfer function models for discrete event dynamic systems (DEDS). Our models are defined by three parameters, $$(l_1, l_2, k)$ just as the Box-Jenkins transfer function models. Here $$l_1$$ is the maximal input history lengths to consider, $$l_2$$ is the maximal output history lengths to consider and $k$ is the response lag. Using related results, We show that our Mealy machine transfer functions are optimal in the sense that they maximize the mutual information between the current known state of the DEDS and the next observed input/output pair.« less
A toolbox for discrete modelling of cell signalling dynamics.
Paterson, Yasmin Z; Shorthouse, David; Pleijzier, Markus W; Piterman, Nir; Bendtsen, Claus; Hall, Benjamin A; Fisher, Jasmin
2018-06-18
In an age where the volume of data regarding biological systems exceeds our ability to analyse it, many researchers are looking towards systems biology and computational modelling to help unravel the complexities of gene and protein regulatory networks. In particular, the use of discrete modelling allows generation of signalling networks in the absence of full quantitative descriptions of systems, which are necessary for ordinary differential equation (ODE) models. In order to make such techniques more accessible to mainstream researchers, tools such as the BioModelAnalyzer (BMA) have been developed to provide a user-friendly graphical interface for discrete modelling of biological systems. Here we use the BMA to build a library of discrete target functions of known canonical molecular interactions, translated from ordinary differential equations (ODEs). We then show that these BMA target functions can be used to reconstruct complex networks, which can correctly predict many known genetic perturbations. This new library supports the accessibility ethos behind the creation of BMA, providing a toolbox for the construction of complex cell signalling models without the need for extensive experience in computer programming or mathematical modelling, and allows for construction and simulation of complex biological systems with only small amounts of quantitative data.
An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media
NASA Astrophysics Data System (ADS)
Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai
2018-02-01
In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.
Experimental confirmation of a PDE-based approach to design of feedback controls
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Silcox, R. J.; Metcalf, Vern L.
1995-01-01
Issues regarding the experimental implementation of partial differential equation based controllers are discussed in this work. While the motivating application involves the reduction of vibration levels for a circular plate through excitation of surface-mounted piezoceramic patches, the general techniques described here will extend to a variety of applications. The initial step is the development of a PDE model which accurately captures the physics of the underlying process. This model is then discretized to yield a vector-valued initial value problem. Optimal control theory is used to determine continuous-time voltages to the patches, and the approximations needed to facilitate discrete time implementation are addressed. Finally, experimental results demonstrating the control of both transient and steady state vibrations through these techniques are presented.
Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces
Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.
2012-01-01
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358
NASA Astrophysics Data System (ADS)
Du, Kongchang; Zhao, Ying; Lei, Jiaqiang
2017-09-01
In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.
Browne, William J; Steele, Fiona; Golalizadeh, Mousa; Green, Martin J
2009-06-01
We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random-effects models and in particular the family of discrete time survival models. Survival models can be used in many situations in the medical and social sciences and we illustrate their use through two examples that differ in terms of both substantive area and data structure. A multilevel discrete time survival analysis involves expanding the data set so that the model can be cast as a standard multilevel binary response model. For such models it has been shown that MCMC methods have advantages in terms of reducing estimate bias. However, the data expansion results in very large data sets for which MCMC estimation is often slow and can produce chains that exhibit poor mixing. Any way of improving the mixing will result in both speeding up the methods and more confidence in the estimates that are produced. The MCMC methodological literature is full of alternative algorithms designed to improve mixing of chains and we describe three reparameterization techniques that are easy to implement in available software. We consider two examples of multilevel survival analysis: incidence of mastitis in dairy cattle and contraceptive use dynamics in Indonesia. For each application we show where the reparameterization techniques can be used and assess their performance.
Dynamic programming and graph algorithms in computer vision.
Felzenszwalb, Pedro F; Zabih, Ramin
2011-04-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
A Framework for the Optimization of Discrete-Event Simulation Models
NASA Technical Reports Server (NTRS)
Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.
1996-01-01
With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.
Detection and Modeling of High-Dimensional Thresholds for Fault Detection and Diagnosis
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Many Fault Detection and Diagnosis (FDD) systems use discrete models for detection and reasoning. To obtain categorical values like oil pressure too high, analog sensor values need to be discretized using a suitablethreshold. Time series of analog and discrete sensor readings are processed and discretized as they come in. This task isusually performed by the wrapper code'' of the FDD system, together with signal preprocessing and filtering. In practice,selecting the right threshold is very difficult, because it heavily influences the quality of diagnosis. If a threshold causesthe alarm trigger even in nominal situations, false alarms will be the consequence. On the other hand, if threshold settingdoes not trigger in case of an off-nominal condition, important alarms might be missed, potentially causing hazardoussituations. In this paper, we will in detail describe the underlying statistical modeling techniques and algorithm as well as the Bayesian method for selecting the most likely shape and its parameters. Our approach will be illustrated by several examples from the Aerospace domain.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees
2016-09-01
ARL-TR-7799 ● SEP 2016 US Army Research Laboratory A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from...longer needed. Do not return it to the originator. ARL-TR-7799 ● SEP 2016 US Army Research Laboratory A Discrete Scatterer Technique...DD-MM-YYYY) September 2016 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE A Discrete Scatterer
NASA Technical Reports Server (NTRS)
Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.
2004-01-01
Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).
Alsmadi, Othman M K; Abo-Hammour, Zaer S
2015-01-01
A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.
Input-output identification of controlled discrete manufacturing systems
NASA Astrophysics Data System (ADS)
Estrada-Vargas, Ana Paula; López-Mellado, Ernesto; Lesage, Jean-Jacques
2014-03-01
The automated construction of discrete event models from observations of external system's behaviour is addressed. This problem, often referred to as system identification, allows obtaining models of ill-known (or even unknown) systems. In this article, an identification method for discrete event systems (DESs) controlled by a programmable logic controller is presented. The method allows processing a large quantity of observed long sequences of input/output signals generated by the controller and yields an interpreted Petri net model describing the closed-loop behaviour of the automated DESs. The proposed technique allows the identification of actual complex systems because it is sufficiently efficient and well adapted to cope with both the technological characteristics of industrial controllers and data collection requirements. Based on polynomial-time algorithms, the method is implemented as an efficient software tool which constructs and draws the model automatically; an overview of this tool is given through a case study dealing with an automated manufacturing system.
Path integral measure and triangulation independence in discrete gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Steinhaus, Sebastian
2012-02-01
A path integral measure for gravity should also preserve the fundamental symmetry of general relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implementation of this symmetry into discrete quantum gravity models would imply discretization independence. We therefore consider the requirement of triangulation independence for the measure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in the semi-classical limit of spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.
SAINT: A combined simulation language for modeling man-machine systems
NASA Technical Reports Server (NTRS)
Seifert, D. J.
1979-01-01
SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.
Reliable gain-scheduled control of discrete-time systems and its application to CSTR model
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.
2016-10-01
This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.
2018-06-01
In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2011-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris
2009-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.
NASA Astrophysics Data System (ADS)
Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.
2015-10-01
An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.
Formal methods for modeling and analysis of hybrid systems
NASA Technical Reports Server (NTRS)
Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)
2009-01-01
A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.
Infrared images target detection based on background modeling in the discrete cosine domain
NASA Astrophysics Data System (ADS)
Ye, Han; Pei, Jihong
2018-02-01
Background modeling is the critical technology to detect the moving target for video surveillance. Most background modeling techniques are aimed at land monitoring and operated in the spatial domain. A background establishment becomes difficult when the scene is a complex fluctuating sea surface. In this paper, the background stability and separability between target are analyzed deeply in the discrete cosine transform (DCT) domain, on this basis, we propose a background modeling method. The proposed method models each frequency point as a single Gaussian model to represent background, and the target is extracted by suppressing the background coefficients. Experimental results show that our approach can establish an accurate background model for seawater, and the detection results outperform other background modeling methods in the spatial domain.
Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling
NASA Technical Reports Server (NTRS)
2008-01-01
The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.
Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H
2011-10-01
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.
Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...
2011-10-06
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less
Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics.
Caro, J Jaime
2016-07-01
Several decision-analytic modeling techniques are in use for pharmacoeconomic analyses. Discretely integrated condition event (DICE) simulation is proposed as a unifying approach that has been deliberately designed to meet the modeling requirements in a straightforward transparent way, without forcing assumptions (e.g., only one transition per cycle) or unnecessary complexity. At the core of DICE are conditions that represent aspects that persist over time. They have levels that can change and many may coexist. Events reflect instantaneous occurrences that may modify some conditions or the timing of other events. The conditions are discretely integrated with events by updating their levels at those times. Profiles of determinant values allow for differences among patients in the predictors of the disease course. Any number of valuations (e.g., utility, cost, willingness-to-pay) of conditions and events can be applied concurrently in a single run. A DICE model is conveniently specified in a series of tables that follow a consistent format and the simulation can be implemented fully in MS Excel, facilitating review and validation. DICE incorporates both state-transition (Markov) models and non-resource-constrained discrete event simulation in a single formulation; it can be executed as a cohort or a microsimulation; and deterministically or stochastically.
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
Jahn, Beate; Theurl, Engelbert; Siebert, Uwe; Pfeiffer, Karl-Peter
2010-01-01
In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.
Karaboga, D; Aslan, S
2016-04-27
The great majority of biological sequences share significant similarity with other sequences as a result of evolutionary processes, and identifying these sequence similarities is one of the most challenging problems in bioinformatics. In this paper, we present a discrete artificial bee colony (ABC) algorithm, which is inspired by the intelligent foraging behavior of real honey bees, for the detection of highly conserved residue patterns or motifs within sequences. Experimental studies on three different data sets showed that the proposed discrete model, by adhering to the fundamental scheme of the ABC algorithm, produced competitive or better results than other metaheuristic motif discovery techniques.
NASA Astrophysics Data System (ADS)
Avitabile, Peter; O'Callahan, John
2009-01-01
Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.
Spreadsheet Modeling of (Q,R) Inventory Policies
ERIC Educational Resources Information Center
Cobb, Barry R.
2013-01-01
This teaching brief describes a method for finding an approximately optimal combination of order quantity and reorder point in a continuous review inventory model using a discrete expected shortage calculation. The technique is an alternative to a model where expected shortage is calculated by integration, and can allow students who have not had a…
Preconditioned conjugate gradient methods for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.
1990-01-01
The compressible Navier-Stokes equations are solved for a variety of two-dimensional inviscid and viscous problems by preconditioned conjugate gradient-like algorithms. Roe's flux difference splitting technique is used to discretize the inviscid fluxes. The viscous terms are discretized by using central differences. An algebraic turbulence model is also incorporated. The system of linear equations which arises out of the linearization of a fully implicit scheme is solved iteratively by the well known methods of GMRES (Generalized Minimum Residual technique) and Chebyschev iteration. Incomplete LU factorization and block diagonal factorization are used as preconditioners. The resulting algorithm is competitive with the best current schemes, but has wide applications in parallel computing and unstructured mesh computations.
Strategies for Estimating Discrete Quantities.
ERIC Educational Resources Information Center
Crites, Terry W.
1993-01-01
Describes the benchmark and decomposition-recomposition estimation strategies and presents five techniques to develop students' estimation ability. Suggests situations involving quantities of candy and popcorn in which the teacher can model those strategies for the students. (MDH)
Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions
NASA Technical Reports Server (NTRS)
Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.
Predicting Flood in Perlis Using Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Nadia Sabri, Syaidatul; Saian, Rizauddin
2017-06-01
Flood forecasting is widely being studied in order to reduce the effect of flood such as loss of property, loss of life and contamination of water supply. Usually flood occurs due to continuous heavy rainfall. This study used a variant of Ant Colony Optimization (ACO) algorithm named the Ant-Miner to develop the classification prediction model to predict flood. However, since Ant-Miner only accept discrete data, while rainfall data is a time series data, a pre-processing steps is needed to discretize the rainfall data initially. This study used a technique called the Symbolic Aggregate Approximation (SAX) to convert the rainfall time series data into discrete data. As an addition, Simple K-Means algorithm was used to cluster the data produced by SAX. The findings show that the predictive accuracy of the classification prediction model is more than 80%.
SToRM: A numerical model for environmental surface flows
Simoes, Francisco J.
2009-01-01
SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow
Degeling, Koen; Schivo, Stefano; Mehra, Niven; Koffijberg, Hendrik; Langerak, Rom; de Bono, Johann S; IJzerman, Maarten J
2017-12-01
With the advent of personalized medicine, the field of health economic modeling is being challenged and the use of patient-level dynamic modeling techniques might be required. To illustrate the usability of two such techniques, timed automata (TA) and discrete event simulation (DES), for modeling personalized treatment decisions. An early health technology assessment on the use of circulating tumor cells, compared with prostate-specific antigen and bone scintigraphy, to inform treatment decisions in metastatic castration-resistant prostate cancer was performed. Both modeling techniques were assessed quantitatively, in terms of intermediate outcomes (e.g., overtreatment) and health economic outcomes (e.g., net monetary benefit). Qualitatively, among others, model structure, agent interactions, data management (i.e., importing and exporting data), and model transparency were assessed. Both models yielded realistic and similar intermediate and health economic outcomes. Overtreatment was reduced by 6.99 and 7.02 weeks by applying circulating tumor cell as a response marker at a net monetary benefit of -€1033 and -€1104 for the TA model and the DES model, respectively. Software-specific differences were observed regarding data management features and the support for statistical distributions, which were considered better for the DES software. Regarding method-specific differences, interactions were modeled more straightforward using TA, benefiting from its compositional model structure. Both techniques prove suitable for modeling personalized treatment decisions, although DES would be preferred given the current software-specific limitations of TA. When these limitations are resolved, TA would be an interesting modeling alternative if interactions are key or its compositional structure is useful to manage multi-agent complex problems. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rozanov, Vladimir V.; Vountas, Marco
2014-01-01
Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes-Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently.
A hybrid group method of data handling with discrete wavelet transform for GDP forecasting
NASA Astrophysics Data System (ADS)
Isa, Nadira Mohamed; Shabri, Ani
2013-09-01
This study is proposed the application of hybridization model using Group Method of Data Handling (GMDH) and Discrete Wavelet Transform (DWT) in time series forecasting. The objective of this paper is to examine the flexibility of the hybridization GMDH in time series forecasting by using Gross Domestic Product (GDP). A time series data set is used in this study to demonstrate the effectiveness of the forecasting model. This data are utilized to forecast through an application aimed to handle real life time series. This experiment compares the performances of a hybrid model and a single model of Wavelet-Linear Regression (WR), Artificial Neural Network (ANN), and conventional GMDH. It is shown that the proposed model can provide a promising alternative technique in GDP forecasting.
Graph-cut based discrete-valued image reconstruction.
Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim
2015-05-01
Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.
A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time
NASA Astrophysics Data System (ADS)
Lang, Holger; Linn, Joachim
2009-09-01
We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; ...
2016-04-25
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Parallel discrete event simulation using shared memory
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.
1988-01-01
With traditional event-list techniques, evaluating a detailed discrete-event simulation-model can often require hours or even days of computation time. By eliminating the event list and maintaining only sufficient synchronization to ensure causality, parallel simulation can potentially provide speedups that are linear in the numbers of processors. A set of shared-memory experiments, using the Chandy-Misra distributed-simulation algorithm, to simulate networks of queues is presented. Parameters of the study include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential-simulation of most queueing network models.
Modelling approaches: the case of schizophrenia.
Heeg, Bart M S; Damen, Joep; Buskens, Erik; Caleo, Sue; de Charro, Frank; van Hout, Ben A
2008-01-01
Schizophrenia is a chronic disease characterized by periods of relative stability interrupted by acute episodes (or relapses). The course of the disease may vary considerably between patients. Patient histories show considerable inter- and even intra-individual variability. We provide a critical assessment of the advantages and disadvantages of three modelling techniques that have been used in schizophrenia: decision trees, (cohort and micro-simulation) Markov models and discrete event simulation models. These modelling techniques are compared in terms of building time, data requirements, medico-scientific experience, simulation time, clinical representation, and their ability to deal with patient heterogeneity, the timing of events, prior events, patient interaction, interaction between co-variates and variability (first-order uncertainty). We note that, depending on the research question, the optimal modelling approach should be selected based on the expected differences between the comparators, the number of co-variates, the number of patient subgroups, the interactions between co-variates, and simulation time. Finally, it is argued that in case micro-simulation is required for the cost-effectiveness analysis of schizophrenia treatments, a discrete event simulation model is best suited to accurately capture all of the relevant interdependencies in this chronic, highly heterogeneous disease with limited long-term follow-up data.
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir
2016-10-20
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less
Nonlinear dynamic macromodeling techniques for audio systems
NASA Astrophysics Data System (ADS)
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Traffic Surveillance Data Processing in Urban Freeway Corridors Using Kalman Filter Techniques
DOT National Transportation Integrated Search
1978-11-01
Real-time surveillance of traffic conditions on urban freeway corridors using spatially discrete presence detectors is addressed. Using a finite-dimensional (macroscopic) fluid-analog model for freeway vehicular traffic flow, an extended Kalman filte...
NASA Astrophysics Data System (ADS)
Mutabaruka, Patrick; Kamrin, Ken
2018-04-01
A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters.
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
NASA Astrophysics Data System (ADS)
Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan
2018-02-01
The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.
Radiative Transfer Model for Operational Retrieval of Cloud Parameters from DSCOVR-EPIC Measurements
NASA Astrophysics Data System (ADS)
Yang, Y.; Molina Garcia, V.; Doicu, A.; Loyola, D. G.
2016-12-01
The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) measures the radiance in the backscattering region. To make sure that all details in the backward glory are covered, a large number of streams is required by a standard radiative transfer model based on the discrete ordinates method. Even the use of the delta-M scaling and the TMS correction do not substantially reduce the number of streams. The aim of this work is to analyze the capability of a fast radiative transfer model to retrieve operationally cloud parameters from EPIC measurements. The radiative transfer model combines the discrete ordinates method with matrix exponential for the computation of radiances and the matrix operator method for the calculation of the reflection and transmission matrices. Standard acceleration techniques as, for instance, the use of the normalized right and left eigenvectors, telescoping technique, Pade approximation and successive-order-of-scattering approximation are implemented. In addition, the model may compute the reflection matrix of the cloud by means of the asymptotic theory, and may use the equivalent Lambertian cloud model. The various approximations are analyzed from the point of view of efficiency and accuracy.
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations
Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.
2015-01-01
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C
2016-02-15
We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.
Extending radiative transfer models by use of Bayes rule. [in atmospheric science
NASA Technical Reports Server (NTRS)
Whitney, C.
1977-01-01
This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.
Three-Class Mammogram Classification Based on Descriptive CNN Features
Zhang, Qianni; Jadoon, Adeel
2017-01-01
In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases). In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW) and convolutional neural network-curvelet transform (CNN-CT). An augmented data set is generated by using mammogram patches. To enhance the contrast of mammogram images, the data set is filtered by contrast limited adaptive histogram equalization (CLAHE). In the CNN-DW method, enhanced mammogram images are decomposed as its four subbands by means of two-dimensional discrete wavelet transform (2D-DWT), while in the second method discrete curvelet transform (DCT) is used. In both methods, dense scale invariant feature (DSIFT) for all subbands is extracted. Input data matrix containing these subband features of all the mammogram patches is created that is processed as input to convolutional neural network (CNN). Softmax layer and support vector machine (SVM) layer are used to train CNN for classification. Proposed methods have been compared with existing methods in terms of accuracy rate, error rate, and various validation assessment measures. CNN-DW and CNN-CT have achieved accuracy rate of 81.83% and 83.74%, respectively. Simulation results clearly validate the significance and impact of our proposed model as compared to other well-known existing techniques. PMID:28191461
Three-Class Mammogram Classification Based on Descriptive CNN Features.
Jadoon, M Mohsin; Zhang, Qianni; Haq, Ihsan Ul; Butt, Sharjeel; Jadoon, Adeel
2017-01-01
In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases). In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW) and convolutional neural network-curvelet transform (CNN-CT). An augmented data set is generated by using mammogram patches. To enhance the contrast of mammogram images, the data set is filtered by contrast limited adaptive histogram equalization (CLAHE). In the CNN-DW method, enhanced mammogram images are decomposed as its four subbands by means of two-dimensional discrete wavelet transform (2D-DWT), while in the second method discrete curvelet transform (DCT) is used. In both methods, dense scale invariant feature (DSIFT) for all subbands is extracted. Input data matrix containing these subband features of all the mammogram patches is created that is processed as input to convolutional neural network (CNN). Softmax layer and support vector machine (SVM) layer are used to train CNN for classification. Proposed methods have been compared with existing methods in terms of accuracy rate, error rate, and various validation assessment measures. CNN-DW and CNN-CT have achieved accuracy rate of 81.83% and 83.74%, respectively. Simulation results clearly validate the significance and impact of our proposed model as compared to other well-known existing techniques.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Compatible Spatial Discretizations for Partial Differential Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Douglas, N, ed.
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less
Discrete event simulation tool for analysis of qualitative models of continuous processing systems
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)
1990-01-01
An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.
Comparing methods for modelling spreading cell fronts.
Markham, Deborah C; Simpson, Matthew J; Maini, Philip K; Gaffney, Eamonn A; Baker, Ruth E
2014-07-21
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and the asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performance of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Summary on several key techniques in 3D geological modeling.
Mei, Gang
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
General technique for discrete retardation-modulation polarimetry
NASA Technical Reports Server (NTRS)
Saxena, Indu
1993-01-01
The general theory and rigorous solutions of the Stokes parameters of light of a new technique in time-resolved ellipsometry are outlined. In this technique the phase of the linear retarder is stepped over three discrete values over a time interval for which the Stokes vector is determined. The technique has an advantage over synchronous detection techniques, as it can be implemented as a digitizable system.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
NASA Astrophysics Data System (ADS)
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays important roles. This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). Figure 1: (a) AEM system over a 3D earth model; (b) magnetic field Bz; (c) magnetic induction dBz/dt.
A coherent discrete variable representation method on a sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hua -Gen
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
A coherent discrete variable representation method on a sphere
Yu, Hua -Gen
2017-09-05
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
NASA Technical Reports Server (NTRS)
Bekey, G. A.
1971-01-01
Studies are summarized on the application of advanced analytical and computational methods to the development of mathematical models of human controllers in multiaxis manual control systems. Specific accomplishments include the following: (1) The development of analytical and computer methods for the measurement of random parameters in linear models of human operators. (2) Discrete models of human operator behavior in a multiple display situation were developed. (3) Sensitivity techniques were developed which make possible the identification of unknown sampling intervals in linear systems. (4) The adaptive behavior of human operators following particular classes of vehicle failures was studied and a model structure proposed.
Lee, Jonathan K.; Froehlich, David C.
1987-01-01
Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.
R symmetries and a heterotic MSSM
NASA Astrophysics Data System (ADS)
Kappl, Rolf; Nilles, Hans Peter; Schmitz, Matthias
2015-02-01
We employ powerful techniques based on Hilbert and Gröbner bases to analyze particle physics models derived from string theory. Individual models are shown to have a huge landscape of vacua that differ in their phenomenological properties. We explore the (discrete) symmetries of these vacua, the new R symmetry selection rules and their consequences for moduli stabilization.
NASA Astrophysics Data System (ADS)
Nair, Rajesh P.; Lakshmana Rao, C.
2014-01-01
Ballistic impact (BI) is a study that deals with a projectile hitting a target and observing its effects in terms of deformation and fragmentation of the target. The Discrete Element Method (DEM) is a powerful numerical technique used to model solid and particulate media. Here, an attempt is made to simulate the BI process using DEM. 1-D DEM for BI is developed and depth of penetration (DOP) is obtained. The DOP is compared with results obtained from 2-D DEM. DEM results are found to match empirical results. Effects of strain rate sensitivity of the material response on DOP are also simulated.
A micro-hydrology computation ordering algorithm
NASA Astrophysics Data System (ADS)
Croley, Thomas E.
1980-11-01
Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented "node" definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing microhydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies.
A Surrogate Technique for Investigating Deterministic Dynamics in Discrete Human Movement.
Taylor, Paul G; Small, Michael; Lee, Kwee-Yum; Landeo, Raul; O'Meara, Damien M; Millett, Emma L
2016-10-01
Entropy is an effective tool for investigation of human movement variability. However, before applying entropy, it can be beneficial to employ analyses to confirm that observed data are not solely the result of stochastic processes. This can be achieved by contrasting observed data with that produced using surrogate methods. Unlike continuous movement, no appropriate method has been applied to discrete human movement. This article proposes a novel surrogate method for discrete movement data, outlining the processes for determining its critical values. The proposed technique reliably generated surrogates for discrete joint angle time series, destroying fine-scale dynamics of the observed signal, while maintaining macro structural characteristics. Comparison of entropy estimates indicated observed signals had greater regularity than surrogates and were not only the result of stochastic but also deterministic processes. The proposed surrogate method is both a valid and reliable technique to investigate determinism in other discrete human movement time series.
Cockpit System Situational Awareness Modeling Tool
NASA Technical Reports Server (NTRS)
Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara
2004-01-01
This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.
Finite volume model for two-dimensional shallow environmental flow
Simoes, F.J.M.
2011-01-01
This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.
Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement
NASA Astrophysics Data System (ADS)
Vimala, C.; Aruna Priya, P.
2018-04-01
Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.
Hydro-mechanical model for wetting/drying and fracture development in geomaterials
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.; ...
2013-12-28
This study presents a modeling approach for studying hydro-mechanical coupled processes, including fracture development, within geological formations. This is accomplished through the novel linking of two codes: TOUGH2, which is a widely used simulator of subsurface multiphase flow based on the finite volume method; and an implementation of the Rigid-Body-Spring Network (RBSN) method, which provides a discrete (lattice) representation of material elasticity and fracture development. The modeling approach is facilitated by a Voronoi-based discretization technique, capable of representing discrete fracture networks. The TOUGH–RBSN simulator is intended to predict fracture evolution, as well as mass transport through permeable media, under dynamicallymore » changing hydrologic and mechanical conditions. Numerical results are compared with those of two independent studies involving hydro-mechanical coupling: (1) numerical modeling of swelling stress development in bentonite; and (2) experimental study of desiccation cracking in a mining waste. The comparisons show good agreement with respect to moisture content, stress development with changes in pore pressure, and time to crack initiation. Finally, the observed relationship between material thickness and crack patterns (e.g., mean spacing of cracks) is captured by the proposed modeling approach.« less
Stochastic effects in a discretized kinetic model of economic exchange
NASA Astrophysics Data System (ADS)
Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.
2017-04-01
Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.
NASA Astrophysics Data System (ADS)
Wada, Daichi; Sugimoto, Yohei
2017-04-01
Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.
Ozone data and mission sampling analysis
NASA Technical Reports Server (NTRS)
Robbins, J. L.
1980-01-01
A methodology was developed to analyze discrete data obtained from the global distribution of ozone. Statistical analysis techniques were applied to describe the distribution of data variance in terms of empirical orthogonal functions and components of spherical harmonic models. The effects of uneven data distribution and missing data were considered. Data fill based on the autocorrelation structure of the data is described. Computer coding of the analysis techniques is included.
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
VMF3/GPT3: refined discrete and empirical troposphere mapping functions
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Böhm, Johannes
2018-04-01
Incorrect modeling of troposphere delays is one of the major error sources for space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). Over the years, many approaches have been devised which aim at mapping the delay of radio waves from zenith direction down to the observed elevation angle, so-called mapping functions. This paper contains a new approach intended to refine the currently most important discrete mapping function, the Vienna Mapping Functions 1 (VMF1), which is successively referred to as Vienna Mapping Functions 3 (VMF3). It is designed in such a way as to eliminate shortcomings in the empirical coefficients b and c and in the tuning for the specific elevation angle of 3°. Ray-traced delays of the ray-tracer RADIATE serve as the basis for the calculation of new mapping function coefficients. Comparisons of modeled slant delays demonstrate the ability of VMF3 to approximate the underlying ray-traced delays more accurately than VMF1 does, in particular at low elevation angles. In other words, when requiring highest precision, VMF3 is to be preferable to VMF1. Aside from revising the discrete form of mapping functions, we also present a new empirical model named Global Pressure and Temperature 3 (GPT3) on a 5°× 5° as well as a 1°× 1° global grid, which is generally based on the same data. Its main components are hydrostatic and wet empirical mapping function coefficients derived from special averaging techniques of the respective (discrete) VMF3 data. In addition, GPT3 also contains a set of meteorological quantities which are adopted as they stand from their predecessor, Global Pressure and Temperature 2 wet. Thus, GPT3 represents a very comprehensive troposphere model which can be used for a series of geodetic as well as meteorological and climatological purposes and is fully consistent with VMF3.
Computation of Steady and Unsteady Laminar Flames: Theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Radhakrishnan, Krishnan; Zhou, Ruhai
1999-01-01
In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.
Transit and lifespan in neutrophil production: implications for drug intervention.
Câmara De Souza, Daniel; Craig, Morgan; Cassidy, Tyler; Li, Jun; Nekka, Fahima; Bélair, Jacques; Humphries, Antony R
2018-02-01
A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino's extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.
Acceleration techniques for dependability simulation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Barnette, James David
1995-01-01
As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.
Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-01-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540
Liao, Bolin; Zhang, Yunong; Jin, Long
2016-02-01
In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.
A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
NASA Astrophysics Data System (ADS)
Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.
2014-05-01
The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.
Hybrid estimation of complex systems.
Hofbaur, Michael W; Williams, Brian C
2004-10-01
Modern automated systems evolve both continuously and discretely, and hence require estimation techniques that go well beyond the capability of a typical Kalman Filter. Multiple model (MM) estimation schemes track these system evolutions by applying a bank of filters, one for each discrete system mode. Modern systems, however, are often composed of many interconnected components that exhibit rich behaviors, due to complex, system-wide interactions. Modeling these systems leads to complex stochastic hybrid models that capture the large number of operational and failure modes. This large number of modes makes a typical MM estimation approach infeasible for online estimation. This paper analyzes the shortcomings of MM estimation, and then introduces an alternative hybrid estimation scheme that can efficiently estimate complex systems with large number of modes. It utilizes search techniques from the toolkit of model-based reasoning in order to focus the estimation on the set of most likely modes, without missing symptoms that might be hidden amongst the system noise. In addition, we present a novel approach to hybrid estimation in the presence of unknown behavioral modes. This leads to an overall hybrid estimation scheme for complex systems that robustly copes with unforeseen situations in a degraded, but fail-safe manner.
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A
2016-08-25
There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purvine, Emilie AH; Monson, Kyle E.; Jurrus, Elizabeth R.
There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of maximum flow-minimum cut graph analysis. The interaction energy graph, a graph in which verticesmore » (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.« less
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.
2016-01-01
There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174
MoSeS: Modelling and Simulation for e-Social Science.
Townend, Paul; Xu, Jie; Birkin, Mark; Turner, Andy; Wu, Belinda
2009-07-13
MoSeS (Modelling and Simulation for e-Social Science) is a research node of the National Centre for e-Social Science. MoSeS uses e-Science techniques to execute an events-driven model that simulates discrete demographic processes; this allows us to project the UK population 25 years into the future. This paper describes the architecture, simulation methodology and latest results obtained by MoSeS.
SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.
Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P
2013-12-01
Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.
Parallel discrete event simulation: A shared memory approach
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.
1987-01-01
With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.
Recent developments in learning control and system identification for robots and structures
NASA Technical Reports Server (NTRS)
Phan, M.; Juang, J.-N.; Longman, R. W.
1990-01-01
This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
NASA Astrophysics Data System (ADS)
Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui
2012-04-01
Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.
Inferring network structure in non-normal and mixed discrete-continuous genomic data.
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2018-03-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.
Inferring network structure in non-normal and mixed discrete-continuous genomic data
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2017-01-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. PMID:28437848
Hudson, Christopher D.; Huxley, Jonathan N.; Green, Martin J.
2014-01-01
The ever-growing volume of data routinely collected and stored in everyday life presents researchers with a number of opportunities to gain insight and make predictions. This study aimed to demonstrate the usefulness in a specific clinical context of a simulation-based technique called probabilistic sensitivity analysis (PSA) in interpreting the results of a discrete time survival model based on a large dataset of routinely collected dairy herd management data. Data from 12,515 dairy cows (from 39 herds) were used to construct a multilevel discrete time survival model in which the outcome was the probability of a cow becoming pregnant during a given two day period of risk, and presence or absence of a recorded lameness event during various time frames relative to the risk period amongst the potential explanatory variables. A separate simulation model was then constructed to evaluate the wider clinical implications of the model results (i.e. the potential for a herd’s incidence rate of lameness to influence its overall reproductive performance) using PSA. Although the discrete time survival analysis revealed some relatively large associations between lameness events and risk of pregnancy (for example, occurrence of a lameness case within 14 days of a risk period was associated with a 25% reduction in the risk of the cow becoming pregnant during that risk period), PSA revealed that, when viewed in the context of a realistic clinical situation, a herd’s lameness incidence rate is highly unlikely to influence its overall reproductive performance to a meaningful extent in the vast majority of situations. Construction of a simulation model within a PSA framework proved to be a very useful additional step to aid contextualisation of the results from a discrete time survival model, especially where the research is designed to guide on-farm management decisions at population (i.e. herd) rather than individual level. PMID:25101997
Hudson, Christopher D; Huxley, Jonathan N; Green, Martin J
2014-01-01
The ever-growing volume of data routinely collected and stored in everyday life presents researchers with a number of opportunities to gain insight and make predictions. This study aimed to demonstrate the usefulness in a specific clinical context of a simulation-based technique called probabilistic sensitivity analysis (PSA) in interpreting the results of a discrete time survival model based on a large dataset of routinely collected dairy herd management data. Data from 12,515 dairy cows (from 39 herds) were used to construct a multilevel discrete time survival model in which the outcome was the probability of a cow becoming pregnant during a given two day period of risk, and presence or absence of a recorded lameness event during various time frames relative to the risk period amongst the potential explanatory variables. A separate simulation model was then constructed to evaluate the wider clinical implications of the model results (i.e. the potential for a herd's incidence rate of lameness to influence its overall reproductive performance) using PSA. Although the discrete time survival analysis revealed some relatively large associations between lameness events and risk of pregnancy (for example, occurrence of a lameness case within 14 days of a risk period was associated with a 25% reduction in the risk of the cow becoming pregnant during that risk period), PSA revealed that, when viewed in the context of a realistic clinical situation, a herd's lameness incidence rate is highly unlikely to influence its overall reproductive performance to a meaningful extent in the vast majority of situations. Construction of a simulation model within a PSA framework proved to be a very useful additional step to aid contextualisation of the results from a discrete time survival model, especially where the research is designed to guide on-farm management decisions at population (i.e. herd) rather than individual level.
The Evolution and Discharge of Electric Fields within a Thunderstorm
NASA Astrophysics Data System (ADS)
Hager, William W.; Nisbet, John S.; Kasha, John R.
1989-05-01
A 3-dimensional electrical model for a thunderstorm is developed and finite difference approximations to the model are analyzed. If the spatial derivatives are approximated by a method akin to the ☐ scheme and if the temporal derivative is approximated by either a backward difference or the Crank-Nicholson scheme, we show that the resulting discretization is unconditionally stable. The forward difference approximation to the time derivative is stable when the time step is sufficiently small relative to the ratio between the permittivity and the conductivity. Max-norm error estimates for the discrete approximations are established. To handle the propagation of lightning, special numerical techniques are devised based on the Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply our model to a storm observed at the Kennedy Space Center on July 11, 1978.
Analysing child mortality in Nigeria with geoadditive discrete-time survival models.
Adebayo, Samson B; Fahrmeir, Ludwig
2005-03-15
Child mortality reflects a country's level of socio-economic development and quality of life. In developing countries, mortality rates are not only influenced by socio-economic, demographic and health variables but they also vary considerably across regions and districts. In this paper, we analysed child mortality in Nigeria with flexible geoadditive discrete-time survival models. This class of models allows us to measure small-area district-specific spatial effects simultaneously with possibly non-linear or time-varying effects of other factors. Inference is fully Bayesian and uses computationally efficient Markov chain Monte Carlo (MCMC) simulation techniques. The application is based on the 1999 Nigeria Demographic and Health Survey. Our method assesses effects at a high level of temporal and spatial resolution not available with traditional parametric models, and the results provide some evidence on how to reduce child mortality by improving socio-economic and public health conditions. Copyright (c) 2004 John Wiley & Sons, Ltd.
A discrete Markov metapopulation model for persistence and extinction of species.
Thompson, Colin J; Shtilerman, Elad; Stone, Lewi
2016-09-07
A simple discrete generation Markov metapopulation model is formulated for studying the persistence and extinction dynamics of a species in a given region which is divided into a large number of sites or patches. Assuming a linear site occupancy probability from one generation to the next we obtain exact expressions for the time evolution of the expected number of occupied sites and the mean-time to extinction (MTE). Under quite general conditions we show that the MTE, to leading order, is proportional to the logarithm of the initial number of occupied sites and in precise agreement with similar expressions for continuous time-dependent stochastic models. Our key contribution is a novel application of generating function techniques and simple asymptotic methods to obtain a second order asymptotic expression for the MTE which is extremely accurate over the entire range of model parameter values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using the Nobel Laureates in Economics to Teach Quantitative Methods
ERIC Educational Resources Information Center
Becker, William E.; Greene, William H.
2005-01-01
The authors show how the work of Nobel Laureates in economics can enhance student understanding and bring them up to date on topics such as probability, uncertainty and decision theory, hypothesis testing, regression to the mean, instrumental variable techniques, discrete choice modeling, and time-series analysis. (Contains 2 notes.)
A Structured Model for Software Documentation.
ERIC Educational Resources Information Center
Swigger, Keith
The concept of "structured programming" was developed to facilitate software production, but it has not carried over to documentation design. Two concepts of structure are relevant to user documentation for computer programs. The first is based on programming techniques that emphasize decomposition of tasks into discrete modules, while the second…
Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill
2016-08-08
Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.
In Praise of Numerical Computation
NASA Astrophysics Data System (ADS)
Yap, Chee K.
Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.
Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation
NASA Astrophysics Data System (ADS)
Su, Bo; Tuo, Xianguo; Xu, Ling
2017-08-01
Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.
NASA Astrophysics Data System (ADS)
Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.
2015-09-01
In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.
NASA Astrophysics Data System (ADS)
Mayer, J. M.; Stead, D.
2017-04-01
With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.
Propagating Resource Constraints Using Mutual Exclusion Reasoning
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)
2001-01-01
One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.
A Generalized Measurement Model to Quantify Health: The Multi-Attribute Preference Response Model
Krabbe, Paul F. M.
2013-01-01
After 40 years of deriving metric values for health status or health-related quality of life, the effective quantification of subjective health outcomes is still a challenge. Here, two of the best measurement tools, the discrete choice and the Rasch model, are combined to create a new model for deriving health values. First, existing techniques to value health states are briefly discussed followed by a reflection on the recent revival of interest in patients’ experience with regard to their possible role in health measurement. Subsequently, three basic principles for valid health measurement are reviewed, namely unidimensionality, interval level, and invariance. In the main section, the basic operation of measurement is then discussed in the framework of probabilistic discrete choice analysis (random utility model) and the psychometric Rasch model. It is then shown how combining the main features of these two models yields an integrated measurement model, called the multi-attribute preference response (MAPR) model, which is introduced here. This new model transforms subjective individual rank data into a metric scale using responses from patients who have experienced certain health states. Its measurement mechanism largely prevents biases such as adaptation and coping. Several extensions of the MAPR model are presented. The MAPR model can be applied to a wide range of research problems. If extended with the self-selection of relevant health domains for the individual patient, this model will be more valid than existing valuation techniques. PMID:24278141
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Discrete ordinates-Monte Carlo coupling: A comparison of techniques in NERVA radiation analysis
NASA Technical Reports Server (NTRS)
Lindstrom, D. G.; Normand, E.; Wilcox, A. D.
1972-01-01
In the radiation analysis of the NERVA nuclear rocket system, two-dimensional discrete ordinates calculations are sufficient to provide detail in the pressure vessel and reactor assembly. Other parts of the system, however, require three-dimensional Monte Carlo analyses. To use these two methods in a single analysis, a means of coupling was developed whereby the results of a discrete ordinates calculation can be used to produce source data for a Monte Carlo calculation. Several techniques for producing source detail were investigated. Results of calculations on the NERVA system are compared and limitations and advantages of the coupling techniques discussed.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
NASA Astrophysics Data System (ADS)
Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.
2017-08-01
In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.
NASA Technical Reports Server (NTRS)
Lai, Steven H.-Y.
1992-01-01
A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.
NASA Astrophysics Data System (ADS)
Joshi, Vaibhav; Jaiman, Rajeev K.
2018-05-01
We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.
Discrete ellipsoidal statistical BGK model and Burnett equations
NASA Astrophysics Data System (ADS)
Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua; Wang, Pei
2018-06-01
A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier-Stokes or the Burnett equations.
Blending Individual and Group Assessment: A Model for Measuring Student Performance
ERIC Educational Resources Information Center
Reiser, Elana
2017-01-01
Two sections of a college discrete mathematics class were taught using cooperative learning techniques throughout the semester. The 33 students attending these sections were randomly assigned into groups of three. Their final examination consisted of an individual and group blended examination where students worked in their groups and discussed…
Application of Markov Models for Analysis of Development of Psychological Characteristics
ERIC Educational Resources Information Center
Kuravsky, Lev S.; Malykh, Sergey B.
2004-01-01
A technique to study combined influence of environmental and genetic factors on the base of changes in phenotype distributions is presented. Histograms are exploited as base analyzed characteristics. A continuous time, discrete state Markov process with piece-wise constant interstate transition rates is associated with evolution of each histogram.…
ERIC Educational Resources Information Center
Myers, Trina S.; Blackman, Anna; Andersen, Trevor; Hay, Rachel; Lee, Ickjai; Gray, Heather
2014-01-01
Flexible online delivery of tertiary ICT programs is experiencing rapid growth. Creating an online environment that develops team building and interpersonal skills is difficult due to factors such as student isolation and the individual-centric model of online learning that encourages discrete study rather than teamwork. Incorporating teamwork…
Theoretical and software considerations for nonlinear dynamic analysis
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1983-01-01
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.
Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-05-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. Copyright © 2014 Elsevier B.V. All rights reserved.
On the nonexistence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice
NASA Astrophysics Data System (ADS)
Penati, T.; Sansottera, M.; Paleari, S.; Koukouloyannis, V.; Kevrekidis, P. G.
2018-05-01
We consider a one-dimensional discrete nonlinear Schrödinger (dNLS) model featuring interactions beyond nearest neighbors. We are interested in the existence (or nonexistence) of phase-shift discrete solitons, which correspond to four-site vortex solutions in the standard two-dimensional dNLS model (square lattice), of which this is a simpler variant. Due to the specific choice of lengths of the inter-site interactions, the vortex configurations considered present a degeneracy which causes the standard continuation techniques to be non-applicable. In the present one-dimensional case, the existence of a conserved quantity for the soliton profile (the so-called density current), together with a perturbative construction, leads to the nonexistence of any phase-shift discrete soliton which is at least C2 with respect to the small coupling ɛ, in the limit of vanishing ɛ. If we assume the solution to be only C0 in the same limit of ɛ, nonexistence is instead proved by studying the bifurcation equation of a Lyapunov-Schmidt reduction, expanded to suitably high orders. Specifically, we produce a nonexistence criterion whose efficiency we reveal in the cases of partial and full degeneracy of approximate solutions obtained via a leading order expansion.
NASA Astrophysics Data System (ADS)
Wang, Peitao; Cai, Meifeng; Ren, Fenhua; Li, Changhong; Yang, Tianhong
2017-07-01
This paper develops a numerical approach to determine the mechanical behavior of discrete fractures network (DFN) models based on digital image processing technique and particle flow code (PFC2D). A series of direct shear tests of jointed rocks were numerically performed to study the effect of normal stress, friction coefficient and joint bond strength on the mechanical behavior of joint rock and evaluate the influence of micro-parameters on the shear properties of jointed rocks using the proposed approach. The complete shear stress-displacement curve of the DFN model under direct shear tests was presented to evaluate the failure processes of jointed rock. The results show that the peak and residual strength are sensitive to normal stress. A higher normal stress has a greater effect on the initiation and propagation of cracks. Additionally, an increase in the bond strength ratio results in an increase in the number of both shear and normal cracks. The friction coefficient was also found to have a significant influence on the shear strength and shear cracks. Increasing in the friction coefficient resulted in the decreasing in the initiation of normal cracks. The unique contribution of this paper is the proposed modeling technique to simulate the mechanical behavior of jointed rock mass based on particle mechanics approaches.
On the dynamic rounding-off in analogue and RF optimal circuit sizing
NASA Astrophysics Data System (ADS)
Kotti, Mouna; Fakhfakh, Mourad; Fino, Maria Helena
2014-04-01
Frequently used approaches to solve discrete multivariable optimisation problems consist of computing solutions using a continuous optimisation technique. Then, using heuristics, the variables are rounded-off to their nearest available discrete values to obtain a discrete solution. Indeed, in many engineering problems, and particularly in analogue circuit design, component values, such as the geometric dimensions of the transistors, the number of fingers in an integrated capacitor or the number of turns in an integrated inductor, cannot be chosen arbitrarily since they have to obey to some technology sizing constraints. However, rounding-off the variables values a posteriori and can lead to infeasible solutions (solutions that are located too close to the feasible solution frontier) or degradation of the obtained results (expulsion from the neighbourhood of a 'sharp' optimum) depending on how the added perturbation affects the solution. Discrete optimisation techniques, such as the dynamic rounding-off technique (DRO) are, therefore, needed to overcome the previously mentioned situation. In this paper, we deal with an improvement of the DRO technique. We propose a particle swarm optimisation (PSO)-based DRO technique, and we show, via some analog and RF-examples, the necessity to implement such a routine into continuous optimisation algorithms.
Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2012-01-01
A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed
NASA Astrophysics Data System (ADS)
Liska, Sebastian; Colonius, Tim
2017-02-01
A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.
Sampling-free Bayesian inversion with adaptive hierarchical tensor representations
NASA Astrophysics Data System (ADS)
Eigel, Martin; Marschall, Manuel; Schneider, Reinhold
2018-03-01
A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Sellappan, R.
1978-01-01
Attitude control techniques for the pointing and stabilization of very large, inherently flexible spacecraft systems were investigated. The attitude dynamics and control of a long, homogeneous flexible beam whose center of mass is assumed to follow a circular orbit was analyzed. First order effects of gravity gradient were included. A mathematical model which describes the system rotations and deflections within the orbital plane was developed by treating the beam as a number of discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of the system are simulated and, in addition, the effects of the control devices were considered. The concept of distributed modal control, which provides a means for controlling a system mode independently of all other modes, was examined. The effect of varying the number of modes in the model as well as the number and location of the control devices were also considered.
Identification of a parametric, discrete-time model of ankle stiffness.
Guarin, Diego L; Jalaleddini, Kian; Kearney, Robert E
2013-01-01
Dynamic ankle joint stiffness defines the relationship between the position of the ankle and the torque acting about it and can be separated into intrinsic and reflex components. Under stationary conditions, intrinsic stiffness can described by a linear second order system while reflex stiffness is described by Hammerstein system whose input is delayed velocity. Given that reflex and intrinsic torque cannot be measured separately, there has been much interest in the development of system identification techniques to separate them analytically. To date, most methods have been nonparametric and as a result there is no direct link between the estimated parameters and those of the stiffness model. This paper presents a novel algorithm for identification of a discrete-time model of ankle stiffness. Through simulations we show that the algorithm gives unbiased results even in the presence of large, non-white noise. Application of the method to experimental data demonstrates that it produces results consistent with previous findings.
Role of weakest links and system-size scaling in multiscale modeling of stochastic plasticity
NASA Astrophysics Data System (ADS)
Ispánovity, Péter Dusán; Tüzes, Dániel; Szabó, Péter; Zaiser, Michael; Groma, István
2017-02-01
Plastic deformation of crystalline and amorphous matter often involves intermittent local strain burst events. To understand the physical background of the phenomenon a minimal stochastic mesoscopic model was introduced, where details of the microstructure evolution are statistically represented in terms of a fluctuating local yield threshold. In the present paper we propose a method for determining the corresponding yield stress distribution for the case of crystal plasticity from lower scale discrete dislocation dynamics simulations which we combine with weakest link arguments. The success of scale linking is demonstrated by comparing stress-strain curves obtained from the resulting mesoscopic and the underlying discrete dislocation models in the microplastic regime. As shown by various scaling relations they are statistically equivalent and behave identically in the thermodynamic limit. The proposed technique is expected to be applicable to different microstructures and also to amorphous materials.
Validation of a DICE Simulation Against a Discrete Event Simulation Implemented Entirely in Code.
Möller, Jörgen; Davis, Sarah; Stevenson, Matt; Caro, J Jaime
2017-10-01
Modeling is an essential tool for health technology assessment, and various techniques for conceptualizing and implementing such models have been described. Recently, a new method has been proposed-the discretely integrated condition event or DICE simulation-that enables frequently employed approaches to be specified using a common, simple structure that can be entirely contained and executed within widely available spreadsheet software. To assess if a DICE simulation provides equivalent results to an existing discrete event simulation, a comparison was undertaken. A model of osteoporosis and its management programmed entirely in Visual Basic for Applications and made public by the National Institute for Health and Care Excellence (NICE) Decision Support Unit was downloaded and used to guide construction of its DICE version in Microsoft Excel ® . The DICE model was then run using the same inputs and settings, and the results were compared. The DICE version produced results that are nearly identical to the original ones, with differences that would not affect the decision direction of the incremental cost-effectiveness ratios (<1% discrepancy), despite the stochastic nature of the models. The main limitation of the simple DICE version is its slow execution speed. DICE simulation did not alter the results and, thus, should provide a valid way to design and implement decision-analytic models without requiring specialized software or custom programming. Additional efforts need to be made to speed up execution.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Software Safety Analysis of a Flight Guidance System
NASA Technical Reports Server (NTRS)
Butler, Ricky W. (Technical Monitor); Tribble, Alan C.; Miller, Steven P.; Lempia, David L.
2004-01-01
This document summarizes the safety analysis performed on a Flight Guidance System (FGS) requirements model. In particular, the safety properties desired of the FGS model are identified and the presence of the safety properties in the model is formally verified. Chapter 1 provides an introduction to the entire project, while Chapter 2 gives a brief overview of the problem domain, the nature of accidents, model based development, and the four-variable model. Chapter 3 outlines the approach. Chapter 4 presents the results of the traditional safety analysis techniques and illustrates how the hazardous conditions associated with the system trace into specific safety properties. Chapter 5 presents the results of the formal methods analysis technique model checking that was used to verify the presence of the safety properties in the requirements model. Finally, Chapter 6 summarizes the main conclusions of the study, first and foremost that model checking is a very effective verification technique to use on discrete models with reasonable state spaces. Additional supporting details are provided in the appendices.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical schemes. The results show that the tool is able to adequately replicate water depth and depth-averaged velocity of a dam-break wave, as well as velocity and displacement of floating cylindrical elements, thus validating its shock capturing capabilities and the coupling technique applied for this simple test case. Future development of the tool will incorporate a 2D hydrodynamic scheme and a 3D discrete element scheme in order to model the more complex processes associated with debris transport.
Häyrynen, Teppo; Osterkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Gregersen, Niels
2017-09-01
Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.
ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION
HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG
2011-01-01
We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein. PMID:21949541
Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
NASA Astrophysics Data System (ADS)
Maeda, Kazuki; Tsujimoto, Satoshi
2013-11-01
The spectral transformation technique for symmetric RII polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the RII chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.
New discretization and solution techniques for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.
1983-01-01
Several topics arising in the finite element solution of the incompressible Navier-Stokes equations are considered. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. The role of artificial viscosity in viscous flow calculations is studied, emphasizing work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some modifications are mentioned.
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out on the Puy de Dôme volcano resulting in 12 ERT profiles with approximatively 800 electrodes. We performed two processing stages by inverting independently each profiles in 2D (RES2DINV software) and the complete data set in 3D (EResI). The comparison of the 3D inversion results with those obtained through a conventional 2D inversion process underlined that EResI allows to accurately take into account the random electrodes positioning and reduce out-line artefacts into the inversion models due to positioning errors out of the profile axis. This comparison also highlighted the advantages to integrate several ERT lines to compute the 3D models of complex volcanic structures. Finally, the resulting 3D model allows a better interpretation of the Puy de Dome Volcano.
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
Seleson, Pablo; Du, Qiang; Parks, Michael L.
2016-08-16
The peridynamic theory of solid mechanics is a nonlocal reformulation of the classical continuum mechanics theory. At the continuum level, it has been demonstrated that classical (local) elasticity is a special case of peridynamics. Such a connection between these theories has not been extensively explored at the discrete level. This paper investigates the consistency between nearest-neighbor discretizations of linear elastic peridynamic models and finite difference discretizations of the Navier–Cauchy equation of classical elasticity. While nearest-neighbor discretizations in peridynamics have been numerically observed to present grid-dependent crack paths or spurious microcracks, this paper focuses on a different, analytical aspect of suchmore » discretizations. We demonstrate that, even in the absence of cracks, such discretizations may be problematic unless a proper selection of weights is used. Specifically, we demonstrate that using the standard meshfree approach in peridynamics, nearest-neighbor discretizations do not reduce, in general, to discretizations of corresponding classical models. We study nodal-based quadratures for the discretization of peridynamic models, and we derive quadrature weights that result in consistency between nearest-neighbor discretizations of peridynamic models and discretized classical models. The quadrature weights that lead to such consistency are, however, model-/discretization-dependent. We motivate the choice of those quadrature weights through a quadratic approximation of displacement fields. The stability of nearest-neighbor peridynamic schemes is demonstrated through a Fourier mode analysis. Finally, an approach based on a normalization of peridynamic constitutive constants at the discrete level is explored. This approach results in the desired consistency for one-dimensional models, but does not work in higher dimensions. The results of the work presented in this paper suggest that even though nearest-neighbor discretizations should be avoided in peridynamic simulations involving cracks, such discretizations are viable, for example for verification or validation purposes, in problems characterized by smooth deformations. Furthermore, we demonstrate that better quadrature rules in peridynamics can be obtained based on the functional form of solutions.« less
Discrete Event Simulation-Based Resource Modelling in Health Technology Assessment.
Salleh, Syed; Thokala, Praveen; Brennan, Alan; Hughes, Ruby; Dixon, Simon
2017-10-01
The objective of this article was to conduct a systematic review of published research on the use of discrete event simulation (DES) for resource modelling (RM) in health technology assessment (HTA). RM is broadly defined as incorporating and measuring effects of constraints on physical resources (e.g. beds, doctors, nurses) in HTA models. Systematic literature searches were conducted in academic databases (JSTOR, SAGE, SPRINGER, SCOPUS, IEEE, Science Direct, PubMed, EMBASE) and grey literature (Google Scholar, NHS journal library), enhanced by manual searchers (i.e. reference list checking, citation searching and hand-searching techniques). The search strategy yielded 4117 potentially relevant citations. Following the screening and manual searches, ten articles were included. Reviewing these articles provided insights into the applications of RM: firstly, different types of economic analyses, model settings, RM and cost-effectiveness analysis (CEA) outcomes were identified. Secondly, variation in the characteristics of the constraints such as types and nature of constraints and sources of data for the constraints were identified. Thirdly, it was found that including the effects of constraints caused the CEA results to change in these articles. The review found that DES proved to be an effective technique for RM but there were only a small number of studies applied in HTA. However, these studies showed the important consequences of modelling physical constraints and point to the need for a framework to be developed to guide future applications of this approach.
3D ductile crack propagation within a polycrystalline microstructure using XFEM
NASA Astrophysics Data System (ADS)
Beese, Steffen; Loehnert, Stefan; Wriggers, Peter
2018-02-01
In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.
Small-kernel, constrained least-squares restoration of sampled image data
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Park, Stephen K.
1992-01-01
Following the work of Park (1989), who extended a derivation of the Wiener filter based on the incomplete discrete/discrete model to a more comprehensive end-to-end continuous/discrete/continuous model, it is shown that a derivation of the constrained least-squares (CLS) filter based on the discrete/discrete model can also be extended to this more comprehensive continuous/discrete/continuous model. This results in an improved CLS restoration filter, which can be efficiently implemented as a small-kernel convolution in the spatial domain.
Quantifying short-lived events in multistate ionic current measurements.
Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute
2014-02-25
We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.
An analysis of numerical convergence in discrete velocity gas dynamics for internal flows
NASA Astrophysics Data System (ADS)
Sekaran, Aarthi; Varghese, Philip; Goldstein, David
2018-07-01
The Discrete Velocity Method (DVM) for solving the Boltzmann equation has significant advantages in the modeling of non-equilibrium and near equilibrium flows as compared to other methods in terms of reduced statistical noise, faster solutions and the ability to handle transient flows. Yet the DVM performance for rarefied flow in complex, small-scale geometries, in microelectromechanical (MEMS) devices for instance, is yet to be studied in detail. The present study focuses on the performance of the DVM for locally large Knudsen number flows of argon around sharp corners and other sources for discontinuities in the distribution function. Our analysis details the nature of the solution for some benchmark cases and introduces the concept of solution convergence for the transport terms in the discrete velocity Boltzmann equation. The limiting effects of the velocity space discretization are also investigated and the constraints on obtaining a robust, consistent solution are derived. We propose techniques to maintain solution convergence and demonstrate the implementation of a specific strategy and its effect on the fidelity of the solution for some benchmark cases.
Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.
Hyde, Eoin R; Michler, Christian; Lee, Jack; Cookson, Andrew N; Chabiniok, Radek; Nordsletten, David A; Smith, Nicolas P
2013-05-01
Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating motif or periodic canonical cell, thereby allowing for a flow solution via homogenisation. However, such periodicity is not observed throughout anatomical networks. In this study, we apply various spatial averaging methods to discrete vascular geometries in order to parameterise a continuum model of perfusion. Specifically, a multi-compartment Darcy model was used to provide vascular scale separation for the fluid flow. Permeability tensor fields were derived from both synthetic and anatomically realistic networks using (1) porosity-scaled isotropic, (2) Huyghe and Van Campen, and (3) projected-PCA methods. The Darcy pressure fields were compared via a root-mean-square error metric to an averaged Poiseuille pressure solution over the same domain. The method of Huyghe and Van Campen performed better than the other two methods in all simulations, even for relatively coarse networks. Furthermore, inter-compartment volumetric flux fields, determined using the spatially averaged discrete flux per unit pressure difference, were shown to be accurate across a range of pressure boundary conditions. This work justifies the application of continuum flow models to characterise perfusion resulting from flow in an underlying vascular network.
Rich Analysis and Rational Models: Inferring Individual Behavior from Infant Looking Data
ERIC Educational Resources Information Center
Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard
2014-01-01
Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive…
A comparison of dynamic and static economic models of uneven-aged stand management
Robert G. Haight
1985-01-01
Numerical techniques have been used to compute the discrete-time sequence of residual diameter distributions that maximize the present net worth (PNW) of harvestable volume from an uneven-aged stand. Results contradicted optimal steady-state diameter distributions determined with static analysis. In this paper, optimality conditions for solutions to dynamic and static...
SNAP/SHOT Your Ability to Support That Next Application.
ERIC Educational Resources Information Center
Jones, Ernest L.
SNAP/SHOT (System Network Analysis Program-Simulated Host Overview Technique) is a discrete simulation of a network and/or host model available through IBM at the Raleigh System Center. The simulator provides an analysis of a total IBM Communications System. Input data must be obtained from RMF, SMF, and the CICS Analyzer to determine the existing…
Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems
1990-11-01
147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a
A priori discretization error metrics for distributed hydrologic modeling applications
NASA Astrophysics Data System (ADS)
Liu, Hongli; Tolson, Bryan A.; Craig, James R.; Shafii, Mahyar
2016-12-01
Watershed spatial discretization is an important step in developing a distributed hydrologic model. A key difficulty in the spatial discretization process is maintaining a balance between the aggregation-induced information loss and the increase in computational burden caused by the inclusion of additional computational units. Objective identification of an appropriate discretization scheme still remains a challenge, in part because of the lack of quantitative measures for assessing discretization quality, particularly prior to simulation. This study proposes a priori discretization error metrics to quantify the information loss of any candidate discretization scheme without having to run and calibrate a hydrologic model. These error metrics are applicable to multi-variable and multi-site discretization evaluation and provide directly interpretable information to the hydrologic modeler about discretization quality. The first metric, a subbasin error metric, quantifies the routing information loss from discretization, and the second, a hydrological response unit (HRU) error metric, improves upon existing a priori metrics by quantifying the information loss due to changes in land cover or soil type property aggregation. The metrics are straightforward to understand and easy to recode. Informed by the error metrics, a two-step discretization decision-making approach is proposed with the advantage of reducing extreme errors and meeting the user-specified discretization error targets. The metrics and decision-making approach are applied to the discretization of the Grand River watershed in Ontario, Canada. Results show that information loss increases as discretization gets coarser. Moreover, results help to explain the modeling difficulties associated with smaller upstream subbasins since the worst discretization errors and highest error variability appear in smaller upstream areas instead of larger downstream drainage areas. Hydrologic modeling experiments under candidate discretization schemes validate the strong correlation between the proposed discretization error metrics and hydrologic simulation responses. Discretization decision-making results show that the common and convenient approach of making uniform discretization decisions across the watershed performs worse than the proposed non-uniform discretization approach in terms of preserving spatial heterogeneity under the same computational cost.
Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters
NASA Astrophysics Data System (ADS)
Bates, Bryson C.; Townley, Lloyd R.
1988-05-01
In this paper (Part 1), a Bayesian procedure for parameter estimation is applied to discrete flood event models. The essence of the procedure is the minimisation of a sum of squares function for models in which the computed peak discharge is nonlinear in terms of the parameters. This objective function is dependent on the observed and computed peak discharges for several storms on the catchment, information on the structure of observation error, and prior information on parameter values. The posterior covariance matrix gives a measure of the precision of the estimated parameters. The procedure is demonstrated using rainfall and runoff data from seven Australian catchments. It is concluded that the procedure is a powerful alternative to conventional parameter estimation techniques in situations where a number of floods are available for parameter estimation. Parts 2 and 3 will discuss the application of statistical nonlinearity measures and prediction uncertainty analysis to calibrated flood models. Bates (this volume) and Bates and Townley (this volume).
A method for modeling finite-core vortices in wake-flow calculations
NASA Technical Reports Server (NTRS)
Stremel, P. M.
1984-01-01
A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.
High order discretization techniques for real-space ab initio simulations
NASA Astrophysics Data System (ADS)
Anderson, Christopher R.
2018-03-01
In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.
Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Boyle, Richard D.
2014-01-01
Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.
Information Hiding In Digital Video Using DCT, DWT and CvT
NASA Astrophysics Data System (ADS)
Abed Shukur, Wisam; Najah Abdullah, Wathiq; Kareem Qurban, Luheb
2018-05-01
The type of video that used in this proposed hiding a secret information technique is .AVI; the proposed technique of a data hiding to embed a secret information into video frames by using Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Curvelet Transform (CvT). An individual pixel consists of three color components (RGB), the secret information is embedded in Red (R) color channel. On the receiver side, the secret information is extracted from received video. After extracting secret information, robustness of proposed hiding a secret information technique is measured and obtained by computing the degradation of the extracted secret information by comparing it with the original secret information via calculating the Normalized cross Correlation (NC). The experiments shows the error ratio of the proposed technique is (8%) while accuracy ratio is (92%) when the Curvelet Transform (CvT) is used, but compared with Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT), the error rates are 11% and 14% respectively, while the accuracy ratios are (89%) and (86%) respectively. So, the experiments shows the Poisson noise gives better results than other types of noises, while the speckle noise gives worst results compared with other types of noises. The proposed technique has been established by using MATLAB R2016a programming language.
On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination
NASA Astrophysics Data System (ADS)
Alonso-Quesada, S.; De la Sen, M.; Ibeas, A.
2017-01-01
This paper deals with the discretization and control of an SEIR epidemic model. Such a model describes the transmission of an infectious disease among a time-varying host population. The model assumes mortality from causes related to the disease. Our study proposes a discretization method including a free-design parameter to be adjusted for guaranteeing the positivity of the resulting discrete-time model. Such a method provides a discrete-time model close to the continuous-time one without the need for the sampling period to be as small as other commonly used discretization methods require. This fact makes possible the design of impulsive vaccination control strategies with less burden of measurements and related computations if one uses the proposed instead of other discretization methods. The proposed discretization method and the impulsive vaccination strategy designed on the resulting discretized model are the main novelties of the paper. The paper includes (i) the analysis of the positivity of the obtained discrete-time SEIR model, (ii) the study of stability of the disease-free equilibrium point of a normalized version of such a discrete-time model and (iii) the existence and the attractivity of a globally asymptotically stable disease-free periodic solution under a periodic impulsive vaccination. Concretely, the exposed and infectious subpopulations asymptotically converge to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization individuals oscillate in the context of such a solution. Finally, a numerical example illustrates the theoretic results.
Improved numerical solutions for chaotic-cancer-model
NASA Astrophysics Data System (ADS)
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Modelling and simulation techniques for membrane biology.
Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V
2007-07-01
One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.
A compressed sensing based approach on Discrete Algebraic Reconstruction Technique.
Demircan-Tureyen, Ezgi; Kamasak, Mustafa E
2015-01-01
Discrete tomography (DT) techniques are capable of computing better results, even using less number of projections than the continuous tomography techniques. Discrete Algebraic Reconstruction Technique (DART) is an iterative reconstruction method proposed to achieve this goal by exploiting a prior knowledge on the gray levels and assuming that the scanned object is composed from a few different densities. In this paper, DART method is combined with an initial total variation minimization (TvMin) phase to ensure a better initial guess and extended with a segmentation procedure in which the threshold values are estimated from a finite set of candidates to minimize both the projection error and the total variation (TV) simultaneously. The accuracy and the robustness of the algorithm is compared with the original DART by the simulation experiments which are done under (1) limited number of projections, (2) limited view problem and (3) noisy projections conditions.
New discretization and solution techniques for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.
1983-01-01
This paper considers several topics arising in the finite element solution of the incompressible Navier-Stokes equations. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. Following this, the role of artificial viscosity in viscous flow calculations is studied, emphasizing recent work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some recent modifications are mentioned.
A priori discretization quality metrics for distributed hydrologic modeling applications
NASA Astrophysics Data System (ADS)
Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita
2016-04-01
In distributed hydrologic modelling, a watershed is treated as a set of small homogeneous units that address the spatial heterogeneity of the watershed being simulated. The ability of models to reproduce observed spatial patterns firstly depends on the spatial discretization, which is the process of defining homogeneous units in the form of grid cells, subwatersheds, or hydrologic response units etc. It is common for hydrologic modelling studies to simply adopt a nominal or default discretization strategy without formally assessing alternative discretization levels. This approach lacks formal justifications and is thus problematic. More formalized discretization strategies are either a priori or a posteriori with respect to building and running a hydrologic simulation model. A posteriori approaches tend to be ad-hoc and compare model calibration and/or validation performance under various watershed discretizations. The construction and calibration of multiple versions of a distributed model can become a seriously limiting computational burden. Current a priori approaches are more formalized and compare overall heterogeneity statistics of dominant variables between candidate discretization schemes and input data or reference zones. While a priori approaches are efficient and do not require running a hydrologic model, they do not fully investigate the internal spatial pattern changes of variables of interest. Furthermore, the existing a priori approaches focus on landscape and soil data and do not assess impacts of discretization on stream channel definition even though its significance has been noted by numerous studies. The primary goals of this study are to (1) introduce new a priori discretization quality metrics considering the spatial pattern changes of model input data; (2) introduce a two-step discretization decision-making approach to compress extreme errors and meet user-specified discretization expectations through non-uniform discretization threshold modification. The metrics for the first time provides quantification of the routing relevant information loss due to discretization according to the relationship between in-channel routing length and flow velocity. Moreover, it identifies and counts the spatial pattern changes of dominant hydrological variables by overlaying candidate discretization schemes upon input data and accumulating variable changes in area-weighted way. The metrics are straightforward and applicable to any semi-distributed or fully distributed hydrological model with grid scales are greater than input data resolutions. The discretization metrics and decision-making approach are applied to the Grand River watershed located in southwestern Ontario, Canada where discretization decisions are required for a semi-distributed modelling application. Results show that discretization induced information loss monotonically increases as discretization gets rougher. With regards to routing information loss in subbasin discretization, multiple interesting points rather than just the watershed outlet should be considered. Moreover, subbasin and HRU discretization decisions should not be considered independently since subbasin input significantly influences the complexity of HRU discretization result. Finally, results show that the common and convenient approach of making uniform discretization decisions across the watershed domain performs worse compared to a metric informed non-uniform discretization approach as the later since is able to conserve more watershed heterogeneity under the same model complexity (number of computational units).
Marini, Giacomo; Studer, Harald; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J
2016-06-01
Patient-specific modelling of the spine is a powerful tool to explore the prevention and the treatment of injuries and pathologies. Albeit several methods have been proposed for the discretization of the bony structures, the efficient representation of the intervertebral disc anisotropy remains a challenge, especially with complex geometries. Furthermore, the swelling of the disc's nucleus pulposus is normally added to the model after geometry definition, at the cost of changes of the material properties and an unrealistic description of the prestressed state. The aim of this study was to develop techniques, which preserve the patient-specific geometry of the disc and allow the representation of the system anisotropy and residual stresses, independent of the system discretization. Depending on the modelling features, the developed approaches resulted in a response of patient-specific models that was in good agreement with the physiological response observed in corresponding experiments. The proposed methods represent a first step towards the development of patient-specific models of the disc which respect both the geometry and the mechanical properties of the specific disc.
A discrete element method-based approach to predict the breakage of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Sun, Xin; Xu, Wei
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
A discrete element method-based approach to predict the breakage of coal
Gupta, Varun; Sun, Xin; Xu, Wei; ...
2017-08-05
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA
NASA Technical Reports Server (NTRS)
Schrage, Dean S.
1993-01-01
The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops
NASA Astrophysics Data System (ADS)
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-09-29
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
Characterization of an Isolated Kidney's Vasculature for Use in Bio-Thermal Modeling
NASA Astrophysics Data System (ADS)
Payne, Allison H.; Parker, Dennis L.; Moellmer, Jeff; Roemer, Robert B.; Clifford, Sarah
2007-05-01
Accurate bio-thermal modeling requires site-specific modeling of discrete vascular anatomy. Presented herewith are several steps that have been developed to describe the vessel network of isolated canine and bovine kidneys. These perfused, isolated kidneys provide an environment to repeatedly test and improve acquisition methods to visualize the vascular anatomy, as well as providing a method to experimentally validate discrete vasculature thermal models. The organs are preserved using a previously developed methodology that keeps the vasculature intact, allowing for the organ to be perfused. It also allows for the repeated fixation and re-hydration of the same organ, permitting the comparison of various methods and models. The organ extraction, alcohol preservation, and perfusion of the organ are described. The vessel locations were obtained through a high-resolution time-of-flight (TOF) magnetic resonance angiography (MRA) technique. Sequential improvements of both the experimental setup used for this acquisition, as well as MR sequence development are presented. The improvements in MR acquisition and experimental setup improved the number of vessels seen in both the raw data and segmented images by 50%. An automatic vessel centerline extraction algorithm describes both vessel location and genealogy. Centerline descriptions also allows for vessel diameter and flow rate determination, providing valuable input parameters for the discrete vascular thermal model. Characterized vessels networks of both canine and bovine kidneys are presented. While these tools have been developed in an ex vivo environment, all steps can be applied to in vivo applications.
A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth
Macklin, Paul
2011-01-01
In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth. PMID:21331304
The role of continuity in residual-based variational multiscale modeling of turbulence
NASA Astrophysics Data System (ADS)
Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.
2008-02-01
This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.
Surrogate-Based Optimization of Biogeochemical Transport Models
NASA Astrophysics Data System (ADS)
Prieß, Malte; Slawig, Thomas
2010-09-01
First approaches towards a surrogate-based optimization method for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Oschlies and Garcon [1], simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. A key issue is to minimize the misfit between the model output and given observational data. Our aim is to reduce the overall optimization cost avoiding expensive function and derivative evaluations by using a surrogate model replacing the high-fidelity model in focus. This in particular becomes important for more complex three-dimensional models. We analyse a coarsening in the discretization of the model equations as one way to create such a surrogate. Here the numerical stability crucially depends upon the discrete stepsize in time and space and the biochemical terms. We show that for given model parameters the level of grid coarsening can be choosen accordingly yielding a stable and satisfactory surrogate. As one example of a surrogate-based optimization method we present results of the Aggressive Space Mapping technique (developed by John W. Bandler [2, 3]) applied to the optimization of this one-dimensional biogeochemical transport model.
A Model for Deformation and Fragmentation in Crushable Brittle Solids
2008-03-01
diameter 7.94mm, was formed from an alloy of mass density 18 690 kg/m3. The concrete target was SAC-7 composition [6], with no reinforcing bars, 25.4mm...normalized density of micro- cracks in the substance. Similar approaches, albeit with various different ways of relating continuum damage variables to...This technique is naturally more realistic than element deletion for modeling discrete cracks , and is thought to be particularly useful for
Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N
2015-12-01
Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
Setting up virgin stress conditions in discrete element models.
Rojek, J; Karlis, G F; Malinowski, L J; Beer, G
2013-03-01
In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain.
Setting up virgin stress conditions in discrete element models
Rojek, J.; Karlis, G.F.; Malinowski, L.J.; Beer, G.
2013-01-01
In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain. PMID:27087731
Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer.
Khalid, Samra; Hanif, Rumeza; Tareen, Samar H K; Siddiqa, Amnah; Bibi, Zurah; Ahmad, Jamil
2016-01-01
Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER- α ) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. In-silico based discrete and continuous modeling of ER- α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER- α , IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER- α , IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC.
Higher modes of the Orr-Sommerfeld problem for boundary layer flows
NASA Technical Reports Server (NTRS)
Lakin, W. D.; Grosch, C. E.
1983-01-01
The discrete spectrum of the Orr-Sommerfeld problem of hydrodynamic stability for boundary layer flows in semi-infinite regions is examined. Related questions concerning the continuous spectrum are also addressed. Emphasis is placed on the stability problem for the Blasius boundary layer profile. A general theoretical result is given which proves that the discrete spectrum of the Orr-Sommerfeld problem for boundary layer profiles (U(y), 0,0) has only a finite number of discrete modes when U(y) has derivatives of all orders. Details are given of a highly accurate numerical technique based on collocation with splines for the calculation of stability characteristics. The technique includes replacement of 'outer' boundary conditions by asymptotic forms based on the proper large parameter in the stability problem. Implementation of the asymptotic boundary conditions is such that there is no need to make apriori distinctions between subcases of the discrete spectrum or between the discrete and continuous spectrums. Typical calculations for the usual Blasius problem are presented.
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.
2004-01-01
This document summarizes the safety analysis performed on a Flight Guidance System (FGS) requirements model. In particular, the safety properties desired of the FGS model are identified and the presence of the safety properties in the model is formally verified. Chapter 1 provides an introduction to the entire project, while Chapter 2 gives a brief overview of the problem domain, the nature of accidents, model based development, and the four-variable model. Chapter 3 outlines the approach. Chapter 4 presents the results of the traditional safety analysis techniques and illustrates how the hazardous conditions associated with the system trace into specific safety properties. Chapter 5 presents the results of the formal methods analysis technique model checking that was used to verify the presence of the safety properties in the requirements model. Finally, Chapter 6 summarizes the main conclusions of the study, first and foremost that model checking is a very effective verification technique to use on discrete models with reasonable state spaces. Additional supporting details are provided in the appendices.
Analysis and Design of International Emission Trading Markets Applying System Dynamics Techniques
NASA Astrophysics Data System (ADS)
Hu, Bo; Pickl, Stefan
2010-11-01
The design and analysis of international emission trading markets is an important actual challenge. Time-discrete models are needed to understand and optimize these procedures. We give an introduction into this scientific area and present actual modeling approaches. Furthermore, we develop a model which is embedded in a holistic problem solution. Measures for energy efficiency are characterized. The economic time-discrete "cap-and-trade" mechanism is influenced by various underlying anticipatory effects. With a systematic dynamic approach the effects can be examined. First numerical results show that fair international emissions trading can only be conducted with the use of protective export duties. Furthermore a comparatively high price which evokes emission reduction inevitably has an inhibiting effect on economic growth according to our model. As it always has been expected it is not without difficulty to find a balance between economic growth and emission reduction. It can be anticipated using our System Dynamics model simulation that substantial changes must be taken place before international emissions trading markets can contribute to global GHG emissions mitigation.
Markov modeling and discrete event simulation in health care: a systematic comparison.
Standfield, Lachlan; Comans, Tracy; Scuffham, Paul
2014-04-01
The aim of this study was to assess if the use of Markov modeling (MM) or discrete event simulation (DES) for cost-effectiveness analysis (CEA) may alter healthcare resource allocation decisions. A systematic literature search and review of empirical and non-empirical studies comparing MM and DES techniques used in the CEA of healthcare technologies was conducted. Twenty-two pertinent publications were identified. Two publications compared MM and DES models empirically, one presented a conceptual DES and MM, two described a DES consensus guideline, and seventeen drew comparisons between MM and DES through the authors' experience. The primary advantages described for DES over MM were the ability to model queuing for limited resources, capture individual patient histories, accommodate complexity and uncertainty, represent time flexibly, model competing risks, and accommodate multiple events simultaneously. The disadvantages of DES over MM were the potential for model overspecification, increased data requirements, specialized expensive software, and increased model development, validation, and computational time. Where individual patient history is an important driver of future events an individual patient simulation technique like DES may be preferred over MM. Where supply shortages, subsequent queuing, and diversion of patients through other pathways in the healthcare system are likely to be drivers of cost-effectiveness, DES modeling methods may provide decision makers with more accurate information on which to base resource allocation decisions. Where these are not major features of the cost-effectiveness question, MM remains an efficient, easily validated, parsimonious, and accurate method of determining the cost-effectiveness of new healthcare interventions.
NASA Astrophysics Data System (ADS)
Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.
2015-06-01
A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been setup for two-dimensional (2-D) transport phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Efficient computational nonlinear dynamic analysis using modal modification response technique
NASA Astrophysics Data System (ADS)
Marinone, Timothy; Avitabile, Peter; Foley, Jason; Wolfson, Janet
2012-08-01
Generally, structural systems contain nonlinear characteristics in many cases. These nonlinear systems require significant computational resources for solution of the equations of motion. Much of the model, however, is linear where the nonlinearity results from discrete local elements connecting different components together. Using a component mode synthesis approach, a nonlinear model can be developed by interconnecting these linear components with highly nonlinear connection elements. The approach presented in this paper, the Modal Modification Response Technique (MMRT), is a very efficient technique that has been created to address this specific class of nonlinear problem. By utilizing a Structural Dynamics Modification (SDM) approach in conjunction with mode superposition, a significantly smaller set of matrices are required for use in the direct integration of the equations of motion. The approach will be compared to traditional analytical approaches to make evident the usefulness of the technique for a variety of test cases.
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng
2018-02-01
Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.
NASA Technical Reports Server (NTRS)
1978-01-01
The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.
FDDO and DSMC analyses of rarefied gas flow through 2D nozzles
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.
Soria Morillo, Luis M; Alvarez-Garcia, Juan A; Gonzalez-Abril, Luis; Ortega Ramírez, Juan A
2016-07-15
In this paper a new approach is applied to the area of marketing research. The aim of this paper is to recognize how brain activity responds during the visualization of short video advertisements using discrete classification techniques. By means of low cost electroencephalography devices (EEG), the activation level of some brain regions have been studied while the ads are shown to users. We may wonder about how useful is the use of neuroscience knowledge in marketing, or what could provide neuroscience to marketing sector, or why this approach can improve the accuracy and the final user acceptance compared to other works. By using discrete techniques over EEG frequency bands of a generated dataset, C4.5, ANN and the new recognition system based on Ameva, a discretization algorithm, is applied to obtain the score given by subjects to each TV ad. The proposed technique allows to reach more than 75 % of accuracy, which is an excellent result taking into account the typology of EEG sensors used in this work. Furthermore, the time consumption of the algorithm proposed is reduced up to 30 % compared to other techniques presented in this paper. This bring about a battery lifetime improvement on the devices where the algorithm is running, extending the experience in the ubiquitous context where the new approach has been tested.
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor
2018-04-01
Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.
The Priority Inversion Problem and Real-Time Symbolic Model Checking
1993-04-23
real time systems unpredictable in subtle ways. This makes it more difficult to implement and debug such systems. Our work discusses this problem and presents one possible solution. The solution is formalized and verified using temporal logic model checking techniques. In order to perform the verification, the BDD-based symbolic model checking algorithm given in previous works was extended to handle real-time properties using the bounded until operator. We believe that this algorithm, which is based on discrete time, is able to handle many real-time properties
Combustion and flow modelling applied to the OMV VTE
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.; Jeng, San-Mou
1990-01-01
A predictive tool for hypergolic bipropellant spray combustion and flow evolution in the OMV VTE (orbital maneuvering vehicle variable thrust engine) is described. It encompasses a computational technique for the gas phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging liquid hypergolic stream interactions. Emphasis is placed on the phenomenological modelling of the hypergolic liquid bipropellant gasification processes. An application to the OMV VTE combustion chamber is given in order to show some of the capabilities and inadequacies of this tool.
NASA Astrophysics Data System (ADS)
Espinosa, Christine; Lachaud, Frédéric; Limido, Jérome; Lacome, Jean-Luc; Bisson, Antoine; Charlotte, Miguel
2015-05-01
Energy absorption during crushing is evaluated using a thermodynamic based continuum damage model inspired from the Matzenmiller-Lubliner-Taylors model. It was found that for crash-worthiness applications, it is necessary to couple the progressive ruin of the material to a representation of the matter openings and debris generation. Element kill technique (erosion) and/or cohesive elements are efficient but not predictive. A technique switching finite elements into discrete particles at rupture is used to create debris and accumulated mater during the crushing of the structure. Switching criteria are evaluated using the contribution of the different ruin modes in the damage evolution, energy absorption, and reaction force generation.
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
Original data preprocessor for Femap/Nastran
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra
2016-12-01
Automatic data processing and visualization in the finite elements analysis of the structural problems is a long run concern in mechanical engineering. The paper presents the `common database' concept according to which the same information may be accessed from an analytical model, as well as from a numerical one. In this way, input data expressed as comma-separated-value (CSV) files are loaded into the Femap/Nastran environment using original API codes, being automatically generated: the geometry of the model, the loads and the constraints. The original API computer codes are general, being possible to generate the input data of any model. In the next stages, the user may create the discretization of the model, set the boundary conditions and perform a given analysis. If additional accuracy is needed, the analyst may delete the previous discretizations and using the same information automatically loaded, other discretizations and analyses may be done. Moreover, if new more accurate information regarding the loads or constraints is acquired, they may be modelled and then implemented in the data generating program which creates the `common database'. This means that new more accurate models may be easily generated. Other facility consists of the opportunity to control the CSV input files, several loading scenarios being possible to be generated in Femap/Nastran. In this way, using original intelligent API instruments the analyst is focused to accurately model the phenomena and on creative aspects, the repetitive and time-consuming activities being performed by the original computer-based instruments. Using this data processing technique we apply to the best Asimov's principle `minimum change required / maximum desired response'.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
A model of economic growth with physical and human capital: The role of time delays.
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2016-09-01
This article aims at analysing a two-sector economic growth model with discrete delays. The focus is on the dynamic properties of the emerging system. In particular, this study concentrates on the stability properties of the stationary solution, characterised by analytical results and geometrical techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge (through Hopf bifurcations). In addition, this article proposes some numerical simulations to illustrate the behaviour of the system when the stationary equilibrium is unstable.
Space construction base control system
NASA Technical Reports Server (NTRS)
1978-01-01
Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.
Modeling Abstraction and Simulation Techniques
2002-12-01
for data reduction on the patterns stored in normal database . In [58], J. Marin et al. proposed a hybrid model to profile user behavior by the...conv(Ad) as the feasible set 124 in the “surrogate” continuous state space. When the feasible set Ad is not a polyhedron , the set Ac = conv(Ad) may...and is not necessarily convex. Note also that the definition reduces to Ac = conv(Ad) when Ad is formed by all the discrete points in a polyhedron . Now
A discrete epidemic model for bovine Babesiosis disease and tick populations
NASA Astrophysics Data System (ADS)
Aranda, Diego F.; Trejos, Deccy Y.; Valverde, Jose C.
2017-06-01
In this paper, we provide and study a discrete model for the transmission of Babesiosis disease in bovine and tick populations. This model supposes a discretization of the continuous-time model developed by us previously. The results, here obtained by discrete methods as opposed to continuous ones, show that similar conclusions can be obtained for the discrete model subject to the assumption of some parametric constraints which were not necessary in the continuous case. We prove that these parametric constraints are not artificial and, in fact, they can be deduced from the biological significance of the model. Finally, some numerical simulations are given to validate the model and verify our theoretical study.
Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling
NASA Technical Reports Server (NTRS)
Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.
2010-01-01
NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand DES capabilities to address KSC's planning needs.
NASA Astrophysics Data System (ADS)
Aichi, M.; Tokunaga, T.
2006-12-01
In the fields that experienced both significant drawdown/land subsidence and the recovery of groundwater potential, temporal change of the effective stress in the clayey layers is not simple. Conducting consolidation tests of core samples is a straightforward approach to know the pre-consolidation stress. However, especially in the urban area, the cost of boring and the limitation of sites for boring make it difficult to carry out enough number of tests. Numerical simulation to reproduce stress history can contribute to selecting boring sites and to complement the results of the laboratory tests. To trace the effective stress profile in the clayey layers by numerical simulation, discretization in the clayey layers should be fine. At the same time, the size of the modeled domain should be large enough to calculate the effect of regional groundwater extraction. Here, we developed a new scheme to reduce memory consumption based on domain decomposition technique. A finite element model of coupled groundwater flow and land subsidence is used for the local model, and a finite difference groundwater flow model is used for the regional model. The local model is discretized to fine mesh in the clayey layers to reproduce the temporal change of pore pressure in the layers while the regional model is discretized to relatively coarse mesh to reproduce the effect of the regional groundwater extraction on the groundwater flow. We have tested this scheme by comparing the results obtained from this scheme with those from the finely gridded model for the entire calculation domain. The difference between the results of these models was small enough and our new scheme can be used for the practical problem.
Robust preview control for a class of uncertain discrete-time systems with time-varying delay.
Li, Li; Liao, Fucheng
2018-02-01
This paper proposes a concept of robust preview tracking control for uncertain discrete-time systems with time-varying delay. Firstly, a model transformation is employed for an uncertain discrete system with time-varying delay. Then, the auxiliary variables related to the system state and input are introduced to derive an augmented error system that includes future information on the reference signal. This leads to the tracking problem being transformed into a regulator problem. Finally, for the augmented error system, a sufficient condition of asymptotic stability is derived and the preview controller design method is proposed based on the scaled small gain theorem and linear matrix inequality (LMI) technique. The method proposed in this paper not only solves the difficulty problem of applying the difference operator to the time-varying matrices but also simplifies the structure of the augmented error system. The numerical simulation example also illustrates the effectiveness of the results presented in the paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.
Santos, Rui; Pombo, Nuno; Flórez-Revuelta, Francisco
2018-01-01
An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT). PMID:29315232
Determination of rotor harmonic blade loads from acoustic measurements
NASA Technical Reports Server (NTRS)
Kasper, P. K.
1975-01-01
The magnitude of discrete frequency sound radiated by a rotating blade is strongly influenced by the presence of a nonuniform distribution of aerodynamic forces over the rotor disk. An analytical development and experimental results are provided for a technique by which harmonic blade loads are derived from acoustic measurements. The technique relates, on a one-to-one basis, the discrete frequency sound harmonic amplitudes measured at a point on the axis of rotation to the blade-load harmonic amplitudes. This technique was applied to acoustic data from two helicopter types and from a series of test results using the NASA-Langley Research Center rotor test facility. The inferred blade-load harmonics for the cases considered tended to follow an inverse power law relationship with harmonic blade-load number. Empirical curve fits to the data showed the harmonic fall-off rate to be in the range of 6 to 9 db per octave of harmonic order. These empirical relationships were subsequently used as input data in a compatible far field rotational noise prediction model. A comparison between predicted and measured off-axis sound harmonic levels is provided for the experimental cases considered.
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
Adaptive model reduction for continuous systems via recursive rational interpolation
NASA Technical Reports Server (NTRS)
Lilly, John H.
1994-01-01
A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.
Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS
NASA Technical Reports Server (NTRS)
Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.
1979-01-01
The chemical structures of thin SiO2 films, thin native oxides of GaAs (20-30 A), and the respective oxide-semiconductor interfaces, have been investigated using high-resolution X-ray photoelectron spectroscopy. Depth profiles of these structures have been obtained using argon ion bombardment and wet chemical etching techniques. The chemical destruction induced by the ion profiling method is shown by direct comparison of these methods for identical samples. Fourier transform data-reduction methods based on linear prediction with maximum entropy constraints are used to analyze the discrete structure in oxides and substrates. This discrete structure is interpreted by means of a structure-induced charge-transfer model.
Experimental study on discretely modulated continuous-variable quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yong; Zou Hongxin; Chen Pingxing
2010-08-15
We present a discretely modulated continuous-variable quantum key distribution system in free space by using strong coherent states. The amplitude noise in the laser source is suppressed to the shot-noise limit by using a mode cleaner combined with a frequency shift technique. Also, it is proven that the phase noise in the source has no impact on the final secret key rate. In order to increase the encoding rate, we use broadband homodyne detectors and the no-switching protocol. In a realistic model, we establish a secret key rate of 46.8 kbits/s against collective attacks at an encoding rate of 10more » MHz for a 90% channel loss when the modulation variance is optimal.« less
The Spectrum of Mathematical Models.
ERIC Educational Resources Information Center
Karplus, Walter J.
1983-01-01
Mathematical modeling problems encountered in many disciplines are discussed in terms of the modeling process and applications of models. The models are classified according to three types of abstraction: continuous-space-continuous-time, discrete-space-continuous-time, and discrete-space-discrete-time. Limitations in different kinds of modeling…
The Critical Z-Invariant Ising Model via Dimers: Locality Property
NASA Astrophysics Data System (ADS)
Boutillier, Cédric; de Tilière, Béatrice
2011-01-01
We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776-1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409-439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409-439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3-4):379-413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3-4):487-518, 2007) and Kenyon (Invent Math 150(2):409-439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter's formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409-439, 2002).
Spectral decontamination of a real-time helicopter simulation
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.
1983-01-01
Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.
NASA Astrophysics Data System (ADS)
Wang, Haibo; Swee Poo, Gee
2004-08-01
We study the provisioning of virtual private network (VPN) service over WDM optical networks. For this purpose, we investigate the blocking performance of the hose model versus the pipe model for the provisioning. Two techniques are presented: an analytical queuing model and a discrete event simulation. The queuing model is developed from the multirate reduced-load approximation technique. The simulation is done with the OPNET simulator. Several experimental situations were used. The blocking probabilities calculated from the two approaches show a close match, indicating that the multirate reduced-load approximation technique is capable of predicting the blocking performance for the pipe model and the hose model in WDM networks. A comparison of the blocking behavior of the two models shows that the hose model has superior blocking performance as compared with pipe model. By and large, the blocking probability of the hose model is better than that of the pipe model by a few orders of magnitude, particularly at low load regions. The flexibility of the hose model allowing for the sharing of resources on a link among all connections accounts for its superior performance.
On the relationship of steady states of continuous and discrete models arising from biology.
Veliz-Cuba, Alan; Arthur, Joseph; Hochstetler, Laura; Klomps, Victoria; Korpi, Erikka
2012-12-01
For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.
Robust inference in discrete hazard models for randomized clinical trials.
Nguyen, Vinh Q; Gillen, Daniel L
2012-10-01
Time-to-event data in which failures are only assessed at discrete time points are common in many clinical trials. Examples include oncology studies where events are observed through periodic screenings such as radiographic scans. When the survival endpoint is acknowledged to be discrete, common methods for the analysis of observed failure times include the discrete hazard models (e.g., the discrete-time proportional hazards and the continuation ratio model) and the proportional odds model. In this manuscript, we consider estimation of a marginal treatment effect in discrete hazard models where the constant treatment effect assumption is violated. We demonstrate that the estimator resulting from these discrete hazard models is consistent for a parameter that depends on the underlying censoring distribution. An estimator that removes the dependence on the censoring mechanism is proposed and its asymptotic distribution is derived. Basing inference on the proposed estimator allows for statistical inference that is scientifically meaningful and reproducible. Simulation is used to assess the performance of the presented methodology in finite samples.
Application of radiosurgical techniques to produce a primate model of brain lesions
Kunimatsu, Jun; Miyamoto, Naoki; Ishikawa, Masayori; Shirato, Hiroki; Tanaka, Masaki
2015-01-01
Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130–150 Gy at ISO center) to the frontal eye field (FEF) of macaque monkeys using a clinical linear accelerator (LINAC). The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR) images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans. PMID:25964746
Optimization Techniques for Clustering,Connectivity, and Flow Problems in Complex Networks
2012-10-01
discrete optimization and for analysis of performance of algorithm portfolios; introducing a metaheuristic framework of variable objective search that...The results of empirical evaluation of the proposed algorithm are also included. 1.3 Theoretical analysis of heuristics and designing new metaheuristic ...analysis of heuristics for inapproximable problems and designing new metaheuristic approaches for the problems of interest; (IV) Developing new models
Software For Integer Programming
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1992-01-01
Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.
Modeling maintenance-strategies with rainbow nets
NASA Astrophysics Data System (ADS)
Johnson, Allen M., Jr.; Schoenfelder, Michael A.; Lebold, David
The Rainbow net (RN) modeling technique offers a promising alternative to traditional reliability modeling techniques. RNs are evaluated through discrete event simulation. Using specialized tokens to represent systems and faults, an RN models the fault-handling behavior of an inventory of systems produced over time. In addition, a portion of the RN represents system repair and the vendor's spare part production. Various dependability parameters are measured and used to calculate the impact of four variations of maintenance strategies. Input variables are chosen to demonstrate the technique. The number of inputs allowed to vary is intentionally constrained to limit the volume of data presented and to avoid overloading the reader with complexity. If only availability data were reviewed, it is possible that the conclusion might be drawn that both strategies are about the same and therefore the cheaper strategy from the vendor's perspective may be chosen. The richer set of metrics provided by the RN simulation gives greater insight into the problem, which leads to better decisions. By using RNs, the impact of several different variables is integrated.
Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.
Hua, Wei; Wang, Jiasong; Zhao, Jian
2014-01-01
Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Radulescu, E G; Wójcik, J; Lewin, P A; Nowicki, A
2003-06-01
To facilitate the implementation and verification of the new ultrasound hydrophone calibration techniques described in the companion paper (somewhere in this issue) a nonlinear propagation model was developed. A brief outline of the theoretical considerations is presented and the model's advantages and disadvantages are discussed. The results of simulations yielding spatial and temporal acoustic pressure amplitude are also presented and compared with those obtained using KZK and Field II models. Excellent agreement between all models is evidenced. The applicability of the model in discrete wideband calibration of hydrophones is documented in the companion paper somewhere in this volume.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
Georgouli, Konstantia; Martinez Del Rincon, Jesus; Koidis, Anastasios
2017-02-15
The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
2016-05-23
general model for heterogeneous granular media under compaction and (ii) the lack of a reliable multiscale discrete -to-continuum framework for...dynamics. These include a continuum- discrete model of heat dissipation/diffusion and a continuum- discrete model of compaction of a granular material with...the lack of a general model for het- erogeneous granular media under compac- tion and (ii) the lack of a reliable multi- scale discrete -to-continuum
Hedenstierna, Sofia; Halldin, Peter
2008-04-15
A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.
Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Sethian, James A.
1997-01-01
Borrowing from techniques developed for conservation law equations, numerical schemes which discretize the Hamilton-Jacobi (H-J), level set, and Eikonal equations on triangulated domains are presented. The first scheme is a provably monotone discretization for certain forms of the H-J equations. Unfortunately, the basic scheme lacks proper Lipschitz continuity of the numerical Hamiltonian. By employing a virtual edge flipping technique, Lipschitz continuity of the numerical flux is restored on acute triangulations. Next, schemes are introduced and developed based on the weaker concept of positive coefficient approximations for homogeneous Hamiltonians. These schemes possess a discrete maximum principle on arbitrary triangulations and naturally exhibit proper Lipschitz continuity of the numerical Hamiltonian. Finally, a class of Petrov-Galerkin approximations are considered. These schemes are stabilized via a least-squares bilinear form. The Petrov-Galerkin schemes do not possess a discrete maximum principle but generalize to high order accuracy.
Reducing Neuronal Networks to Discrete Dynamics
Terman, David; Ahn, Sungwoo; Wang, Xueying; Just, Winfried
2008-01-01
We consider a general class of purely inhibitory and excitatory-inhibitory neuronal networks, with a general class of network architectures, and characterize the complex firing patterns that emerge. Our strategy for studying these networks is to first reduce them to a discrete model. In the discrete model, each neuron is represented as a finite number of states and there are rules for how a neuron transitions from one state to another. In this paper, we rigorously demonstrate that the continuous neuronal model can be reduced to the discrete model if the intrinsic and synaptic properties of the cells are chosen appropriately. In a companion paper [1], we analyze the discrete model. PMID:18443649
Reduced-order model for dynamic optimization of pressure swing adsorption processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, A.; Biegler, L.; Zitney, S.
2007-01-01
Over the past decades, pressure swing adsorption (PSA) processes have been widely used as energy-efficient gas and liquid separation techniques, especially for high purity hydrogen purification from refinery gases. The separation processes are based on solid-gas equilibrium and operate under periodic transient conditions. Models for PSA processes are therefore multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep concentrations and temperature fronts moving with time. As a result, the optimization of such systems for either designmore » or operation represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approach to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. The study develops a reduced-order model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. Initially, a representative ensemble of solutions of the dynamic PDE system is constructed by solving a higher-order discretization of the model using the method of lines, a two-stage approach that discretizes the PDEs in space and then integrates the resulting DAEs over time. Next, the ROM method applies the Karhunen-Loeve expansion to derive a small set of empirical eigenfunctions (POD modes) which are used as basis functions within a Galerkin's projection framework to derive a low-order DAE system that accurately describes the dominant dynamics of the PDE system. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization before and making optimization problem computationally-efficient. The method has been applied to the dynamic coupled PDE-based model of a two-bed four-step PSA process for separation of hydrogen from methane. Separate ROMs have been developed for each operating step with different POD modes for each of them. A significant reduction in the order of the number of states has been achieved. The gas-phase mole fraction, solid-state loading and temperature profiles from the low-order ROM and from the high-order simulations have been compared. Moreover, the profiles for a different set of inputs and parameter values fed to the same ROM were compared with the accurate profiles from the high-order simulations. Current results indicate the proposed ROM methodology as a promising surrogate modeling technique for cost-effective optimization purposes. Moreover, deviations from the ROM for different set of inputs and parameters suggest that a recalibration of the model is required for the optimization studies. Results for these will also be presented with the aforementioned results.« less
An advanced approach for computer modeling and prototyping of the human tooth.
Chang, Kuang-Hua; Magdum, Sheetalkumar; Khera, Satish C; Goel, Vijay K
2003-05-01
This paper presents a systematic and practical method for constructing accurate computer and physical models that can be employed for the study of human tooth mechanics. The proposed method starts with a histological section preparation of a human tooth. Through tracing outlines of the tooth on the sections, discrete points are obtained and are employed to construct B-spline curves that represent the exterior contours and dentino-enamel junction (DEJ) of the tooth using a least square curve fitting technique. The surface skinning technique is then employed to quilt the B-spline curves to create a smooth boundary and DEJ of the tooth using B-spline surfaces. These surfaces are respectively imported into SolidWorks via its application protocol interface to create solid models. The solid models are then imported into Pro/MECHANICA Structure for finite element analysis (FEA). The major advantage of the proposed method is that it first generates smooth solid models, instead of finite element models in discretized form. As a result, a more advanced p-FEA can be employed for structural analysis, which usually provides superior results to traditional h-FEA. In addition, the solid model constructed is smooth and can be fabricated with various scales using the solid freeform fabrication technology. This method is especially useful in supporting bioengineering applications, where the shape of the object is usually complicated. A human maxillary second molar is presented to illustrate and demonstrate the proposed method. Note that both the solid and p-FEA models of the molar are presented. However, comparison between p- and h-FEA models is out of the scope of the paper.
Discrete Latent Markov Models for Normally Distributed Response Data
ERIC Educational Resources Information Center
Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.
2005-01-01
Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost
2017-04-01
Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Matrix models for the black hole information paradox
NASA Astrophysics Data System (ADS)
Iizuka, Norihiro; Okuda, Takuya; Polchinski, Joseph
2010-02-01
We study various matrix models with a charge-charge interaction as toy models of the gauge dual of the AdS black hole. These models show a continuous spectrum and power-law decay of correlators at late time and infinite N, implying information loss in this limit. At finite N, the spectrum is discrete and correlators have recurrences, so there is no information loss. We study these models by a variety of techniques, such as Feynman graph expansion, loop equations, and sum over Young tableaux, and we obtain explicitly the leading 1/ N 2 corrections for the spectrum and correlators. These techniques are suggestive of possible dual bulk descriptions. At fixed order in 1/ N 2 the spectrum remains continuous and no recurrence occurs, so information loss persists. However, the interchange of the long-time and large- N limits is subtle and requires further study.
USMC Inventory Control Using Optimization Modeling and Discrete Event Simulation
2016-09-01
release. Distribution is unlimited. USMC INVENTORY CONTROL USING OPTIMIZATION MODELING AND DISCRETE EVENT SIMULATION by Timothy A. Curling...USING OPTIMIZATION MODELING AND DISCRETE EVENT SIMULATION 5. FUNDING NUMBERS 6. AUTHOR(S) Timothy A. Curling 7. PERFORMING ORGANIZATION NAME(S...optimization and discrete -event simulation. This construct can potentially provide an effective means in improving order management decisions. However
Monitoring a Complex Physical System using a Hybrid Dynamic Bayes Net
NASA Technical Reports Server (NTRS)
Lerner, Uri; Moses, Brooks; Scott, Maricia; McIlraith, Sheila; Keller, Daphne
2005-01-01
The Reverse Water Gas Shift system (RWGS) is a complex physical system designed to produce oxygen from the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without human supervision, thus requiring a reliable automated system for monitoring and control. The RWGS presents many challenges typical of real-world systems, including: noisy and biased sensors, nonlinear behavior, effects that are manifested over different time granularities, and unobservability of many important quantities. In this paper we model the RWGS using a hybrid (discrete/continuous) Dynamic Bayesian Network (DBN), where the state at each time slice contains 33 discrete and 184 continuous variables. We show how the system state can be tracked using probabilistic inference over the model. We discuss how to deal with the various challenges presented by the RWGS, providing a suite of techniques that are likely to be useful in a wide range of applications. In particular, we describe a general framework for dealing with nonlinear behavior using numerical integration techniques, extending the successful Unscented Filter. We also show how to use a fixed-point computation to deal with effects that develop at different time scales, specifically rapid changes occuring during slowly changing processes. We test our model using real data collected from the RWGS, demonstrating the feasibility of hybrid DBNs for monitoring complex real-world physical systems.
The use of discrete-event simulation modelling to improve radiation therapy planning processes.
Werker, Greg; Sauré, Antoine; French, John; Shechter, Steven
2009-07-01
The planning portion of the radiation therapy treatment process at the British Columbia Cancer Agency is efficient but nevertheless contains room for improvement. The purpose of this study is to show how a discrete-event simulation (DES) model can be used to represent this complex process and to suggest improvements that may reduce the planning time and ultimately reduce overall waiting times. A simulation model of the radiation therapy (RT) planning process was constructed using the Arena simulation software, representing the complexities of the system. Several types of inputs feed into the model; these inputs come from historical data, a staff survey, and interviews with planners. The simulation model was validated against historical data and then used to test various scenarios to identify and quantify potential improvements to the RT planning process. Simulation modelling is an attractive tool for describing complex systems, and can be used to identify improvements to the processes involved. It is possible to use this technique in the area of radiation therapy planning with the intent of reducing process times and subsequent delays for patient treatment. In this particular system, reducing the variability and length of oncologist-related delays contributes most to improving the planning time.
Mississippi River streamflow measurement techniques at St. Louis, Missouri
Wastson, Chester C.; Holmes, Robert R.; Biedenham, David S.
2013-01-01
Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.
Vectorial finite elements for solving the radiative transfer equation
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.
2018-06-01
The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.
Marshall, Brendan; Franklyn-Miller, Andrew; Moran, Kieran; King, Enda; Richter, Chris; Gore, Shane; Strike, Siobhán; Falvey, Éanna
2015-01-01
While measures of asymmetry may provide a means of identifying individuals predisposed to injury, normative asymmetry values for challenging sport specific movements in elite athletes are currently lacking in the literature. In addition, previous studies have typically investigated symmetry using discrete point analyses alone. This study examined biomechanical symmetry in elite rugby union players using both discrete point and continuous data analysis techniques. Twenty elite injury free international rugby union players (mean ± SD: age 20.4 ± 1.0 years; height 1.86 ± 0.08 m; mass 98.4 ± 9.9 kg) underwent biomechanical assessment. A single leg drop landing, a single leg hurdle hop, and a running cut were analysed. Peak joint angles and moments were examined in the discrete point analysis while analysis of characterising phases (ACP) techniques were used to examine the continuous data. Dominant side was compared to non-dominant side using dependent t-tests for normally distributed data or Wilcoxon signed-rank test for non-normally distributed data. The significance level was set at α = 0.05. The majority of variables were found to be symmetrical with a total of 57/60 variables displaying symmetry in the discrete point analysis and 55/60 in the ACP. The five variables that were found to be asymmetrical were hip abductor moment in the drop landing (p = 0.02), pelvis lift/drop in the drop landing (p = 0.04) and hurdle hop (p = 0.02), ankle internal rotation moment in the cut (p = 0.04) and ankle dorsiflexion angle also in the cut (p = 0.01). The ACP identified two additional asymmetries not identified in the discrete point analysis. Elite injury free rugby union players tended to exhibit bi-lateral symmetry across a range of biomechanical variables in a drop landing, hurdle hop and cut. This study provides useful normative values for inter-limb symmetry in these movement tests. When examining symmetry it is recommended to incorporate continuous data analysis techniques rather than a discrete point analysis alone; a discrete point analysis was unable to detect two of the five asymmetries identified.
Mathematical Modelling for Patient Selection in Proton Therapy.
Mee, T; Kirkby, N F; Kirkby, K J
2018-05-01
Proton beam therapy (PBT) is still relatively new in cancer treatment and the clinical evidence base is relatively sparse. Mathematical modelling offers assistance when selecting patients for PBT and predicting the demand for service. Discrete event simulation, normal tissue complication probability, quality-adjusted life-years and Markov Chain models are all mathematical and statistical modelling techniques currently used but none is dominant. As new evidence and outcome data become available from PBT, comprehensive models will emerge that are less dependent on the specific technologies of radiotherapy planning and delivery. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bauer, Daniel J.; Curran, Patrick J.
2004-01-01
Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…
Integrating remote sensing and terrain data in forest fire modeling
NASA Astrophysics Data System (ADS)
Medler, Michael Johns
Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.
NASA Astrophysics Data System (ADS)
Herrera, I.; Herrera, G. S.
2015-12-01
Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
Nonlinear Maps for Design of Discrete Time Models of Neuronal Network Dynamics
2016-02-29
Performance/Technic~ 02-01-2016- 02-29-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nonlinear Maps for Design of Discrete -Time Models of Neuronal...neuronal model in the form of difference equations that generates neuronal states in discrete moments of time. In this approach, time step can be made...propose to use modern DSP ideas to develop new efficient approaches to the design of such discrete -time models for studies of large-scale neuronal
Nonlinear Maps for Design of Discrete-Time Models of Neuronal Network Dynamics
2016-03-31
2016 Performance/Technic~ 03-01-2016- 03-31-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nonlinear Maps for Design of Discrete -Time Models of...simulations is to design a neuronal model in the form of difference equations that generates neuronal states in discrete moments of time. In this...responsive tiring patterns. We propose to use modern DSP ideas to develop new efficient approaches to the design of such discrete -time models for
Modeling of brittle-viscous flow using discrete particles
NASA Astrophysics Data System (ADS)
Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.
2017-04-01
Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the range of viscosities. For identical pressure and strain rate, an order of magnitude range in viscosity can be investigated. The extensive material testing indicates that DEM particles interacting by a combination of elastic repulsion and dashpots can be used to model viscous flows. This allows us to exploit the fracturing capabilities of the discrete element methods and study systems that involve both viscous flow and brittle fracturing. However, the small viscosity range achievable using this approach does constraint the applicability for systems where larger viscosity ranges are required, such as folding of viscous layers of contrasting viscosities. References: Abe, S., Place, D., & Mora, P. (2004). A parallel implementation of the lattice solid model for the simulation of rock mechanics and earthquake dynamics. PAGEOPH, 161(11-12), 2265-2277. http://doi.org/10.1007/s00024-004-2562-x Abe, S., and J. L. Urai (2012), Discrete element modeling of boudinage: Insights on rock rheology, matrix flow, and evolution of geometry, JGR., 117, B01407, doi:10.1029/2011JB00855
Joint modeling of longitudinal data and discrete-time survival outcome.
Qiu, Feiyou; Stein, Catherine M; Elston, Robert C
2016-08-01
A predictive joint shared parameter model is proposed for discrete time-to-event and longitudinal data. A discrete survival model with frailty and a generalized linear mixed model for the longitudinal data are joined to predict the probability of events. This joint model focuses on predicting discrete time-to-event outcome, taking advantage of repeated measurements. We show that the probability of an event in a time window can be more precisely predicted by incorporating the longitudinal measurements. The model was investigated by comparison with a two-step model and a discrete-time survival model. Results from both a study on the occurrence of tuberculosis and simulated data show that the joint model is superior to the other models in discrimination ability, especially as the latent variables related to both survival times and the longitudinal measurements depart from 0. © The Author(s) 2013.
From Classical to Quantum: New Canonical Tools for the Dynamics of Gravity
NASA Astrophysics Data System (ADS)
Höhn, P. A.
2012-05-01
In a gravitational context, canonical methods offer an intuitive picture of the dynamics and simplify an identification of the degrees of freedom. Nevertheless, extracting dynamical information from background independent approaches to quantum gravity is a highly non-trivial challenge. In this thesis, the conundrum of (quantum) gravitational dynamics is approached from two different directions by means of new canonical tools. This thesis is accordingly divided into two parts: In the first part, a general canonical formalism for discrete systems featuring a variational action principle is developed which is equivalent to the covariant formulation following directly from the action. This formalism can handle evolving phase spaces and is thus appropriate for describing evolving lattices. Attention will be devoted to a characterization of the constraints, symmetries and degrees of freedom appearing in such discrete systems which, in the case of evolving phase spaces, is time step dependent. The advantage of this formalism is that it does not depend on the particular discretization and, hence, is suitable for coarse graining procedures. This formalism is applicable to discrete mechanics, lattice field theories and discrete gravity models---underlying some approaches to quantum gravity---and, furthermore, may prove useful for numerical imple mentations. For concreteness, these new tools are employed to formulate Regge Calculus canonically as a theory of the dynamics of discrete hypersurfaces in discrete spacetimes, thereby removing a longstanding obstacle to connecting covariant simplicial gravity models with canonical frameworks. This result is interesting in view of several background independent approaches to quantum gravity. In addition, perturbative expansions around symmetric background solutions of Regge Calculus are studied up to second order. Background gauge modes generically become propagating at second order as a consequence of a symmetry breaking. In the second part of this thesis, the paradigm of relational dynamics is considered. Dynamical observables in gravity are relational. Unfortunately, their construction and evaluation is notoriously difficult, especially in the quantum theory. An effective canonical framework is devised which permits to evaluate the semiclassical relational dynamics of constrained quantum systems by sidestepping technical problems associated with explicit constructions of physical Hilbert spaces. This effective approach is well-geared for addressing the concept of relational evolution in general quantum cosmological models since it (i) allows to depart from idealized relational `clock references’ and, instead, to employ generic degrees of freedom as imperfect relational `clocks’, (ii) enables one to systematically switch between different such `clocks’ and (iii) yields a consistent (temporally) local time evolution with transient observables so long as semiclassicality holds. These techniques are illustrated by toy models and, finally, are applied to a non-integrable cosmological model. It is argued that relational evolution is generically only a transient and semiclassical phenomenon
ERIC Educational Resources Information Center
Kim, Jinok; Chung, Gregory K. W. K.
2012-01-01
In this study we compared the effects of two math game designs on math and game performance, using discrete-time survival analysis (DTSA) to model players' risk of not advancing to the next level in the game. 137 students were randomly assigned to two game conditions. The game covered the concept of a unit and the addition of like-sized fractional…
Development of Multiobjective Optimization Techniques for Sonic Boom Minimization
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.
1996-01-01
A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.
NASA Technical Reports Server (NTRS)
Kim, Jonnathan H.
1995-01-01
Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).
Stochastic series expansion simulation of the t -V model
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Troyer, Matthias
2016-04-01
We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.
From discrete auroral arcs to the magnetospheric generator: numerical model and case study
NASA Astrophysics Data System (ADS)
Lamy, H.; Echim, M.; Cessateur, G.; Simon Wedlund, C.; Gustavsson, B.; Maggiolo, R.; Gunell, H.; Darrouzet, F.; De Keyser, J.
2017-12-01
We discuss an analysis method developed to estimate some of the properties of auroral generators (electron density, ne and temperature, Te), from ionospheric observations of the energy flux of precipitating electrons, e, measured across an auroral arc. The method makes use of a quasi-static magnetosphere-ionosphere coupling model. Assuming that the generator is a magnetospheric plasma interface, one obtains a parametric description of the generator electric field as a function of the kinetic and MHD properties of the interface. This description of the generator is introduced in a stationary M-I coupling model based on the current continuity in the topside ionosphere (Echim et al, 2007). The model is run iteratively for typical values of the magnetospheric ne and Te that are adjusted until the precipitating energy flux ɛ provided by the model at ionospheric altitudes fits the observations. The latter can be provided either in-situ by spacecraft measurements or remotely from optical ground-based observations. The method is illustrated by using the precipitating energy flux observed in-situ by DMSP on April 28, 2001, above a discrete auroral arc. For this particular date we have been able to compare the generator properties determined with our method with actual magnetospheric in-situ data provided by Cluster. The results compare very well and hence validate the method. The methodology is then applied on the energy flux of precipitating electrons estimated from optical images of a discrete auroral arc obtained simultaneously with the CCD cameras of the ALIS (Auroral Large Imaging System) network located in Scandinavia on 5 March 2008 (Simon Wedlund et al, 2013). Tomography-like techniques are used to retrieve the three-dimensional volume emission rates at 4278 Å from which the energy spectra of precipitating magnetospheric electrons can be further derived. These spectra are obtained along and across the arc, with a spatial resolution of approximately 3 km and provide E0, the characteristic energy and ɛ, the total flux energy of precipitating electrons. The generator properties are then estimated using the iterative technique validated with data from the DMSP-Cluster conjunction.
Modeling and control of fuel cell based distributed generation systems
NASA Astrophysics Data System (ADS)
Jung, Jin Woo
This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.
Numerical treatment of a geometrically nonlinear planar Cosserat shell model
NASA Astrophysics Data System (ADS)
Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea
2016-05-01
We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.
A fully Sinc-Galerkin method for Euler-Bernoulli beam models
NASA Technical Reports Server (NTRS)
Smith, R. C.; Bowers, K. L.; Lund, J.
1990-01-01
A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.
Single step optimization of manipulator maneuvers with variable structure control
NASA Technical Reports Server (NTRS)
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
Low energy physical activity recognition system on smartphones.
Soria Morillo, Luis Miguel; Gonzalez-Abril, Luis; Ortega Ramirez, Juan Antonio; de la Concepcion, Miguel Angel Alvarez
2015-03-03
An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy.
A Wave Diagnostics in Geophysics: Algorithmic Extraction of Atmosphere Disturbance Modes
NASA Astrophysics Data System (ADS)
Leble, S.; Vereshchagin, S.
2018-04-01
The problem of diagnostics in geophysics is discussed and a proposal based on dynamic projecting operators technique is formulated. The general exposition is demonstrated by an example of symbolic algorithm for the wave and entropy modes in the exponentially stratified atmosphere. The novel technique is developed as a discrete version for the evolution operator and the corresponding projectors via discrete Fourier transformation. Its explicit realization for directed modes in exponential one-dimensional atmosphere is presented via the correspondent projection operators in its discrete version in terms of matrices with a prescribed action on arrays formed from observation tables. A simulation based on opposite directed (upward and downward) wave train solution is performed and the modes' extraction from a mixture is illustrated.
Comparative study of two approaches to model the offshore fish cages
NASA Astrophysics Data System (ADS)
Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei
2015-06-01
The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.
Refined discrete and empirical horizontal gradients in VLBI analysis
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Böhm, Johannes
2018-02-01
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these empirical a priori gradients slightly reduce (improve) the BLRs with respect to the estimation of gradients. In general, this paper addresses that a priori horizontal gradients are actually more important for VLBI analysis than previously assumed, as particularly the discrete model GRAD as well as the empirical model GPT3 are indeed able to refine and improve the results.
Discretization-dependent model for weakly connected excitable media
NASA Astrophysics Data System (ADS)
Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo
2018-03-01
Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.
Sarkar, Chinmoy; Abbasi, S A
2006-09-01
The strategies to prevent accidents from occurring in a process industry, or to minimize the harm if an accident does take place, always revolve around forecasting the likely accidents and their impacts. Based on the likely frequency and severity of the accidents, resources are committed towards preventing the accidents. Nearly all techniques of ranking hazardous units, be it the hazard and operability studies, fault tree analysis, hazard indice, etc.--qualitative as well as quantitative--depend essentially on the assessment of the likely frequency and the likely harm accidents in different units may cause. This fact makes it exceedingly important that the forecasting the accidents and their likely impact is done as accurately as possible. In the present study we introduce a new approach to accident forecasting based on the discrete modeling paradigm of cellular automata. In this treatment an accident is modeled as a self-evolving phenomena, the impact of which is strongly influenced by the size, nature, and position of the environmental components which lie in the vicinity of the accident site. The outward propagation of the mass, energy and momentum from the accident epicenter is modeled as a fast diffusion process occurring in discrete space-time coordinates. The quantum of energy and material that would flow into each discrete space element (cell) due to the accidental release is evaluated and the degree of vulnerability posed to the receptors if present in the cell is measured at the end of each time element. This approach is able to effectively take into account the modifications in the flux of energy and material which occur as a result of the heterogeneous environment prevailing between the accident epicenter and the receptor. Consequently, more realistic accident scenarios are generated than possible with the prevailing techniques. The efficacy of the approach has been illustrated with case studies.
Application of an enriched FEM technique in thermo-mechanical contact problems
NASA Astrophysics Data System (ADS)
Khoei, A. R.; Bahmani, B.
2018-02-01
In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.
Anticipation of the landing shock phenomenon in flight simulation
NASA Technical Reports Server (NTRS)
Mcfarland, Richard E.
1987-01-01
An aircraft landing may be described as a controlled crash because a runway surface is intercepted. In a simulation model the transition from aerodynamic flight to weight on wheels involves a single computational cycle during which stiff differential equations are activated; with a significant probability these initial conditions are unrealistic. This occurs because of the finite cycle time, during which large restorative forces will accompany unrealistic initial oleo compressions. This problem was recognized a few years ago at Ames Research Center during simulation studies of a supersonic transport. The mathematical model of this vehicle severely taxed computational resources, and required a large cycle time. The ground strike problem was solved by a described technique called anticipation equations. This extensively used technique has not been previously reported. The technique of anticipating a significant event is a useful tool in the general field of discrete flight simulation. For the differential equations representing a landing gear model stiffness, rate of interception and cycle time may combine to produce an unrealistic simulation of the continuum.
NASA Astrophysics Data System (ADS)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2017-12-01
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.
Developing integrated patient pathways using hybrid simulation
NASA Astrophysics Data System (ADS)
Zulkepli, Jafri; Eldabi, Tillal
2016-10-01
Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.
A methodological approach for using high-level Petri Nets to model the immune system response.
Pennisi, Marzio; Cavalieri, Salvatore; Motta, Santo; Pappalardo, Francesco
2016-12-22
Mathematical and computational models showed to be a very important support tool for the comprehension of the immune system response against pathogens. Models and simulations allowed to study the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to improve and optimize novel and existing drugs and vaccines. Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks to the introduction in the years of many features and extensions which lead to the born of "high level" PN. We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality of the approach we provide a simple model of the humoral immune system response that is able of reproducing some of the most complex well-known features of the adaptive response like memory and specificity features. The methodology we present has advantages of both the two classical approaches based on continuous and discrete models, since it allows to gain good level of granularity in the description of cells behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale models that integrate both signaling pathways (intra cellular) models and cellular (population) models built upon the same technique and software.
Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks
NASA Astrophysics Data System (ADS)
Fahrenthold, Eric; Lee, Sangyup
2015-06-01
The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.
A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves
NASA Astrophysics Data System (ADS)
Pecora, Nicolò; Sodini, Mauro
2018-05-01
This article considers a Cournot duopoly model in a continuous-time framework and analyze its dynamic behavior when the competitors are heterogeneous in determining their output decision. Specifically the model is expressed in the form of differential equations with discrete delays. The stability conditions of the unique Nash equilibrium of the system are determined and the emergence of Hopf bifurcations is shown. Applying some recent mathematical techniques (stability switching curves) and performing numerical simulations, the paper confirms how different time delays affect the stability of the economy.
2009-03-01
flu en ce Lo g Q ue ue 4 8 X 2 0 100 200 300 400 500 600 700 Row s Breusch - Pagan Response Residual Log Queue 48 X Squared Whole Model Actual...aircraft cannot be immediately inducted into the servicing inspection dock. This study uses discrete-event simulation techniques to test the...for a 10 percent boost in reliability (Hebert, 2007). With 2 C-5Bs and 1 C-5A retrofitted with RERP for test and evaluation purposes, Air Force
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
Radiated BPF sound measurement of centrifugal compressor
NASA Astrophysics Data System (ADS)
Ohuchida, S.; Tanaka, K.
2013-12-01
A technique to measure radiated BPF sound from an automotive turbocharger compressor impeller is proposed in this paper. Where there are high-level background noises in the measurement environment, it is difficult to discriminate the target component from the background. Since the effort of measuring BPF sound was taken in a room with such condition in this study, no discrete BPF peak was initially found on the sound spectrum. Taking its directionality into consideration, a microphone covered with a parabolic cone was selected and using this technique, the discrete peak of BPF was clearly observed. Since the level of measured sound was amplified due to the area-integration effect, correction was needed to obtain the real level. To do so, sound measurements with and without a parabolic cone were conducted for the fixed source and their level differences were used as correction factors. Consideration is given to the sound propagation mechanism utilizing measured BPF as well as the result of a simple model experiment. The present method is generally applicable to sound measurements conducted with a high level of background noise.
Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1994-01-01
The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.
Integrable discrete PT symmetric model.
Ablowitz, Mark J; Musslimani, Ziad H
2014-09-01
An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
Modeling Anti-Air Warfare With Discrete Event Simulation and Analyzing Naval Convoy Operations
2016-06-01
WARFARE WITH DISCRETE EVENT SIMULATION AND ANALYZING NAVAL CONVOY OPERATIONS by Ali E. Opcin June 2016 Thesis Advisor: Arnold H. Buss Co...REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MODELING ANTI-AIR WARFARE WITH DISCRETE EVENT...In this study, a discrete event simulation (DES) was built by modeling ships, and their sensors and weapons, to simulate convoy operations under
A Simulation of Alternatives for Wholesale Inventory Replenishment
2016-03-01
algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item
Noninvasive in vivo glucose sensing using an iris based technique
NASA Astrophysics Data System (ADS)
Webb, Anthony J.; Cameron, Brent D.
2011-03-01
Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.
Convergence behavior of delayed discrete cellular neural network without periodic coefficients.
Wang, Jinling; Jiang, Haijun; Hu, Cheng; Ma, Tianlong
2014-05-01
In this paper, we study convergence behaviors of delayed discrete cellular neural networks without periodic coefficients. Some sufficient conditions are derived to ensure all solutions of delayed discrete cellular neural network without periodic coefficients converge to a periodic function, by applying mathematical analysis techniques and the properties of inequalities. Finally, some examples showing the effectiveness of the provided criterion are given. Copyright © 2014 Elsevier Ltd. All rights reserved.
Animation Strategies for Smooth Transformations Between Discrete Lods of 3d Building Models
NASA Astrophysics Data System (ADS)
Kada, Martin; Wichmann, Andreas; Filippovska, Yevgeniya; Hermes, Tobias
2016-06-01
The cartographic 3D visualization of urban areas has experienced tremendous progress over the last years. An increasing number of applications operate interactively in real-time and thus require advanced techniques to improve the quality and time response of dynamic scenes. The main focus of this article concentrates on the discussion of strategies for smooth transformation between two discrete levels of detail (LOD) of 3D building models that are represented as restricted triangle meshes. Because the operation order determines the geometrical and topological properties of the transformation process as well as its visual perception by a human viewer, three different strategies are proposed and subsequently analyzed. The simplest one orders transformation operations by the length of the edges to be collapsed, while the other two strategies introduce a general transformation direction in the form of a moving plane. This plane either pushes the nodes that need to be removed, e.g. during the transformation of a detailed LOD model to a coarser one, towards the main building body, or triggers the edge collapse operations used as transformation paths for the cartographic generalization.
Linearized radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements
NASA Astrophysics Data System (ADS)
Molina García, Víctor; Sasi, Sruthy; Efremenko, Dmitry S.; Doicu, Adrian; Loyola, Diego
2018-07-01
In this paper, we describe several linearized radiative transfer models which can be used for the retrieval of cloud parameters from EPIC (Earth Polychromatic Imaging Camera) measurements. The approaches under examination are (1) the linearized forward approach, represented in this paper by the linearized discrete ordinate and matrix operator methods with matrix exponential, and (2) the forward-adjoint approach based on the discrete ordinate method with matrix exponential. To enhance the performance of the radiative transfer computations, the correlated k-distribution method and the Principal Component Analysis (PCA) technique are used. We provide a compact description of the proposed methods, as well as a numerical analysis of their accuracy and efficiency when simulating EPIC measurements in the oxygen A-band channel at 764 nm. We found that the computation time of the forward-adjoint approach using the correlated k-distribution method in conjunction with PCA is approximately 13 s for simultaneously computing the derivatives with respect to cloud optical thickness and cloud top height.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiang; Ju, Lili; Du, Qiang
2016-07-01
The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.
Evaluation of new techniques for the calculation of internal recirculating flows
NASA Technical Reports Server (NTRS)
Van Doormaal, J. P.; Turan, A.; Raithby, G. D.
1987-01-01
The performance of discrete methods for the prediction of fluid flows can be enhanced by improving the convergence rate of solvers and by increasing the accuracy of the discrete representation of the equations of motion. This paper evaluates the gains in solver performance that are available when various acceleration methods are applied. Various discretizations are also examined and two are recommended because of their accuracy and robustness. Insertion of the improved discretization and solver accelerator into a TEACH code, that has been widely applied to combustor flows, illustrates the substantial gains that can be achieved.
Fiber-dependent deautonomization of integrable 2D mappings and discrete Painlevé equations
NASA Astrophysics Data System (ADS)
Carstea, Adrian Stefan; Dzhamay, Anton; Takenawa, Tomoyuki
2017-10-01
It is well known that two-dimensional mappings preserving a rational elliptic fibration, like the Quispel-Roberts-Thompson mappings, can be deautonomized to discrete Painlevé equations. However, the dependence of this procedure on the choice of a particular elliptic fiber has not been sufficiently investigated. In this paper we establish a way of performing the deautonomization for a pair of an autonomous mapping and a fiber. Starting from a single autonomous mapping but varying the type of a chosen fiber, we obtain different types of discrete Painlevé equations using this deautonomization procedure. We also introduce a technique for reconstructing a mapping from the knowledge of its induced action on the Picard group and some additional geometric data. This technique allows us to obtain factorized expressions of discrete Painlevé equations, including the elliptic case. Further, by imposing certain restrictions on such non-autonomous mappings we obtain new and simple elliptic difference Painlevé equations, including examples whose symmetry groups do not appear explicitly in Sakai’s classification.
Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Thomas, James L. (Technical Monitor)
2003-01-01
The accuracy of the least-squares technique for gradient reconstruction on unstructured meshes is examined. While least-squares techniques produce accurate results on arbitrary isotropic unstructured meshes, serious difficulties exist for highly stretched meshes in the presence of surface curvature. In these situations, gradients are typically under-estimated by up to an order of magnitude. For vertex-based discretizations on triangular and quadrilateral meshes, and cell-centered discretizations on quadrilateral meshes, accuracy can be recovered using an inverse distance weighting in the least-squares construction. For cell-centered discretizations on triangles, both the unweighted and weighted least-squares constructions fail to provide suitable gradient estimates for highly stretched curved meshes. Good overall flow solution accuracy can be retained in spite of poor gradient estimates, due to the presence of flow alignment in exactly the same regions where the poor gradient accuracy is observed. However, the use of entropy fixes has the potential for generating large but subtle discretization errors.
Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model
NASA Astrophysics Data System (ADS)
De Rooij, R.; Graham, W. D.
2016-12-01
The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.
NASA Technical Reports Server (NTRS)
Barth, Timothy; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Several stabilized discretization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin discretization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobian linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. These variants have been implemented in the "ELF" library for which example calculations will be shown. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Some prevalent limiting strategies will be reviewed. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc. will be addressed as needed.
Modelling road accident blackspots data with the discrete generalized Pareto distribution.
Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María
2014-10-01
This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.
A discrete-space urban model with environmental amenities
Liaila Tajibaeva; Robert G. Haight; Stephen Polasky
2008-01-01
This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...
Wheat mill stream properties for discrete element method modeling
USDA-ARS?s Scientific Manuscript database
A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...
Variable selection in discrete survival models including heterogeneity.
Groll, Andreas; Tutz, Gerhard
2017-04-01
Several variable selection procedures are available for continuous time-to-event data. However, if time is measured in a discrete way and therefore many ties occur models for continuous time are inadequate. We propose penalized likelihood methods that perform efficient variable selection in discrete survival modeling with explicit modeling of the heterogeneity in the population. The method is based on a combination of ridge and lasso type penalties that are tailored to the case of discrete survival. The performance is studied in simulation studies and an application to the birth of the first child.
NASA Astrophysics Data System (ADS)
Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.
2018-04-01
Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.
Discrete Wavelet Transform for Fault Locations in Underground Distribution System
NASA Astrophysics Data System (ADS)
Apisit, C.; Ngaopitakkul, A.
2010-10-01
In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.
Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics
NASA Technical Reports Server (NTRS)
Roe, P. L.
1984-01-01
A possible technique is explored for extending to multidimensional flows some of the upwind-differencing methods that are highly successful in the one-dimensional case. Emphasis is on the two-dimensional case, and the flow domain is assumed to be divided into polygonal computational elements. Inside each element, the flow is represented by a local superposition of elementary solutions consisting of plane waves not necessarily aligned with the element boundaries.
Photon Strength Function at Low Energies in 95Mo
Wiedeking, M.; Bernstein, L. A.; Allmond, J. M.; ...
2014-05-01
A new and model-independent experimental method has been developed to determine the energy dependence of the photon strength function. It is designed to study statistical feeding from the quasi continuum to individual low-lying discrete levels. This new technique is presented and results for 95Mo are compared to data from the University of Oslo. In particular, questions regarding the existence of the low-energy enhancement in the photon strength function are addressed.
Analysis of the optimal laminated target made up of discrete set of materials
NASA Technical Reports Server (NTRS)
Aptukov, Valery N.; Belousov, Valentin L.
1991-01-01
A new class of problems was analyzed to estimate an optimal structure of laminated targets fabricated from the specified set of homogeneous materials. An approximate description of the perforation process is based on the model of radial hole extension. The problem is solved by using the needle-type variation technique. The desired optimization conditions and quantitative/qualitative estimations of optimal targets were obtained and are discussed using specific examples.
Monte Carlo Simulation of Effective Coordination Mechanisms for e-Commerce
NASA Astrophysics Data System (ADS)
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
2008-11-01
Making decisions in a dynamic environment is considered extremely important in today's market. Decision trees which can be used to model these systems, are not easily constructed and solved, especially in the case of infinite sets of consequences (for example, consider the case where only the mean and the variance of an outcome is known). In this work, discrete approximation and Monte Carlo techniques are used to overcome the aforementioned difficulties.
Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation
NASA Astrophysics Data System (ADS)
Yi, Ce
With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.
NASA Astrophysics Data System (ADS)
Chang, Insu
The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently, filtering techniques are investigated by using the D-SDRE technique. Detailed derivation of the D-SDRE-based filter (D-SDREF) is provided under the assumption of Gaussian noises and the stability condition of the error signal between the measured signal and the estimated signals is proven to be input-to-state stable. For the non-Gaussian distributed noises, we propose a filter by combining the D-SDREF and the particle filter (PF), named the combined D-SDRE/PF. Two algorithms for the filtering techniques are provided. Several filtering techniques are compared with challenging numerical examples to show the reliability and efficacy of the proposed D-SDREF and the combined D-SDRE/PF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddhu, M.; Jiang, M.Y.; Whitfield, D.L.
The original intention for this work was to impart the technology that was developed in the field of computational aeronautics to the field of computational physical oceanography. This technology transfer involved grid generation techniques and solution procedures to solve the governing equations over the grids thus generated. Specifically, boundary fitting non-orthogonal grids would be generated over a sphere taking into account the topography of the ocean floor and the topography of the continents. The solution methodology to be employed involved the application of an upwind, finite volume discretization procedure that uses higher order numerical fluxes at the cell faces tomore » discretize the governing equations and an implicit Newton relaxation technique to solve the discretized equations. This report summarizes the efforts put forth during the past three years to achieve these goals and indicates the future direction of this work as it is still an ongoing effort.« less
Automated vehicle guidance using discrete reference markers. [road surface steering techniques
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Assefi, T.; Lai, J. Y.
1979-01-01
Techniques for providing steering control for an automated vehicle using discrete reference markers fixed to the road surface are investigated analytically. Either optical or magnetic approaches can be used for the sensor, which generates a measurement of the lateral offset of the vehicle path at each marker to form the basic data for steering control. Possible mechanizations of sensor and controller are outlined. Techniques for handling certain anomalous conditions, such as a missing marker, or loss of acquisition, and special maneuvers, such as u-turns and switching, are briefly discussed. A general analysis of the vehicle dynamics and the discrete control system is presented using the state variable formulation. Noise in both the sensor measurement and in the steering servo are accounted for. An optimal controller is simulated on a general purpose computer, and the resulting plots of vehicle path are presented. Parameters representing a small multipassenger tram were selected, and the simulation runs show response to an erroneous sensor measurement and acquisition following large initial path errors.
NASA Astrophysics Data System (ADS)
Patcharoen, Theerasak; Yoomak, Suntiti; Ngaopitakkul, Atthapol; Pothisarn, Chaichan
2018-04-01
This paper describes the combination of discrete wavelet transforms (DWT) and artificial intelligence (AI), which are efficient techniques to identify the type of inrush current, analyze the origin and possible cause on the capacitor bank switching. The experiment setup used to verify the proposed techniques can be detected and classified the transient inrush current from normal capacitor rated current. The discrete wavelet transforms are used to detect and classify the inrush current. Then, output from wavelet is acted as input of fuzzy inference system for discriminating the type of switching transient inrush current. The proposed technique shows enhanced performance with a discrimination accuracy of 90.57%. Both simulation study and experimental results are quite satisfactory with providing the high accuracy and reliability which can be developed and implemented into a numerical overcurrent (50/51) and unbalanced current (60C) protection relay for an application of shunt capacitor bank protection in the future.
Estimating standard errors in feature network models.
Frank, Laurence E; Heiser, Willem J
2007-05-01
Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.
Madi, Mahmoud K; Karameh, Fadi N
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements.
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements. PMID:28727850
NASA Astrophysics Data System (ADS)
Bruno, Luigi; Decuzzi, Paolo; Gentile, Francesco
2016-01-01
The promise of nanotechnology lies in the possibility of engineering matter on the nanoscale and creating technological interfaces that, because of their small scales, may directly interact with biological objects, creating new strategies for the treatment of pathologies that are otherwise beyond the reach of conventional medicine. Nanotechnology is inherently a multiscale, multiphenomena challenge. Fundamental understanding and highly accurate predictive methods are critical to successful manufacturing of nanostructured materials, bio/mechanical devices and systems. In biomedical engineering, and in the mechanical analysis of biological tissues, classical continuum approaches are routinely utilized, even if these disregard the discrete nature of tissues, that are an interpenetrating network of a matrix (the extra cellular matrix, ECM) and a generally large but finite number of cells with a size falling in the micrometer range. Here, we introduce a nano-mechanical theory that accounts for the-non continuum nature of bio systems and other discrete systems. This discrete field theory, doublet mechanics (DM), is a technique to model the mechanical behavior of materials over multiple scales, ranging from some millimeters down to few nanometers. In the paper, we use this theory to predict the response of a granular material to an external applied load. Such a representation is extremely attractive in modeling biological tissues which may be considered as a spatial set of a large number of particulate (cells) dispersed in an extracellular matrix. Possibly more important of this, using digital image correlation (DIC) optical methods, we provide an experimental verification of the model.
Automated synthesis and composition of taskblocks for control of manufacturing systems.
Holloway, L E; Guan, X; Sundaravadivelu, R; Ashley, J R
2000-01-01
Automated control synthesis methods for discrete-event systems promise to reduce the time required to develop, debug, and modify control software. Such methods must be able to translate high-level control goals into detailed sequences of actuation and sensing signals. In this paper, we present such a technique. It relies on analysis of a system model, defined as a set of interacting components, each represented as a form of condition system Petri net. Control logic modules, called taskblocks, are synthesized from these individual models. These then interact hierarchically and sequentially to drive the system through specified control goals. The resulting controller is automatically converted to executable control code. The paper concludes with a discussion of a set of software tools developed to demonstrate the techniques on a small manufacturing system.
Compensatory neurofuzzy model for discrete data classification in biomedical
NASA Astrophysics Data System (ADS)
Ceylan, Rahime
2015-03-01
Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.
Partition-based discrete-time quantum walks
NASA Astrophysics Data System (ADS)
Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo
2018-04-01
We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng; Wang, Jiangfeng
2016-06-01
The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.
Evaluation of the Navys Sea/Shore Flow Policy
2016-06-01
Std. Z39.18 i Abstract CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of...a more steady manning level, but the variability remains, even if the system is optimized. In building a Discrete -Event Simulation model, we...steady-state model. In FY 2014, CNA developed a Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model
Peridynamics with LAMMPS : a user guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, Richard B.; Silling, Stewart Andrew; Plimpton, Steven James
2008-01-01
Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.
Defeaturing CAD models using a geometry-based size field and facet-based reduction operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadros, William Roshan; Owen, Steven James
2010-04-01
We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant featuremore » and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach.« less
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Dmitriev, S V; Kevrekidis, P G; Yoshikawa, N; Frantzeskakis, D J
2006-10-01
We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived in Spreight [Nonlinearity 12, 1373 (1999)] and Barashenkov [Phys. Rev. E 72, 035602(R) (2005)], such that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the static Klein-Gordon field, as suggested by Dmitriev [J. Phys. A 38, 7617 (2005)]. We then discuss some discrete phi4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static solutions, including those derived recently by Cooper [Phys. Rev. E 72, 036605 (2005)] but not limited to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schrödinger models. We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the continuum phi4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit of the corresponding space of the discrete models.
Subresolution Displacements in Finite Difference Simulations of Ultrasound Propagation and Imaging.
Pinton, Gianmarco F
2017-03-01
Time domain finite difference simulations are used extensively to simulate wave propagation. They approximate the wave field on a discrete domain with a grid spacing that is typically on the order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of simulation are thus limited to discrete values that are integer multiples of the grid spacing. This paper presents a method to represent continuous and subresolution displacements by varying the impedance of individual elements in a multielement scatterer. It is demonstrated that this method removes the limitations imposed by the discrete grid spacing by generating a continuum of displacements as measured by the backscattered signal. The method is first validated on an ideal perfect correlation case with a single scatterer. It is subsequently applied to a more complex case with a field of scatterers that model an acoustic radiation force-induced displacement used in ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-receive events are then beamformed into images, which are tracked with a correlation-based algorithm to determine the displacement. A linear predictive model is developed to analytically describe the relationship between element impedance and backscattered phase shift. The error between model and simulation is λ/ 1364 , where λ is the acoustical wavelength. An iterative method is also presented that reduces the simulation error to λ/ 5556 over one iteration. The proposed technique therefore offers a computationally efficient method to model continuous subresolution displacements of a scattering medium in ultrasound imaging. This method has applications that include ultrasound elastography, blood flow, and motion tracking. This method also extends generally to finite difference simulations of wave propagation, such as electromagnetic or seismic waves.
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
NASA Astrophysics Data System (ADS)
Escobar, E.; Benz, M.; Gourvès, R.; Breul, P.
2013-06-01
In this article a two-dimensional discrete numerical model, realized in PFC2D, is presented. This model is used in the dynamic penetration tests in a granular medium. Its objective being the validation of the measurement technique offered by Panda 3® (Benz et al. 2011) which is designed to calculate the tip's load-penetration curve for each impact in the soil where different parameters are used. To do so, we have compared the results obtained by calculation during the impacts to those measured directly in the model of a penetrometer through the installation of the gauges at the cone.
A generative, probabilistic model of local protein structure.
Boomsma, Wouter; Mardia, Kanti V; Taylor, Charles C; Ferkinghoff-Borg, Jesper; Krogh, Anders; Hamelryck, Thomas
2008-07-01
Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state. Our method represents a significant theoretical and practical improvement over the widely used fragment assembly technique by avoiding the drawbacks associated with a discrete and nonprobabilistic approach.
The evolution and discharge of electric fields within a thunderstorm
NASA Technical Reports Server (NTRS)
Hager, William W.; Nisbet, John S.; Kasha, John R.
1989-01-01
An analysis of the present three-dimensional thunderstorm electrical model and its finite-difference approximations indicates unconditional stability for the discretization that results from the approximation of the spatial derivatives by a box-schemelike method and of the temporal derivative by either a backward-difference or Crank-Nicholson scheme. Lightning propagation is treated through numerical techniques based on the inverse-matrix modification formula and Cholesky updates. The model is applied to a storm observed at the Kennedy Space Center in 1978, and numerical comparisons are conducted between the model and the theoretical results obtained by Wilson (1920) and Holzer and Saxon (1952).
NASA Astrophysics Data System (ADS)
Fosas de Pando, Miguel; Schmid, Peter J.; Sipp, Denis
2016-11-01
Nonlinear model reduction for large-scale flows is an essential component in many fluid applications such as flow control, optimization, parameter space exploration and statistical analysis. In this article, we generalize the POD-DEIM method, introduced by Chaturantabut & Sorensen [1], to address nonlocal nonlinearities in the equations without loss of performance or efficiency. The nonlinear terms are represented by nested DEIM-approximations using multiple expansion bases based on the Proper Orthogonal Decomposition. These extensions are imperative, for example, for applications of the POD-DEIM method to large-scale compressible flows. The efficient implementation of the presented model-reduction technique follows our earlier work [2] on linearized and adjoint analyses and takes advantage of the modular structure of our compressible flow solver. The efficacy of the nonlinear model-reduction technique is demonstrated to the flow around an airfoil and its acoustic footprint. We could obtain an accurate and robust low-dimensional model that captures the main features of the full flow.
Applying Multivariate Discrete Distributions to Genetically Informative Count Data.
Kirkpatrick, Robert M; Neale, Michael C
2016-03-01
We present a novel method of conducting biometric analysis of twin data when the phenotypes are integer-valued counts, which often show an L-shaped distribution. Monte Carlo simulation is used to compare five likelihood-based approaches to modeling: our multivariate discrete method, when its distributional assumptions are correct, when they are incorrect, and three other methods in common use. With data simulated from a skewed discrete distribution, recovery of twin correlations and proportions of additive genetic and common environment variance was generally poor for the Normal, Lognormal and Ordinal models, but good for the two discrete models. Sex-separate applications to substance-use data from twins in the Minnesota Twin Family Study showed superior performance of two discrete models. The new methods are implemented using R and OpenMx and are freely available.
Thermal modelling using discrete vasculature for thermal therapy: a review
Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.
2013-01-01
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700
Surface albedo from bidirectional reflectance
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Irons, J. R.; Daughtry, C. S. T.
1991-01-01
The validity of integrating over discrete wavelength bands is examined to estimate total shortwave bidirectional reflectance of vegetated and bare soil surfaces. Methods for estimating albedo from multiple angle, discrete wavelength band radiometer measurements are studied. These methods include a numerical integration technique and the integration of an empirically derived equation for bidirectional reflectance. It is concluded that shortwave albedos estimated through both techniques agree favorably with the independent pyranometer measurements. Absolute rms errors are found to be 0.5 percent or less for both grass sod and bare soil surfaces.
NASA Astrophysics Data System (ADS)
Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego
2017-04-01
In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior, with relative errors less than 1% for the radiance derivatives, but FADOME is 2 times faster than LDOME and 2.5 times faster than LMOME.
A method for reducing the order of nonlinear dynamic systems
NASA Astrophysics Data System (ADS)
Masri, S. F.; Miller, R. K.; Sassi, H.; Caughey, T. K.
1984-06-01
An approximate method that uses conventional condensation techniques for linear systems together with the nonparametric identification of the reduced-order model generalized nonlinear restoring forces is presented for reducing the order of discrete multidegree-of-freedom dynamic systems that possess arbitrary nonlinear characteristics. The utility of the proposed method is demonstrated by considering a redundant three-dimensional finite-element model half of whose elements incorporate hysteretic properties. A nonlinear reduced-order model, of one-third the order of the original model, is developed on the basis of wideband stationary random excitation and the validity of the reduced-order model is subsequently demonstrated by its ability to predict with adequate accuracy the transient response of the original nonlinear model under a different nonstationary random excitation.
Performance on perceptual word identification is mediated by discrete states.
Swagman, April R; Province, Jordan M; Rouder, Jeffrey N
2015-02-01
We contrast predictions from discrete-state models of all-or-none information loss with signal-detection models of graded strength for the identification of briefly flashed English words. Previous assessments have focused on whether ROC curves are straight or not, which is a test of a discrete-state model where detection leads to the highest confidence response with certainty. We along with many others argue this certainty assumption is too constraining, and, consequently, the straight-line ROC test is too stringent. Instead, we assess a core property of discrete-state models, conditional independence, where the pattern of responses depends only on which state is entered. The conditional independence property implies that confidence ratings are a mixture of detect and guess state responses, and that stimulus strength factors, the duration of the flashed word in this report, affect only the probability of entering a state and not responses conditional on a state. To assess this mixture property, 50 participants saw words presented briefly on a computer screen at three variable flash durations followed by either a two-alternative confidence ratings task or a yes-no confidence ratings task. Comparable discrete-state and signal-detection models were fit to the data for each participant and task. The discrete-state models outperformed the signal detection models for 90 % of participants in the two-alternative task and for 68 % of participants in the yes-no task. We conclude discrete-state models are viable for predicting performance across stimulus conditions in a perceptual word identification task.
RINGMesh: A programming library for developing mesh-based geomodeling applications
NASA Astrophysics Data System (ADS)
Pellerin, Jeanne; Botella, Arnaud; Bonneau, François; Mazuyer, Antoine; Chauvin, Benjamin; Lévy, Bruno; Caumon, Guillaume
2017-07-01
RINGMesh is a C++ open-source programming library for manipulating discretized geological models. It is designed to ease the development of applications and workflows that use discretized 3D models. It is neither a geomodeler, nor a meshing software. RINGMesh implements functionalities to read discretized surface-based or volumetric structural models and to check their validity. The models can be then exported in various file formats. RINGMesh provides data structures to represent geological structural models, either defined by their discretized boundary surfaces, and/or by discretized volumes. A programming interface allows to develop of new geomodeling methods, and to plug in external software. The goal of RINGMesh is to help researchers to focus on the implementation of their specific method rather than on tedious tasks common to many applications. The documented code is open-source and distributed under the modified BSD license. It is available at https://www.ring-team.org/index.php/software/ringmesh.
Numerical time-domain electromagnetics based on finite-difference and convolution
NASA Astrophysics Data System (ADS)
Lin, Yuanqu
Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving sparsely-populated problems. The scheme uses a discrete Green's function (DGF) on the FDTD lattice to truncate the local subregions, and thus reduces reflection error on the local boundary. A continuous Green's function (CGF) is implemented to pass the influence of external fields into each FDTD region which mitigates the numerical dispersion and anisotropy of standard FDTD. Numerical results will illustrate the accuracy and stability of the proposed techniques.
Unbiased, scalable sampling of protein loop conformations from probabilistic priors.
Zhang, Yajia; Hauser, Kris
2013-01-01
Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.
Unbiased, scalable sampling of protein loop conformations from probabilistic priors
2013-01-01
Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
Comparisons of discrete and integrative sampling accuracy in estimating pulsed aquatic exposures.
Morrison, Shane A; Luttbeg, Barney; Belden, Jason B
2016-11-01
Most current-use pesticides have short half-lives in the water column and thus the most relevant exposure scenarios for many aquatic organisms are pulsed exposures. Quantifying exposure using discrete water samples may not be accurate as few studies are able to sample frequently enough to accurately determine time-weighted average (TWA) concentrations of short aquatic exposures. Integrative sampling methods that continuously sample freely dissolved contaminants over time intervals (such as integrative passive samplers) have been demonstrated to be a promising measurement technique. We conducted several modeling scenarios to test the assumption that integrative methods may require many less samples for accurate estimation of peak 96-h TWA concentrations. We compared the accuracies of discrete point samples and integrative samples while varying sampling frequencies and a range of contaminant water half-lives (t 50 = 0.5, 2, and 8 d). Differences the predictive accuracy of discrete point samples and integrative samples were greatest at low sampling frequencies. For example, when the half-life was 0.5 d, discrete point samples required 7 sampling events to ensure median values > 50% and no sampling events reporting highly inaccurate results (defined as < 10% of the true 96-h TWA). Across all water half-lives investigated, integrative sampling only required two samples to prevent highly inaccurate results and measurements resulting in median values > 50% of the true concentration. Regardless, the need for integrative sampling diminished as water half-life increased. For an 8-d water half-life, two discrete samples produced accurate estimates and median values greater than those obtained for two integrative samples. Overall, integrative methods are the more accurate method for monitoring contaminants with short water half-lives due to reduced frequency of extreme values, especially with uncertainties around the timing of pulsed events. However, the acceptability of discrete sampling methods for providing accurate concentration measurements increases with increasing aquatic half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing
2012-12-14
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Matei Zaharia Tathagata Das Haoyuan Li Timothy Hunter Scott Shenker Ion...SUBTITLE Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...time. However, current programming models for distributed stream processing are relatively low-level often leaving the user to worry about consistency of
Discrete stochastic analogs of Erlang epidemic models.
Getz, Wayne M; Dougherty, Eric R
2018-12-01
Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.
A discrete geometric approach for simulating the dynamics of thin viscous threads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audoly, B., E-mail: audoly@lmm.jussieu.fr; Clauvelin, N.; Brun, P.-T.
We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistencymore » of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.« less
Discrete-Time Mapping for an Impulsive Goodwin Oscillator with Three Delays
NASA Astrophysics Data System (ADS)
Churilov, Alexander N.; Medvedev, Alexander; Zhusubaliyev, Zhanybai T.
A popular biomathematics model of the Goodwin oscillator has been previously generalized to a more biologically plausible construct by introducing three time delays to portray the transport phenomena arising due to the spatial distribution of the model states. The present paper addresses a similar conversion of an impulsive version of the Goodwin oscillator that has found application in mathematical modeling, e.g. in endocrine systems with pulsatile hormone secretion. While the cascade structure of the linear continuous part pertinent to the Goodwin oscillator is preserved in the impulsive Goodwin oscillator, the static nonlinear feedback of the former is substituted with a pulse modulation mechanism thus resulting in hybrid dynamics of the closed-loop system. To facilitate the analysis of the mathematical model under investigation, a discrete mapping propagating the continuous state variables through the firing times of the impulsive feedback is derived. Due to the presence of multiple time delays in the considered model, previously developed mapping derivation approaches are not applicable here and a novel technique is proposed and applied. The mapping captures the dynamics of the original hybrid system and is instrumental in studying complex nonlinear phenomena arising in the impulsive Goodwin oscillator. A simulation example is presented to demonstrate the utility of the proposed approach in bifurcation analysis.
NASA Astrophysics Data System (ADS)
Bazilevs, Y.; Moutsanidis, G.; Bueno, J.; Kamran, K.; Kamensky, D.; Hillman, M. C.; Gomez, H.; Chen, J. S.
2017-07-01
In this two-part paper we begin the development of a new class of methods for modeling fluid-structure interaction (FSI) phenomena for air blast. We aim to develop accurate, robust, and practical computational methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the latter involves large, inelastic deformations and disintegration into fragments. An immersed approach is adopted, which leads to an a-priori monolithic FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on the solid motions. In Part I of this paper, the core air-blast FSI methodology suitable for a variety of discretizations is presented and tested using standard finite elements. Part II of this paper focuses on a particular instantiation of the proposed framework, which couples isogeometric analysis (IGA) based on non-uniform rational B-splines and a reproducing-kernel particle method (RKPM), which is a meshfree technique. The combination of IGA and RKPM is felt to be particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of both discretizations, and relative simplicity of RKPM in handling fragmentation scenarios. A collection of mostly 2D numerical examples is presented in each of the parts to illustrate the good performance of the proposed air-blast FSI framework.
Robust passivity analysis for discrete-time recurrent neural networks with mixed delays
NASA Astrophysics Data System (ADS)
Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu
2015-02-01
This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
Electrical Connector Mechanical Seating Sensor
NASA Technical Reports Server (NTRS)
Arens, Ellen; Captain, Janine; Youngquist, Robert
2011-01-01
A sensor provides a measurement of the degree of seating of an electrical connector. This sensor provides a number of discrete distances that a plug is inserted into a socket or receptacle. The number of measurements is equal to the number of pins available in the connector for sensing. On at least two occasions, the Shuttle Program has suffered serious time delays and incurred excessive costs simply because a plug was not seated well within a receptacle. Two methods were designed to address this problem: (1) the resistive pin technique and (2) the discrete length pins technique. In the resistive pin approach, a standard pin in a male connector is replaced with a pin that has a uniform resistivity along its length. This provides a variable resistance on that pin that is dependent on how far the pin is inserted into a socket. This is essentially a linear potentiometer. The discrete approach uses a pin (or a few pins) in the connector as a displacement indicator by truncating the pin length so it sits shorter in the connector than the other pins. A loss of signal on this pin would indicate a discrete amount of displacement of the connector. This approach would only give discrete values of connector displacement, and at least one pin would be needed for each displacement value that would be of interest.
Spin foam models for quantum gravity
NASA Astrophysics Data System (ADS)
Perez, Alejandro
The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be perturbatively finite. The second model contains both time-like and space-like representations. The spectrum of geometrical operators coincide with the prediction of the canonical approach of loop QG. At the moment, the convergence properties of the model are less understood and remain for future investigation.
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J.; Huang, H.; Deo, M.
2016-03-01
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Zhou; H. Huang; M. Deo
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
NASA Astrophysics Data System (ADS)
Hirt, Christian; Reußner, Elisabeth; Rexer, Moritz; Kuhn, Michael
2016-09-01
Over the past years, spectral techniques have become a standard to model Earth's global gravity field to 10 km scales, with the EGM2008 geopotential model being a prominent example. For some geophysical applications of EGM2008, particularly Bouguer gravity computation with spectral techniques, a topographic potential model of adequate resolution is required. However, current topographic potential models have not yet been successfully validated to degree 2160, and notable discrepancies between spectral modeling and Newtonian (numerical) integration well beyond the 10 mGal level have been reported. Here we accurately compute and validate gravity implied by a degree 2160 model of Earth's topographic masses. Our experiments are based on two key strategies, both of which require advanced computational resources. First, we construct a spectrally complete model of the gravity field which is generated by the degree 2160 Earth topography model. This involves expansion of the topographic potential to the 15th integer power of the topography and modeling of short-scale gravity signals to ultrahigh degree of 21,600, translating into unprecedented fine scales of 1 km. Second, we apply Newtonian integration in the space domain with high spatial resolution to reduce discretization errors. Our numerical study demonstrates excellent agreement (8 μGgal RMS) between gravity from both forward modeling techniques and provides insight into the convergence process associated with spectral modeling of gravity signals at very short scales (few km). As key conclusion, our work successfully validates the spectral domain forward modeling technique for degree 2160 topography and increases the confidence in new high-resolution global Bouguer gravity maps.
Mohiuddin, Syed
2014-08-01
Bipolar disorder (BD) is a chronic and relapsing mental illness with a considerable health-related and economic burden. The primary goal of pharmacotherapeutics for BD is to improve patients' well-being. The use of decision-analytic models is key in assessing the added value of the pharmacotherapeutics aimed at treating the illness, but concerns have been expressed about the appropriateness of different modelling techniques and about the transparency in the reporting of economic evaluations. This paper aimed to identify and critically appraise published model-based economic evaluations of pharmacotherapeutics in BD patients. A systematic review combining common terms for BD and economic evaluation was conducted in MEDLINE, EMBASE, PSYCINFO and ECONLIT. Studies identified were summarised and critically appraised in terms of the use of modelling technique, model structure and data sources. Considering the prognosis and management of BD, the possible benefits and limitations of each modelling technique are discussed. Fourteen studies were identified using model-based economic evaluations of pharmacotherapeutics in BD patients. Of these 14 studies, nine used Markov, three used discrete-event simulation (DES) and two used decision-tree models. Most of the studies (n = 11) did not include the rationale for the choice of modelling technique undertaken. Half of the studies did not include the risk of mortality. Surprisingly, no study considered the risk of having a mixed bipolar episode. This review identified various modelling issues that could potentially reduce the comparability of one pharmacotherapeutic intervention with another. Better use and reporting of the modelling techniques in the future studies are essential. DES modelling appears to be a flexible and comprehensive technique for evaluating the comparability of BD treatment options because of its greater flexibility of depicting the disease progression over time. However, depending on the research question, modelling techniques other than DES might also be appropriate in some cases.
Parameter redundancy in discrete state-space and integrated models.
Cole, Diana J; McCrea, Rachel S
2016-09-01
Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Bayesian hierarchical model for discrete choice data in health care.
Antonio, Anna Liza M; Weiss, Robert E; Saigal, Christopher S; Dahan, Ely; Crespi, Catherine M
2017-01-01
In discrete choice experiments, patients are presented with sets of health states described by various attributes and asked to make choices from among them. Discrete choice experiments allow health care researchers to study the preferences of individual patients by eliciting trade-offs between different aspects of health-related quality of life. However, many discrete choice experiments yield data with incomplete ranking information and sparsity due to the limited number of choice sets presented to each patient, making it challenging to estimate patient preferences. Moreover, methods to identify outliers in discrete choice data are lacking. We develop a Bayesian hierarchical random effects rank-ordered multinomial logit model for discrete choice data. Missing ranks are accounted for by marginalizing over all possible permutations of unranked alternatives to estimate individual patient preferences, which are modeled as a function of patient covariates. We provide a Bayesian version of relative attribute importance, and adapt the use of the conditional predictive ordinate to identify outlying choice sets and outlying individuals with unusual preferences compared to the population. The model is applied to data from a study using a discrete choice experiment to estimate individual patient preferences for health states related to prostate cancer treatment.
Evaluation of the Navys Sea/Shore Flow Policy
2016-06-01
CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of alternative sea/shore flow policies. In this study...remains, even if the system is optimized. In building a Discrete -Event Simulation model, we discovered key factors that should be included in the... Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model) and compared the results with the SSFM for one
NASA Astrophysics Data System (ADS)
Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey
2015-04-01
The proposed method is considered on an example of hydrothermodynamics and atmospheric chemistry models [1,2]. In the development of the existing methods for constructing numerical schemes possessing the properties of total approximation for operators of multiscale process models, we have developed a new variational technique, which uses the concept of adjoint integrating factors. The technique is as follows. First, a basic functional of the variational principle (the integral identity that unites the model equations, initial and boundary conditions) is transformed using Lagrange's identity and the second Green's formula. As a result, the action of the operators of main problem in the space of state functions is transferred to the adjoint operators defined in the space of sufficiently smooth adjoint functions. By the choice of adjoint functions the order of the derivatives becomes lower by one than those in the original equations. We obtain a set of new balance relationships that take into account the sources and boundary conditions. Next, we introduce the decomposition of the model domain into a set of finite volumes. For multi-dimensional non-stationary problems, this technique is applied in the framework of the variational principle and schemes of decomposition and splitting on the set of physical processes for each coordinate directions successively at each time step. For each direction within the finite volume, the analytical solutions of one-dimensional homogeneous adjoint equations are constructed. In this case, the solutions of adjoint equations serve as integrating factors. The results are the hybrid discrete-analytical schemes. They have the properties of stability, approximation and unconditional monotony for convection-diffusion operators. These schemes are discrete in time and analytic in the spatial variables. They are exact in case of piecewise-constant coefficients within the finite volume and along the coordinate lines of the grid area in each direction on a time step. In each direction, they have tridiagonal structure. They are solved by the sweep method. An important advantage of the discrete-analytical schemes is that the values of derivatives at the boundaries of finite volume are calculated together with the values of the unknown functions. This technique is particularly attractive for problems with dominant convection, as it does not require artificial monotonization and limiters. The same idea of integrating factors is applied in temporal dimension to the stiff systems of equations describing chemical transformation models [2]. The proposed method is applicable for the problems involving convection-diffusion-reaction operators. The work has been partially supported by the Presidium of RAS under Program 43, and by the RFBR grants 14-01-00125 and 14-01-31482. References: 1. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Variational approach and Euler's integrating factors for environmental studies// Computers and Mathematics with Applications, (2014) V.67, Issue 12, P. 2240-2256. 2. V.V.Penenko, E.A.Tsvetova. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical analysis and applications, 2013, V. 6, Issue 3, pp 210-220.
Establishment of a rotor model basis
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.
1982-01-01
Radial-dimension computations in the RSRA's blade-element model are modified for both the acquisition of extensive baseline data and for real-time simulation use. The baseline data, which are for the evaluation of model changes, use very small increments and are of high quality. The modifications to the real-time simulation model are for accuracy improvement, especially when a minimal number of blade segments is required for real-time synchronization. An accurate technique for handling tip loss in discrete blade models is developed. The mathematical consistency and convergence properties of summation algorithms for blade forces and moments are examined and generalized integration coefficients are applied to equal-annuli midpoint spacing. Rotor conditions identified as 'constrained' and 'balanced' are used and the propagation of error is analyzed.
The development of a simulation model of primary prevention strategies for coronary heart disease.
Babad, Hannah; Sanderson, Colin; Naidoo, Bhash; White, Ian; Wang, Duolao
2002-11-01
This paper describes the present state of development of a discrete-event micro-simulation model for coronary heart disease prevention. The model is intended to support health policy makers in assessing the impacts on health care resources of different primary prevention strategies. For each person, a set of times to disease events, conditional on the individual's risk factor profile, is sampled from a set of probability distributions that are derived from a new analysis of the Framingham cohort study on coronary heart disease. Methods used to model changes in behavioural and physiological risk factors are discussed and a description of the simulation logic is given. The model incorporates POST (Patient Oriented Simulation Technique) simulation routines.
Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamatikos, Michael; Band, David L.; JCA/UMBC, Baltimore, MD 21250
2006-05-19
We describe the theoretical modeling and analysis techniques associated with a preliminary search for correlated neutrino emission from GRB980703a, which triggered the Burst and Transient Source Experiment (BATSE GRB trigger 6891), using archived data from the Antarctic Muon and Neutrino Detector Array (AMANDA-B10). Under the assumption of associated hadronic acceleration, the expected observed neutrino energy flux is directly derived, based upon confronting the fireball phenomenology with the discrete set of observed electromagnetic parameters of GRB980703a, gleaned from ground-based and satellite observations, for four models, corrected for oscillations. Models 1 and 2, based upon spectral analysis featuring a prompt photon energymore » fit to the Band function, utilize an observed spectroscopic redshift, for isotropic and anisotropic emission geometry, respectively. Model 3 is based upon averaged burst parameters, assuming isotropic emission. Model 4 based upon a Band fit, features an estimated redshift from the lag-luminosity relation, with isotropic emission. Consistent with our AMANDA-II analysis of GRB030329, which resulted in a flux upper limit of {approx} 0.150GeV /cm2/s for model 1, we find differences in excess of an order of magnitude in the response of AMANDA-B10, among the various models for GRB980703a. Implications for future searches in the era of Swift and IceCube are discussed.« less
Current Density and Continuity in Discretized Models
ERIC Educational Resources Information Center
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott
2017-12-21
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele; Poggi, Carlo
2016-12-01
Two FE modeling techniques are presented and critically discussed for the non-linear analysis of tuff masonry panels reinforced with FRCM and subjected to standard diagonal compression tests. The specimens, tested at the University of Naples (Italy), are unreinforced and FRCM retrofitted walls. The extensive characterization of the constituent materials allowed adopting here very sophisticated numerical modeling techniques. In particular, here the results obtained by means of a micro-modeling strategy and homogenization approach are compared. The first modeling technique is a tridimensional heterogeneous micro-modeling where constituent materials (bricks, joints, reinforcing mortar and reinforcing grid) are modeled separately. The second approach is based on a two-step homogenization procedure, previously developed by the authors, where the elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. The non-linear structural analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM). All the simulations here presented are performed using the commercial software Abaqus. Pros and cons of the two approaches are herein discussed with reference to their reliability in reproducing global force-displacement curves and crack patterns, as well as to the rather different computational effort required by the two strategies.
Boundary particle method for Laplace transformed time fractional diffusion equations
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian
2013-02-01
This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.
Yang, Guang; Nawaz, Tahir; Barrick, Thomas R; Howe, Franklyn A; Slabaugh, Greg
2015-12-01
Many approaches have been considered for automatic grading of brain tumors by means of pattern recognition with magnetic resonance spectroscopy (MRS). Providing an improved technique which can assist clinicians in accurately identifying brain tumor grades is our main objective. The proposed technique, which is based on the discrete wavelet transform (DWT) of whole-spectral or subspectral information of key metabolites, combined with unsupervised learning, inspects the separability of the extracted wavelet features from the MRS signal to aid the clustering. In total, we included 134 short echo time single voxel MRS spectra (SV MRS) in our study that cover normal controls, low grade and high grade tumors. The combination of DWT-based whole-spectral or subspectral analysis and unsupervised clustering achieved an overall clustering accuracy of 94.8% and a balanced error rate of 7.8%. To the best of our knowledge, it is the first study using DWT combined with unsupervised learning to cluster brain SV MRS. Instead of dimensionality reduction on SV MRS or feature selection using model fitting, our study provides an alternative method of extracting features to obtain promising clustering results.
Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model
NASA Astrophysics Data System (ADS)
Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo
2018-04-01
PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.
Statistical Inference of a RANS closure for a Jet-in-Crossflow simulation
NASA Astrophysics Data System (ADS)
Heyse, Jan; Edeling, Wouter; Iaccarino, Gianluca
2016-11-01
The jet-in-crossflow is found in several engineering applications, such as discrete film cooling for turbine blades, where a coolant injected through hols in the blade's surface protects the component from the hot gases leaving the combustion chamber. Experimental measurements using MRI techniques have been completed for a single hole injection into a turbulent crossflow, providing full 3D averaged velocity field. For such flows of engineering interest, Reynolds-Averaged Navier-Stokes (RANS) turbulence closure models are often the only viable computational option. However, RANS models are known to provide poor predictions in the region close to the injection point. Since these models are calibrated on simple canonical flow problems, the obtained closure coefficient estimates are unlikely to extrapolate well to more complex flows. We will therefore calibrate the parameters of a RANS model using statistical inference techniques informed by the experimental jet-in-crossflow data. The obtained probabilistic parameter estimates can in turn be used to compute flow fields with quantified uncertainty. Stanford Graduate Fellowship in Science and Engineering.
First-order system least squares and the energetic variational approach for two-phase flow
NASA Astrophysics Data System (ADS)
Adler, J. H.; Brannick, J.; Liu, C.; Manteuffel, T.; Zikatanov, L.
2011-07-01
This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.
Image processing of aerodynamic data
NASA Technical Reports Server (NTRS)
Faulcon, N. D.
1985-01-01
The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.
2017-01-05
module. 15. SUBJECT TERMS Logistics, attrition, discrete event simulation, Simkit, LBC 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION...stochastics, and discrete event model programmed in Java building largely on the Simkit library. The primary purpose of the LBC model is to support...equations makes them incompatible with the discrete event construct of LBC. Bullard further advances this methodology by developing a stochastic
Analytical approximation of a distorted reflector surface defined by a discrete set of points
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Zaman, Afroz A.
1988-01-01
Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincenti, H.; Vay, J. -L.
Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less
Lopes, Ana C; Nunes, Urbano
2009-01-01
This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented.
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Stochastic Kuramoto oscillators with discrete phase states.
Jörg, David J
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Stochastic Kuramoto oscillators with discrete phase states
NASA Astrophysics Data System (ADS)
Jörg, David J.
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Korobov, A
2009-03-01
Discrete random tessellations appear not infrequently in describing nucleation and growth transformations. Generally, several non-Euclidean metrics are possible in this case. Previously [A. Korobov, Phys. Rev. B 76, 085430 (2007)] continual analogs of such tessellations have been studied. Here one of the simplest discrete varieties of the Kolmogorov-Johnson-Mehl-Avrami model, namely, the model with von Neumann neighborhoods, has been examined per se, i.e., without continualization. The tessellation is uniform in the sense that domain boundaries consist of tiles. Similarities and distinctions between discrete and continual models are discussed.
Machine learning techniques for medical diagnosis of diabetes using iris images.
Samant, Piyush; Agarwal, Ravinder
2018-04-01
Complementary and alternative medicine techniques have shown their potential for the treatment and diagnosis of chronical diseases like diabetes, arthritis etc. On the same time digital image processing techniques for disease diagnosis is reliable and fastest growing field in biomedical. Proposed model is an attempt to evaluate diagnostic validity of an old complementary and alternative medicine technique, iridology for diagnosis of type-2 diabetes using soft computing methods. Investigation was performed over a close group of total 338 subjects (180 diabetic and 158 non-diabetic). Infra-red images of both the eyes were captured simultaneously. The region of interest from the iris image was cropped as zone corresponds to the position of pancreas organ according to the iridology chart. Statistical, texture and discrete wavelength transformation features were extracted from the region of interest. The results show best classification accuracy of 89.63% calculated from RF classifier. Maximum specificity and sensitivity were absorbed as 0.9687 and 0.988, respectively. Results have revealed the effectiveness and diagnostic significance of proposed model for non-invasive and automatic diabetes diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling Charge Collection in Detector Arrays
NASA Technical Reports Server (NTRS)
Hardage, Donna (Technical Monitor); Pickel, J. C.
2003-01-01
A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
Automated Essay Grading using Machine Learning Algorithm
NASA Astrophysics Data System (ADS)
Ramalingam, V. V.; Pandian, A.; Chetry, Prateek; Nigam, Himanshu
2018-04-01
Essays are paramount for of assessing the academic excellence along with linking the different ideas with the ability to recall but are notably time consuming when they are assessed manually. Manual grading takes significant amount of evaluator’s time and hence it is an expensive process. Automated grading if proven effective will not only reduce the time for assessment but comparing it with human scores will also make the score realistic. The project aims to develop an automated essay assessment system by use of machine learning techniques by classifying a corpus of textual entities into small number of discrete categories, corresponding to possible grades. Linear regression technique will be utilized for training the model along with making the use of various other classifications and clustering techniques. We intend to train classifiers on the training set, make it go through the downloaded dataset, and then measure performance our dataset by comparing the obtained values with the dataset values. We have implemented our model using java.
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.
2015-06-15
The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when themore » bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.« less
Mind the Gap: A Semicontinuum Model for Discrete Electrical Propagation in Cardiac Tissue.
Costa, Caroline Mendonca; Silva, Pedro Andre Arroyo; dos Santos, Rodrigo Weber
2016-04-01
Electrical propagation in cardiac tissue is a discrete or discontinuous phenomenon that reflects the complexity of the anatomical structures and their organization in the heart, such as myocytes, gap junctions, microvessels, and extracellular matrix, just to name a few. Discrete models or microscopic and discontinuous models are, so far, the best options to accurately study how structural properties of cardiac tissue influence electrical propagation. These models are, however, inappropriate in the context of large scale simulations, which have been traditionally performed by the use of continuum and macroscopic models, such as the monodomain and the bidomain models. However, continuum models may fail to reproduce many important physiological and physiopathological aspects of cardiac electrophysiology, for instance, those related to slow conduction. In this study, we develop a new mathematical model that combines characteristics of both continuum and discrete models. The new model was evaluated in scenarios of low gap-junctional coupling, where slow conduction is observed, and was able to reproduce conduction block, increase of the maximum upstroke velocity and of the repolarization dispersion. None of these features can be captured by continuum models. In addition, the model overcomes a great disadvantage of discrete models, as it allows variation of the spatial resolution within a certain range.
Analysis of data mining classification by comparison of C4.5 and ID algorithms
NASA Astrophysics Data System (ADS)
Sudrajat, R.; Irianingsih, I.; Krisnawan, D.
2017-01-01
The rapid development of information technology, triggered by the intensive use of information technology. For example, data mining widely used in investment. Many techniques that can be used assisting in investment, the method that used for classification is decision tree. Decision tree has a variety of algorithms, such as C4.5 and ID3. Both algorithms can generate different models for similar data sets and different accuracy. C4.5 and ID3 algorithms with discrete data provide accuracy are 87.16% and 99.83% and C4.5 algorithm with numerical data is 89.69%. C4.5 and ID3 algorithms with discrete data provides 520 and 598 customers and C4.5 algorithm with numerical data is 546 customers. From the analysis of the both algorithm it can classified quite well because error rate less than 15%.
Computer simulations of phase field drops on super-hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Fedeli, Livio
2017-09-01
We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.
NASA Astrophysics Data System (ADS)
Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe
2018-02-01
A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
On a multigrid method for the coupled Stokes and porous media flow problem
NASA Astrophysics Data System (ADS)
Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.
2017-07-01
The multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to a saddle point linear system. Special treatment is required regarding the discretization at the interface. An Uzawa smoother is employed in multigrid, which is a decoupled procedure based on symmetric Gauss-Seidel smoothing for velocity components and a simple Richardson iteration for the pressure field. Since a relaxation parameter is part of a Richardson iteration, Local Fourier Analysis (LFA) is applied to determine the optimal parameters. Highly satisfactory multigrid convergence is reported, and, moreover, the algorithm performs well for small values of the hydraulic conductivity and fluid viscosity, that are relevant for applications.
Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Taylor, Arthur C., III
1994-01-01
This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.
Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction.
Pinney, James R; Du, Kim T; Ayala, Perla; Fang, Qizhi; Sievers, Richard E; Chew, Patrick; Delrosario, Lawrence; Lee, Randall J; Desai, Tejal A
2014-10-01
Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-β, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong
2018-07-01
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
NASA Astrophysics Data System (ADS)
Zhao, Hai-qiong; Yuan, Jinyun; Zhu, Zuo-nong
2018-02-01
To get more insight into the relation between discrete model and continuous counterpart, a new integrable semi-discrete Kundu-Eckhaus equation is derived from the reduction in an extended Ablowitz-Ladik hierarchy. The integrability of the semi-discrete model is confirmed by showing the existence of Lax pair and infinite number of conservation laws. The dynamic characteristics of the breather and rational solutions have been analyzed in detail for our semi-discrete Kundu-Eckhaus equation to reveal some new interesting phenomena which was not found in continuous one. It is shown that the theory of the discrete system including Lax pair, Darboux transformation and explicit solutions systematically yields their continuous counterparts in the continuous limit.
Valuing SF-6D Health States Using a Discrete Choice Experiment.
Norman, Richard; Viney, Rosalie; Brazier, John; Burgess, Leonie; Cronin, Paula; King, Madeleine; Ratcliffe, Julie; Street, Deborah
2014-08-01
SF-6D utility weights are conventionally produced using a standard gamble (SG). SG-derived weights consistently demonstrate a floor effect not observed with other elicitation techniques. Recent advances in discrete choice methods have allowed estimation of utility weights. The objective was to produce Australian utility weights for the SF-6D and to explore the application of discrete choice experiment (DCE) methods in this context. We hypothesized that weights derived using this method would reflect the largely monotonic construction of the SF-6D. We designed an online DCE and administered it to an Australia-representative online panel (n = 1017). A range of specifications investigating nonlinear preferences with respect to additional life expectancy were estimated using a random-effects probit model. The preferred model was then used to estimate a preference index such that full health and death were valued at 1 and 0, respectively, to provide an algorithm for Australian cost-utility analyses. Physical functioning, pain, mental health, and vitality were the largest drivers of utility weights. Combining levels to remove illogical orderings did not lead to a poorer model fit. Relative to international SG-derived weights, the range of utility weights was larger with 5% of health states valued below zero. s. DCEs can be used to investigate preferences for health profiles and to estimate utility weights for multi-attribute utility instruments. Australian cost-utility analyses can now use domestic SF-6D weights. The comparability of DCE results to those using other elicitation methods for estimating utility weights for quality-adjusted life-year calculations should be further investigated. © The Author(s) 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ke; Euser, Bryan J.; Rougier, Esteban
Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less
Gao, Ke; Euser, Bryan J.; Rougier, Esteban; ...
2018-06-20
Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less
Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
NASA Astrophysics Data System (ADS)
Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua
2018-06-01
Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.
Category representations in the brain are both discretely localized and widely distributed.
Shehzad, Zarrar; McCarthy, Gregory
2018-06-01
Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.
Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.
Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo
2017-12-20
In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.
Electroless plating apparatus for discrete microsized particles
Mayer, Anton
1978-01-01
Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur.
A spectral multi-domain technique applied to high-speed chemically reacting flows
NASA Technical Reports Server (NTRS)
Macaraeg, Michele G.; Streett, Craig L.; Hussaini, M. Yousuff
1989-01-01
The first applications of a spectral multidomain method for viscous compressible flow is presented. The method imposes a global flux balance condition at the interface so that high-order continuity of the solution is preserved. The global flux balance is imposed in terms of a spectral integral of the discrete equations across adjoining domains. Since the discretized equations interior to each domain solved are uncoupled from each other, and since the interface relation has a block structure, the solution scheme can be adapted to the particular requirements of each subdomain. The spectral multidomain technique presented is well-suited for the multiple scales associated with the chemically reacting and transition flows in hypersonic research. A nonstaggered multidomain discretization is used for the chemically reacting flow calculation, and the first implementation of a staggered multidomain mesh is presented for accurately solving the stability equation for a viscous compressible fluid.
Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong
2016-06-01
In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques.
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas
2004-08-01
Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.
NASA Astrophysics Data System (ADS)
Henke, Paul S.; Mak, Chi H.
2014-08-01
The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg2+ that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.
Malachowski, George C; Clegg, Robert M; Redford, Glen I
2007-12-01
A novel approach is introduced for modelling linear dynamic systems composed of exponentials and harmonics. The method improves the speed of current numerical techniques up to 1000-fold for problems that have solutions of multiple exponentials plus harmonics and decaying components. Such signals are common in fluorescence microscopy experiments. Selective constraints of the parameters being fitted are allowed. This method, using discrete Chebyshev transforms, will correctly fit large volumes of data using a noniterative, single-pass routine that is fast enough to analyse images in real time. The method is applied to fluorescence lifetime imaging data in the frequency domain with varying degrees of photobleaching over the time of total data acquisition. The accuracy of the Chebyshev method is compared to a simple rapid discrete Fourier transform (equivalent to least-squares fitting) that does not take the photobleaching into account. The method can be extended to other linear systems composed of different functions. Simulations are performed and applications are described showing the utility of the method, in particular in the area of fluorescence microscopy.
Henke, Paul S; Mak, Chi H
2014-08-14
The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg(2+) that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.
Modelling the structural controls of primary kaolinite formation
NASA Astrophysics Data System (ADS)
Tierney, R. L.; Glass, H. J.
2016-09-01
An abundance of kaolinite was formed within the St. Austell outcrop of the Cornubian batholith in Cornwall, southwest England, by the hydrous dissolution of feldspar crystals. The permeability of Cornish granites is low and alteration acts pervasively from discontinuity features, with montmorillonite recognised as an intermediate assemblage in partially kaolinised material. Structural features allowed fluids to channel through the impermeable granite and pervade deep into the rock. Areas of high structural control are hypothesised to link well with areas of advanced alteration. As kaolinisation results in a loss of competence, we present a method of utilising discontinuity orientations from nearby unaltered granites alongside the local tectonic history to calculate strain rates and delineate a discrete fracture network. Simulation of the discrete fracture network is demonstrated through a case study at Higher Moor, where kaolinite is actively extracted from a pit. Reconciliation of fracture connectivity and permeability against measured subsurface data show that higher values of modelled properties match with advanced kaolinisation observed in the field. This suggests that the technique may be applicable across various industries and disciplines.
Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Yanxin; Cheng Yipik; Xu Xiaomin
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wavemore » velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.« less
Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1978-01-01
The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.
Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An
2017-02-01
We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.
A fast Bayesian approach to discrete object detection in astronomical data sets - PowellSnakes I
NASA Astrophysics Data System (ADS)
Carvalho, Pedro; Rocha, Graça; Hobson, M. P.
2009-03-01
A new fast Bayesian approach is introduced for the detection of discrete objects immersed in a diffuse background. This new method, called PowellSnakes, speeds up traditional Bayesian techniques by (i) replacing the standard form of the likelihood for the parameters characterizing the discrete objects by an alternative exact form that is much quicker to evaluate; (ii) using a simultaneous multiple minimization code based on Powell's direction set algorithm to locate rapidly the local maxima in the posterior and (iii) deciding whether each located posterior peak corresponds to a real object by performing a Bayesian model selection using an approximate evidence value based on a local Gaussian approximation to the peak. The construction of this Gaussian approximation also provides the covariance matrix of the uncertainties in the derived parameter values for the object in question. This new approach provides a speed up in performance by a factor of `100' as compared to existing Bayesian source extraction methods that use Monte Carlo Markov chain to explore the parameter space, such as that presented by Hobson & McLachlan. The method can be implemented in either real or Fourier space. In the case of objects embedded in a homogeneous random field, working in Fourier space provides a further speed up that takes advantage of the fact that the correlation matrix of the background is circulant. We illustrate the capabilities of the method by applying to some simplified toy models. Furthermore, PowellSnakes has the advantage of consistently defining the threshold for acceptance/rejection based on priors which cannot be said of the frequentist methods. We present here the first implementation of this technique (version I). Further improvements to this implementation are currently under investigation and will be published shortly. The application of the method to realistic simulated Planck observations will be presented in a forthcoming publication.
Application of network methods for understanding evolutionary dynamics in discrete habitats.
Greenbaum, Gili; Fefferman, Nina H
2017-06-01
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2004-01-01
A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Satisfactory global calibrations of the PSP were obtained at =0.70, 0.90, and 1.20, angles of attack from 10 degrees to 20 degrees, and angles of sideslip of 0 and 2.5 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at 57 discrete locations on the model. Both techniques clearly revealed the significant influence on the surface pressure distributions of the vortices shed from the sharp, chine-like leading edges. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M infinity =0.70 and 2.6 percent at M infinity =0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motamarri, P.; Nowak, M.R.; Leiter, K.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.« less
Scholz, Stefan; Mittendorf, Thomas
2014-12-01
Rheumatoid arthritis (RA) is a chronic, inflammatory disease with severe effects on the functional ability of patients. Due to the prevalence of 0.5 to 1.0 percent in western countries, new treatment options are a major concern for decision makers with regard to their budget impact. In this context, cost-effectiveness analyses are a helpful tool to evaluate new treatment options for reimbursement schemes. To analyze and compare decision analytic modeling techniques and to explore their use in RA with regard to their advantages and shortcomings. A systematic literature review was conducted in PubMED and 58 studies reporting health economics decision models were analyzed with regard to the modeling technique used. From the 58 reviewed publications, we found 13 reporting decision tree-analysis, 25 (cohort) Markov models, 13 publications on individual sampling methods (ISM) and seven discrete event simulations (DES). Thereby 26 studies were identified as presenting independently developed models and 32 models as adoptions. The modeling techniques used were found to differ in their complexity and in the number of treatment options compared. Methodological features are presented in the article and a comprehensive overview of the cost-effectiveness estimates is given in Additional files 1 and 2. When compared to the other modeling techniques, ISM and DES have advantages in the coverage of patient heterogeneity and, additionally, DES is capable to model more complex treatment sequences and competing risks in RA-patients. Nevertheless, the availability of sufficient data is necessary to avoid assumptions in ISM and DES exercises, thereby enabling biased results. Due to the different settings, time frames and interventions in the reviewed publications, no direct comparison of modeling techniques was applicable. The results from other indications suggest that incremental cost-effective ratios (ICERs) do not differ significantly between Markov and DES models, but DES is able to report more outcome parameters. Given a sufficient data supply, DES is the modeling technique of choice when modeling cost-effectiveness in RA. Otherwise transparency on the data inputs is crucial for valid results and to inform decision makers about possible biases. With regard to ICERs, Markov models might provide similar estimates as more advanced modeling techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadi, Rouhollah, E-mail: rouhollahahmadi@yahoo.com; Khamehchi, Ehsan
Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks andmore » fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.« less
Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank
2016-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957
Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank
2017-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Discrete Calculus as a Bridge between Scales
NASA Astrophysics Data System (ADS)
Degiuli, Eric; McElwaine, Jim
2012-02-01
Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraloua, B.; Hennad, A.
The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.
Fast method for reactor and feature scale coupling in ALD and CVD
Yanguas-Gil, Angel; Elam, Jeffrey W.
2017-08-08
Transport and surface chemistry of certain deposition techniques is modeled. Methods provide a model of the transport inside nanostructures as a single-particle discrete Markov chain process. This approach decouples the complexity of the surface chemistry from the transport model, thus allowing its application under general surface chemistry conditions, including atomic layer deposition (ALD) and chemical vapor deposition (CVD). Methods provide for determination of determine statistical information of the trajectory of individual molecules, such as the average interaction time or the number of wall collisions for molecules entering the nanostructures as well as to track the relative contributions to thin-film growth of different independent reaction pathways at each point of the feature.
Analysis of survival data from telemetry projects
Bunck, C.M.; Winterstein, S.R.; Pollock, K.H.
1985-01-01
Telemetry techniques can be used to study the survival rates of animal populations and are particularly suitable for species or settings for which band recovery models are not. Statistical methods for estimating survival rates and parameters of survival distributions from observations of radio-tagged animals will be described. These methods have been applied to medical and engineering studies and to the study of nest success. Estimates and tests based on discrete models, originally introduced by Mayfield, and on continuous models, both parametric and nonparametric, will be described. Generalizations, including staggered entry of subjects into the study and identification of mortality factors will be considered. Additional discussion topics will include sample size considerations, relocation frequency for subjects, and use of covariates.
An Enriched Shell Element for Delamination Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark
2015-01-01
A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.
Planning and supervision of reactor defueling using discrete event techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, H.E.; Imel, G.R.; Houshyar, A.
1995-12-31
New fuel handling and conditioning activities for the defueling of the Experimental Breeder Reactor II are being performed at Argonne National Laboratory. Research is being conducted to investigate the use of discrete event simulation, analysis, and optimization techniques to plan, supervise, and perform these activities in such a way that productivity can be improved. The central idea is to characterize this defueling operation as a collection of interconnected serving cells, and then apply operational research techniques to identify appropriate planning schedules for given scenarios. In addition, a supervisory system is being developed to provide personnel with on-line information on themore » progress of fueling tasks and to suggest courses of action to accommodate changing operational conditions. This paper provides an introduction to the research in progress at ANL. In particular, it briefly describes the fuel handling configuration for reactor defueling at ANL, presenting the flow of material from the reactor grid to the interim storage location, and the expected contributions of this work. As an example of the studies being conducted for planning and supervision of fuel handling activities at ANL, an application of discrete event simulation techniques to evaluate different fuel cask transfer strategies is given at the end of the paper.« less
A Study of Energy Management Systems and its Failure Modes in Smart Grid Power Distribution
NASA Astrophysics Data System (ADS)
Musani, Aatif
The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use. In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique. The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be the best method to detect bad data. An H-infinity robust control technique was applied for the first time to design discrete EMS controller for the FREEDM system.
Computer modeling of lung cancer diagnosis-to-treatment process
Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick
2015-01-01
We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181
Discrete-time model reduction in limited frequency ranges
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A mathematical formulation for model reduction of discrete time systems such that the reduced order model represents the system in a particular frequency range is discussed. The algorithm transforms the full order system into balanced coordinates using frequency weighted discrete controllability and observability grammians. In this form a criterion is derived to guide truncation of states based on their contribution to the frequency range of interest. Minimization of the criterion is accomplished without need for numerical optimization. Balancing requires the computation of discrete frequency weighted grammians. Close form solutions for the computation of frequency weighted grammians are developed. Numerical examples are discussed to demonstrate the algorithm.
Mroz, T A
1999-10-01
This paper contains a Monte Carlo evaluation of estimators used to control for endogeneity of dummy explanatory variables in continuous outcome regression models. When the true model has bivariate normal disturbances, estimators using discrete factor approximations compare favorably to efficient estimators in terms of precision and bias; these approximation estimators dominate all the other estimators examined when the disturbances are non-normal. The experiments also indicate that one should liberally add points of support to the discrete factor distribution. The paper concludes with an application of the discrete factor approximation to the estimation of the impact of marriage on wages.