NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Liou, Meng-Sing; Povinelli, Louis A.; Arnone, Andrea
1993-01-01
This paper reports the results of numerical simulations of steady, laminar flow over a backward-facing step. The governing equations used in the simulations are the full 'compressible' Navier-Stokes equations, solutions to which were computed by using a cell-centered, finite volume discretization. The convection terms of the governing equations were discretized by using the Advection Upwind Splitting Method (AUSM), whereas the diffusion terms were discretized using central differencing formulas. The validity and accuracy of the numerical solutions were verified by comparing the results to existing experimental data for flow at identical Reynolds numbers in the same back step geometry. The paper focuses attention on the details of the flow field near the side wall of the geometry.
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.
Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K
2007-07-07
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.
Harte, Philip T.
1994-01-01
Proper discretization of a ground-water-flow field is necessary for the accurate simulation of ground-water flow by models. Although discretiza- tion guidelines are available to ensure numerical stability, current guidelines arc flexible enough (particularly in vertical discretization) to allow for some ambiguity of model results. Testing of two common types of vertical-discretization schemes (horizontal and nonhorizontal-model-layer approach) were done to simulate sloping hydrogeologic units characteristic of New England. Differences of results of model simulations using these two approaches are small. Numerical errors associated with use of nonhorizontal model layers are small (4 percent). even though this discretization technique does not adhere to the strict formulation of the finite-difference method. It was concluded that vertical discretization by means of the nonhorizontal layer approach has advantages in representing the hydrogeologic units tested and in simplicity of model-data input. In addition, vertical distortion of model cells by this approach may improve the representation of shallow flow processes.
High-Order Methods for Incompressible Fluid Flow
NASA Astrophysics Data System (ADS)
Deville, M. O.; Fischer, P. F.; Mund, E. H.
2002-08-01
High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular sttention given to enforcement of imcompressibility. Advanced discretizations. implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications.
Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces
Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.
2012-01-01
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Structured Overlapping Grid Simulations of Contra-rotating Open Rotor Noise
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Kiris, Cetin C.
2015-01-01
Computational simulations using structured overlapping grids with the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for predicting tonal noise generated by a contra-rotating open rotor (CROR) propulsion system. A coupled Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) numerical approach is applied. Three-dimensional time-accurate hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) CFD simulations are performed in the inertial frame, including dynamic moving grids, using a higher-order accurate finite difference discretization on structured overlapping grids. A higher-order accurate free-stream preserving metric discretization with discrete enforcement of the Geometric Conservation Law (GCL) on moving curvilinear grids is used to create an accurate, efficient, and stable numerical scheme. The aeroacoustic analysis is based on a permeable surface Ffowcs Williams-Hawkings (FW-H) approach, evaluated in the frequency domain. A time-step sensitivity study was performed using only the forward row of blades to determine an adequate time-step. The numerical approach is validated against existing wind tunnel measurements.
A phase screen model for simulating numerically the propagation of a laser beam in rain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukin, I P; Rychkov, D S; Falits, A V
2009-09-30
The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. Themore » 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)« less
Numerical Stimulation of Multicomponent Chromatography Using Spreadsheets.
ERIC Educational Resources Information Center
Frey, Douglas D.
1990-01-01
Illustrated is the use of spreadsheet programs for implementing finite difference numerical simulations of chromatography as an instructional tool in a separations course. Discussed are differential equations, discretization and integration, spreadsheet development, computer requirements, and typical simulation results. (CW)
A discrete geometric approach for simulating the dynamics of thin viscous threads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audoly, B., E-mail: audoly@lmm.jussieu.fr; Clauvelin, N.; Brun, P.-T.
We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistencymore » of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.« less
A developed nearly analytic discrete method for forward modeling in the frequency domain
NASA Astrophysics Data System (ADS)
Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai
2018-02-01
High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.
High-order scheme for the source-sink term in a one-dimensional water temperature model
Jing, Zheng; Kang, Ling
2017-01-01
The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data. PMID:28264005
High-order scheme for the source-sink term in a one-dimensional water temperature model.
Jing, Zheng; Kang, Ling
2017-01-01
The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data.
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
NASA Astrophysics Data System (ADS)
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
NASA Astrophysics Data System (ADS)
Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.
2017-04-01
Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Discrete distributed strain sensing of intelligent structures
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Crawley, Edward F.
1992-01-01
Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.
Experimental and numerical characterization of expanded glass granules
NASA Astrophysics Data System (ADS)
Chaudry, Mohsin Ali; Woitzik, Christian; Düster, Alexander; Wriggers, Peter
2018-07-01
In this paper, the material response of expanded glass granules at different scales and under different boundary conditions is investigated. At grain scale, single particle tests can be used to determine properties like Young's modulus or crushing strength. With experiments like triaxial and oedometer tests, it is possible to examine the bulk mechanical behaviour of the granular material. Our experimental investigation is complemented by a numerical simulation where the discrete element method is used to compute the mechanical behaviour of such materials. In order to improve the simulation quality, effects such as rolling resistance, inelastic behaviour, damage, and crushing are also included in the discrete element method. Furthermore, the variation of the material properties of granules is modelled by a statistical distribution and included in our numerical simulation.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Simulation of two-phase flow in horizontal fracture networks with numerical manifold method
NASA Astrophysics Data System (ADS)
Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.
2017-10-01
The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.
NASA Astrophysics Data System (ADS)
Fernandez, P.; Wang, Q.
2017-12-01
We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.
NASA Astrophysics Data System (ADS)
Nair, Rajesh P.; Lakshmana Rao, C.
2014-01-01
Ballistic impact (BI) is a study that deals with a projectile hitting a target and observing its effects in terms of deformation and fragmentation of the target. The Discrete Element Method (DEM) is a powerful numerical technique used to model solid and particulate media. Here, an attempt is made to simulate the BI process using DEM. 1-D DEM for BI is developed and depth of penetration (DOP) is obtained. The DOP is compared with results obtained from 2-D DEM. DEM results are found to match empirical results. Effects of strain rate sensitivity of the material response on DOP are also simulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; Wang, Cong; Winterfeld, Philip
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less
Convergence studies in meshfree peridynamic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seleson, Pablo; Littlewood, David J.
2016-04-15
Meshfree methods are commonly applied to discretize peridynamic models, particularly in numerical simulations of engineering problems. Such methods discretize peridynamic bodies using a set of nodes with characteristic volume, leading to particle-based descriptions of systems. In this article, we perform convergence studies of static peridynamic problems. We show that commonly used meshfree methods in peridynamics suffer from accuracy and convergence issues, due to a rough approximation of the contribution to the internal force density of nodes near the boundary of the neighborhood of a given node. We propose two methods to improve meshfree peridynamic simulations. The first method uses accuratemore » computations of volumes of intersections between neighbor cells and the neighborhood of a given node, referred to as partial volumes. The second method employs smooth influence functions with a finite support within peridynamic kernels. Numerical results demonstrate great improvements in accuracy and convergence of peridynamic numerical solutions, when using the proposed methods.« less
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Compatible Spatial Discretizations for Partial Differential Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Douglas, N, ed.
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less
NASA Astrophysics Data System (ADS)
van den Bosch, Frank C.; Ogiya, Go
2018-04-01
To gain understanding of the complicated, non-linear, and numerical processes associated with the tidal evolution of dark matter subhaloes in numerical simulation, we perform a large suite of idealized simulations that follow individual N-body subhaloes in a fixed, analytical host halo potential. By varying both physical and numerical parameters, we investigate under what conditions the subhaloes undergo disruption. We confirm the conclusions from our more analytical assessment in van den Bosch et al. that most disruption is numerical in origin; as long as a subhalo is resolved with sufficient mass and force resolution, a bound remnant survives. This implies that state-of-the-art cosmological simulations still suffer from significant overmerging. We demonstrate that this is mainly due to inadequate force softening, which causes excessive mass loss and artificial tidal disruption. In addition, we show that subhaloes in N-body simulations are susceptible to a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field. These two processes conspire to put serious limitations on the reliability of dark matter substructure in state-of-the-art cosmological simulations. We present two criteria that can be used to assess whether individual subhaloes in cosmological simulations are reliable or not, and advocate that subhaloes that satisfy either of these two criteria be discarded from further analysis. We discuss the potential implications of this work for several areas in astrophysics.
Manipulative and Numerical Spreadsheet Templates for the Study of Discrete Structures.
ERIC Educational Resources Information Center
Abramovich, Sergei
1998-01-01
Argues that basic components of discrete mathematics can be introduced to students through gradual elaboration of experiences with iconic spreadsheet-based simulations of concrete materials. Suggests that the study of homogeneous and heterogeneous patterns of manipulative spreadsheet templates allows for appreciation of the development of…
Numerical sedimentation particle-size analysis using the Discrete Element Method
NASA Astrophysics Data System (ADS)
Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.
2015-12-01
Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.
Discretization chaos - Feedback control and transition to chaos
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
Event-based simulation of networks with pulse delayed coupling
NASA Astrophysics Data System (ADS)
Klinshov, Vladimir; Nekorkin, Vladimir
2017-10-01
Pulse-mediated interactions are common in networks of different nature. Here we develop a general framework for simulation of networks with pulse delayed coupling. We introduce the discrete map governing the dynamics of such networks and describe the computation algorithm for its numerical simulation.
NASA Astrophysics Data System (ADS)
Clarke, Peter; Varghese, Philip; Goldstein, David
2018-01-01
A discrete velocity method is developed for gas mixtures of diatomic molecules with both rotational and vibrational energy states. A full quantized model is described, and rotation-translation and vibration-translation energy exchanges are simulated using a Larsen-Borgnakke exchange model. Elastic and inelastic molecular interactions are modeled during every simulated collision to help produce smooth internal energy distributions. The method is verified by comparing simulations of homogeneous relaxation by our discrete velocity method to numerical solutions of the Jeans and Landau-Teller equations, and to direct simulation Monte Carlo. We compute the structure of a 1D shock using this method, and determine how the rotational energy distribution varies with spatial location in the shock and with position in velocity space.
Bifurcation and chaos of a new discrete fractional-order logistic map
NASA Astrophysics Data System (ADS)
Ji, YuanDong; Lai, Li; Zhong, SuChuan; Zhang, Lu
2018-04-01
The fractional-order discrete maps with chaotic behaviors based on the theory of ;fractional difference; are proposed in recent years. In this paper, instead of using fractional difference, a new fractionalized logistic map is proposed based on the numerical algorithm of fractional differentiation definition. The bifurcation diagrams of this map with various differential orders are given by numerical simulation. The simulation results show that the fractional-order logistic map derived in this manner holds rich dynamical behaviors because of its memory effect. In addition, new types of behaviors of bifurcation and chaos are found, which are different from those of the integer-order and the previous fractional-order logistic maps.
Discrete modelling of front propagation in backward piping erosion
NASA Astrophysics Data System (ADS)
Tran, Duc-Kien; Prime, Noémie; Froiio, Francesco; Callari, Carlo; Vincens, Eric
2017-06-01
A preliminary discrete numerical model of a REV at the front region of an erosion pipe in a cohesive granular soil is briefly presented. The results reported herein refer to a simulation carried out by coupling the Discrete Element Method (DEM) with the Lattice Boltzmann Method (LBM) for the representation of the granular and fluid phases, respectively. The numerical specimen, consisiting of bonded grains, is tested under fully-saturated conditions and increasing pressure difference between the inlet (confined) and the outlet (unconfined) flow regions. The key role of compression arches of force chains that transversely cross the sample and carry most part of the hydrodynamic actions is pointed out. These arches partition the REV into an upstream region that remains almost intact and a downstream region that gradually degrades and is subsequently eroded in the form of a cluster. Eventually, the collapse of the compression arches causes the upstream region to be also eroded, abruptly, as a whole. A complete presentation of the numerical model and of the results of the simulation can be found in [12].
Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.
2014-12-01
The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.
NASA Astrophysics Data System (ADS)
Naine, Tarun Bharath; Gundawar, Manoj Kumar
2017-09-01
We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.
Three-dimensional simulation of vortex breakdown
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
Comparison of a 3-D DEM simulation with MRI data
NASA Astrophysics Data System (ADS)
Ng, Tang-Tat; Wang, Changming
2001-04-01
This paper presents a comparison of a granular material studied experimentally and numerically. Simple shear tests were performed inside the magnetic core of magnetic resonance imaging (MRI) equipment. Spherical pharmaceutical pills were used as the granular material, with each pill's centre location determined by MRI. These centre locations in the initial assembly were then used as the initial configuration in the numerical simulation using the discrete element method. The contact properties between pharmaceutical pills used in the numerical simulation were obtained experimentally. The numerical predication was compared with experimental data at both macroscopic and microscopic levels. Good agreement was found at both levels.
A High-Resolution Capability for Large-Eddy Simulation of Jet Flows
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2011-01-01
A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.
Stability analysis of the Euler discretization for SIR epidemic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanto, Agus
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaosmore » phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.« less
Program For Simulation Of Trajectories And Events
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1992-01-01
Universal Simulation Executive (USE) program accelerates and eases generation of application programs for numerical simulation of continuous trajectories interrupted by or containing discrete events. Developed for simulation of multiple spacecraft trajectories with events as one spacecraft crossing the equator, two spacecraft meeting or parting, or firing rocket engine. USE also simulates operation of chemical batch processing factory. Written in Ada.
Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method
Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao
2016-01-01
This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661
Modified symplectic schemes with nearly-analytic discrete operators for acoustic wave simulations
NASA Astrophysics Data System (ADS)
Liu, Shaolin; Yang, Dinghui; Lang, Chao; Wang, Wenshuai; Pan, Zhide
2017-04-01
Using a structure-preserving algorithm significantly increases the computational efficiency of solving wave equations. However, only a few explicit symplectic schemes are available in the literature, and the capabilities of these symplectic schemes have not been sufficiently exploited. Here, we propose a modified strategy to construct explicit symplectic schemes for time advance. The acoustic wave equation is transformed into a Hamiltonian system. The classical symplectic partitioned Runge-Kutta (PRK) method is used for the temporal discretization. Additional spatial differential terms are added to the PRK schemes to form the modified symplectic methods and then two modified time-advancing symplectic methods with all of positive symplectic coefficients are then constructed. The spatial differential operators are approximated by nearly-analytic discrete (NAD) operators, and we call the fully discretized scheme modified symplectic nearly analytic discrete (MSNAD) method. Theoretical analyses show that the MSNAD methods exhibit less numerical dispersion and higher stability limits than conventional methods. Three numerical experiments are conducted to verify the advantages of the MSNAD methods, such as their numerical accuracy, computational cost, stability, and long-term calculation capability.
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.
Watson, Erkai; Steinhauser, Martin O
2017-04-02
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms -1 . We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy-conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.
NASA Astrophysics Data System (ADS)
Olmos, L.; Bouvard, D.; Martin, C. L.; Bellet, D.; Di Michiel, M.
2009-06-01
The sintering of both a powder with a wide particle size distribution (0-63 μm) and of a powder with artificially created pores is investigated by coupling in situ X-ray microtomography observations with Discrete Element simulations. The micro structure evolution of the copper particles is observed by microtomography all along a typical sintering cycle at 1050° C at the European Synchrotron Research Facilities (ESRF, Grenoble, France). A quantitative analysis of the 3D images provides original data on interparticle indentation, coordination and particle displacements throughout sintering. In parallel, the sintering of similar powder systems has been simulated with a discrete element code which incorporates appropriate sintering contact laws from the literature. The initial numerical packing is generated directly from the 3D microtomography images or alternatively from a random set of particles with the same size distribution. The comparison between the information drawn from the simulations and the one obtained by tomography leads to the conclusion that the first method is not satisfactory because real particles are not perfectly spherical as the numerical ones. On the opposite the packings built with the second method show sintering behaviors close to the behaviors of real materials, although particle rearrangement is underestimated by DEM simulations.
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena
Watson, Erkai; Steinhauser, Martin O.
2017-01-01
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms−1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength. PMID:28772739
Geometric Nonlinear Computation of Thin Rods and Shells
NASA Astrophysics Data System (ADS)
Grinspun, Eitan
2011-03-01
We develop simple, fast numerical codes for the dynamics of thin elastic rods and shells, by exploiting the connection between physics, geometry, and computation. By building a discrete mechanical picture from the ground up, mimicking the axioms, structures, and symmetries of the smooth setting, we produce numerical codes that not only are consistent in a classical sense, but also reproduce qualitative, characteristic behavior of a physical system----such as exact preservation of conservation laws----even for very coarse discretizations. As two recent examples, we present discrete computational models of elastic rods and shells, with straightforward extensions to the viscous setting. Even at coarse discretizations, the resulting simulations capture characteristic geometric instabilities. The numerical codes we describe are used in experimental mechanics, cinema, and consumer software products. This is joint work with Miklós Bergou, Basile Audoly, Max Wardetzky, and Etienne Vouga. This research is supported in part by the Sloan Foundation, the NSF, Adobe, Autodesk, Intel, the Walt Disney Company, and Weta Digital.
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil
2015-11-01
We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.
NASA Astrophysics Data System (ADS)
Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide
2016-04-01
Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D distinct element simulations to better understand the stochastic nature of the geological structure and its effect on the quarry slope failure mechanism. The numerical modelling results highlight the influence of discontinuity characteristics and kinematics on the slope failure mechanism and the variability in the size and shape of the failed blocks.
NASA Astrophysics Data System (ADS)
Xia, Xilin; Liang, Qiuhua; Ming, Xiaodong; Hou, Jingming
2018-01-01
This document addresses the comments raised by Lu et al. (2017). Lu et al. (2017) proposed an alternative numerical treatment for implementing the fully implicit friction discretization in Xia et al. (2017). The method by Lu et al. (2017) is also effective, but not necessarily easier to implement or more efficient. The numerical wiggles observed by Lu et al. (2017) do not affect the overall solution accuracy of the surface reconstruction method (SRM). SRM introduces an antidiffusion effect, which may also lead to more accurate numerical predictions than hydrostatic reconstruction (HR) but may be the cause of the numerical wiggles. As suggested by Lu et al. (2017), HR may perform equally well if fine enough grids are used, which has been investigated and recognized in the literature. However, the use of refined meshes in simulations will inevitably increase computational cost and the grid sizes as suggested are too small for real-world applications.
Tensor-product preconditioners for a space-time discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2014-10-01
A space-time discontinuous Galerkin spectral element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is presented. A diagonalized alternating direction implicit preconditioner is extended to a space-time formulation using entropy variables. The effectiveness of this technique is demonstrated for the direct numerical simulation of turbulent flow in a channel.
The isolation of spatial patterning modes in a mathematical model of juxtacrine cell signalling.
O'Dea, R D; King, J R
2013-06-01
Juxtacrine signalling mechanisms are known to be crucial in tissue and organ development, leading to spatial patterns in gene expression. We investigate the patterning behaviour of a discrete model of juxtacrine cell signalling due to Owen & Sherratt (1998, Mathematical modelling of juxtacrine cell signalling. Math. Biosci., 153, 125-150) in which ligand molecules, unoccupied receptors and bound ligand-receptor complexes are modelled. Feedback between the ligand and receptor production and the level of bound receptors is incorporated. By isolating two parameters associated with the feedback strength and employing numerical simulation, linear stability and bifurcation analysis, the pattern-forming behaviour of the model is analysed under regimes corresponding to lateral inhibition and induction. Linear analysis of this model fails to capture the patterning behaviour exhibited in numerical simulations. Via bifurcation analysis, we show that since the majority of periodic patterns fold subcritically from the homogeneous steady state, a wide variety of stable patterns exists at a given parameter set, providing an explanation for this failure. The dominant pattern is isolated via numerical simulation. Additionally, by sampling patterns of non-integer wavelength on a discrete mesh, we highlight a disparity between the continuous and discrete representations of signalling mechanisms: in the continuous case, patterns of arbitrary wavelength are possible, while sampling such patterns on a discrete mesh leads to longer wavelength harmonics being selected where the wavelength is rational; in the irrational case, the resulting aperiodic patterns exhibit 'local periodicity', being constructed from distorted stable shorter wavelength patterns. This feature is consistent with experimentally observed patterns, which typically display approximate short-range periodicity with defects.
A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations
NASA Astrophysics Data System (ADS)
Zhang, Guoyu; Huang, Chengming; Li, Meng
2018-04-01
We consider the numerical simulation of the coupled nonlinear space fractional Schrödinger equations. Based on the Galerkin finite element method in space and the Crank-Nicolson (CN) difference method in time, a fully discrete scheme is constructed. Firstly, we focus on a rigorous analysis of conservation laws for the discrete system. The definitions of discrete mass and energy here correspond with the original ones in physics. Then, we prove that the fully discrete system is uniquely solvable. Moreover, we consider the unconditionally convergent properties (that is to say, we complete the error estimates without any mesh ratio restriction). We derive L2-norm error estimates for the nonlinear equations and L^{∞}-norm error estimates for the linear equations. Finally, some numerical experiments are included showing results in agreement with the theoretical predictions.
NASA Astrophysics Data System (ADS)
Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.
2018-04-01
We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.
NASA Astrophysics Data System (ADS)
Xia, Xilin; Liang, Qiuhua; Ming, Xiaodong; Hou, Jingming
2017-05-01
Numerical models solving the full 2-D shallow water equations (SWEs) have been increasingly used to simulate overland flows and better understand the transient flow dynamics of flash floods in a catchment. However, there still exist key challenges that have not yet been resolved for the development of fully dynamic overland flow models, related to (1) the difficulty of maintaining numerical stability and accuracy in the limit of disappearing water depth and (2) inaccurate estimation of velocities and discharges on slopes as a result of strong nonlinearity of friction terms. This paper aims to tackle these key research challenges and present a new numerical scheme for accurately and efficiently modeling large-scale transient overland flows over complex terrains. The proposed scheme features a novel surface reconstruction method (SRM) to correctly compute slope source terms and maintain numerical stability at small water depth, and a new implicit discretization method to handle the highly nonlinear friction terms. The resulting shallow water overland flow model is first validated against analytical and experimental test cases and then applied to simulate a hypothetic rainfall event in the 42 km2 Haltwhistle Burn, UK.
AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)
A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...
Discrete conservation laws and the convergence of long time simulations of the mkdv equation
NASA Astrophysics Data System (ADS)
Gorria, C.; Alejo, M. A.; Vega, L.
2013-02-01
Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.
Wu, Hulin; Xue, Hongqi; Kumar, Arun
2012-06-01
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
NASA Astrophysics Data System (ADS)
Salmasi, Mahbod; Potter, Michael
2018-07-01
Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.
Space-time adaptive solution of inverse problems with the discrete adjoint method
NASA Astrophysics Data System (ADS)
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
SToRM: A numerical model for environmental surface flows
Simoes, Francisco J.
2009-01-01
SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.
NASA Astrophysics Data System (ADS)
Alber, Mark; Chen, Nan; Glimm, Tilmann; Lushnikov, Pavel M.
2006-05-01
The cellular Potts model (CPM) has been used for simulating various biological phenomena such as differential adhesion, fruiting body formation of the slime mold Dictyostelium discoideum, angiogenesis, cancer invasion, chondrogenesis in embryonic vertebrate limbs, and many others. We derive a continuous limit of a discrete one-dimensional CPM with the chemotactic interactions between cells in the form of a Fokker-Planck equation for the evolution of the cell probability density function. This equation is then reduced to the classical macroscopic Keller-Segel model. In particular, all coefficients of the Keller-Segel model are obtained from parameters of the CPM. Theoretical results are verified numerically by comparing Monte Carlo simulations for the CPM with numerics for the Keller-Segel model.
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
NASA Astrophysics Data System (ADS)
Liu, Nan; Wen, Xiao-Yong
2018-03-01
Under consideration in this paper is the Kaup-Newell (KN) lattice equation which is an integrable discretization of the KN equation. Infinitely, many conservation laws and discrete N-fold Darboux transformation (DT) for this system are constructed and established based on its Lax representation. Via the resulting N-fold DT, the discrete multi-dark soliton solutions in terms of determinants are derived from non-vanishing background. Propagation and elastic interaction structures of such solitons are shown graphically. Overtaking interaction phenomena between/among the two, three and four solitons are discussed. Numerical simulations are used to explore their dynamical behaviors of such multi-dark solitons. Numerical results show that their evolutions are stable against a small noise. Results in this paper might be helpful for understanding the propagation of nonlinear Alfvén waves in plasmas.
NASA Technical Reports Server (NTRS)
Ross, M. D.; Linton, S. W.; Parnas, B. R.
2000-01-01
A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.
An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation
NASA Astrophysics Data System (ADS)
Li, Jia-Wei; Wang, Jiang-Feng
2018-05-01
In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.
High mobility of large mass movements: a study by means of FEM/DEM simulations
NASA Astrophysics Data System (ADS)
Manzella, I.; Lisjak, A.; Grasselli, G.
2013-12-01
Large mass movements, such as rock avalanches and large volcanic debris avalanches are characterized by extremely long propagation, which cannot be modelled using normal sliding friction law. For this reason several studies and theories derived from field observation, physical theories and laboratory experiments, exist to try to explain their high mobility. In order to investigate more into deep some of the processes recalled by these theories, simulations have been run with a new numerical tool called Y-GUI based on the Finite Element-Discrete Element Method FEM/DEM. The FEM/DEM method is a numerical technique developed by Munjiza et al. (1995) where Discrete Element Method (DEM) algorithms are used to model the interaction between different solids, while Finite Element Method (FEM) principles are used to analyze their deformability being also able to explicitly simulate material sudden loss of cohesion (i.e. brittle failure). In particular numerical tests have been run, inspired by the small-scale experiments done by Manzella and Labiouse (2013). They consist of rectangular blocks released on a slope; each block is a rectangular discrete element made of a mesh of finite elements enabled to fragment. These simulations have highlighted the influence on the propagation of block packing, i.e. whether the elements are piled into geometrical ordinate structure before failure or they are chaotically disposed as a loose material, and of the topography, i.e. whether the slope break is smooth and regular or not. In addition the effect of fracturing, i.e. fragmentation, on the total runout have been studied and highlighted.
Comparing a discrete and continuum model of the intestinal crypt
Murray, Philip J.; Walter, Alex; Fletcher, Alex G.; Edwards, Carina M.; Tindall, Marcus J.; Maini, Philip K.
2011-01-01
The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalisations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts. PMID:21411869
Faster and more accurate transport procedures for HZETRN
NASA Astrophysics Data System (ADS)
Slaba, T. C.; Blattnig, S. R.; Badavi, F. F.
2010-12-01
The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle ( A ⩽ 4) and heavy ion ( A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete description of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm 2 in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm 2 of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.
Faster and more accurate transport procedures for HZETRN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaba, T.C., E-mail: Tony.C.Slaba@nasa.go; Blattnig, S.R., E-mail: Steve.R.Blattnig@nasa.go; Badavi, F.F., E-mail: Francis.F.Badavi@nasa.go
The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle (A {<=} 4) and heavy ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete descriptionmore » of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm{sup 2} in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm{sup 2} of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.« less
Yang, L M; Shu, C; Wang, Y
2016-03-01
In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.
Faster and More Accurate Transport Procedures for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Badavi, Francis F.
2010-01-01
Several aspects of code verification are examined for HZETRN. First, a detailed derivation of the numerical marching algorithms is given. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of various coding errors is also given, and the impact of these errors on exposure quantities is shown. Finally, a coupled convergence study is conducted. From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is also determined that almost all of the discretization error in HZETRN is caused by charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons are given for three applications in which HZETRN is commonly used. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
Thermal breakage of a discrete one-dimensional string.
Lee, Chiu Fan
2009-09-01
We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.
A discrete epidemic model for bovine Babesiosis disease and tick populations
NASA Astrophysics Data System (ADS)
Aranda, Diego F.; Trejos, Deccy Y.; Valverde, Jose C.
2017-06-01
In this paper, we provide and study a discrete model for the transmission of Babesiosis disease in bovine and tick populations. This model supposes a discretization of the continuous-time model developed by us previously. The results, here obtained by discrete methods as opposed to continuous ones, show that similar conclusions can be obtained for the discrete model subject to the assumption of some parametric constraints which were not necessary in the continuous case. We prove that these parametric constraints are not artificial and, in fact, they can be deduced from the biological significance of the model. Finally, some numerical simulations are given to validate the model and verify our theoretical study.
Hu, Jin; Wang, Jun
2015-06-01
In recent years, complex-valued recurrent neural networks have been developed and analysed in-depth in view of that they have good modelling performance for some applications involving complex-valued elements. In implementing continuous-time dynamical systems for simulation or computational purposes, it is quite necessary to utilize a discrete-time model which is an analogue of the continuous-time system. In this paper, we analyse a discrete-time complex-valued recurrent neural network model and obtain the sufficient conditions on its global exponential periodicity and exponential stability. Simulation results of several numerical examples are delineated to illustrate the theoretical results and an application on associative memory is also given. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert
2017-11-01
We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.
Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks
NASA Astrophysics Data System (ADS)
Dinç, Özge; Scholtès, Luc
2018-05-01
A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.
A Discrete Analysis of Non-reflecting Boundary Conditions for Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Atkins, Harold L.
2003-01-01
We present a discrete analysis of non-reflecting boundary conditions for the discontinuous Galerkin method. The boundary conditions considered in this paper include the recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized Euler equation and two non-reflecting boundary conditions based on the characteristic decomposition of the flux on the boundary. The analyses for the three boundary conditions are carried out in a unifled way. In each case, eigensolutions of the discrete system are obtained and applied to compute the numerical reflection coefficients of a specified out-going wave. The dependencies of the reflections at the boundary on the out-going wave angle and frequency as well as the mesh sizes arc? studied. Comparisons with direct numerical simulation results are also presented.
Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark
1998-01-01
A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.
High performance computation of radiative transfer equation using the finite element method
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.
2018-05-01
This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.
Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case
Haney, M.M.
2007-01-01
Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.
Complexity and chaos control in a discrete-time prey-predator model
NASA Astrophysics Data System (ADS)
Din, Qamar
2017-08-01
We investigate the complex behavior and chaos control in a discrete-time prey-predator model. Taking into account the Leslie-Gower prey-predator model, we propose a discrete-time prey-predator system with predator partially dependent on prey and investigate the boundedness, existence and uniqueness of positive equilibrium and bifurcation analysis of the system by using center manifold theorem and bifurcation theory. Various feedback control strategies are implemented for controlling the bifurcation and chaos in the system. Numerical simulations are provided to illustrate theoretical discussion.
Computation of Steady and Unsteady Laminar Flames: Theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Radhakrishnan, Krishnan; Zhou, Ruhai
1999-01-01
In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersson, N. Anders; Sjogreen, Bjorn
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Petersson, N. Anders; Sjogreen, Bjorn
2017-04-18
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
NASA Astrophysics Data System (ADS)
Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.
2018-04-01
The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.
Models for twistable elastic polymers in Brownian dynamics, and their implementation for LAMMPS.
Brackley, C A; Morozov, A N; Marenduzzo, D
2014-04-07
An elastic rod model for semi-flexible polymers is presented. Theory for a continuum rod is reviewed, and it is shown that a popular discretised model used in numerical simulations gives the correct continuum limit. Correlation functions relating to both bending and twisting of the rod are derived for both continuous and discrete cases, and results are compared with numerical simulations. Finally, two possible implementations of the discretised model in the multi-purpose molecular dynamics software package LAMMPS are described.
The inverse problem of the calculus of variations for discrete systems
NASA Astrophysics Data System (ADS)
Barbero-Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián; Martín de Diego, David
2018-05-01
We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.
NASA Astrophysics Data System (ADS)
Maginnis, P. A.; West, M.; Dullerud, G. E.
2016-10-01
We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.
SPIR: The potential spreaders involved SIR model for information diffusion in social networks
NASA Astrophysics Data System (ADS)
Rui, Xiaobin; Meng, Fanrong; Wang, Zhixiao; Yuan, Guan; Du, Changjiang
2018-09-01
The Susceptible-Infective-Removed (SIR) model is one of the most widely used models for the information diffusion research in social networks. Many researchers have devoted themselves to improving the classic SIR model in different aspects. However, on the one hand, the equations of these improved models are regarded as continuous functions, while the corresponding simulation experiments use discrete time, leading to the mismatch between numerical solutions got from mathematical method and experimental results obtained by simulating the spreading behaviour of each node. On the other hand, if the equations of these improved models are solved discretely, susceptible nodes will be calculated repeatedly, resulting in a big deviation from the actual value. In order to solve the above problem, this paper proposes a Susceptible-Potential-Infective-Removed (SPIR) model that analyses the diffusion process based on the discrete time according to simulation. Besides, this model also introduces a potential spreader set which solve the problem of repeated calculation effectively. To test the SPIR model, various experiments have been carried out from different angles on both artificial networks and real world networks. The Pearson correlation coefficient between numerical solutions of our SPIR equations and corresponding simulation results is mostly bigger than 0.95, which reveals that the proposed SPIR model is able to depict the information diffusion process with high accuracy.
Fagerland, Morten W; Sandvik, Leiv; Mowinckel, Petter
2011-04-13
The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. The Welch U test (the T test with adjustment for unequal variances) and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group). The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.
A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics
NASA Astrophysics Data System (ADS)
Halpern, Federico
2017-10-01
The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.
Ge, Liang; Sotiropoulos, Fotis
2008-01-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
Application of incremental unknowns to the Burgers equation
NASA Technical Reports Server (NTRS)
Choi, Haecheon; Temam, Roger
1993-01-01
In this article, we make a few remarks on the role that attractors and inertial manifolds play in fluid mechanics problems. We then describe the role of incremental unknowns for approximating attractors and inertial manifolds when finite difference multigrid discretizations are used. The relation with direct numerical simulation and large eddy simulation is also mentioned.
NASA Astrophysics Data System (ADS)
Vogman, Genia
Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space coordinates present a new development in the field of computational plasma physics. A fourth-order finite-volume method for solving the Vlasov-Maxwell equation system is presented first for Cartesian and then for cylindrical phase space coordinates. Special attention is given to the treatment of the discrete primary variables and to the quadrature rule for evaluating the surface and line integrals that appear in the governing equations. The finite-volume treatment of conducting wall and axis boundaries is particularly nuanced when it comes to phase space coordinates, and is described in detail. In addition to the mechanics of each part of the finite-volume discretization in the two different coordinate systems, the complete algorithm is also presented. The Cartesian coordinate discretization is applied to several well-known test problems. Since even linear analysis of kinetic theory governing equations is complicated on account of velocity being an independent coordinate, few analytic or semi-analytic predictions exist. Benchmarks are particularly scarce for configurations that have magnetic fields and involve more than two phase space dimensions. Ensuring that simulations are true to the physics thus presents a difficulty in the development of robust numerical methods. The research described in this dissertation addresses this challenge through the development of more complete physics-based benchmarks based on the Dory-Guest-Harris instability. The instability is a special case of perpendicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. A complete derivation of the closed-form linear theory dispersion relation for the instability is presented. The electric field growth rates and oscillation frequencies specified by the dispersion relation provide concrete measures against which simulation results can be quantitatively compared. Furthermore, a specialized form of perturbation is shown to strongly excite the fastest growing mode. The fourth-order finite-volume algorithm is benchmarked against the instability, and is demonstrated to have good convergence properties and close agreement with theoretical growth rate and oscillation frequency predictions. The Dory-Guest-Harris instability benchmark extends the scope of standard test problems by providing a substantive means of validating continuum kinetic simulations of warm magnetized plasmas in higher-dimensional 3D ( x,vx,vy) phase space. The linear theory analysis, initial conditions, algorithm description, and comparisons between theoretical predictions and simulation results are presented. The cylindrical coordinate finite-volume discretization is applied to model axisymmetric systems. Since mitigating the prohibitive computational cost of simulating six dimensions is another challenge in phase space simulations, the development of a robust means of exploiting symmetry is a major advance when it comes to numerically solving the Vlasov-Maxwell equation system. The discretization is applied to a uniform distribution function to assess the nature of the singularity at the axis, and is demonstrated to converge at fourth-order accuracy. The numerical method is then applied to simulate electrostatic ion confinement in an axisymmetric Z-pinch configuration. To the author's knowledge this presents the first instance of a conservative finite-volume discretization of the cylindrical coordinate Vlasov equation. The computational framework for the Vlasov-Maxwell solver is described, and an outlook for future research is presented.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.
2018-02-01
In this work, we introduce a spatially discrete model that is a modification of the well-known α-Fermi-Pasta-Ulam chain with damping. The system is perturbed at one end by a harmonic disturbance irradiating at a frequency in the forbidden band-gap of the classical regime, and a nonlocal coupling between the oscillators is considered using discrete Riesz fractional derivatives. We propose fully discrete expressions to approximate an energy functional of the system, and we use them to calculate the total energy of fractional chains over a relatively long period of time [Fract. Diff. Appl. 4 (2004) 153-162]. The approach is thoroughly tested in the case of local couplings against known qualitative results, including simulations of the process of nonlinear recurrence in the traditional chains of anharmonic oscillators. As an application, we provide evidence that the process of supratransmission is present in spatially discrete Fermi-Pasta-Ulam lattices with Riesz fractional derivatives in space. Moreover, we perform numerical experiments for small and large amplitudes of the harmonic disturbance. In either case, we establish the dependency of the critical amplitude at which supratransmission begins as a function of the driving frequency. Our results are in good agreement with the analytic predictions for the classical Fermi-Pasta-Ulam chain.
Choi, Hyun Duck; Ahn, Choon Ki; Karimi, Hamid Reza; Lim, Myo Taeg
2017-10-01
This paper studies delay-dependent exponential dissipative and l 2 - l ∞ filtering problems for discrete-time switched neural networks (DSNNs) including time-delayed states. By introducing a novel discrete-time inequality, which is a discrete-time version of the continuous-time Wirtinger-type inequality, we establish new sets of linear matrix inequality (LMI) criteria such that discrete-time filtering error systems are exponentially stable with guaranteed performances in the exponential dissipative and l 2 - l ∞ senses. The design of the desired exponential dissipative and l 2 - l ∞ filters for DSNNs can be achieved by solving the proposed sets of LMI conditions. Via numerical simulation results, we show the validity of the desired discrete-time filter design approach.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1997-01-01
This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.
Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica
NASA Astrophysics Data System (ADS)
Turco, Emilio
2018-04-01
Complex problems such as those concerning the mechanics of materials can be confronted only by considering numerical simulations. Analytical methods are useful to build guidelines or reference solutions but, for general cases of technical interest, they have to be solved numerically, especially in the case of large displacements and deformations. Probably continuous models arose for producing inspiring examples and stemmed from homogenization techniques. These techniques allowed for the solution of some paradigmatic examples but, in general, always require a discretization method for solving problems dictated by the applications. Therefore, and also by taking into account that computing powers are nowadays more largely available and cheap, the question arises: why not using directly a discrete model for 3D beams? In other words, it could be interesting to formulate a discrete model without using an intermediate continuum one, as this last, at the end, has to be discretized in any case. These simple considerations immediately evoke some very basic models developed many years ago when the computing powers were practically inexistent but the problem of finding simple solutions to beam deformation problem was already an emerging one. Actually, in recent years, the keynotes of Hencky and Piola attracted a renewed attention [see, one for all, the work (Turco et al. in Zeitschrift für Angewandte Mathematik und Physik 67(4):1-28, 2016)]: generalizing their results, in the present paper, a novel directly discrete three-dimensional beam model is presented and discussed, in the framework of geometrically nonlinear analysis. Using a stepwise algorithm based essentially on Newton's method to compute the extrapolations and on the Riks' arc-length method to perform the corrections, we could obtain some numerical simulations showing the computational effectiveness of presented model: Indeed, it presents a convenient balance between accuracy and computational cost.
Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.
Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger
2016-11-01
In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-04-29
We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.
Random discrete linear canonical transform.
Wei, Deyun; Wang, Ruikui; Li, Yuan-Min
2016-12-01
Linear canonical transforms (LCTs) are a family of integral transforms with wide applications in optical, acoustical, electromagnetic, and other wave propagation problems. In this paper, we propose the random discrete linear canonical transform (RDLCT) by randomizing the kernel transform matrix of the discrete linear canonical transform (DLCT). The RDLCT inherits excellent mathematical properties from the DLCT along with some fantastic features of its own. It has a greater degree of randomness because of the randomization in terms of both eigenvectors and eigenvalues. Numerical simulations demonstrate that the RDLCT has an important feature that the magnitude and phase of its output are both random. As an important application of the RDLCT, it can be used for image encryption. The simulation results demonstrate that the proposed encryption method is a security-enhanced image encryption scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ju, E-mail: jliu@ices.utexas.edu; Gomez, Hector; Evans, John A.
2013-09-01
We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionallymore » stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.« less
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.
2017-12-01
In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
Knowledge-based simulation for aerospace systems
NASA Technical Reports Server (NTRS)
Will, Ralph W.; Sliwa, Nancy E.; Harrison, F. Wallace, Jr.
1988-01-01
Knowledge-based techniques, which offer many features that are desirable in the simulation and development of aerospace vehicle operations, exhibit many similarities to traditional simulation packages. The eventual solution of these systems' current symbolic processing/numeric processing interface problem will lead to continuous and discrete-event simulation capabilities in a single language, such as TS-PROLOG. Qualitative, totally-symbolic simulation methods are noted to possess several intrinsic characteristics that are especially revelatory of the system being simulated, and capable of insuring that all possible behaviors are considered.
NASA Astrophysics Data System (ADS)
Di Labbio, G.; Kiyanda, C. B.; Mi, X.; Higgins, A. J.; Nikiforakis, N.; Ng, H. D.
2016-06-01
In this study, the applicability of the Chapman-Jouguet (CJ) criterion is tested numerically for heterogeneous explosive media using a simple detonation analog. The analog system consists of a reactive Burgers' equation coupled with an Arrhenius type reaction wave, and the heterogeneity of the explosive media is mimicked using a discrete energy source approach. The governing equation is solved using a second order, finite-volume approach and the average propagation velocity of the discrete detonation is determined by tracking the leading shock front. Consistent with previous studies, the averaged velocity of the leading shock front from the unsteady numerical simulations is also found to be in good agreement with the velocity of a CJ detonation in a uniform medium wherein the energy source is spatially homogenized. These simulations have thus implications for whether the CJ criterion is valid to predict the detonation velocity in heterogeneous explosive media.
Numerical simulation of filtration of mine water from coal slurry particles
NASA Astrophysics Data System (ADS)
Dyachenko, E. N.; Dyachenko, N. N.
2017-11-01
The discrete element method is applied to model a technology for clarification of industrial waste water containing fine-dispersed solid impurities. The process is analyzed at the level of discrete particles and pores. The effect of filter porosity on the volume fraction of particles has been shown. The degree of clarification of mine water was also calculated depending on the coal slurry particle size, taking into account the adhesion force.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Complex discrete dynamics from simple continuous population models.
Gamarra, Javier G P; Solé, Ricard V
2002-05-01
Nonoverlapping generations have been classically modelled as difference equations in order to account for the discrete nature of reproductive events. However, other events such as resource consumption or mortality are continuous and take place in the within-generation time. We have realistically assumed a hybrid ODE bidimensional model of resources and consumers with discrete events for reproduction. Numerical and analytical approaches showed that the resulting dynamics resembles a Ricker map, including the doubling route to chaos. Stochastic simulations with a handling-time parameter for indirect competition of juveniles may affect the qualitative behaviour of the model.
NASA Astrophysics Data System (ADS)
Yu, Jinchen; Peng, Mingshu
2016-10-01
In this paper, a Kaldor-Kalecki model of business cycle with both discrete and distributed delays is considered. With the corresponding characteristic equation analyzed, the local stability of the positive equilibrium is investigated. It is found that there exist Hopf bifurcations when the discrete time delay passes a sequence of critical values. By applying the method of multiple scales, the explicit formulae which determine the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally, numerical simulations are carried out to illustrate our main results.
Mathematical model for self-propelled droplets driven by interfacial tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, Ken H.; Tachibana, Kunihito; Tobe, Yuta
2016-03-21
We propose a model for the spontaneous motion of a droplet induced by inhomogeneity in interfacial tension. The model is derived from a variation of the Lagrangian of the system and we use a time-discretized Morse flow scheme to perform its numerical simulations. Our model can naturally simulate the dynamics of a single droplet, as well as that of multiple droplets, where the volume of each droplet is conserved. We reproduced the ballistic motion and fission of a droplet, and the collision of two droplets was also examined numerically.
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
NASA Astrophysics Data System (ADS)
Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey
2017-11-01
In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.
NASA Astrophysics Data System (ADS)
Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier
2018-01-01
The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.
Dynamical Approach Study of Spurious Numerics in Nonlinear Computations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi (Technical Monitor)
2002-01-01
The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.
NASA Astrophysics Data System (ADS)
Jiang, Jiamin; Younis, Rami M.
2017-06-01
The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.
Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
NASA Astrophysics Data System (ADS)
Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua
2018-06-01
Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.
Hydro-mechanical model for wetting/drying and fracture development in geomaterials
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.; ...
2013-12-28
This study presents a modeling approach for studying hydro-mechanical coupled processes, including fracture development, within geological formations. This is accomplished through the novel linking of two codes: TOUGH2, which is a widely used simulator of subsurface multiphase flow based on the finite volume method; and an implementation of the Rigid-Body-Spring Network (RBSN) method, which provides a discrete (lattice) representation of material elasticity and fracture development. The modeling approach is facilitated by a Voronoi-based discretization technique, capable of representing discrete fracture networks. The TOUGH–RBSN simulator is intended to predict fracture evolution, as well as mass transport through permeable media, under dynamicallymore » changing hydrologic and mechanical conditions. Numerical results are compared with those of two independent studies involving hydro-mechanical coupling: (1) numerical modeling of swelling stress development in bentonite; and (2) experimental study of desiccation cracking in a mining waste. The comparisons show good agreement with respect to moisture content, stress development with changes in pore pressure, and time to crack initiation. Finally, the observed relationship between material thickness and crack patterns (e.g., mean spacing of cracks) is captured by the proposed modeling approach.« less
A more accurate scheme for calculating Earth's skin temperature
NASA Astrophysics Data System (ADS)
Tsuang, Ben-Jei; Tu, Chia-Ying; Tsai, Jeng-Lin; Dracup, John A.; Arpe, Klaus; Meyers, Tilden
2009-02-01
The theoretical framework of the vertical discretization of a ground column for calculating Earth’s skin temperature is presented. The suggested discretization is derived from the evenly heat-content discretization with the optimal effective thickness for layer-temperature simulation. For the same level number, the suggested discretization is more accurate in skin temperature as well as surface ground heat flux simulations than those used in some state-of-the-art models. A proposed scheme (“op(3,2,0)”) can reduce the normalized root-mean-square error (or RMSE/STD ratio) of the calculated surface ground heat flux of a cropland site significantly to 2% (or 0.9 W m-2), from 11% (or 5 W m-2) by a 5-layer scheme used in ECMWF, from 19% (or 8 W m-2) by a 5-layer scheme used in ECHAM, and from 74% (or 32 W m-2) by a single-layer scheme used in the UCLA GCM. Better accuracy can be achieved by including more layers to the vertical discretization. Similar improvements are expected for other locations with different land types since the numerical error is inherited into the models for all the land types. The proposed scheme can be easily implemented into state-of-the-art climate models for the temperature simulation of snow, ice and soil.
McDonough, J M
2009-06-01
Outline of the derivation and mathematical and physical interpretations are presented for a discrete dynamical system known as the "poor man's Navier-Stokes equation." Numerical studies demonstrate that velocity fields produced by this dynamical system are similar to those seen in laboratory experiments and in detailed simulations, and they lead to scaling for the turbulence kinetic energy spectrum in accord with Kolmogorov K41 theory.
Hydraulic fracturing - an attempt of DEM simulation
NASA Astrophysics Data System (ADS)
Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech
2017-04-01
Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.
Constant pressure and temperature discrete-time Langevin molecular dynamics
NASA Astrophysics Data System (ADS)
Grønbech-Jensen, Niels; Farago, Oded
2014-11-01
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
NASA Astrophysics Data System (ADS)
Li, C. H.; Wu, L. C.; Chan, P. C.; Lin, M. L.
2016-12-01
The National Highway No. 3 - Tianliao III Bridge is located in the southwestern Taiwan mudstone area and crosses the Chekualin fault. Since the bridge was opened to traffic, it has been repaired 11 times. To understand the interaction behavior between thrust faulting and the bridge, a discrete element method-based software program, PFC, was applied to conduct a numerical analysis. A 3D model for simulating the thrust faulting and bridge was established, as shown in Fig. 1. In this conceptual model, the length and width were 50 and 10 m, respectively. Part of the box bottom was moveable, simulating the displacement of the thrust fault. The overburden stratum had a height of 5 m with fault dip angles of 20° (Fig. 2). The bottom-up strata were mudstone, clay, and sand, separately. The uplift was 1 m, which was 20% of the stratum thickness. In accordance with the investigation, the position of the fault tip was set, depending on the fault zone, and the bridge deformation was observed (Fig. 3). By setting "Monitoring Balls" in the numerical model to analyzes bridge displacement, we determined that the bridge deck deflection increased as the uplift distance increased. Furthermore, the force caused by the loading of the bridge deck and fault dislocation was determined to cause a down deflection of the P1 and P2 bridge piers. Finally, the fault deflection trajectory of the P4 pier displayed the maximum displacement (Fig. 4). Similar behavior has been observed through numerical simulation as well as field monitoring data. Usage of the discrete element model (PFC3D) to simulate the deformation behavior between thrust faulting and the bridge provided feedback for the design and improved planning of the bridge.
Using a simulation assistant in modeling manufacturing systems
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.
1988-01-01
Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.
NASA Astrophysics Data System (ADS)
Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei
2017-08-01
Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.
Su, Wei; Lindsay, Scott; Liu, Haihu; Wu, Lei
2017-08-01
Rooted from the gas kinetics, the lattice Boltzmann method (LBM) is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate rarefied gas flows beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (e.g., D2Q36), is accurate up to the early transition flow regime, the latter method (especially the multiple relaxation time (MRT) LBM), with the same discrete velocities as those used in simulating hydrodynamics (i.e., D2Q9), is accurate up to the free-molecular flow regime in the planar Poiseuille flow. This is quite astonishing in the sense that less discrete velocities are more accurate. In this paper, by solving the Bhatnagar-Gross-Krook kinetic equation accurately via the discrete velocity method, we find that the high-order Gauss-Hermite quadrature cannot describe the large variation in the velocity distribution function when the rarefaction effect is strong, but the MRT-LBM can capture the flow velocity well because it is equivalent to solving the Navier-Stokes equations with an effective shear viscosity. Since the MRT-LBM has only been validated in simple channel flows, and for complex geometries it is difficult to find the effective viscosity, it is necessary to assess its performance for the simulation of rarefied gas flows. Our numerical simulations based on the accurate discrete velocity method suggest that the accuracy of the MRT-LBM is reduced significantly in the simulation of rarefied gas flows through the rough surface and porous media. Our simulation results could serve as benchmarking cases for future development of the LBM for modeling and simulation of rarefied gas flows in complex geometries.
Particle-in-cell simulations of Hall plasma thrusters
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre
2016-07-01
Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.
NASA Astrophysics Data System (ADS)
Yang, Dingge; Wang, Lijun; Jia, Shenli; Huo, Xintao; Zhang, Ling; Liu, Ke; Shi, Zongqian
2009-03-01
Based on a two-dimensional magnetohydrodynamic model, the dynamic process in a high-current vacuum arc (as in a high-power circuit breaker) was simulated and analysed. A half-wave of sinusoidal current was represented as a series of discrete steps, rather than as a continuous wave. The simulation was done at each step, i.e. at each of the discrete current values. In the simulation, the phase delay by which the axial magnetic field lags the current was taken into account. The curves which represent the variation of arc parameters (such as electron temperature) look sinusoidal, but the parameter values at a discrete moment in the second 1/4 cycle are smaller than those at the corresponding moment in the first 1/4 cycle (although the currents are equal at these two moments). This is perhaps mainly due to the magnetic field delay. In order to verify the correctness of the simulation, the simulation results were compared in part with the experimental results. It was seen from the experimental results that the arc column was darker but more uniform in the second 1/4 cycle than in the first 1/4 cycle, in agreement with the simulation results.
Finite Volume Methods: Foundation and Analysis
NASA Technical Reports Server (NTRS)
Barth, Timothy; Ohlberger, Mario
2003-01-01
Finite volume methods are a class of discretization schemes that have proven highly successful in approximating the solution of a wide variety of conservation law systems. They are extensively used in fluid mechanics, porous media flow, meteorology, electromagnetics, models of biological processes, semi-conductor device simulation and many other engineering areas governed by conservative systems that can be written in integral control volume form. This article reviews elements of the foundation and analysis of modern finite volume methods. The primary advantages of these methods are numerical robustness through the obtention of discrete maximum (minimum) principles, applicability on very general unstructured meshes, and the intrinsic local conservation properties of the resulting schemes. Throughout this article, specific attention is given to scalar nonlinear hyperbolic conservation laws and the development of high order accurate schemes for discretizing them. A key tool in the design and analysis of finite volume schemes suitable for non-oscillatory discontinuity capturing is discrete maximum principle analysis. A number of building blocks used in the development of numerical schemes possessing local discrete maximum principles are reviewed in one and several space dimensions, e.g. monotone fluxes, E-fluxes, TVD discretization, non-oscillatory reconstruction, slope limiters, positive coefficient schemes, etc. When available, theoretical results concerning a priori and a posteriori error estimates are given. Further advanced topics are then considered such as high order time integration, discretization of diffusion terms and the extension to systems of nonlinear conservation laws.
Implementation Strategies for Large-Scale Transport Simulations Using Time Domain Particle Tracking
NASA Astrophysics Data System (ADS)
Painter, S.; Cvetkovic, V.; Mancillas, J.; Selroos, J.
2008-12-01
Time domain particle tracking is an emerging alternative to the conventional random walk particle tracking algorithm. With time domain particle tracking, particles are moved from node to node on one-dimensional pathways defined by streamlines of the groundwater flow field or by discrete subsurface features. The time to complete each deterministic segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, a variety of kinetically controlled retention (sorption) processes, linear transformation, and temporal changes in groundwater velocities and sorption parameters. The simulation results in a set of arrival times at a monitoring location that can be post-processed with a kernel method to construct mass discharge (breakthrough) versus time. Implementation strategies differ for discrete flow (fractured media) systems and continuous porous media systems. The implementation strategy also depends on the scale at which hydraulic property heterogeneity is represented in the supporting flow model. For flow models that explicitly represent discrete features (e.g., discrete fracture networks), the sampling of residence times along segments is conceptually straightforward. For continuous porous media, such sampling needs to be related to the Lagrangian velocity field. Analytical or semi-analytical methods may be used to approximate the Lagrangian segment velocity distributions in aquifers with low-to-moderate variability, thereby capturing transport effects of subgrid velocity variability. If variability in hydraulic properties is large, however, Lagrangian velocity distributions are difficult to characterize and numerical simulations are required; in particular, numerical simulations are likely to be required for estimating the velocity integral scale as a basis for advective segment distributions. Aquifers with evolving heterogeneity scales present additional challenges. Large-scale simulations of radionuclide transport at two potential repository sites for high-level radioactive waste will be used to demonstrate the potential of the method. The simulations considered approximately 1000 source locations, multiple radionuclides with contrasting sorption properties, and abrupt changes in groundwater velocity associated with future glacial scenarios. Transport pathways linking the source locations to the accessible environment were extracted from discrete feature flow models that include detailed representations of the repository construction (tunnels, shafts, and emplacement boreholes) embedded in stochastically generated fracture networks. Acknowledgment The authors are grateful to SwRI Advisory Committee for Research, the Swedish Nuclear Fuel and Waste Management Company, and Posiva Oy for financial support.
Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan
2015-11-01
This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Okabe, Ryo; Tanaka, Toshiki; Nishihara, Masato; Kai, Yutaka; Takahara, Tomoo; Chen, Hao; Yan, Weizhen; Tao, Zhenning; Rasmussen, Jens C.
2015-01-01
Discrete multi-tone (DMT) technology is an attractive modulation technique for short reach optical transmission system. One of the main factors that limit system performance is fiber dispersion, which is strongly influenced by the chirp characteristics of transmitters. We investigated the fiber dispersion impairment in a 400GbE (4 × 116.1-Gb/s) DMT system on LAN-WDM grid for reach enhancement up to 40 km through experiments and numerical simulations.
Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection
NASA Astrophysics Data System (ADS)
Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.
2004-05-01
Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.
a Numerical Model for Flue Gas Desulfurization System.
NASA Astrophysics Data System (ADS)
Kim, Sung Joon
The purpose of this work is to develop a reliable numerical model for spray dryer desulfurization systems. The shape of the spray dryer requires that a body fitted orthogonal coordinate system be used for the numerical model. The governing equations are developed in the general orthogonal coordinates and discretized to yield a system of algebraic equations. A turbulence model is also included in the numerical program. A new second order numerical scheme is developed and included in the numerical model. The trajectory approach is used to simulate the flow of the dispersed phase. Two-way coupling phenomena is modeled by this scheme. The absorption of sulfur dioxide into lime slurry droplets is simulated by a model based on gas -phase mass transfer. The program is applied to a typical spray dryer desulfurization system. The results show the capability of the program to predict the sensitivity of system performance to changes in operational parameters.
NASA Astrophysics Data System (ADS)
King, Jacob; Kruger, Scott
2017-10-01
Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).
Enhanced verification test suite for physics simulation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.
2008-09-01
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.
Numerical simulation of rock fragmentation during cutting by conical picks under confining pressure
NASA Astrophysics Data System (ADS)
Li, Xuefeng; Wang, Shibo; Ge, Shirong; Malekian, Reza; Li, Zhixiong
2017-12-01
In this article, the effect of confining pressure on rock fragmentation process during cutting was investigated by numerical simulation with a discrete element method (DEM). Four kinds of sandstones with different physical properties were simulated in the rock cutting models under different confining pressures. The rock fragmentation process, the cutting force, and the specific energy under different confining pressures were analyzed. With the increase in confining pressure and rock strength, the vertical propagation of cracks was restrained. Rock samples were compacted and strengthened by confining pressure resulting in the increase of the cutting force. The specific energy of rock cutting linearly increased with the increase of the confining pressure ratio.
An Enriched Shell Element for Delamination Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark
2015-01-01
A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-04-01
The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less
Efficient implicit LES method for the simulation of turbulent cavitating flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan
2016-07-01
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less
Large-eddy simulation of turbulent cavitating flow in a micro channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Hickel, Stefan; Schmidt, Steffen J.
2014-08-15
Large-eddy simulations (LES) of cavitating flow of a Diesel-fuel-like fluid in a generic throttle geometry are presented. Two-phase regions are modeled by a parameter-free thermodynamic equilibrium mixture model, and compressibility of the liquid and the liquid-vapor mixture is taken into account. The Adaptive Local Deconvolution Method (ALDM), adapted for cavitating flows, is employed for discretizing the convective terms of the Navier-Stokes equations for the homogeneous mixture. ALDM is a finite-volume-based implicit LES approach that merges physically motivated turbulence modeling and numerical discretization. Validation of the numerical method is performed for a cavitating turbulent mixing layer. Comparisons with experimental data ofmore » the throttle flow at two different operating conditions are presented. The LES with the employed cavitation modeling predicts relevant flow and cavitation features accurately within the uncertainty range of the experiment. The turbulence structure of the flow is further analyzed with an emphasis on the interaction between cavitation and coherent motion, and on the statistically averaged-flow evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincenti, H.; Vay, J. -L.
Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-03-01
Coating of solid dosage forms is an important unit operation in the pharmaceutical industry. In recent years, numerical simulations of drug manufacturing processes have been gaining interest as process analytical technology tools. The discrete element method (DEM) in particular is suitable to model tablet-coating processes. For the development of accurate simulations, information on the material properties of the tablets is required. In this study, the mechanical parameters Young's modulus, coefficient of restitution (CoR), and coefficients of friction (CoF) of gastrointestinal therapeutic systems (GITS) and of active-coated GITS were measured experimentally. The dynamic angle of repose of these tablets in a drum coater was investigated to revise the CoF. The resulting values were used as input data in DEM simulations to compare simulation and experiment. A mean value of Young's modulus of 31.9 MPa was determined by the uniaxial compression test. The CoR was found to be 0.78. For both tablet-steel and tablet-tablet friction, active-coated GITS showed a higher CoF compared with GITS. According to the values of the dynamic angle of repose, the CoF was adjusted to obtain consistent tablet motion in the simulation and in the experiment. On the basis of this experimental characterization, mechanical parameters are integrated into DEM simulation programs to perform numerical analysis of coating processes.
Mechanical discrete simulator of the electro-mechanical lift with n:1 roping
NASA Astrophysics Data System (ADS)
Alonso, F. J.; Herrera, I.
2016-05-01
The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.
NASA Astrophysics Data System (ADS)
Grenier, Christophe; Anbergen, Hauke; Bense, Victor; Chanzy, Quentin; Coon, Ethan; Collier, Nathaniel; Costard, François; Ferry, Michel; Frampton, Andrew; Frederick, Jennifer; Gonçalvès, Julio; Holmén, Johann; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Mouche, Emmanuel; Orgogozo, Laurent; Pannetier, Romain; Rivière, Agnès; Roux, Nicolas; Rühaak, Wolfram; Scheidegger, Johanna; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik; Voss, Clifford
2018-04-01
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. This issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiang; Ju, Lili; Du, Qiang
2016-07-01
The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.
Fast maximum likelihood estimation using continuous-time neural point process models.
Lepage, Kyle Q; MacDonald, Christopher J
2015-06-01
A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Konor, Celal S.; Randall, David A.
2018-05-08
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
An accurate front capturing scheme for tumor growth models with a free boundary limit
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Tang, Min; Wang, Li; Zhou, Zhennan
2018-07-01
We consider a class of tumor growth models under the combined effects of density-dependent pressure and cell multiplication, with a free boundary model as its singular limit when the pressure-density relationship becomes highly nonlinear. In particular, the constitutive law connecting pressure p and density ρ is p (ρ) = m/m-1 ρ m - 1, and when m ≫ 1, the cell density ρ may evolve its support according to a pressure-driven geometric motion with sharp interface along its boundary. The nonlinearity and degeneracy in the diffusion bring great challenges in numerical simulations. Prior to the present paper, there is lack of standard mechanism to numerically capture the front propagation speed as m ≫ 1. In this paper, we develop a numerical scheme based on a novel prediction-correction reformulation that can accurately approximate the front propagation even when the nonlinearity is extremely strong. We show that the semi-discrete scheme naturally connects to the free boundary limit equation as m → ∞. With proper spatial discretization, the fully discrete scheme has improved stability, preserves positivity, and can be implemented without nonlinear solvers. Finally, extensive numerical examples in both one and two dimensions are provided to verify the claimed properties in various applications.
Punzalan, Florencio Rusty; Kunieda, Yoshitoshi; Amano, Akira
2015-01-01
Clinical and experimental studies involving human hearts can have certain limitations. Methods such as computer simulations can be an important alternative or supplemental tool. Physiological simulation at the tissue or organ level typically involves the handling of partial differential equations (PDEs). Boundary conditions and distributed parameters, such as those used in pharmacokinetics simulation, add to the complexity of the PDE solution. These factors can tailor PDE solutions and their corresponding program code to specific problems. Boundary condition and parameter changes in the customized code are usually prone to errors and time-consuming. We propose a general approach for handling PDEs and boundary conditions in computational models using a replacement scheme for discretization. This study is an extension of a program generator that we introduced in a previous publication. The program generator can generate code for multi-cell simulations of cardiac electrophysiology. Improvements to the system allow it to handle simultaneous equations in the biological function model as well as implicit PDE numerical schemes. The replacement scheme involves substituting all partial differential terms with numerical solution equations. Once the model and boundary equations are discretized with the numerical solution scheme, instances of the equations are generated to undergo dependency analysis. The result of the dependency analysis is then used to generate the program code. The resulting program code are in Java or C programming language. To validate the automatic handling of boundary conditions in the program code generator, we generated simulation code using the FHN, Luo-Rudy 1, and Hund-Rudy cell models and run cell-to-cell coupling and action potential propagation simulations. One of the simulations is based on a published experiment and simulation results are compared with the experimental data. We conclude that the proposed program code generator can be used to generate code for physiological simulations and provides a tool for studying cardiac electrophysiology. PMID:26356082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jovanca J.; Bishop, Joseph E.
2013-11-01
This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed atmore » Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.« less
NASA Astrophysics Data System (ADS)
Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe
2006-06-01
The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).
Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández
2005-09-16
Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.
NASA Astrophysics Data System (ADS)
Chen, Yunsheng; Lu, Xinghua
2018-05-01
The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.
Numerical simulation of double‐diffusive finger convection
Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark W.
2016-01-01
A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.
Some issues and subtleties in numerical simulation of X-ray FEL's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.
Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuraciesmore » of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).« less
NASA Technical Reports Server (NTRS)
Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.
2016-01-01
A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.
NASA Astrophysics Data System (ADS)
Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin
2018-07-01
The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).
A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Application of an enhanced discrete element method to oil and gas drilling processes
NASA Astrophysics Data System (ADS)
Ubach, Pere Andreu; Arrufat, Ferran; Ring, Lev; Gandikota, Raju; Zárate, Francisco; Oñate, Eugenio
2016-03-01
The authors present results on the use of the discrete element method (DEM) for the simulation of drilling processes typical in the oil and gas exploration industry. The numerical method uses advanced DEM techniques using a local definition of the DEM parameters and combined FEM-DEM procedures. This paper presents a step-by-step procedure to build a DEM model for analysis of the soil region coupled to a FEM model for discretizing the drilling tool that reproduces the drilling mechanics of a particular drill bit. A parametric study has been performed to determine the model parameters in order to maintain accurate solutions with reduced computational cost.
Di Costanzo, Ezio; Giacomello, Alessandro; Messina, Elisa; Natalini, Roberto; Pontrelli, Giuseppe; Rossi, Fabrizio; Smits, Robert; Twarogowska, Monika
2018-03-14
We propose a discrete in continuous mathematical model describing the in vitro growth process of biophsy-derived mammalian cardiac progenitor cells growing as clusters in the form of spheres (Cardiospheres). The approach is hybrid: discrete at cellular scale and continuous at molecular level. In the present model, cells are subject to the self-organizing collective dynamics mechanism and, additionally, they can proliferate and differentiate, also depending on stochastic processes. The two latter processes are triggered and regulated by chemical signals present in the environment. Numerical simulations show the structure and the development of the clustered progenitors and are in a good agreement with the results obtained from in vitro experiments.
Dynamic modeling of brushless dc motors for aerospace actuation
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Sotiropoulos, Fotis
2014-11-01
Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.
Numerical modeling of the atmosphere with an isentropic vertical coordinate
NASA Technical Reports Server (NTRS)
Hsu, Yueh-Jiuan G.; Arakawa, Akio
1990-01-01
A theta-coordinate model simulating the nonlinear evolution of a baroclinic wave is presented. In the model, vertical discretization maintains important integral constraints such as conservation of the angular momentum and total energy. A massless-layer approach is used in the treatment of the intersections of coordinate surfaces with the lower boundary. This formally eliminates the intersection problem, but raises other computational problems. Horizontal discretization of the continuity and momentum equations in the model are designed to overcome these problems. Selected results from a 10-day integration with the 25-layer, beta-plane version of the model are presented. It is concluded that the model can simulate the nonlinear evolution of a baroclinic wave and associated dynamical processes without major computational difficulties.
NASA Astrophysics Data System (ADS)
Berselli, Luigi C.; Spirito, Stefano
2018-06-01
Obtaining reliable numerical simulations of turbulent fluids is a challenging problem in computational fluid mechanics. The large eddy simulation (LES) models are efficient tools to approximate turbulent fluids, and an important step in the validation of these models is the ability to reproduce relevant properties of the flow. In this paper, we consider a fully discrete approximation of the Navier-Stokes-Voigt model by an implicit Euler algorithm (with respect to the time variable) and a Fourier-Galerkin method (in the space variables). We prove the convergence to weak solutions of the incompressible Navier-Stokes equations satisfying the natural local entropy condition, hence selecting the so-called physically relevant solutions.
Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection.
Cao, Hui; Zhou, Yicang; Ma, Zhien
2013-01-01
A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied. The condition for the global stability of the disease free equilibrium is obtained. The existence of the endemic equilibrium and its stability are investigated. More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation. Sufficient conditions for those bifurcations have been obtained. Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.
H∞ control of combustion in diesel engines using a discrete dynamics model
NASA Astrophysics Data System (ADS)
Hirata, Mitsuo; Ishizuki, Sota; Suzuki, Masayasu
2016-09-01
This paper proposes a control method for combustion in diesel engines using a discrete dynamics model. The proposed two-degree-of-freedom control scheme achieves not only good feedback properties such as disturbance suppression and robust stability but also a good transient response. The method includes a feedforward controller constructed from the inverse model of the plant, and a feedback controller designed by an Hcontrol method, which reduces the effect of the turbocharger lag. The effectiveness of the proposed method is evaluated via numerical simulations.
High order discretization techniques for real-space ab initio simulations
NASA Astrophysics Data System (ADS)
Anderson, Christopher R.
2018-03-01
In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
Solar Corona Simulation Model With Positivity-preserving Property
NASA Astrophysics Data System (ADS)
Feng, X. S.
2015-12-01
Positivity-preserving is one of crucial problems in solar corona simulation. In such numerical simulation of low plasma β region, keeping density and pressure is a first of all matter to obtain physical sound solution. In the present paper, we utilize the maximum-principle-preserving flux limiting technique to develop a class of second order positivity-preserving Godunov finite volume HLL methods for the solar wind plasma MHD equations. Based on the underlying first order building block of positivity preserving Lax-Friedrichs, our schemes, under the constrained transport (CT) and generalized Lagrange multiplier (GLM) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously without extra CFL constraints. Numerical results in four Carrington rotation during the declining, rising, minimum and maximum solar activity phases are provided to demonstrate the performance of modeling small plasma beta with positivity-preserving property of the proposed method.
NASA Technical Reports Server (NTRS)
Goldberg, Louis F.
1992-01-01
Aspects of the information propagation modeling behavior of integral machine computer simulation programs are investigated in terms of a transmission line. In particular, the effects of pressure-linking and temporal integration algorithms on the amplitude ratio and phase angle predictions are compared against experimental and closed-form analytic data. It is concluded that the discretized, first order conservation balances may not be adequate for modeling information propagation effects at characteristic numbers less than about 24. An entropy transport equation suitable for generalized use in Stirling machine simulation is developed. The equation is evaluated by including it in a simulation of an incompressible oscillating flow apparatus designed to demonstrate the effect of flow oscillations on the enhancement of thermal diffusion. Numerical false diffusion is found to be a major factor inhibiting validation of the simulation predictions with experimental and closed-form analytic data. A generalized false diffusion correction algorithm is developed which allows the numerical results to match their analytic counterparts. Under these conditions, the simulation yields entropy predictions which satisfy Clausius' inequality.
Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu; Hsieh, Jiang
Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. Themore » CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer. Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.« less
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2013-10-01
Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.
NASA Astrophysics Data System (ADS)
Favretto-Cristini, Nathalie; Tantsereva, Anastasiya; Cristini, Paul; Ursin, Bjørn; Komatitsch, Dimitri; Aizenberg, Arkady M.
2014-08-01
Accurate simulation of seismic wave propagation in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic modeling, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or reference methods, or via direct comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs in a complex environment with strong-contrast reflectors and surface irregularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experiments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.
Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1992-01-01
Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2011-01-01
Direct computer simulations of electromagnetic scattering by discrete random media have become an active area of research. In this progress review, we summarize and analyze our main results obtained by means of numerically exact computer solutions of the macroscopic Maxwell equations. We consider finite scattering volumes with size parameters in the range, composed of varying numbers of randomly distributed particles with different refractive indices. The main objective of our analysis is to examine whether all backscattering effects predicted by the low-density theory of coherent backscattering (CB) also take place in the case of densely packed media. Based on our extensive numerical data we arrive at the following conclusions: (i) all backscattering effects predicted by the asymptotic theory of CB can also take place in the case of densely packed media; (ii) in the case of very large particle packing density, scattering characteristics of discrete random media can exhibit behavior not predicted by the low-density theories of CB and radiative transfer; (iii) increasing the absorptivity of the constituent particles can either enhance or suppress typical manifestations of CB depending on the particle packing density and the real part of the refractive index. Our numerical data strongly suggest that spectacular backscattering effects identified in laboratory experiments and observed for a class of high-albedo Solar System objects are caused by CB.
Adalsteinsson, David; McMillen, David; Elston, Timothy C
2004-03-08
Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries
NASA Astrophysics Data System (ADS)
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...
2015-04-29
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less
NASA Astrophysics Data System (ADS)
Vriend, Nathalie; Tsang, Jonny; Arran, Matthew; Jin, Binbin; Johnsen, Alexander
2017-11-01
When a mixture of small, smooth particles and larger, coarse particles is released on a rough inclined plane, the initial uniform front may break up in distinct fingers which elongate over time. This fingering instability is sensitive to the unique arrangement of individual particles and is driven by granular segregation (Pouliquen et al., 1997). Variability in initial conditions create significant limitations for consistent experimental and numerical validation of newly developed theoretical models (Baker et al., 2016) for finger formation. We present an experimental study using a novel tool that sets the initial fingering width of the instability. By changing this trigger width between experiments, we explore the response of the avalanche breakup to perturbations of different widths. Discrete particle simulations (using MercuryDPM, Thornton et al., 2012) are conducted under a similar setting, reproducing the variable finger width, allowing validation between experiments and numerical simulations. A good agreement between simulations and experiments is obtained, and ongoing theoretical work is briefly introduced. NMV acknowledges the Royal Society Dorothy Hodgkin Research Fellowship.
Vincenti, H.; Vay, J. -L.
2015-11-22
Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Novel Discretization Schemes for the Numerical Simulation of Membrane Dynamics
2012-09-13
Experimental data therefore plays a key role in validation. A wide variety of methods for building a simulation that meets the listed require- ments are...Despite the intrinsic nonlinearity of true membranes, simplifying assumptions may be appropriate for some applications. Based on these possible assumptions...particles determines the kinetic energy of 15 the system. Mass lumping at the particles is intrinsic (the consistent mass treat- ment of FEM is not an
Computational issues in the simulation of two-dimensional discrete dislocation mechanics
NASA Astrophysics Data System (ADS)
Segurado, J.; LLorca, J.; Romero, I.
2007-06-01
The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.
Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
NASA Astrophysics Data System (ADS)
Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos
2017-05-01
This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.
Discrete Calculus as a Bridge between Scales
NASA Astrophysics Data System (ADS)
Degiuli, Eric; McElwaine, Jim
2012-02-01
Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310
Efficient field-theoretic simulation of polymer solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villet, Michael C.; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu; Department of Materials, University of California, Santa Barbara, California 93106
2014-12-14
We present several developments that facilitate the efficient field-theoretic simulation of polymers by complex Langevin sampling. A regularization scheme using finite Gaussian excluded volume interactions is used to derive a polymer solution model that appears free of ultraviolet divergences and hence is well-suited for lattice-discretized field theoretic simulation. We show that such models can exhibit ultraviolet sensitivity, a numerical pathology that dramatically increases sampling error in the continuum lattice limit, and further show that this pathology can be eliminated by appropriate model reformulation by variable transformation. We present an exponential time differencing algorithm for integrating complex Langevin equations for fieldmore » theoretic simulation, and show that the algorithm exhibits excellent accuracy and stability properties for our regularized polymer model. These developments collectively enable substantially more efficient field-theoretic simulation of polymers, and illustrate the importance of simultaneously addressing analytical and numerical pathologies when implementing such computations.« less
Entropic Lattice Boltzmann Simulations of Turbulence
NASA Astrophysics Data System (ADS)
Keating, Brian; Vahala, George; Vahala, Linda; Soe, Min; Yepez, Jeffrey
2006-10-01
Because of its simplicity, nearly perfect parallelization and vectorization on supercomputer platforms, lattice Boltzmann (LB) methods hold great promise for simulations of nonlinear physics. Indeed, our MHD-LB code has the best sustained performance/PE of any code on the Earth Simulator. By projecting into the higher dimensional kinetic phase space, the solution trajectory is simpler and much easier to compute than standard CFD approach. However, simple LB -- with its simple advection and local BGK collisional relaxation -- does not impose positive definiteness of the distribution functions in the time evolution. This leads to numerical instabilities for very low transport coefficients. In Entropic LB (ELB) one determines a discrete H-theorem and the equilibrium distribution functions subject to the collisional invariants. The ELB algorithm is unconditionally stable to arbitrary small transport coefficients. Various choices of velocity discretization are examined: 15, 19 and 27-bit ELB models. The connection between Tsallis and Boltzmann entropies are clarified.
NASA Astrophysics Data System (ADS)
Nakashima, Hiroshi; Takatsu, Yuzuru
The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.
Material point method modeling in oil and gas reservoirs
Vanderheyden, William Brian; Zhang, Duan
2016-06-28
A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.
On the use of reverse Brownian motion to accelerate hybrid simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu
Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less
NASA Astrophysics Data System (ADS)
Patcharoen, Theerasak; Yoomak, Suntiti; Ngaopitakkul, Atthapol; Pothisarn, Chaichan
2018-04-01
This paper describes the combination of discrete wavelet transforms (DWT) and artificial intelligence (AI), which are efficient techniques to identify the type of inrush current, analyze the origin and possible cause on the capacitor bank switching. The experiment setup used to verify the proposed techniques can be detected and classified the transient inrush current from normal capacitor rated current. The discrete wavelet transforms are used to detect and classify the inrush current. Then, output from wavelet is acted as input of fuzzy inference system for discriminating the type of switching transient inrush current. The proposed technique shows enhanced performance with a discrimination accuracy of 90.57%. Both simulation study and experimental results are quite satisfactory with providing the high accuracy and reliability which can be developed and implemented into a numerical overcurrent (50/51) and unbalanced current (60C) protection relay for an application of shunt capacitor bank protection in the future.
Kaabi, Mohamed Ghaith; Tonnelier, Arnaud; Martinez, Dominique
2011-05-01
In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the generic simulation of nonlinear spiking neurons. Promising results were achieved in the simulation of single quadratic integrate-and-fire neurons. Here, we assess the performance of voltage stepping in network simulations by considering more complex neurons (quadratic integrate-and-fire neurons with adaptation) coupled with multiple synapses. To handle the discrete nature of synaptic interactions, we recast voltage stepping in a general framework, the discrete event system specification. The efficiency of the method is assessed through simulations and comparisons with a modified time-stepping scheme of the Runge-Kutta type. We demonstrated numerically that the original order of voltage stepping is preserved when simulating connected spiking neurons, independent of the network activity and connectivity.
Towards information-optimal simulation of partial differential equations.
Leike, Reimar H; Enßlin, Torsten A
2018-03-01
Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.
Current Challenges in Geothermal Reservoir Simulation
NASA Astrophysics Data System (ADS)
Driesner, T.
2016-12-01
Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this unsatisfactory situation requires fundamental research in high temperature physical chemistry rather than further numerical development.
NASA Astrophysics Data System (ADS)
Žukovič, Milan; Hristopulos, Dionissios T.
2009-02-01
A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of discretization levels, and the initial conditions.
NASA Astrophysics Data System (ADS)
Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.
2015-10-01
An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.
A robust nonparametric framework for reconstruction of stochastic differential equation models
NASA Astrophysics Data System (ADS)
Rajabzadeh, Yalda; Rezaie, Amir Hossein; Amindavar, Hamidreza
2016-05-01
In this paper, we employ a nonparametric framework to robustly estimate the functional forms of drift and diffusion terms from discrete stationary time series. The proposed method significantly improves the accuracy of the parameter estimation. In this framework, drift and diffusion coefficients are modeled through orthogonal Legendre polynomials. We employ the least squares regression approach along with the Euler-Maruyama approximation method to learn coefficients of stochastic model. Next, a numerical discrete construction of mean squared prediction error (MSPE) is established to calculate the order of Legendre polynomials in drift and diffusion terms. We show numerically that the new method is robust against the variation in sample size and sampling rate. The performance of our method in comparison with the kernel-based regression (KBR) method is demonstrated through simulation and real data. In case of real dataset, we test our method for discriminating healthy electroencephalogram (EEG) signals from epilepsy ones. We also demonstrate the efficiency of the method through prediction in the financial data. In both simulation and real data, our algorithm outperforms the KBR method.
NASA Astrophysics Data System (ADS)
Mvogo, Alain; Ben-Bolie, G. H.; Kofané, T. C.
2015-06-01
The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.
Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks
NASA Astrophysics Data System (ADS)
Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.
2013-12-01
Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus, computational nodes lying on fracture intersections have four associated velocities, one on each side of the intersection in each fracture plane [2]. This information is used to route particles arriving at the fracture intersection to the appropriate downstream fracture segment. Verified for small DFNs, the new simulation capability allows accurate particle tracking on more realistic representations of fractured rock sites. In the current work we focus on travel time statistics and spatial dispersion and show numerical results in DFNs of different sizes, fracture densities, and transmissivity distributions. [1] Hyman J.D., Gable C.W., Painter S.L., Automated meshing of stochastically generated discrete fracture networks, Abstract H33G-1403, 2011 AGU, San Francisco, CA, 5-9 Dec. [2] N. Makedonska, S. L. Painter, T.-L. Hsieh, Q.M. Bui, and C. W. Gable., Development and verification of a new particle tracking capability for modeling radionuclide transport in discrete fracture networks, Abstract, 2013 IHLRWM, Albuquerque, NM, Apr. 28 - May 3. [3] Lichtner, P.C., Hammond, G.E., Bisht, G., Karra, S., Mills, R.T., and Kumar, J. (2013) PFLOTRAN User's Manual: A Massively Parallel Reactive Flow Code. [4] Painter S.L., Gable C.W., Kelkar S., Pathline tracing on fully unstructured control-volume grids, Computational Geosciences, 16 (4), 2012, 1125-1134.
Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder
NASA Astrophysics Data System (ADS)
Pei, Wei; Zhengying, Wei; Zhen, Chen; Junfeng, Li; Shuzhe, Zhang; Jun, Du
2017-08-01
A three-dimensional numerical model was developed to investigate effects of laser scanning speed, laser power, and hatch spacing on the thermodynamic behaviors of the molten pool during selective laser melting of AlSi10Mg powder. A randomly distributed packed powder bed was achieved using discrete element method (DEM). The powder bed can be treated as a porous media with interconnected voids in the simulation. A good agreement between numerical results and experimental results establish the validity of adopted method. The numerical results show that the Marangoni flow within the molten pool was significantly affected by the processing parameters. An intense Marangoni flow leads to a perturbation within the molten pool. In addition, a relatively high scanning speed tends to cause melt instability. The perturbation or the instability within the molten pool results in the formation of pores during SLM, which have a direct influence on the densification level.
Grenier, Christophe; Anbergen, Hauke; Bense, Victor; ...
2018-02-26
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatialmore » and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.« less
Jabbari, Mohammad Hadi; Sayehbani, Mesbah; Reisinezhad, Arsham
2013-01-01
This paper presents a numerical model based on one-dimensional Beji and Nadaoka's Extended Boussinesq equations for simulation of periodic wave shoaling and its decomposition over morphological beaches. A unique Galerkin finite element and Adams-Bashforth-Moulton predictor-corrector methods are employed for spatial and temporal discretization, respectively. For direct application of linear finite element method in spatial discretization, an auxiliary variable is hereby introduced, and a particular numerical scheme is offered to rewrite the equations in lower-order form. Stability of the suggested numerical method is also analyzed. Subsequently, in order to display the ability of the presented model, four different test cases are considered. In these test cases, dispersive and nonlinearity effects of the periodic waves over sloping beaches and barred beaches, which are the common coastal profiles, are investigated. Outputs are compared with other existing numerical and experimental data. Finally, it is concluded that the current model can be further developed to model any morphological development of coastal profiles. PMID:23853534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenier, Christophe; Anbergen, Hauke; Bense, Victor
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatialmore » and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.« less
NASA Astrophysics Data System (ADS)
Min, Lequan; Chen, Guanrong
This paper establishes some generalized synchronization (GS) theorems for a coupled discrete array of difference systems (CDADS) and a coupled continuous array of differential systems (CCADS). These constructive theorems provide general representations of GS in CDADS and CCADS. Based on these theorems, one can design GS-driven CDADS and CCADS via appropriate (invertible) transformations. As applications, the results are applied to autonomous and nonautonomous coupled Chen cellular neural network (CNN) CDADS and CCADS, discrete bidirectional Lorenz CNN CDADS, nonautonomous bidirectional Chua CNN CCADS, and nonautonomously bidirectional Chen CNN CDADS and CCADS, respectively. Extensive numerical simulations show their complex dynamic behaviors. These theorems provide new means for understanding the GS phenomena of complex discrete and continuously differentiable networks.
Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing
2014-09-01
In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Svyatsky, Daniil; Lipnikov, Konstantin
2017-03-18
Richards’s equation describes steady-state or transient flow in a variably saturated medium. For a medium having multiple layers of soils that are not aligned with coordinate axes, a mesh fitted to these layers is no longer orthogonal and the classical two-point flux approximation finite volume scheme is no longer accurate. Here, we propose new second-order accurate nonlinear finite volume (NFV) schemes for the head and pressure formulations of Richards’ equation. We prove that the discrete maximum principles hold for both formulations at steady-state which mimics similar properties of the continuum solution. The second-order accuracy is achieved using high-order upwind algorithmsmore » for the relative permeability. Numerical simulations of water infiltration into a dry soil show significant advantage of the second-order NFV schemes over the first-order NFV schemes even on coarse meshes. Since explicit calculation of the Jacobian matrix becomes prohibitively expensive for high-order schemes due to build-in reconstruction and slope limiting algorithms, we study numerically the preconditioning strategy introduced recently in Lipnikov et al. (2016) that uses a stable approximation of the continuum Jacobian. Lastly, numerical simulations show that the new preconditioner reduces computational cost up to 2–3 times in comparison with the conventional preconditioners.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svyatsky, Daniil; Lipnikov, Konstantin
Richards’s equation describes steady-state or transient flow in a variably saturated medium. For a medium having multiple layers of soils that are not aligned with coordinate axes, a mesh fitted to these layers is no longer orthogonal and the classical two-point flux approximation finite volume scheme is no longer accurate. Here, we propose new second-order accurate nonlinear finite volume (NFV) schemes for the head and pressure formulations of Richards’ equation. We prove that the discrete maximum principles hold for both formulations at steady-state which mimics similar properties of the continuum solution. The second-order accuracy is achieved using high-order upwind algorithmsmore » for the relative permeability. Numerical simulations of water infiltration into a dry soil show significant advantage of the second-order NFV schemes over the first-order NFV schemes even on coarse meshes. Since explicit calculation of the Jacobian matrix becomes prohibitively expensive for high-order schemes due to build-in reconstruction and slope limiting algorithms, we study numerically the preconditioning strategy introduced recently in Lipnikov et al. (2016) that uses a stable approximation of the continuum Jacobian. Lastly, numerical simulations show that the new preconditioner reduces computational cost up to 2–3 times in comparison with the conventional preconditioners.« less
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches.
Pahle, Jürgen
2009-01-01
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem.
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches
2009-01-01
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097
NASA Technical Reports Server (NTRS)
Hersh, Alan S.; Tam, Christopher
2009-01-01
Two significant advances have been made in the application of computational aeroacoustics methodology to acoustic liner technology. The first is that temperature effects for discrete sound are not the same as for broadband noise. For discrete sound, the normalized resistance appears to be insensitive to temperature except at high SPL. However, reactance is lower, significantly lower in absolute value, at high temperature. The second is the numerical investigation the acoustic performance of a liner by direct numerical simulation. Liner impedance is affected by the non-uniformity of the incident sound waves. This identifies the importance of pressure gradient. Preliminary design one and two-dimensional impedance models were developed to design sound absorbing liners in the presence of intense sound and grazing flow. The two-dimensional model offers the potential to empirically determine incident sound pressure face-plate distance from resonator orifices. This represents an important initial step in improving our understanding of how to effectively use the Dean Two-Microphone impedance measurement method.
Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation.
Garcia, Alejandro L; Wagner, Wolfgang
2003-11-01
In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.
Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir
NASA Astrophysics Data System (ADS)
Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang
2018-01-01
This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
LAVA Simulations for the AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.
2014-01-01
Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.
Discontinuous Galerkin method for coupled problems of compressible flow and elastic structures
NASA Astrophysics Data System (ADS)
Kosík, A.; Feistauer, M.; Hadrava, M.; Horáček, J.
2013-10-01
This paper is concerned with the numerical simulation of the interaction of 2D compressible viscous flow and an elastic structure. We consider the model of dynamical linear elasticity. Each individual problem is discretized in space by the discontinuous Galerkin method (DGM). For the time discretization we can use either the BDF (backward difference formula) method or also the DGM. The time dependence of the domain occupied by the fluid is given by the deformation of the elastic structure adjacent to the flow domain. It is treated with the aid of the Arbitrary Lagrangian-Eulerian (ALE) method. The fluid-structure interaction, given by transient conditions, is realized by an iterative process. The developed method is applied to the simulation of the biomechanical problem containing the onset of the voice production.
Nonlinear estimation theory applied to the interplanetary orbit determination problem.
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1972-01-01
Martingale theory and appropriate smoothing properties of Loeve (1953) have been used to develop a modified Gaussian second-order filter. The performance of the filter is evaluated through numerical simulation of a Jupiter flyby mission. The observations used in the simulation are on-board measurements of the angle between Jupiter and a fixed star taken at discrete time intervals. In the numerical study, the influence of each of the second-order terms is evaluated. Five filter algorithms are used in the simulations. Four of the filters are the modified Gaussian second-order filter and three approximations derived by neglecting one or more of the second-order terms in the equations. The fifth filter is the extended Kalman-Bucy filter which is obtained by neglecting all of the second-order terms.
Boundary particle method for Laplace transformed time fractional diffusion equations
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian
2013-02-01
This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.
2018-06-01
In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.
Simulated maximum likelihood method for estimating kinetic rates in gene expression.
Tian, Tianhai; Xu, Songlin; Gao, Junbin; Burrage, Kevin
2007-01-01
Kinetic rate in gene expression is a key measurement of the stability of gene products and gives important information for the reconstruction of genetic regulatory networks. Recent developments in experimental technologies have made it possible to measure the numbers of transcripts and protein molecules in single cells. Although estimation methods based on deterministic models have been proposed aimed at evaluating kinetic rates from experimental observations, these methods cannot tackle noise in gene expression that may arise from discrete processes of gene expression, small numbers of mRNA transcript, fluctuations in the activity of transcriptional factors and variability in the experimental environment. In this paper, we develop effective methods for estimating kinetic rates in genetic regulatory networks. The simulated maximum likelihood method is used to evaluate parameters in stochastic models described by either stochastic differential equations or discrete biochemical reactions. Different types of non-parametric density functions are used to measure the transitional probability of experimental observations. For stochastic models described by biochemical reactions, we propose to use the simulated frequency distribution to evaluate the transitional density based on the discrete nature of stochastic simulations. The genetic optimization algorithm is used as an efficient tool to search for optimal reaction rates. Numerical results indicate that the proposed methods can give robust estimations of kinetic rates with good accuracy.
Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites
2010-04-12
but our lower mass limits do not necessarily apply to mixed dark matter cosmologies . Higgs decay produced sterile neutrinos can, however, constitute...simulations of the growth of Milky Way-sized halos in cold and warm dark matter cosmologies . The number of dark matter satellites in our simulated Milky...tions of WDM cosmologies due to numerical artifacts produced by discrete sampling of the gravitational poten- tial with a finite number of particles
NASA Astrophysics Data System (ADS)
Savin, Andrei V.; Smirnov, Petr G.
2018-05-01
Simulation of collisional dynamics of a large ensemble of monodisperse particles by the method of discrete elements is considered. Verle scheme is used for integration of the equations of motion. Non-conservativeness of the finite-difference scheme is discovered depending on the time step, which is equivalent to a pure-numerical energy source appearance in the process of collision. Compensation method for the source is proposed and tested.
Numerical simulation of electrophoresis separation processes
NASA Technical Reports Server (NTRS)
Ganjoo, D. K.; Tezduyar, T. E.
1986-01-01
A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo
2017-12-01
A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.
Contact-aware simulations of particulate Stokesian suspensions
NASA Astrophysics Data System (ADS)
Lu, Libin; Rahimian, Abtin; Zorin, Denis
2017-10-01
We present an efficient, accurate, and robust method for simulation of dense suspensions of deformable and rigid particles immersed in Stokesian fluid in two dimensions. We use a well-established boundary integral formulation for the problem as the foundation of our approach. This type of formulation, with a high-order spatial discretization and an implicit and adaptive time discretization, have been shown to be able to handle complex interactions between particles with high accuracy. Yet, for dense suspensions, very small time-steps or expensive implicit solves as well as a large number of discretization points are required to avoid non-physical contact and intersections between particles, leading to infinite forces and numerical instability. Our method maintains the accuracy of previous methods at a significantly lower cost for dense suspensions. The key idea is to ensure interference-free configuration by introducing explicit contact constraints into the system. While such constraints are unnecessary in the formulation, in the discrete form of the problem, they make it possible to eliminate catastrophic loss of accuracy by preventing contact explicitly. Introducing contact constraints results in a significant increase in stable time-step size for explicit time-stepping, and a reduction in the number of points adequate for stability.
Nonlinearity Analysis for Efficient Modelling of Long-Term CO2 Storage
NASA Astrophysics Data System (ADS)
Li, Boxiao; Benson, Sally; Tchelepi, Hamdi
2014-05-01
Numerical simulation is widely used to predict the long-term fate of the injected CO2 in a storage formation. Performing large-scale simulations is often limited by the computational speed, where convergence failure of Newton iterations is one of the main bottlenecks. In order to design better numerical schemes and faster nonlinear solvers for modelling long-term CO2 storage, the nonlinearity in the simulations has to be analysed thoroughly, and the cause of convergence failures has to be identified clearly. We focus on the transport of CO2 and water in the presence of viscous, gravity, and heterogeneous capillary forces. We investigate the nonlinearity of the discrete transport equation obtained from finite-volume discretization with single-point phase-based upstream weighting, which is the industry standard. In particular, we study the discretized flux expressed as a function of saturations at the upstream and downstream (with respect to the total velocity) of each gridblock interface. We analyse the locations and complexity of the unit-flux, zero-flux, and inflection lines on the numerical flux. The unit- and zero-flux lines, referred to as kinks, correspond to a change of the flow direction, which often occurs when strong buoyancy and capillarity are present. We observe that these kinks and inflection lines are major sources of nonlinear convergence difficulties. We find that kinks create more challenges than inflection lines, especially when their locations depend on both the upstream and downstream saturations of the total velocity. When the flow is driven by viscous and gravity forces (e.g., during CO2 injection), one kink will occur in the numerical flux and its location depends only on the upstream saturation. However, when capillarity is dominant (e.g., during the post-injection period), two kinks will occur and both are functions of the upstream and downstream saturations, causing severe convergence difficulties particularly when heterogeneity is present. Our analysis of the numerical flux theoretically describes the cause of the convergence failures for simulating long-term CO2 storage. This understanding provides useful guidance in designing numerical schemes and nonlinear solvers that overcome the convergence bottlenecks. For example, to reduce the nonlinearity introduced by the two kinks in the presence of capillarity, we modify the method of Cances (2009) to discretize the capillary flux. Consequently, only one kink will occur even for coupled viscous, buoyancy, and heterogeneous capillary forces, and the kink depends only on the upstream saturation of the total velocity. An efficient nonlinear solver that is a significant refinement of the works of Jenny et al. (2009) and Wang and Tchelepi (2013) has also been proposed and demonstrated. References [1] C. Cances. Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM:M2AN., 43, 973-1001, (2009). [2] P. Jenny, H.A. Tchelepi, and S.H. Lee. Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions. J. Comput. Phys., 228, 7497-7512, (2009). [3] X. Wang and H.A. Tchelepi. Trust-region based solver for nonlinear transport in heterogeneous porous media. J. Comput. Phys., 253, 114-137, (2013).
Large-eddy simulation of a backward facing step flow using a least-squares spectral element method
NASA Technical Reports Server (NTRS)
Chan, Daniel C.; Mittal, Rajat
1996-01-01
We report preliminary results obtained from the large eddy simulation of a backward facing step at a Reynolds number of 5100. The numerical platform is based on a high order Legendre spectral element spatial discretization and a least squares time integration scheme. A non-reflective outflow boundary condition is in place to minimize the effect of downstream influence. Smagorinsky model with Van Driest near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity profiles and wall pressure show good agreement with benchmark data. More studies are needed to evaluate the sensitivity of this method on numerical parameters before it is applied to complex engineering problems.
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J.; Huang, H.; Deo, M.
2016-03-01
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Zhou; H. Huang; M. Deo
The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less
A space-time discretization procedure for wave propagation problems
NASA Technical Reports Server (NTRS)
Davis, Sanford
1989-01-01
Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.
Numerical Simulations of Slow Stick Slip Events with PFC, a DEM Based Code
NASA Astrophysics Data System (ADS)
Ye, S. H.; Young, R. P.
2017-12-01
Nonvolcanic tremors around subduction zone have become a fascinating subject in seismology in recent years. Previous studies have shown that the nonvolcanic tremor beneath western Shikoku is composed of low frequency seismic waves overlapping each other. This finding provides direct link between tremor and slow earthquakes. Slow stick slip events are considered to be laboratory scaled slow earthquakes. Slow stick slip events are traditionally studied with direct shear or double direct shear experiment setup, in which the sliding velocity can be controlled to model a range of fast and slow stick slips. In this study, a PFC* model based on double direct shear is presented, with a central block clamped by two side blocks. The gauge layers between the central and side blocks are modelled as discrete fracture networks with smooth joint bonds between pairs of discrete elements. In addition, a second model is presented in this study. This model consists of a cylindrical sample subjected to triaxial stress. Similar to the previous model, a weak gauge layer at a 45 degrees is added into the sample, on which shear slipping is allowed. Several different simulations are conducted on this sample. While the confining stress is maintained at the same level in different simulations, the axial loading rate (displacement rate) varies. By varying the displacement rate, a range of slipping behaviour, from stick slip to slow stick slip are observed based on the stress-strain relationship. Currently, the stick slip and slow stick slip events are strictly observed based on the stress-strain relationship. In the future, we hope to monitor the displacement and velocity of the balls surrounding the gauge layer as a function of time, so as to generate a synthetic seismogram. This will allow us to extract seismic waveforms and potentially simulate the tremor-like waves found around subduction zones. *Particle flow code, a discrete element method based numerical simulation code developed by Itasca Inc.
Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral
NASA Astrophysics Data System (ADS)
Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael
2017-10-01
We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).
NASA Astrophysics Data System (ADS)
Blank, D. G.; Morgan, J.
2017-12-01
Large earthquakes that occur on convergent plate margin interfaces have the potential to cause widespread damage and loss of life. Recent observations reveal that a wide range of different slip behaviors take place along these megathrust faults, which demonstrate both their complexity, and our limited understanding of fault processes and their controls. Numerical modeling provides us with a useful tool that we can use to simulate earthquakes and related slip events, and to make direct observations and correlations among properties and parameters that might control them. Further analysis of these phenomena can lead to a more complete understanding of the underlying mechanisms that accompany the nucleation of large earthquakes, and what might trigger them. In this study, we use the discrete element method (DEM) to create numerical analogs to subduction megathrusts with heterogeneous fault friction. Displacement boundary conditions are applied in order to simulate tectonic loading, which in turn, induces slip along the fault. A wide range of slip behaviors are observed, ranging from creep to stick slip. We are able to characterize slip events by duration, stress drop, rupture area, and slip magnitude, and to correlate the relationships among these quantities. These characterizations allow us to develop a catalog of rupture events both spatially and temporally, for comparison with slip processes on natural faults.
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng; Wang, Jiangfeng
2016-06-01
The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.
NASA Astrophysics Data System (ADS)
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
NASA Astrophysics Data System (ADS)
Xing, F.; Masson, R.; Lopez, S.
2017-09-01
This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.
Three-dimensional formulation of dislocation climb
NASA Astrophysics Data System (ADS)
Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.
2015-10-01
We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.
Effect of discrete track support by sleepers on rail corrugation at a curved track
NASA Astrophysics Data System (ADS)
Jin, X. S.; Wen, Z. F.
2008-08-01
The paper investigates into the effect of discrete track support by sleepers on the initiation and development of rail corrugation at a curved track when a railway vehicle passes through using a numerical method. The numerical method considers a combination of Kalker's rolling contact theory with non-Hertzian form, a linear frictional work model and a dynamics model of a half railway vehicle coupled with the curved track. The half-vehicle has a two-axle bogie and doubled suspension systems. It is treated as a full dynamic rigid multi-body model. In the track model, an Euler beam is used to model the rail, and the discrete track support by sleepers moving backward with respect to the vehicle running direction is considered to simulate the effect of the discrete sleeper support on the wheels/rails in rolling contact when the vehicle moves on the track. The sleeper is treated as a rigid body and the ballast bed is replaced with equivalent mass bodies. The numerical analysis exams in detail the variations of wheel/rail normal loads, the creepages, and the rail wear volume along the curved track. Their variations are much concerned with the discrete track support. The numerical results show that the discrete track support causes the fluctuating of the normal loads and creepages at a few frequencies. These frequencies comprise the passing frequency of the sleepers and the excited track resonant frequencies, which are higher than the sleeper passing frequency. Consequently, rail corrugation with several wavelengths initiates and develops. Also the results show that the contact vibrating between the curved rails and the four wheels of the same bogie has different frequencies. In this way, the different key frequencies to be excited play an important role in the initiation and development of curved rail corrugation. Therefore, the corrugations caused by the four wheels of the same bogie present different wavelengths. The paper shows and discusses the depths of the initial corrugations caused by the four wheels of the same bogie, at the entering transition curve, the circle curve and the exit transition curve of the curved track, respectively.
Discretization-dependent model for weakly connected excitable media
NASA Astrophysics Data System (ADS)
Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo
2018-03-01
Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.
NASA Astrophysics Data System (ADS)
Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming
2017-05-01
The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.
Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations
Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.
2007-01-01
Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.
Seismic response of rock slopes: Numerical investigations on the role of internal structure
NASA Astrophysics Data System (ADS)
Arnold, L.; Applegate, K.; Gibson, M.; Wartman, J.; Adams, S.; Maclaughlin, M.; Smith, S.; Keefer, D. K.
2013-12-01
The stability of rock slopes is significantly influenced and often controlled by the internal structure of the slope created by such discontinuities as joints, shear zones, and faults. Under seismic conditions, these discontinuities influence both the resistance of a slope to failure and its response to dynamic loading. The dynamic response, which can be characterized by the slope's natural frequency and amplification of ground motion, governs the loading experienced by the slope in a seismic event and, therefore, influences the slope's stability. In support of the Network for Earthquake Engineering Simulation (NEES) project Seismically-Induced Rock Slope Failure: Mechanisms and Prediction (NEESROCK), we conducted a 2D numerical investigation using the discrete element method (DEM) coupled with simple discrete fracture networks (DFNs). The intact rock mass is simulated with a bonded assembly of discrete particles, commonly referred to as the bonded-particle model (BPM) for rock. Discontinuities in the BPM are formed by the insertion of smooth, unbonded contacts along specified planes. The influence of discontinuity spacing, orientation, and stiffness on slope natural frequency and amplification was investigated with the commercially available Particle Flow Code (PFC2D). Numerical results indicate that increased discontinuity spacing has a non-linear effect in decreasing the amplification and increasing the natural frequency of the slope. As discontinuity dip changes from sub-horizontal to sub-vertical, the slope's level of amplification increases while the natural frequency of the slope decreases. Increased joint stiffness decreases amplification and increases natural frequency. The results reveal that internal structure has a strong influence on rock slope dynamics that can significantly change the system's dynamic response and stability during seismic loading. Financial support for this research was provided by the United States National Science Foundation (NSF) under grant CMMI-1156413.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich
Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less
Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich; ...
2017-10-28
Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less
NASA Astrophysics Data System (ADS)
Bellan, Selvan; Cheok, Cho Hyun; Gokon, Nobuyuki; Matsubara, Koji; Kodama, Tatsuya
2017-06-01
This paper presents a numerical analysis of unconstrained melting of high temperature(>1000K) phase change material (PCM) inside a cylindrical container. Sodium chloride and Silicon carbide have been used as phase change material and shell of the capsule respectively. The control volume discretization approach has been used to solve the conservation equations of mass, momentum and energy. The enthalpy-porosity method has been used to track the solid-liquid interface of the PCM during melting process. Transient numerical simulations have been performed in order to study the influence of radius of the capsule and the Stefan number on the heat transfer rate. The simulation results show that the counter-clockwise Buoyancy driven convection over the top part of the solid PCM enhances the melting rate quite faster than the bottom part.
Increasing of horizontal velocity of particles leaving a belt conveyor
NASA Astrophysics Data System (ADS)
Tavares, Abraão; Faria, Allbens
2017-06-01
We investigate the transport of granular materials by a conveyor belt via numerical simulations. We report an unusual increasing of particles horizontal velocity when they leave the belt and initiate free-fall. Using Discrete Elements Method, the mechanism underlying this phenomenon were investigated, and a study on how particle and system properties influences this effect were conducted.
Simulation of water flow in fractured porous medium by using discretized virtual internal bond
NASA Astrophysics Data System (ADS)
Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing
2017-12-01
The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.
Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics
NASA Astrophysics Data System (ADS)
d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.
2018-05-01
Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
Computations of Complex Three-Dimensional Turbulent Free Jets
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.
1997-01-01
Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.
Singularity-free dislocation dynamics with strain gradient elasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr
2014-08-01
The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.
Impact of Discrete Corrections in a Modular Approach for Trajectory Generation in Quadruped Robots
NASA Astrophysics Data System (ADS)
Pinto, Carla M. A.; Santos, Cristina P.; Rocha, Diana; Matos, Vítor
2011-09-01
Online generation of trajectories in robots is a very complex task that involves the combination of different types of movements, i.e., distinct motor primitives. The later are used to model complex behaviors in robots, such as locomotion in irregular terrain and obstacle avoidance. In this paper, we consider two motor primitives: rhythmic and discrete. We study the effect on the robots' gaits of superimposing the two motor primitives, considering two distinct types of coupling. Additionally, we simulate two scenarios, where the discrete primitive is inserted in all of the four limbs, or is inserted in ipsilateral pairs of limbs. Numerical results show that amplitude and frequency of the periodic solutions, corresponding to the gaits trot and pace, are almost constant for diffusive and synaptic couplings.
Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs
NASA Astrophysics Data System (ADS)
Tang, Wensheng; Sun, Yajuan; Cai, Wenjun
2017-02-01
In this article, we present a unified framework of discontinuous Galerkin (DG) discretizations for Hamiltonian ODEs and PDEs. We show that with appropriate numerical fluxes the numerical algorithms deduced from DG discretizations can be combined with the symplectic methods in time to derive the multi-symplectic PRK schemes. The resulting numerical discretizations are applied to the linear and nonlinear Schrödinger equations. Some conservative properties of the numerical schemes are investigated and confirmed in the numerical experiments.
A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier
2017-11-01
Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.
Large eddy simulation modeling of particle-laden flows in complex terrain
NASA Astrophysics Data System (ADS)
Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.
2017-12-01
The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.
A detailed model for simulation of catchment scale subsurface hydrologic processes
NASA Technical Reports Server (NTRS)
Paniconi, Claudio; Wood, Eric F.
1993-01-01
A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.
Investigation of Transonic Wake Dynamics for Mechanically Deployable Entry Systems
NASA Technical Reports Server (NTRS)
Stern, Eric; Barnhardt, Michael; Venkatapathy, Ethiraj; Candler, Graham; Prabhu, Dinesh
2012-01-01
A numerical investigation of transonic flow around a mechanically deployable entry system being considered for a robotic mission to Venus has been performed, and preliminary results are reported. The flow around a conceptual representation of the vehicle geometry was simulated at discrete points along a ballistic trajectory using Detached Eddy Simulation (DES). The trajectory points selected span the low supersonic to transonic regimes with freestream Mach numbers from 1:5 to 0:8, and freestream Reynolds numbers (based on diameter) between 2:09 x 10(exp 6) and 2:93 x 10(exp 6). Additionally, the Mach 0:8 case was simulated at angles of attack between 0 and 5 . Static aerodynamic coefficients obtained from the data show qualitative agreement with data from 70deg sphere-cone wind tunnel tests performed for the Viking program. Finally, the effect of choices of models and numerical algorithms is addressed by comparing the DES results to those using a Reynolds Averaged Navier-Stokes (RANS) model, as well as to results using a more dissipative numerical scheme.
An adaptive discontinuous Galerkin solver for aerodynamic flows
NASA Astrophysics Data System (ADS)
Burgess, Nicholas K.
This work considers the accuracy, efficiency, and robustness of an unstructured high-order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD). Recently, there has been a drive to reduce the discretization error of CFD simulations using high-order methods on unstructured grids. However, high-order methods are often criticized for lacking robustness and having high computational cost. The goal of this work is to investigate methods that enhance the robustness of high-order discontinuous Galerkin (DG) methods on unstructured meshes, while maintaining low computational cost and high accuracy of the numerical solutions. This work investigates robustness enhancement of high-order methods by examining effective non-linear solvers, shock capturing methods, turbulence model discretizations and adaptive refinement techniques. The goal is to develop an all encompassing solver that can simulate a large range of physical phenomena, where all aspects of the solver work together to achieve a robust, efficient and accurate solution strategy. The components and framework for a robust high-order accurate solver that is capable of solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented. In particular, this work discusses robust discretizations of the turbulence model equation used to close the RANS equations, as well as stable shock capturing strategies that are applicable across a wide range of discretization orders and applicable to very strong shock waves. Furthermore, refinement techniques are considered as both efficiency and robustness enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the solver is demonstrated using a variety of challenging aerodynamic test problems, which include turbulent high-lift and viscous hypersonic flows. Adaptive mesh refinement was found to play a critical role in obtaining a robust and efficient high-order accurate flow solver. A goal-oriented error estimation technique has been developed to estimate the discretization error of simulation outputs. For high-order discretizations, it is shown that functional output error super-convergence can be obtained, provided the discretization satisfies a property known as dual consistency. The dual consistency of the DG methods developed in this work is shown via mathematical analysis and numerical experimentation. Goal-oriented error estimation is also used to drive an hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and order or p-enrichment, is employed based on the smoothness of the solution. The results demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic flows including flows with strong shock waves. This work demonstrates that DG discretizations can be the basis of an accurate, efficient, and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not adversely impact the accuracy or efficiency of the solver for challenging and complex flow problems. In particular, when considering the computation of shocked flows, this work demonstrates that the available shock capturing techniques are sufficiently accurate and robust, particularly when used in conjunction with adaptive mesh refinement . This work also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS) and turbulence model equations can be obtained for complex and challenging aerodynamic flows. In this context, the most robust strategy was determined to be a low-order turbulence model discretization coupled to a high-order discretization of the RANS equations. Although RANS solutions using high-order accurate discretizations of the turbulence model were obtained, the behavior of current-day RANS turbulence models discretized to high-order was found to be problematic, leading to solver robustness issues. This suggests that future work is warranted in the area of turbulence model formulation for use with high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid scale models with high-order DG methods offers the potential to leverage the high accuracy of these methods for very high fidelity turbulent simulations. This thesis has developed the algorithmic improvements that will lay the foundation for the development of a three-dimensional high-order flow solution strategy that can be used as the basis for future LES simulations.
NASA Astrophysics Data System (ADS)
Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.
2018-04-01
Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.
Numerical simulation of multi-layered textile composite reinforcement forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P.; Hamila, N.; Boisse, P.
2011-05-04
One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual workmore » is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.« less
Numerical analysis of wet separation of particles by density differences
NASA Astrophysics Data System (ADS)
Markauskas, D.; Kruggel-Emden, H.
2017-07-01
Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.
Computer simulations of phase field drops on super-hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Fedeli, Livio
2017-09-01
We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.
NASA Astrophysics Data System (ADS)
Aichi, M.; Tokunaga, T.
2006-12-01
In the fields that experienced both significant drawdown/land subsidence and the recovery of groundwater potential, temporal change of the effective stress in the clayey layers is not simple. Conducting consolidation tests of core samples is a straightforward approach to know the pre-consolidation stress. However, especially in the urban area, the cost of boring and the limitation of sites for boring make it difficult to carry out enough number of tests. Numerical simulation to reproduce stress history can contribute to selecting boring sites and to complement the results of the laboratory tests. To trace the effective stress profile in the clayey layers by numerical simulation, discretization in the clayey layers should be fine. At the same time, the size of the modeled domain should be large enough to calculate the effect of regional groundwater extraction. Here, we developed a new scheme to reduce memory consumption based on domain decomposition technique. A finite element model of coupled groundwater flow and land subsidence is used for the local model, and a finite difference groundwater flow model is used for the regional model. The local model is discretized to fine mesh in the clayey layers to reproduce the temporal change of pore pressure in the layers while the regional model is discretized to relatively coarse mesh to reproduce the effect of the regional groundwater extraction on the groundwater flow. We have tested this scheme by comparing the results obtained from this scheme with those from the finely gridded model for the entire calculation domain. The difference between the results of these models was small enough and our new scheme can be used for the practical problem.
Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
Lambert, B; Weynans, L; Bergmann, M
2018-03-01
The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.
BlazeDEM3D-GPU A Large Scale DEM simulation code for GPUs
NASA Astrophysics Data System (ADS)
Govender, Nicolin; Wilke, Daniel; Pizette, Patrick; Khinast, Johannes
2017-06-01
Accurately predicting the dynamics of particulate materials is of importance to numerous scientific and industrial areas with applications ranging across particle scales from powder flow to ore crushing. Computational discrete element simulations is a viable option to aid in the understanding of particulate dynamics and design of devices such as mixers, silos and ball mills, as laboratory scale tests comes at a significant cost. However, the computational time required to simulate an industrial scale simulation which consists of tens of millions of particles can take months to complete on large CPU clusters, making the Discrete Element Method (DEM) unfeasible for industrial applications. Simulations are therefore typically restricted to tens of thousands of particles with highly detailed particle shapes or a few million of particles with often oversimplified particle shapes. However, a number of applications require accurate representation of the particle shape to capture the macroscopic behaviour of the particulate system. In this paper we give an overview of the recent extensions to the open source GPU based DEM code, BlazeDEM3D-GPU, that can simulate millions of polyhedra and tens of millions of spheres on a desktop computer with a single or multiple GPUs.
The Application of Simulation Method in Isothermal Elastic Natural Gas Pipeline
NASA Astrophysics Data System (ADS)
Xing, Chunlei; Guan, Shiming; Zhao, Yue; Cao, Jinggang; Chu, Yanji
2018-02-01
This Elastic pipeline mathematic model is of crucial importance in natural gas pipeline simulation because of its compliance with the practical industrial cases. The numerical model of elastic pipeline will bring non-linear complexity to the discretized equations. Hence the Newton-Raphson method cannot achieve fast convergence in this kind of problems. Therefore A new Newton Based method with Powell-Wolfe Condition to simulate the Isothermal elastic pipeline flow is presented. The results obtained by the new method aregiven based on the defined boundary conditions. It is shown that the method converges in all cases and reduces significant computational cost.
The high hall ventilation with the simplified simulation of the fan
NASA Astrophysics Data System (ADS)
Kyncl, Martin; Pelant, Jaroslav
2018-06-01
Here we work with the system of equations describing the non-stationary compressible turbulent multi-component flow in the gravitational field. We focus on the numerical simulation of the fan situated inside the high hall. The RANS equations are discretized with the use of the finite volume method. The original modification of the Riemann problem and its solution is used at the boundaries. The combination of specific boundary conditions is used for the simulation of the fan. The presented computational results are computed with own-developed code (C, FORTRAN, multiprocessor, unstructured meshes in general).
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
Supercomputer modeling of flow past hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Ermakov, M. K.; Kryukov, I. A.
2017-02-01
A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.
Numerical simulation of a hovering rotor using embedded grids
NASA Technical Reports Server (NTRS)
Duque, Earl-Peter N.; Srinivasan, Ganapathi R.
1992-01-01
The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Implicit time accurate simulation of unsteady flow
NASA Astrophysics Data System (ADS)
van Buuren, René; Kuerten, Hans; Geurts, Bernard J.
2001-03-01
Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright
Large-amplitude nonlinear normal modes of the discrete sine lattices.
Smirnov, Valeri V; Manevitch, Leonid I
2017-02-01
We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π). Although this model has numerous applications in different fields of physics, it was studied earlier in the infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate zone structure for the amplitudes of about π/2 even if the chain is long enough. An extremely complex zone structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a good agreement with obtained analytical predictions.
Interfacial properties in a discrete model for tumor growth
NASA Astrophysics Data System (ADS)
Moglia, Belén; Guisoni, Nara; Albano, Ezequiel V.
2013-03-01
We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β=0.32(2) that governs the early time regime, (ii) the roughness exponent α=0.49(2) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z=α/β≃1.49(2), which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ∝t1/z, where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
Numerical Simulation of the ``Fluid Mechanical Sewing Machine''
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil
2011-11-01
A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.
Numerical simulation of abutment pressure redistribution during face advance
NASA Astrophysics Data System (ADS)
Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.
2017-12-01
The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.
Strehl, Robert; Ilie, Silvana
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
A new flux-conserving numerical scheme for the steady, incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Scott, James R.
1994-01-01
This paper is concerned with the continued development of a new numerical method, the space-time solution element (STS) method, for solving conservation laws. The present work focuses on the two-dimensional, steady, incompressible Navier-Stokes equations. Using first an integral approach, and then a differential approach, the discrete flux conservation equations presented in a recent paper are rederived. Here a simpler method for determining the flux expressions at cell interfaces is given; a systematic and rigorous derivation of the conditions used to simulate the differential form of the governing conservation law(s) is provided; necessary and sufficient conditions for a discrete approximation to satisfy a conservation law in E2 are derived; and an estimate of the local truncation error is given. A specific scheme is then constructed for the solution of the thin airfoil boundary layer problem. Numerical results are presented which demonstrate the ability of the scheme to accurately resolve the developing boundary layer and wake regions using grids which are much coarser than those employed by other numerical methods. It is shown that ten cells in the cross-stream direction are sufficient to accurately resolve the developing airfoil boundary layer.
Oil flow at the scroll compressor discharge: visualization and CFD simulation
NASA Astrophysics Data System (ADS)
Xu, Jiu; Hrnjak, Pega
2017-08-01
Oil is important to the compressor but has other side effect on the refrigeration system performance. Discharge valves located in the compressor plenum are the gateway for the oil when leaving the compressor and circulate in the system. The space in between: the compressor discharge plenum has the potential to separate the oil mist and reduce the oil circulation ratio (OCR) in the system. In order to provide information for building incorporated separation feature for the oil flow near the compressor discharge, video processing method is used to quantify the oil droplets movement and distribution. Also, CFD discrete phase model gives the numerical approach to study the oil flow inside compressor plenum. Oil droplet size distributions are given by visualization and simulation and the results show a good agreement. The mass balance and spatial distribution are also discussed and compared with experimental results. The verification shows that discrete phase model has the potential to simulate the oil droplet flow inside the compressor.
Discrete-vortex simulation of pulsating flow on a turbulent leading-edge separation bubble
NASA Technical Reports Server (NTRS)
Sung, Hyung Jin; Rhim, Jae Wook; Kiya, Masaru
1992-01-01
Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream with a pulsating component. The discrete-vortex method is applied to simulate this flow situation because this approach is effective for representing the unsteady motions of the turbulent shear layer and the effect of viscosity near the solid surface. The numerical simulation provides reasonable predictions when compared with the experimental results. A particular frequency with a minimum reattachment is related to the drag reduction. The most effective frequency is dependent on the amplified shedding frequency. The turbulent flow structure is scrutinized. This includes the time-mean and fluctuations of the velocity and the surface pressure, together with correlations between the fluctuating components. A comparison between the pulsating flow and the non-pulsating flow at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale vortical structure is associated with the shedding frequency and the flow instabilities.
Spectral determinations for discrete sources with EGRET
NASA Technical Reports Server (NTRS)
Hughes, E. B.; Nolan, P. L.
1990-01-01
The ability of the EGRET (Energetic Gamma-Ray Experimental Telescope) to determine the spectral parameters of point sources in 14-day exposures, as planned for the initial survey phase of the GRO (Gamma Ray Observatory) mission, is explored by numerical simulation. Results are given for both galactic and extragalactic objects as a function of source strength and for representative levels of diffuse background emission.
Dynamics of an advertising competition model with sales promotion
NASA Astrophysics Data System (ADS)
Jiang, Hui; Feng, Zhaosheng; Jiang, Guirong
2017-01-01
In this paper, an advertising competition model with sales promotion is constructed and investigated. Conditions of the existence and stability of period-T solutions are obtained by means of the discrete map. Flip bifurcation is analyzed by using the center manifold theory and three sales promotion strategies are discussed. Example and numerical simulations are illustrated which agree well with our theoretical analysis.
Margolin, L. G.; Hunter, A.
2017-10-18
Here, we consider the dependence of velocity probability distribution functions on the finite size of a thermodynamic system. We are motivated by applications to computational fluid dynamics, hence discrete thermodynamics. We then begin by describing a coarsening process that represents geometric renormalization. Then, based only on the requirements of conservation, we demonstrate that the pervasive assumption of local thermodynamic equilibrium is not form invariant. We develop a perturbative correction that restores form invariance to second-order in a small parameter associated with macroscopic gradients. Finally, we interpret the corrections in terms of unresolved kinetic energy and discuss the implications of ourmore » results both in theory and as applied to numerical simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolin, L. G.; Hunter, A.
Here, we consider the dependence of velocity probability distribution functions on the finite size of a thermodynamic system. We are motivated by applications to computational fluid dynamics, hence discrete thermodynamics. We then begin by describing a coarsening process that represents geometric renormalization. Then, based only on the requirements of conservation, we demonstrate that the pervasive assumption of local thermodynamic equilibrium is not form invariant. We develop a perturbative correction that restores form invariance to second-order in a small parameter associated with macroscopic gradients. Finally, we interpret the corrections in terms of unresolved kinetic energy and discuss the implications of ourmore » results both in theory and as applied to numerical simulation.« less
Application of the Discrete Regularization Method to the Inverse of the Chord Vibration Equation
NASA Astrophysics Data System (ADS)
Wang, Linjun; Han, Xu; Wei, Zhouchao
The inverse problem of the initial condition about the boundary value of the chord vibration equation is ill-posed. First, we transform it into a Fredholm integral equation. Second, we discretize it by the trapezoidal formula method, and then obtain a severely ill-conditioned linear equation, which is sensitive to the disturbance of the data. In addition, the tiny error of right data causes the huge concussion of the solution. We cannot obtain good results by the traditional method. In this paper, we solve this problem by the Tikhonov regularization method, and the numerical simulations demonstrate that this method is feasible and effective.
Wang, Leimin; Zeng, Zhigang; Ge, Ming-Feng; Hu, Junhao
2018-05-02
This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stochastic aspects of one-dimensional discrete dynamical systems: Benford's law.
Snyder, M A; Curry, J H; Dougherty, A M
2001-08-01
Benford's law owes its discovery to the "Grubby Pages Hypothesis," a 19th century observation made by Simon Newcomb that the beginning pages of logarithm books were grubbier than the last few pages, implying that scientists referenced the values toward the front of the books more frequently. If a data set satisfies Benford's law, then it's significant digits will have a logarithmic distribution, which favors smaller significant digits. In this article we demonstrate two ways of creating discrete one-dimensional dynamical systems that satisfy Benford's law. We also develop a numerical simulation methodology that we use to study dynamical systems when analytical results are not readily available.
A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves.
Choi, Sun-Ho; Kim, Yong-Jung
2017-02-01
We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.
Solving the incompressible surface Navier-Stokes equation by surface finite elements
NASA Astrophysics Data System (ADS)
Reuther, Sebastian; Voigt, Axel
2018-01-01
We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.
NASA Technical Reports Server (NTRS)
Masiulaniec, Konstanty C.
1988-01-01
The ability to predict the time-temperature history of electrothermal de-icer pads is important in the subsequent design of improved and more efficient versions. These de-icer pads are installed near the surface of aircraft components, for the specific purpose of removing accreted ice. The proposed numerical model can incorporate the full 2-D geometry through a section of a region (i.e., section of an airfoil), that current 1-D numerical codes are unable to do. Thus, the effects of irregular layers, curvature, etc., can now be accounted for in the thermal transients. Each layer in the actual geometry is mapped via a body-fitted coordinate transformation into uniform, rectangular computational grids. The relevant heat transfer equations are transformed and discretized. To model the phase change that might occur in any accreted ice, in an enthalpy formulation the phase change equations are likewise transformed and discretized. The code developed was tested against numerous classical numerical solutions, as well as against experimental de-icing data on a UH1H rotor blade obtained from the NASA Lewis Research Center. The excellent comparisons obtained show that this code can be a useful tool in predicting the performance of current de-icer models, as well as in the designing of future models.
Fast and Accurate Learning When Making Discrete Numerical Estimates.
Sanborn, Adam N; Beierholm, Ulrik R
2016-04-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates.
Fast and Accurate Learning When Making Discrete Numerical Estimates
Sanborn, Adam N.; Beierholm, Ulrik R.
2016-01-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
Hierarchical Boltzmann simulations and model error estimation
NASA Astrophysics Data System (ADS)
Torrilhon, Manuel; Sarna, Neeraj
2017-08-01
A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.
Positive-Negative Birefringence in Multiferroic Layered Metasurfaces.
Khomeriki, R; Chotorlishvili, L; Tralle, I; Berakdar, J
2016-11-09
We uncover and identify the regime for a magnetically and ferroelectrically controllable negative refraction of a light-traversing multiferroic, oxide-based metastructure consisting of alternating nanoscopic ferroelectric (SrTiO 3 ) and ferromagnetic (Y 3 Fe 2 (FeO 4 ) 3 , YIG) layers. We perform analytical and numerical simulations based on discretized, coupled equations for the self-consistent Maxwell/ferroelectric/ferromagnetic dynamics and obtain a biquadratic relation for the refractive index. Various scenarios of ordinary and negative refraction in different frequency ranges are analyzed and quantified by simple analytical formula that are confirmed by full-fledge numerical simulations. Electromagnetic waves injected at the edges of the sample are propagated exactly numerically. We discovered that, for particular GHz frequencies, waves with different polarizations are characterized by different signs of the refractive index, giving rise to novel types of phenomena such as a positive-negative birefringence effect and magnetically controlled light trapping and accelerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Andrew, E-mail: a.duncan@imperial.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Zygalakis, Konstantinos, E-mail: k.zygalakis@ed.ac.uk
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the “fast” reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when onemore » or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.« less
NASA Astrophysics Data System (ADS)
Chabassier, Juliette; Duruflé, Marc
2014-12-01
A nonlinear model for a vibrating Timoshenko beam in non-forced unknown rotation is derived from the virtual work principle applied to a system of beam with mass at the end. The system represents a piano hammer shank coupled to a hammer head. An energy-based numerical scheme is then provided, obtained by non-classical approaches. A major difficulty for time discretization comes from the nonlinear behavior of the kinetic energy of the system. This new numerical scheme is then coupled to a global energy-preserving numerical solution for the whole piano. The obtained numerical simulations show that the pianistic touch clearly influences the spectrum of the piano sound of equally loud isolated notes. These differences do not come from a possible shock excitation on the structure, or from a changing impact point, or a “longitudinal rubbing motion” on the string, since neither of these features is modeled in our study.
Benchmarking FEniCS for mantle convection simulations
NASA Astrophysics Data System (ADS)
Vynnytska, L.; Rognes, M. E.; Clark, S. R.
2013-01-01
This paper evaluates the usability of the FEniCS Project for mantle convection simulations by numerical comparison to three established benchmarks. The benchmark problems all concern convection processes in an incompressible fluid induced by temperature or composition variations, and cover three cases: (i) steady-state convection with depth- and temperature-dependent viscosity, (ii) time-dependent convection with constant viscosity and internal heating, and (iii) a Rayleigh-Taylor instability. These problems are modeled by the Stokes equations for the fluid and advection-diffusion equations for the temperature and composition. The FEniCS Project provides a novel platform for the automated solution of differential equations by finite element methods. In particular, it offers a significant flexibility with regard to modeling and numerical discretization choices; we have here used a discontinuous Galerkin method for the numerical solution of the advection-diffusion equations. Our numerical results are in agreement with the benchmarks, and demonstrate the applicability of both the discontinuous Galerkin method and FEniCS for such applications.
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.
2004-01-01
Our goal has been to investigate the influence of both dilution and radiation on the extinction process of nonpremixed flames at low strain rates. Simulations have been performed by using a counterflow code and three radiation models have been included in it, namely, the optically thin, the narrowband, and discrete ordinate models. The counterflow flame code OPPDIFF was modified to account for heat transfer losses by radiation from the hot gases. The discrete ordinate method (DOM) approximation was first suggested by Chandrasekhar for solving problems in interstellar atmospheres. Carlson and Lathrop developed the method for solving multi-dimensional problem in neutron transport. Only recently has the method received attention in the field of heat transfer. Due to the applicability of the discrete ordinate method for thermal radiation problems involving flames, the narrowband code RADCAL was modified to calculate the radiative properties of the gases. A non-premixed counterflow flame was simulated with the discrete ordinate method for radiative emissions. In comparison with two other models, it was found that the heat losses were comparable with the optically thin and simple narrowband model. The optically thin model had the highest heat losses followed by the DOM model and the narrow-band model.
Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing
2013-03-01
Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.
NASA Astrophysics Data System (ADS)
Simo, Elie
2007-02-01
A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schrödinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.
NASA Astrophysics Data System (ADS)
He, Jianbin; Yu, Simin; Cai, Jianping
2016-12-01
Lyapunov exponent is an important index for describing chaotic systems behavior, and the largest Lyapunov exponent can be used to determine whether a system is chaotic or not. For discrete-time dynamical systems, the Lyapunov exponents are calculated by an eigenvalue method. In theory, according to eigenvalue method, the more accurate calculations of Lyapunov exponent can be obtained with the increment of iterations, and the limits also exist. However, due to the finite precision of computer and other reasons, the results will be numeric overflow, unrecognized, or inaccurate, which can be stated as follows: (1) The iterations cannot be too large, otherwise, the simulation result will appear as an error message of NaN or Inf; (2) If the error message of NaN or Inf does not appear, then with the increment of iterations, all Lyapunov exponents will get close to the largest Lyapunov exponent, which leads to inaccurate calculation results; (3) From the viewpoint of numerical calculation, obviously, if the iterations are too small, then the results are also inaccurate. Based on the analysis of Lyapunov-exponent calculation in discrete-time systems, this paper investigates two improved algorithms via QR orthogonal decomposition and SVD orthogonal decomposition approaches so as to solve the above-mentioned problems. Finally, some examples are given to illustrate the feasibility and effectiveness of the improved algorithms.
Sivak, David A; Chodera, John D; Crooks, Gavin E
2014-06-19
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhihui; Ma, Qiang; Wu, Junlin
2014-12-09
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinatemore » points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.« less
Discretization of the induced-charge boundary integral equation.
Bardhan, Jaydeep P; Eisenberg, Robert S; Gillespie, Dirk
2009-07-01
Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
Discretization of the induced-charge boundary integral equation
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk
2009-07-01
Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
New formulation of the discrete element method
NASA Astrophysics Data System (ADS)
Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon
2018-01-01
A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.
Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, A. K. H.; Ng, P. L.; Lam, J. Y. K.
2010-05-21
Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete. In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip behaviour. However, there is very limited research on how to simulate the dowel action of discrete reinforcing bars. Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in concrete is developed. The model features the derivation of dowel stiffness matrix based on beam-on-elastic-foundation theory and the direct assemblage ofmore » dowel stiffness into the concrete element stiffness matrices. The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness formulation. Deep beams tested in the literature are analysed and it is found that the incorporation of dowel action model improves the accuracy of analysis.« less
Adaptive temporal refinement in injection molding
NASA Astrophysics Data System (ADS)
Karyofylli, Violeta; Schmitz, Mauritius; Hopmann, Christian; Behr, Marek
2018-05-01
Mold filling is an injection molding stage of great significance, because many defects of the plastic components (e.g. weld lines, burrs or insufficient filling) can occur during this process step. Therefore, it plays an important role in determining the quality of the produced parts. Our goal is the temporal refinement in the vicinity of the evolving melt front, in the context of 4D simplex-type space-time grids [1, 2]. This novel discretization method has an inherent flexibility to employ completely unstructured meshes with varying levels of resolution both in spatial dimensions and in the time dimension, thus allowing the use of local time-stepping during the simulations. This can lead to a higher simulation precision, while preserving calculation efficiency. A 3D benchmark case, which concerns the filling of a plate-shaped geometry, is used for verifying our numerical approach [3]. The simulation results obtained with the fully unstructured space-time discretization are compared to those obtained with the standard space-time method and to Moldflow simulation results. This example also serves for providing reliable timing measurements and the efficiency aspects of the filling simulation of complex 3D molds while applying adaptive temporal refinement.
Numerical simulations of particle orbits around 2060 Chiron
NASA Technical Reports Server (NTRS)
Stern, S. A.; Jackson, A. A.; Boice, D. C.
1994-01-01
Scattered light from orbiting or coorbiting dust is a primary signature by which Earth-based observers study the activity and atmosphere of the unusual outer solar system object 2060 Chiron. Therefore, it is important to understand the lifetime, dynamics, and loss rates of dust in its coma. We report here dynamical simulations of particles in Chiron's collisionless coma. The orbits of 17,920 dust particles were numerically integrated under the gravitational influence of Chiron, the Sun, and solar radiation pressure. These simulations show that particles ejected from Chiron are more likely to follow suborbital trajectories, or to escape altogether, than to enter quasistable orbits. Significant orbital lifetimes can only be achieved for very specific launch conditions. These results call into question models of a long-term, bound coma generated by discrete outbursts, and instead suggest that Chiron's coma state is closely coupled to the nearly instantaneous level of Chiron's surface activity.
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2017-11-01
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.
Variational coarse-graining procedure for dynamic homogenization
NASA Astrophysics Data System (ADS)
Liu, Chenchen; Reina, Celia
2017-07-01
We present a variational coarse-graining framework for heterogeneous media in the spirit of FE2 methods, that allows for a seamless transition from the traditional static scenario to dynamic loading conditions, while being applicable to general material behavior as well as to discrete or continuous representations of the material and its deformation, e.g., finite element discretizations or atomistic systems. The method automatically delivers the macroscopic equations of motion together with the generalization of Hill's averaging relations to the dynamic setting. These include the expression of the macroscopic stresses and linear momentum as a function of the microscopic fields. We further demonstrate with a proof of concept example, that the proposed theoretical framework can be used to perform multiscale numerical simulations. The results are compared with standard single-scale finite element simulations, showcasing the capability of the method to capture the dispersive nature of the medium in the range of frequencies permitted by the multiscale strategy.
On the design of henon and logistic map-based random number generator
NASA Astrophysics Data System (ADS)
Magfirawaty; Suryadi, M. T.; Ramli, Kalamullah
2017-10-01
The key sequence is one of the main elements in the cryptosystem. True Random Number Generators (TRNG) method is one of the approaches to generating the key sequence. The randomness source of the TRNG divided into three main groups, i.e. electrical noise based, jitter based and chaos based. The chaos based utilizes a non-linear dynamic system (continuous time or discrete time) as an entropy source. In this study, a new design of TRNG based on discrete time chaotic system is proposed, which is then simulated in LabVIEW. The principle of the design consists of combining 2D and 1D chaotic systems. A mathematical model is implemented for numerical simulations. We used comparator process as a harvester method to obtain the series of random bits. Without any post processing, the proposed design generated random bit sequence with high entropy value and passed all NIST 800.22 statistical tests.
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.
2012-12-01
The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.
Improved Subcell Model for the Prediction of Braided Composite Response
NASA Technical Reports Server (NTRS)
Cater, Christopher R.; Xinran, Xiao; Goldberg, Robert K.; Kohlman, Lee W.
2013-01-01
In this work, the modeling of triaxially braided composites was explored through a semi-analytical discretization. Four unique subcells, each approximated by a "mosaic" stacking of unidirectional composite plies, were modeled through the use of layered-shell elements within the explicit finite element code LS-DYNA. Two subcell discretizations were investigated: a model explicitly capturing pure matrix regions, and a novel model which absorbed pure matrix pockets into neighboring tow plies. The in-plane stiffness properties of both models, computed using bottom-up micromechanics, correlated well to experimental data. The absorbed matrix model, however, was found to best capture out-of- plane flexural properties by comparing numerical simulations of the out-of-plane displacements from single-ply tension tests to experimental full field data. This strong correlation of out-of-plane characteristics supports the current modeling approach as a viable candidate for future work involving impact simulations.
High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes
NASA Technical Reports Server (NTRS)
Barth, Timothy (Editor); Deconinck, Herman (Editor)
1999-01-01
The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.
Accretional evolution of a planetesimal swarm. I - A new simulation
NASA Technical Reports Server (NTRS)
Spaute, Dominique; Weidenschilling, Stuart J.; Davis, Donald R.; Marzari, Francesco
1991-01-01
This novel simulation of planetary accretion simultaneously treats many interacting heliocentric distance zones and characterizes planetesimals via Keplerian elements. The numerical code employed, in addition to following the size distribution and the orbit-element distribution of a planetesimal swarm from arbitrary size and orbit distributions, treats a small number of the largest bodies as discrete objects with individual orbits. The accretion algorithm used yields good agreement with the analytic solutions; agreement is also obtained with the results of Weatherill and Stewart (1989) for gravitational accretion of planetesimals having equivalent initial conditions.
Verifying and Validating Simulation Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M.
2015-02-23
This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statisticalmore » sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.« less
New variational principles for locating periodic orbits of differential equations.
Boghosian, Bruce M; Fazendeiro, Luis M; Lätt, Jonas; Tang, Hui; Coveney, Peter V
2011-06-13
We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier-Stokes equations, simulated using the lattice Boltzmann equation.
Stochastic Forcing for Ocean Uncertainty Prediction
2013-09-30
using the desired dynamics and the fitting of that velocity field to the bathymetry, coasts and discretization for the desired simulation. New algorithms...numerical bias is removed. Pdfs of the forecast errors are shown to capture and evolve non- Gaussian statistics. Comparing the Kullback - Leibler ...advances in collaborative sea exercises of opportunity vi) Strengthen existing and initiate new collaborations with NRL, using and leveraging the MIT
Nonlinear modes of snap-through motions of a shallow arch
NASA Astrophysics Data System (ADS)
Breslavsky, I.; Avramov, K. V.; Mikhlin, Yu.; Kochurov, R.
2008-03-01
Nonlinear modes of snap-through motions of a shallow arch are analyzed. Dynamics of shallow arch is modeled by a two-degree-of-freedom system. Two nonlinear modes of this discrete system are treated. The methods of Ince algebraization and Hill determinants are used to study stability of nonlinear modes. The analytical results are compared with the data of the numerical simulations.
Conservative properties of finite difference schemes for incompressible flow
NASA Technical Reports Server (NTRS)
Morinishi, Youhei
1995-01-01
The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less
Numerical investigation of the spreading of self-excited stratified jets
NASA Technical Reports Server (NTRS)
Batcho, P. F.; Karniadakis, G. E.; Orszag, S. A.
1990-01-01
The structure and evolution of self-excited subsonic periodic arrays of jets of constant and variable density are studied using spectral-element direct numerical simulations. The governing equation of motion is presented, and a method based on spectral element discretizations appropriate for simulating arbitrarily complex geometry jets and large density variations for subsonic flows is developed. Variable density fields are found to be more unstable than the corresponding uniform density fields with much higher rms values; as a result, their spreading is also considerably larger. There is a dramatic increase in spreading after a few pairings occur. Findings presented for low and high side-momentum flux reveal a shifting of the origin of instability from the near-field to the far-field, respectively, and suggest possible routes of stabilization.
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
Aeroelastic-Acoustics Simulation of Flight Systems
NASA Technical Reports Server (NTRS)
Gupta, kajal K.; Choi, S.; Ibrahim, A.
2009-01-01
This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.
Multi-scale sensitivity analysis of pile installation using DEM
NASA Astrophysics Data System (ADS)
Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni
2017-12-01
The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.
Mathematical and Numerical Techniques in Energy and Environmental Modeling
NASA Astrophysics Data System (ADS)
Chen, Z.; Ewing, R. E.
Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms
Multi-scale sensitivity analysis of pile installation using DEM
NASA Astrophysics Data System (ADS)
Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni
2018-07-01
The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas
The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.
Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-04-01
We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.
A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
NASA Astrophysics Data System (ADS)
Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.
2014-05-01
The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
Numerical simulation of KdV equation by finite difference method
NASA Astrophysics Data System (ADS)
Yokus, A.; Bulut, H.
2018-05-01
In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.
Optimal control of LQR for discrete time-varying systems with input delays
NASA Astrophysics Data System (ADS)
Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng
2018-04-01
In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.
Yan, Xin-Zhong
2011-07-01
The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scalemore » projects such as ICF3D.« less
Sampling Versus Filtering in Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Debliquy, O.; Knaepen, B.; Carati, D.; Wray, A. A.
2004-01-01
A LES formalism in which the filter operator is replaced by a sampling operator is proposed. The unknown quantities that appear in the LES equations originate only from inadequate resolution (Discretization errors). The resulting viewpoint seems to make a link between finite difference approaches and finite element methods. Sampling operators are shown to commute with nonlinearities and to be purely projective. Moreover, their use allows an unambiguous definition of the LES numerical grid. The price to pay is that sampling never commutes with spatial derivatives and the commutation errors must be modeled. It is shown that models for the discretization errors may be treated using the dynamic procedure. Preliminary results, using the Smagorinsky model, are very encouraging.
Kokeny, Paul; Cheng, Yu-Chung N; Xie, He
2018-05-01
Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed voxel. These results indicate that MRI signals from voxels containing discrete particles, even with a sufficient number of particles per voxel, cannot be properly modeled by a continuous medium with an equivalent susceptibility value in the voxel. Copyright © 2017 Elsevier Inc. All rights reserved.
Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
NASA Astrophysics Data System (ADS)
Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.
2017-06-01
A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric
2004-01-01
Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.
Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.
Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria
2015-10-15
Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.
Sowmiya, C; Raja, R; Cao, Jinde; Rajchakit, G; Alsaedi, Ahmed
2017-01-01
This paper is concerned with the problem of enhanced results on robust finite-time passivity for uncertain discrete-time Markovian jumping BAM delayed neural networks with leakage delay. By implementing a proper Lyapunov-Krasovskii functional candidate, the reciprocally convex combination method together with linear matrix inequality technique, several sufficient conditions are derived for varying the passivity of discrete-time BAM neural networks. An important feature presented in our paper is that we utilize the reciprocally convex combination lemma in the main section and the relevance of that lemma arises from the derivation of stability by using Jensen's inequality. Further, the zero inequalities help to propose the sufficient conditions for finite-time boundedness and passivity for uncertainties. Finally, the enhancement of the feasible region of the proposed criteria is shown via numerical examples with simulation to illustrate the applicability and usefulness of the proposed method.
Design of an optimal preview controller for linear discrete-time descriptor systems with state delay
NASA Astrophysics Data System (ADS)
Cao, Mengjuan; Liao, Fucheng
2015-04-01
In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.
Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Turinsky, Paul J.
2005-07-15
Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.
2017-06-01
The Fokker-Planck collision operator is an advection-diffusion operator which describe dynamical systems such as weakly coupled plasmas [1,2], photonics in high temperature environment [3,4], biological [5], and even social systems [6]. For plasmas in the continuum, the Fokker-Planck collision operator supports such important physical properties as conservation of number, momentum, and energy, as well as positivity. It also obeys the Boltzmann's H-theorem [7-11], i.e., the operator increases the system entropy while simultaneously driving the distribution function towards a Maxwellian. In the discrete, when these properties are not ensured, numerical simulations can either fail catastrophically or suffer from significant numerical pollution [12,13]. There is strong emphasis in the literature on developing numerical techniques to solve the Fokker-Planck equation while preserving these properties [12-24]. In this short note, we focus on the analytical equilibrium preserving property, meaning that the Fokker-Planck collision operator vanishes when acting on an analytical Maxwellian distribution function. The equilibrium preservation property is especially important, for example, when one is attempting to capture subtle transport physics. Since transport arises from small O (ɛ) corrections to the equilibrium [25] (where ɛ is a small expansion parameter), numerical truncation error present in the equilibrium solution may dominate, overwhelming transport dynamics.
A new flux conserving Newton's method scheme for the two-dimensional, steady Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Scott, James R.; Chang, Sin-Chung
1993-01-01
A new numerical method is developed for the solution of the two-dimensional, steady Navier-Stokes equations. The method that is presented differs in significant ways from the established numerical methods for solving the Navier-Stokes equations. The major differences are described. First, the focus of the present method is on satisfying flux conservation in an integral formulation, rather than on simulating conservation laws in their differential form. Second, the present approach provides a unified treatment of the dependent variables and their unknown derivatives. All are treated as unknowns together to be solved for through simulating local and global flux conservation. Third, fluxes are balanced at cell interfaces without the use of interpolation or flux limiters. Fourth, flux conservation is achieved through the use of discrete regions known as conservation elements and solution elements. These elements are not the same as the standard control volumes used in the finite volume method. Fifth, the discrete approximation obtained on each solution element is a functional solution of both the integral and differential form of the Navier-Stokes equations. Finally, the method that is presented is a highly localized approach in which the coupling to nearby cells is only in one direction for each spatial coordinate, and involves only the immediately adjacent cells. A general third-order formulation for the steady, compressible Navier-Stokes equations is presented, and then a Newton's method scheme is developed for the solution of incompressible, low Reynolds number channel flow. It is shown that the Jacobian matrix is nearly block diagonal if the nonlinear system of discrete equations is arranged approximately and a proper pivoting strategy is used. Numerical results are presented for Reynolds numbers of 100, 1000, and 2000. Finally, it is shown that the present scheme can resolve the developing channel flow boundary layer using as few as six to ten cells per channel width, depending on the Reynolds number.
An Iterative Method for Problems with Multiscale Conductivity
Kim, Hyea Hyun; Minhas, Atul S.; Woo, Eung Je
2012-01-01
A model with its conductivity varying highly across a very thin layer will be considered. It is related to a stable phantom model, which is invented to generate a certain apparent conductivity inside a region surrounded by a thin cylinder with holes. The thin cylinder is an insulator and both inside and outside the thin cylinderare filled with the same saline. The injected current can enter only through the holes adopted to the thin cylinder. The model has a high contrast of conductivity discontinuity across the thin cylinder and the thickness of the layer and the size of holes are very small compared to the domain of the model problem. Numerical methods for such a model require a very fine mesh near the thin layer to resolve the conductivity discontinuity. In this work, an efficient numerical method for such a model problem is proposed by employing a uniform mesh, which need not resolve the conductivity discontinuity. The discrete problem is then solved by an iterative method, where the solution is improved by solving a simple discrete problem with a uniform conductivity. At each iteration, the right-hand side is updated by integrating the previous iterate over the thin cylinder. This process results in a certain smoothing effect on microscopic structures and our discrete model can provide a more practical tool for simulating the apparent conductivity. The convergence of the iterative method is analyzed regarding the contrast in the conductivity and the relative thickness of the layer. In numerical experiments, solutions of our method are compared to reference solutions obtained from COMSOL, where very fine meshes are used to resolve the conductivity discontinuity in the model. Errors of the voltage in L2 norm follow O(h) asymptotically and the current density matches quitewell those from the reference solution for a sufficiently small mesh size h. The experimental results present a promising feature of our approach for simulating the apparent conductivity related to changes in microscopic cellular structures. PMID:23304238
Validation of a RANS transition model using a high-order weighted compact nonlinear scheme
NASA Astrophysics Data System (ADS)
Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang
2013-04-01
A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.
Xu, Yupeng; Musser, Jordan; Li, Tingwen; ...
2017-07-22
It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Musser, Jordan; Li, Tingwen
It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
NASA Astrophysics Data System (ADS)
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells
2014-08-01
goes wrong may lead to a catastrophe or failure, which may lead to an unwelcome outcome for instance cancer . Thus, a detailed understanding on... biofilm - drug interaction. Discrete and Continuous Dynamical Systems Series B, 15:417–456, March 2011. 13 [17] Brandon Lindley, Qi Wang, and Tianyu Zhang...Multicomponent hydrodynamic model for heterogeneous biofilms : Two-dimensional numerical simulations of growth and in- teraction with flows. Physical
1991-05-22
plasticity, including those of DiMaggio and Sandier (1971), Baladi and Rohani (1979), Lade (1977), Prevost (1978, 1985), Dafalias and Herrmann (1982). In...distribution can be achieved only if the behavior at the contact is fully understood and rigorously modelled. 18 REFERENCES Baladi , G.Y. and Rohani, B. (1979
Further Development of a New, Flux-Conserving Newton Scheme for the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Scott, James R.
1996-01-01
This paper is one of a series of papers describing the development of a new numerical approach for solving the steady Navier-Stokes equations. The key features in the current development are (1) the discrete representation of the dependent variables by way of high order polynomial expansions, (2) the retention of all derivatives in the expansions as unknowns to be explicitly solved for, (3) the automatic balancing of fluxes at cell interfaces, and (4) the discrete simulation of both the integral and differential forms of the governing equations. The main purpose of this paper is, first, to provide a systematic and rigorous derivation of the conditions that are used to simulate the differential form of the Navier-Stokes equations, and second, to extend our previously-presented internal flow scheme to external flows and nonuniform grids. Numerical results are presented for high Reynolds number flow (Re = 100,000) around a finite flat plate, and detailed comparisons are made with the Blasius flat plate solution and Goldstein wake solution. It is shown that the error in the streamwise velocity decreases like r(sup alpha)(Delta)y(exp 2), where alpha approx. 0.25 and r = delta(y)/delta(x) is the grid aspect ratio.
Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization
Vutova, Katia; Donchev, Veliko
2013-01-01
Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jing; Huang, Hai; Deo, Milind
The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing,more » arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.« less
Circuit-based versus full-wave modelling of active microwave circuits
NASA Astrophysics Data System (ADS)
Bukvić, Branko; Ilić, Andjelija Ž.; Ilić, Milan M.
2018-03-01
Modern full-wave computational tools enable rigorous simulations of linear parts of complex microwave circuits within minutes, taking into account all physical electromagnetic (EM) phenomena. Non-linear components and other discrete elements of the hybrid microwave circuit are then easily added within the circuit simulator. This combined full-wave and circuit-based analysis is a must in the final stages of the circuit design, although initial designs and optimisations are still faster and more comfortably done completely in the circuit-based environment, which offers real-time solutions at the expense of accuracy. However, due to insufficient information and general lack of specific case studies, practitioners still struggle when choosing an appropriate analysis method, or a component model, because different choices lead to different solutions, often with uncertain accuracy and unexplained discrepancies arising between the simulations and measurements. We here design a reconfigurable power amplifier, as a case study, using both circuit-based solver and a full-wave EM solver. We compare numerical simulations with measurements on the manufactured prototypes, discussing the obtained differences, pointing out the importance of measured parameters de-embedding, appropriate modelling of discrete components and giving specific recipes for good modelling practices.
Adaptive multi-time-domain subcycling for crystal plasticity FE modeling of discrete twin evolution
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Cheng, Jiahao
2018-02-01
Crystal plasticity finite element (CPFE) models that accounts for discrete micro-twin nucleation-propagation have been recently developed for studying complex deformation behavior of hexagonal close-packed (HCP) materials (Cheng and Ghosh in Int J Plast 67:148-170, 2015, J Mech Phys Solids 99:512-538, 2016). A major difficulty with conducting high fidelity, image-based CPFE simulations of polycrystalline microstructures with explicit twin formation is the prohibitively high demands on computing time. High strain localization within fast propagating twin bands requires very fine simulation time steps and leads to enormous computational cost. To mitigate this shortcoming and improve the simulation efficiency, this paper proposes a multi-time-domain subcycling algorithm. It is based on adaptive partitioning of the evolving computational domain into twinned and untwinned domains. Based on the local deformation-rate, the algorithm accelerates simulations by adopting different time steps for each sub-domain. The sub-domains are coupled back after coarse time increments using a predictor-corrector algorithm at the interface. The subcycling-augmented CPFEM is validated with a comprehensive set of numerical tests. Significant speed-up is observed with this novel algorithm without any loss of accuracy that is advantageous for predicting twinning in polycrystalline microstructures.
Microcanonical ensemble simulation method applied to discrete potential fluids
NASA Astrophysics Data System (ADS)
Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro
2015-09-01
In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.
Calibration of discrete element model parameters: soybeans
NASA Astrophysics Data System (ADS)
Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal
2018-05-01
Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.
Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Sethian, James A.
1997-01-01
Borrowing from techniques developed for conservation law equations, numerical schemes which discretize the Hamilton-Jacobi (H-J), level set, and Eikonal equations on triangulated domains are presented. The first scheme is a provably monotone discretization for certain forms of the H-J equations. Unfortunately, the basic scheme lacks proper Lipschitz continuity of the numerical Hamiltonian. By employing a virtual edge flipping technique, Lipschitz continuity of the numerical flux is restored on acute triangulations. Next, schemes are introduced and developed based on the weaker concept of positive coefficient approximations for homogeneous Hamiltonians. These schemes possess a discrete maximum principle on arbitrary triangulations and naturally exhibit proper Lipschitz continuity of the numerical Hamiltonian. Finally, a class of Petrov-Galerkin approximations are considered. These schemes are stabilized via a least-squares bilinear form. The Petrov-Galerkin schemes do not possess a discrete maximum principle but generalize to high order accuracy.
Simulation of granular and gas-solid flows using discrete element method
NASA Astrophysics Data System (ADS)
Boyalakuntla, Dhanunjay S.
2003-10-01
In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)
A scalable parallel black oil simulator on distributed memory parallel computers
NASA Astrophysics Data System (ADS)
Wang, Kun; Liu, Hui; Chen, Zhangxin
2015-11-01
This paper presents our work on developing a parallel black oil simulator for distributed memory computers based on our in-house parallel platform. The parallel simulator is designed to overcome the performance issues of common simulators that are implemented for personal computers and workstations. The finite difference method is applied to discretize the black oil model. In addition, some advanced techniques are employed to strengthen the robustness and parallel scalability of the simulator, including an inexact Newton method, matrix decoupling methods, and algebraic multigrid methods. A new multi-stage preconditioner is proposed to accelerate the solution of linear systems from the Newton methods. Numerical experiments show that our simulator is scalable and efficient, and is capable of simulating extremely large-scale black oil problems with tens of millions of grid blocks using thousands of MPI processes on parallel computers.
Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2018-01-01
This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodumov, Ilya; Kropotin, Nikolai
2016-08-10
We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less
Discretizing singular point sources in hyperbolic wave propagation problems
Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...
2016-06-01
Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less
Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.
Badetti, Michel; Fall, Abdoulaye; Chevoir, François; Roux, Jean-Noël
2018-05-28
Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value [Formula: see text], identified from the behaviour of the dry material. Shear resistance and solid fraction [Formula: see text] are recorded as functions of the reduced pressure [Formula: see text], which, defined as [Formula: see text], compares stress [Formula: see text], applied in the velocity gradient direction, to the tensile strength [Formula: see text] of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with [Formula: see text]-independent cohesion c applies as a good approximation for large enough [Formula: see text] (typically [Formula: see text]. Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of [Formula: see text]. The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range [Formula: see text] and [Formula: see text]. Thus, the internal friction coefficient [Formula: see text] of the dry material still relates the contact force contribution to stresses, [Formula: see text], while the capillary force contribution to stresses, [Formula: see text], defines a generalized Mohr-Coulomb cohesion c, depending on [Formula: see text] in general. c relates to [Formula: see text] , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress [Formula: see text] (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu
2018-06-01
Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu
2018-04-01
Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.
Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin
2017-08-01
The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5 m×0.5 m×0.5 m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.
Discrete stochastic analogs of Erlang epidemic models.
Getz, Wayne M; Dougherty, Eric R
2018-12-01
Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.
Petersson, N. Anders; Sjogreen, Bjorn
2015-07-20
We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less
NASA Astrophysics Data System (ADS)
Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin
2017-06-01
We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.
NASA Astrophysics Data System (ADS)
Liu, Hailiang; Wang, Zhongming
2017-01-01
We design an arbitrary-order free energy satisfying discontinuous Galerkin (DG) method for solving time-dependent Poisson-Nernst-Planck systems. Both the semi-discrete and fully discrete DG methods are shown to satisfy the corresponding discrete free energy dissipation law for positive numerical solutions. Positivity of numerical solutions is enforced by an accuracy-preserving limiter in reference to positive cell averages. Numerical examples are presented to demonstrate the high resolution of the numerical algorithm and to illustrate the proven properties of mass conservation, free energy dissipation, as well as the preservation of steady states.
USMC Inventory Control Using Optimization Modeling and Discrete Event Simulation
2016-09-01
release. Distribution is unlimited. USMC INVENTORY CONTROL USING OPTIMIZATION MODELING AND DISCRETE EVENT SIMULATION by Timothy A. Curling...USING OPTIMIZATION MODELING AND DISCRETE EVENT SIMULATION 5. FUNDING NUMBERS 6. AUTHOR(S) Timothy A. Curling 7. PERFORMING ORGANIZATION NAME(S...optimization and discrete -event simulation. This construct can potentially provide an effective means in improving order management decisions. However
ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE-EVENT SIMULATION
2016-03-24
ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE -EVENT SIMULATION...in the United States. AFIT-ENV-MS-16-M-166 ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE -EVENT SIMULATION...UNLIMITED. AFIT-ENV-MS-16-M-166 ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE -EVENT SIMULATION Erich W
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Hu, Fan; Wang, Donghui; Okolo. N, Patrick; Zhang, Weihua
2017-07-01
Numerical simulations on processes within a hybrid rocket motor were conducted in the past, where most of these simulations carried out majorly focused on steady state analysis. Solid fuel regression rate strongly depends on complicated physicochemical processes and internal fluid dynamic behavior within the rocket motor, which changes with both space and time during its operation, and are therefore more unsteady in characteristics. Numerical simulations on the unsteady operational processes of N2O/HTPB hybrid rocket motor with and without diaphragm are conducted within this research paper. A numerical model is established based on two dimensional axisymmetric unsteady Navier-Stokes equations having turbulence, combustion and coupled gas/solid phase formulations. Discrete phase model is used to simulate injection and vaporization of the liquid oxidizer. A dynamic mesh technique is applied to the non-uniform regression of fuel grain, while results of unsteady flow field, variation of regression rate distribution with time, regression process of burning surface and internal ballistics are all obtained. Due to presence of eddy flow, the diaphragm increases regression rate further downstream. Peak regression rates are observed close to flow reattachment regions, while these peak values decrease gradually, and peak position shift further downstream with time advancement. Motor performance is analyzed accordingly, and it is noticed that the case with diaphragm included results in combustion efficiency and specific impulse efficiency increase of roughly 10%, and ground thrust increase of 17.8%.
Mehl, S.; Hill, M.C.
2001-01-01
Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.
NASA Astrophysics Data System (ADS)
Kamitani, A.; Takayama, T.; Tanaka, A.; Ikuno, S.
2010-11-01
The inductive method for measuring the critical current density jC in a high-temperature superconducting (HTS) thin film has been investigated numerically. In order to simulate the method, a non-axisymmetric numerical code has been developed for analyzing the time evolution of the shielding current density. In the code, the governing equation of the shielding current density is spatially discretized with the finite element method and the resulting first-order ordinary differential system is solved by using the 5th-order Runge-Kutta method with an adaptive step-size control algorithm. By using the code, the threshold current IT is evaluated for various positions of a coil. The results of computations show that, near a film edge, the accuracy of the estimating formula for jC is remarkably degraded. Moreover, even the proportional relationship between jC and IT will be lost there. Hence, the critical current density near a film edge cannot be estimated by using the inductive method.
NASA Astrophysics Data System (ADS)
Santos, M. V.; Lespinard, A. R.
2011-12-01
The shelf life of mushrooms is very limited since they are susceptible to physical and microbial attack; therefore they are usually blanched and immediately frozen for commercial purposes. The aim of this work was to develop a numerical model using the finite element technique to predict freezing times of mushrooms considering the actual shape of the product. The original heat transfer equation was reformulated using a combined enthalpy-Kirchhoff formulation, therefore an own computational program using Matlab 6.5 (MathWorks, Natick, Massachusetts) was developed, considering the difficulties encountered when simulating this non-linear problem in commercial softwares. Digital images were used to generate the irregular contour and the domain discretization. The numerical predictions agreed with the experimental time-temperature curves during freezing of mushrooms (maximum absolute error <3.2°C) obtaining accurate results and minimum computer processing times. The codes were then applied to determine required processing times for different operating conditions (external fluid temperatures and surface heat transfer coefficients).
Numerical Schemes for Dynamically Orthogonal Equations of Stochastic Fluid and Ocean Flows
2011-11-03
stages of the simulation (see §5.1). Also, because the pdf is discrete, we calculate the mo- ments using the biased estimator CYiYj ≈ 1q ∑ r Yr,iYr,j...independent random variables. For problems that require large p (e.g. non-Gaussian) and large s (e.g. large ocean or fluid simulations ), the number of...Sc = ν̂/K̂ is the Schmidt number which is the ratio of kinematic viscosity ν̂ to molecular diffusivity K̂ for the density field, ĝ′ = ĝ (ρ̂max−ρ̂min
Asynchronous machine rotor speed estimation using a tabulated numerical approach
NASA Astrophysics Data System (ADS)
Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane
2017-12-01
This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.
Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.
Bell, John B; Garcia, Alejandro L; Williams, Sarah A
2007-07-01
The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS solver are compared with theory, when available, and with molecular simulations using a direct simulation Monte Carlo algorithm.
Numerical Simulations of Free Surface Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema
2003-11-01
We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.
Conservation Laws for Gyrokinetic Equations for Large Perturbations and Flows
NASA Astrophysics Data System (ADS)
Dimits, Andris
2017-10-01
Gyrokinetic theory has proved to be very useful for the understanding of magnetized plasmas, both to simplify analytical treatments and as a basis for efficient numerical simulations. Gyrokinetic theories were previously developed in two extended orderings that are applicable to large fluctuations and flows as may arise in the tokamak edge and scrapeoff layer. In the present work, we cast the resulting equations in a field-theoretical variational form, and derive, up to second order in the respective orderings, the associated global and local energy and (linear and toroidal) momentum conservation relations that result from Noether's theorem. The consequences of these for the various possible choices of numerical discretization used in gyrokinetic simulations are considered. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and supported by the U.S. DOE, OFES.
Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
Ma, Li-Yuan; Zhu, Zuo-Nong
2014-09-01
In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.
High-Performance High-Order Simulation of Wave and Plasma Phenomena
NASA Astrophysics Data System (ADS)
Klockner, Andreas
This thesis presents results aiming to enhance and broaden the applicability of the discontinuous Galerkin ("DG") method in a variety of ways. DG was chosen as a foundation for this work because it yields high-order finite element discretizations with very favorable numerical properties for the treatment of hyperbolic conservation laws. In a first part, I examine progress that can be made on implementation aspects of DG. In adapting the method to mass-market massively parallel computation hardware in the form of graphics processors ("GPUs"), I obtain an increase in computation performance per unit of cost by more than an order of magnitude over conventional processor architectures. Key to this advance is a recipe that adapts DG to a variety of hardware through automated self-tuning. I discuss new parallel programming tools supporting GPU run-time code generation which are instrumental in the DG self-tuning process and contribute to its reaching application floating point throughput greater than 200 GFlops/s on a single GPU and greater than 3 TFlops/s on a 16-GPU cluster in simulations of electromagnetics problems in three dimensions. I further briefly discuss the solver infrastructure that makes this possible. In the second part of the thesis, I introduce a number of new numerical methods whose motivation is partly rooted in the opportunity created by GPU-DG: First, I construct and examine a novel GPU-capable shock detector, which, when used to control an artificial viscosity, helps stabilize DG computations in gas dynamics and a number of other fields. Second, I describe my pursuit of a method that allows the simulation of rarefied plasmas using a DG discretization of the electromagnetic field. Finally, I introduce new explicit multi-rate time integrators for ordinary differential equations with multiple time scales, with a focus on applicability to DG discretizations of time-dependent problems.
Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jinxing; Pu Zuyin; Xie Lun
Charged particle dynamics in magnetosphere has temporal and spatial multiscale; therefore, numerical accuracy over a long integration time is required. A variational symplectic integrator (VSI) [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008) and H. Qin, X. Guan, and W. M. Tang, Phys. Plasmas 16, 042510 (2009)] for the guiding-center motion of charged particles in general magnetic field is applied to study the dynamics of charged particles in magnetosphere. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing themore » dynamics. The VSI conserves exactly a discrete Lagrangian symplectic structure and has better numerical properties over a long integration time, compared with standard integrators, such as the standard and adaptive fourth order Runge-Kutta (RK4) methods. Applying the VSI method to guiding-center dynamics in the inner magnetosphere, we can accurately calculate the particles'orbits for an arbitrary long simulating time with good conservation property. When a time-independent convection and corotation electric field is considered, the VSI method can give the accurate single particle orbit, while the RK4 method gives an incorrect orbit due to its intrinsic error accumulation over a long integrating time.« less
Seleson, Pablo; Du, Qiang; Parks, Michael L.
2016-08-16
The peridynamic theory of solid mechanics is a nonlocal reformulation of the classical continuum mechanics theory. At the continuum level, it has been demonstrated that classical (local) elasticity is a special case of peridynamics. Such a connection between these theories has not been extensively explored at the discrete level. This paper investigates the consistency between nearest-neighbor discretizations of linear elastic peridynamic models and finite difference discretizations of the Navier–Cauchy equation of classical elasticity. While nearest-neighbor discretizations in peridynamics have been numerically observed to present grid-dependent crack paths or spurious microcracks, this paper focuses on a different, analytical aspect of suchmore » discretizations. We demonstrate that, even in the absence of cracks, such discretizations may be problematic unless a proper selection of weights is used. Specifically, we demonstrate that using the standard meshfree approach in peridynamics, nearest-neighbor discretizations do not reduce, in general, to discretizations of corresponding classical models. We study nodal-based quadratures for the discretization of peridynamic models, and we derive quadrature weights that result in consistency between nearest-neighbor discretizations of peridynamic models and discretized classical models. The quadrature weights that lead to such consistency are, however, model-/discretization-dependent. We motivate the choice of those quadrature weights through a quadratic approximation of displacement fields. The stability of nearest-neighbor peridynamic schemes is demonstrated through a Fourier mode analysis. Finally, an approach based on a normalization of peridynamic constitutive constants at the discrete level is explored. This approach results in the desired consistency for one-dimensional models, but does not work in higher dimensions. The results of the work presented in this paper suggest that even though nearest-neighbor discretizations should be avoided in peridynamic simulations involving cracks, such discretizations are viable, for example for verification or validation purposes, in problems characterized by smooth deformations. Furthermore, we demonstrate that better quadrature rules in peridynamics can be obtained based on the functional form of solutions.« less
The terminal area simulation system. Volume 2: Verification cases
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
The numerical simulation of five case studies are presented and are compared with available data in order to verify the three-dimensional version of the Terminal Area Simulation System (TASS). A spectrum of convective storm types are selected for the case studies. Included are: a High-Plains supercell hailstorm, a small and relatively short-lived High-Plains cumulonimbus, a convective storm which produced the 2 August 1985 DFW microburst, a South Florida convective complex, and a tornadic Oklahoma thunderstorm. For each of the cases the model results compared reasonably well with observed data. In the simulations of the supercell storms many of their characteristic features were modeled, such as the hook echo, BWER, mesocyclone, gust fronts, giant persistent updraft, wall cloud, flanking-line towers, anvil and radar reflectivity overhang, and rightward veering in the storm propagation. In the simulation of the tornadic storm a horseshoe-shaped updraft configuration and cyclic changes in storm intensity and structure were noted. The simulation of the DFW microburst agreed remarkably well with sparse observed data. The simulated outflow rapidly expanded in a nearly symmetrical pattern and was associated with a ringvortex. A South Florida convective complex was simulated and contained updrafts and downdrafts in the form of discrete bubbles. The numerical simulations, in all cases, always remained stable and bounded with no anomalous trends.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2014-06-01
Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.
NASA Astrophysics Data System (ADS)
Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan
2018-02-01
The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.
A mathematical model of the structure and evolution of small scale discrete auroral arcs
NASA Technical Reports Server (NTRS)
Seyler, C. E.
1990-01-01
A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duwel, A.E.; Watanabe, S.; Trias, E.
1997-11-01
New resonance steps are found in the experimental current-voltage characteristics of long, discrete, one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field. The junctions are underdamped, connected in parallel, and dc biased. Numerical simulations based on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are periodic trains of fluxons, phase locked by a finite amplitude radiation. Power spectra of the voltages consist of a small number of harmonic peaks, which may be exploited for possible oscillator applications. The steps form a family that can be numbered by the harmonicmore » content of the radiation, the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential for appearance of the higher order steps. We use a multimode extension of the harmonic balance analysis, and estimate the resonance frequencies, the ac voltage amplitudes, and the theoretical limit on the output power on the first two steps. {copyright} {ital 1997 American Institute of Physics.}« less
A Simulation of Alternatives for Wholesale Inventory Replenishment
2016-03-01
algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item
Simulating propagation of coherent light in random media using the Fredholm type integral equation
NASA Astrophysics Data System (ADS)
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
NASA Astrophysics Data System (ADS)
Lin, S. T.; Liou, T. S.
2017-12-01
Numerical simulation of groundwater flow in anisotropic aquifers usually suffers from the lack of accuracy of calculating groundwater flux across grid blocks. Conventional two-point flux approximation (TPFA) can only obtain the flux normal to the grid interface but completely neglects the one parallel to it. Furthermore, the hydraulic gradient in a grid block estimated from TPFA can only poorly represent the hydraulic condition near the intersection of grid blocks. These disadvantages are further exacerbated when the principal axes of hydraulic conductivity, global coordinate system, and grid boundary are not parallel to one another. In order to refine the estimation the in-grid hydraulic gradient, several multiple-point flux approximation (MPFA) methods have been developed for two-dimensional groundwater flow simulations. For example, the MPFA-O method uses the hydraulic head at the junction node as an auxiliary variable which is then eliminated using the head and flux continuity conditions. In this study, a three-dimensional MPFA method will be developed for numerical simulation of groundwater flow in three-dimensional and strongly anisotropic aquifers. This new MPFA method first discretizes the simulation domain into hexahedrons. Each hexahedron is further decomposed into a certain number of tetrahedrons. The 2D MPFA-O method is then extended to these tetrahedrons, using the unknown head at the intersection of hexahedrons as an auxiliary variable along with the head and flux continuity conditions to solve for the head at the center of each hexahedron. Numerical simulations using this new MPFA method have been successfully compared with those obtained from a modified version of TOUGH2.
Hybrid upwind discretization of nonlinear two-phase flow with gravity
NASA Astrophysics Data System (ADS)
Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.
2015-08-01
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.
NASA Astrophysics Data System (ADS)
Healy, John J.
2018-01-01
The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.
Mathematical analysis of a nutrient-plankton system with delay.
Rehim, Mehbuba; Zhang, Zhenzhen; Muhammadhaji, Ahmadjan
2016-01-01
A mathematical model describing the interaction of nutrient-plankton is investigated in this paper. In order to account for the time needed by the phytoplankton to mature after which they can release toxins, a discrete time delay is incorporated into the system. Moreover, it is also taken into account discrete time delays which indicates the partially recycled nutrient decomposed by bacteria after the death of biomass. In the first part of our analysis the sufficient conditions ensuring local and global asymptotic stability of the model are obtained. Next, the existence of the Hopf bifurcation as time delay crosses a threshold value is established and, meanwhile, the phenomenon of stability switches is found under certain conditions. Numerical simulations are presented to illustrate the analytical results.
NASA Astrophysics Data System (ADS)
Sepehrinia, Reza; Niry, M. D.; Bozorg, B.; Tabar, M. Reza Rahimi; Sahimi, Muhammad
2008-03-01
A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes at T=0 of the Heisenberg-Mattis model of one-dimensional (1D) spin glasses and the (discretized) random wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent (LE) of the magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In addition, through numerical simulations, the differences between the LE and the density of states of the wave equation in a discrete 1D model of randomly disordered media (those with a finite correlation length) and that of continuous media (with a zero correlation length) are demonstrated and emphasized.
Ensemble-type numerical uncertainty information from single model integrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less
Varieties of quantity estimation in children.
Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco
2015-06-01
In the number-to-position task, with increasing age and numerical expertise, children's pattern of estimates shifts from a biased (nonlinear) to a formal (linear) mapping. This widely replicated finding concerns symbolic numbers, whereas less is known about other types of quantity estimation. In Experiment 1, Preschool, Grade 1, and Grade 3 children were asked to map continuous quantities, discrete nonsymbolic quantities (numerosities), and symbolic (Arabic) numbers onto a visual line. Numerical quantity was matched for the symbolic and discrete nonsymbolic conditions, whereas cumulative surface area was matched for the continuous and discrete quantity conditions. Crucially, in the discrete condition children's estimation could rely either on the cumulative area or numerosity. All children showed a linear mapping for continuous quantities, whereas a developmental shift from a logarithmic to a linear mapping was observed for both nonsymbolic and symbolic numerical quantities. Analyses on individual estimates suggested the presence of two distinct strategies in estimating discrete nonsymbolic quantities: one based on numerosity and the other based on spatial extent. In Experiment 2, a non-spatial continuous quantity (shades of gray) and new discrete nonsymbolic conditions were added to the set used in Experiment 1. Results confirmed the linear patterns for the continuous tasks, as well as the presence of a subset of children relying on numerosity for the discrete nonsymbolic numerosity conditions despite the availability of continuous visual cues. Overall, our findings demonstrate that estimation of numerical and non-numerical quantities is based on different processing strategies and follow different developmental trajectories. (c) 2015 APA, all rights reserved).
2013-03-22
discrete Wigner function is periodic in momentum space. The periodicity follows from the Fourier transform of the density matrix. The inverse...resonant-tunneling diode . The Green function method has been one of alternatives. Another alternative was to utilize the Wigner function . The Wigner ... function approach to the simulation of a resonant-tunneling diode offers many advantages. In the limit of the classical physics the Wigner equation
The Thick Level-Set model for dynamic fragmentation
Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas
2017-01-04
The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.
The dynamic behaviour of data-driven Δ-M and ΔΣ-M in sliding mode control
NASA Astrophysics Data System (ADS)
Almakhles, Dhafer; Swain, Akshya K.; Nasiri, Alireza
2017-11-01
In recent years, delta (Δ-M) and delta-sigma modulators (ΔΣ-M) are increasingly being used as efficient data converters due to numerous advantages they offer. This paper investigates various dynamical features of these modulators/systems (both in continuous and discrete time domain) and derives their stability conditions using the theory of sliding mode. The upper bound of the hitting time (step) has been estimated. The equivalent mode conditions, i.e. where the outputs of the modulators are equivalent to the inputs, are established. The results of the analysis are validated through simulations considering a numerical example.
NASA Astrophysics Data System (ADS)
Riahi, A.; Damjanac, B.
2013-12-01
Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid injection into the reservoir during stimulation phase was simulated using a fully coupled hydro-mechanical model. The heat production phase was simulated using a coupled thermo-hydro-mechanical model. In these simulations, both advective heat transfer by fluid flow and the conductive heat transfer within the rock blocks were modeled. The effect of temperature change on stresses and fracture aperture, and thus flow rates was considered. The response of formations with different DFN characteristics are analyzed by evaluating the production rate, produced power, and total energy extracted from the system over a period of five years. By simulating a full cycle of stimulation and production, the numerical modeling approach represents a realistic estimate of evolving permeability and evaluates how stimulation can be beneficial to the production phase. It is believed that these numerical sensitivity studies can provide valuable insight in evaluation of the potential of success of an EGS project, and can be used to better design the operational parameters in order to optimize heat production. Keywords: Numerical modeling, rock mechanics, discrete fracture network, stimulation, engineered geothermal reservoirs, heat production
TAS: A Transonic Aircraft/Store flow field prediction code
NASA Technical Reports Server (NTRS)
Thompson, D. S.
1983-01-01
A numerical procedure has been developed that has the capability to predict the transonic flow field around an aircraft with an arbitrarily located, separated store. The TAS code, the product of a joint General Dynamics/NASA ARC/AFWAL research and development program, will serve as the basis for a comprehensive predictive method for aircraft with arbitrary store loadings. This report described the numerical procedures employed to simulate the flow field around a configuration of this type. The validity of TAS code predictions is established by comparison with existing experimental data. In addition, future areas of development of the code are outlined. A brief description of code utilization is also given in the Appendix. The aircraft/store configuration is simulated using a mesh embedding approach. The computational domain is discretized by three meshes: (1) a planform-oriented wing/body fine mesh, (2) a cylindrical store mesh, and (3) a global Cartesian crude mesh. This embedded mesh scheme enables simulation of stores with fins of arbitrary angular orientation.
Numerical simulation of a full-loop circulating fluidized bed under different operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Musser, Jordan M.; Li, Tingwen
Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less
Inconsistencies in Numerical Simulations of Dynamical Systems Using Interval Arithmetic
NASA Astrophysics Data System (ADS)
Nepomuceno, Erivelton G.; Peixoto, Márcia L. C.; Martins, Samir A. M.; Rodrigues, Heitor M.; Perc, Matjaž
Over the past few decades, interval arithmetic has been attracting widespread interest from the scientific community. With the expansion of computing power, scientific computing is encountering a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic. Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoretical inconsistency in a simulation of dynamical systems using a well-known implementation of arithmetic interval. We have observed that two natural interval extensions present an empty intersection during a finite time range, which is contrary to the fundamental theorem of interval analysis. We have proposed a procedure to at least partially overcome this problem, based on the union of the two generated pseudo-orbits. This paper also shows a successful case of interval arithmetic application in the reduction of interval width size on the simulation of discrete map. The implications of our findings on the reliability of scientific computing using interval arithmetic have been properly addressed using two numerical examples.
A cut-cell immersed boundary technique for fire dynamics simulation
NASA Astrophysics Data System (ADS)
Vanella, Marcos; McDermott, Randall; Forney, Glenn
2015-11-01
Fire simulation around complex geometry is gaining increasing attention in performance based design of fire protection systems, fire-structure interaction and pollutant transport in complex terrains, among others. This presentation will focus on our present effort in improving the capability of FDS (Fire Dynamics Simulator, developed at the Fire Research Division, NIST. https://github.com/firemodels/fds-smv) to represent fire scenarios around complex bodies. Velocities in the vicinity of the bodies are reconstructed using a classical immersed boundary scheme (Fadlun and co-workers, J. Comput. Phys., 161:35-60, 2000). Also, a conservative treatment of scalar transport equations (i.e. for chemical species) will be presented. In our method, discrete conservation and no penetration of species across solid boundaries are enforced using a cut-cell finite volume scheme. The small cell problem inherent to the method is tackled using explicit-implicit domain decomposition for scalar, within the FDS time integration scheme. Some details on the derivation, implementation and numerical tests of this numerical scheme will be discussed.
A generalized vortex lattice method for subsonic and supersonic flow applications
NASA Technical Reports Server (NTRS)
Miranda, L. R.; Elliot, R. D.; Baker, W. M.
1977-01-01
If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary Kyle; Denman, Matthew R.
It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through themore » analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.« less
Numerical simulation of rarefied gas flow through a slit
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong
1990-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.
NASA Astrophysics Data System (ADS)
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow
NASA Technical Reports Server (NTRS)
Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin
1996-01-01
An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.
Progress with the COGENT Edge Kinetic Code: Implementing the Fokker-Plank Collision Operator
Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...
2014-06-20
Here, COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. The distribution function F is discretized in v∥ – μ (parallel velocity – magnetic moment) velocity coordinates, and the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank operator to model Coulomb collisions in magnetized edge plasmas.more » The corresponding Rosenbluth potentials are computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of the numerical algorithms and results of the initial verification studies are discussed. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less
Inertia-Controlled Twinning in Ni-Mn-Ga Actuators: A Discrete Twin-Boundary Dynamics Study
NASA Astrophysics Data System (ADS)
Faran, Eilon; Riccardi, Leonardo; Shilo, Doron
2017-09-01
A discrete twin-boundary modeling approach is applied for simulating the dynamic magnetomechanical response of a Ni-Mn-Ga actuator over a wide frequency range. The model is based on experimentally measured kinetic relation of individual twin boundaries and takes into account inertial forces due to acceleration of the actuator's mass. The calculated results show good agreement with experimental measurements performed on a specially designed Ni-Mn-Ga linear spring-mass actuator. In addition, the simulation reveals several new effects that have not been considered before and can be applied to the design of improved actuators. It is identified that the demagnetization effect plays a role of an "effective spring" and results in a resonance-type response. The effects of the actuator's mass and the twin-boundary density on the resonance response and the actuator performance are explored numerically. In particular, it is shown that mass-inertia poses an inherent upper limit over the actuator's bandwidth, which is approximately constant and equals to about 200 Hz.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.
Xu, X Q
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
A trace map comparison algorithm for the discrete fracture network models of rock masses
NASA Astrophysics Data System (ADS)
Han, Shuai; Wang, Gang; Li, Mingchao
2018-06-01
Discrete fracture networks (DFN) are widely used to build refined geological models. However, validating whether a refined model can match to reality is a crucial problem, concerning whether the model can be used for analysis. The current validation methods include numerical validation and graphical validation. However, the graphical validation, aiming at estimating the similarity between a simulated trace map and the real trace map by visual observation, is subjective. In this paper, an algorithm for the graphical validation of DFN is set up. Four main indicators, including total gray, gray grade curve, characteristic direction and gray density distribution curve, are presented to assess the similarity between two trace maps. A modified Radon transform and loop cosine similarity are presented based on Radon transform and cosine similarity respectively. Besides, how to use Bézier curve to reduce the edge effect is described. Finally, a case study shows that the new algorithm can effectively distinguish which simulated trace map is more similar to the real trace map.
Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones
NASA Technical Reports Server (NTRS)
Shen, Hao; Tam, Christopher K. W.
1998-01-01
An imperfectly expanded supersonic jet, invariably, radiates both broadband noise and discrete frequency sound called screech tones. Screech tones are known to be generated by a feedback loop driven by the large scale instability waves of the jet flow. Inside the jet plume is a quasi-periodic shock cell structure. The interaction of the instability waves and the shock cell structure, as the former propagates through the latter, is responsible for the generation of the tones. Presently, there are formulas that can predict the tone frequency fairly accurately. However, there is no known way to predict the screech tone intensity. In this work, the screech phenomenon of an axisymmetric jet at low supersonic Mach number is reproduced by numerical simulation. The computed mean velocity profiles and the shock cell pressure distribution of the jet are found to be in good agreement with experimental measurements. The same is true with the simulated screech frequency. Calculated screech tone intensity and directivity at selected jet Mach number are reported in this paper. The present results demonstrate that numerical simulation using computational aeroacoustics methods offers not only a reliable way to determine the screech tone intensity and directivity but also an opportunity to study the physics and detailed mechanisms of the phenomenon by an entirely new approach.
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.
2016-01-01
Recent progress towards developing a new computational capability for accurate and efficient high-fidelity direct numerical simulation (DNS) and large-eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy- stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in a computationally efficient manner on a modern high performance computer architecture. An inflow turbulence generation procedure based on a linear forcing approach has been incorporated in this framework and DNS conducted to study the effect of inflow turbulence on the suction- side separation bubble in low-pressure turbine (LPT) cascades. The T106 series of airfoil cascades in both lightly (T106A) and highly loaded (T106C) configurations at exit isentropic Reynolds numbers of 60,000 and 80,000, respectively, are considered. The numerical simulations are performed using 8th-order accurate spatial and 4th-order accurate temporal discretization. The changes in separation bubble topology due to elevated inflow turbulence is captured by the present method and the physical mechanisms leading to the changes are explained. The present results are in good agreement with prior numerical simulations but some expected discrepancies with the experimental data for the T106C case are noted and discussed.
Stochastic Evolution Equations Driven by Fractional Noises
2016-11-28
rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
A fictitious domain approach for the simulation of dense suspensions
NASA Astrophysics Data System (ADS)
Gallier, Stany; Lemaire, Elisabeth; Lobry, Laurent; Peters, François
2014-01-01
Low Reynolds number concentrated suspensions do exhibit an intricate physics which can be partly unraveled by the use of numerical simulation. To this end, a Lagrange multiplier-free fictitious domain approach is described in this work. Unlike some methods recently proposed, the present approach is fully Eulerian and therefore does not need any transfer between the Eulerian background grid and some Lagrangian nodes attached to particles. Lubrication forces between particles play an important role in the suspension rheology and have been properly accounted for in the model. A robust and effective lubrication scheme is outlined which consists in transposing the classical approach used in Stokesian Dynamics to our present direct numerical simulation. This lubrication model has also been adapted to account for solid boundaries such as walls. Contact forces between particles are modeled using a classical Discrete Element Method (DEM), a widely used method in granular matter physics. Comprehensive validations are presented on various one-particle, two-particle or three-particle configurations in a linear shear flow as well as some O(103) and O(104) particle simulations.
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
Lu, Liqiang; Morris, Aaron; Li, Tingwen; ...
2017-04-18
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Morris, Aaron; Li, Tingwen
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
NASA Astrophysics Data System (ADS)
Estep, J.; Dufek, J.
2013-12-01
Granular flows are fundamental processes in several terrestrial and planetary natural events; including surficial flows on volcanic edifices, debris flows, landslides, dune formation, rock falls, sector collapses, and avalanches. Often granular flows can be two-phase, whereby interstitial fluids occupy void space within the particulates. The mobility of granular flows has received significant attention, however the physics that govern their internal behavior remain poorly understood. Here we extend upon previous research showing that force chains can transmit extreme localized forces to the substrates of free surface granular flows, and we combine experimental and computational approaches to further investigate the forces at the bed of simplified granular flows. Analog experiments resolve discrete bed forces via a photoelastic technique, while numerical experiments validate laboratory tests using discrete element model (DEM) simulations. The current work investigates (1) the role of distributed grain sizes on force transmission via force chains, and (2) how the inclusion of interstitial fluids effects force chain development. We also include 3D numerical simulations to apply observed 2D characteristics into real world perspective, and ascertain if the added dimension alters force chain behavior. Previous research showed that bed forces generated by force chain structures can transiently greatly exceed (by several 100%) the bed forces predicted from continuum approaches, and that natural materials are more prone to excessive bed forces than photoelastic materials due to their larger contact stiffnesses. This work suggests that force chain activity may play an important role in the bed physics of dense granular flows by influencing substrate entrainment. Photoelastic experiment image showing force chains in gravity driven granular flow.
Mixing Study in a Multi-dimensional Motion Mixer
NASA Astrophysics Data System (ADS)
Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.
2009-06-01
Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. Copyright © 2014 Elsevier Inc. All rights reserved.
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-13
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this study, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and themore » resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. Finally, this also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.« less
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-01
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramaniam, Vivek; Raja, Laxminarayan L.
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this study, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and themore » resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. Finally, this also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.« less
Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus
NASA Astrophysics Data System (ADS)
Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.
2015-05-01
We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.
Time and length scales within a fire and implications for numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
TIESZEN,SHELDON R.
2000-02-02
A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less
Modeling Anti-Air Warfare With Discrete Event Simulation and Analyzing Naval Convoy Operations
2016-06-01
WARFARE WITH DISCRETE EVENT SIMULATION AND ANALYZING NAVAL CONVOY OPERATIONS by Ali E. Opcin June 2016 Thesis Advisor: Arnold H. Buss Co...REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MODELING ANTI-AIR WARFARE WITH DISCRETE EVENT...In this study, a discrete event simulation (DES) was built by modeling ships, and their sensors and weapons, to simulate convoy operations under
Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.
Hua, Wei; Wang, Jiasong; Zhao, Jian
2014-01-01
Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verificationmore » test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.« less
The space-time solution element method: A new numerical approach for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Scott, James R.; Chang, Sin-Chung
1995-01-01
This paper is one of a series of papers describing the development of a new numerical method for the Navier-Stokes equations. Unlike conventional numerical methods, the current method concentrates on the discrete simulation of both the integral and differential forms of the Navier-Stokes equations. Conservation of mass, momentum, and energy in space-time is explicitly provided for through a rigorous enforcement of both the integral and differential forms of the governing conservation laws. Using local polynomial expansions to represent the discrete primitive variables on each cell, fluxes at cell interfaces are evaluated and balanced using exact functional expressions. No interpolation or flux limiters are required. Because of the generality of the current method, it applies equally to the steady and unsteady Navier-Stokes equations. In this paper, we generalize and extend the authors' 2-D, steady state implicit scheme. A general closure methodology is presented so that all terms up through a given order in the local expansions may be retained. The scheme is also extended to nonorthogonal Cartesian grids. Numerous flow fields are computed and results are compared with known solutions. The high accuracy of the scheme is demonstrated through its ability to accurately resolve developing boundary layers on coarse grids. Finally, we discuss applications of the current method to the unsteady Navier-Stokes equations.
Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling
NASA Technical Reports Server (NTRS)
Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.
2010-01-01
NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand DES capabilities to address KSC's planning needs.
Numerical models for fluid-grains interactions: opportunities and limitations
NASA Astrophysics Data System (ADS)
Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony
2017-06-01
In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.
NASA Astrophysics Data System (ADS)
Watanabe, Norihiro; Kolditz, Olaf
2015-07-01
This work reports numerical stability conditions in two-dimensional solute transport simulations including discrete fractures surrounded by an impermeable rock matrix. We use an advective-dispersive problem described in Tang et al. (1981) and examine the stability of the Crank-Nicolson Galerkin finite element method (CN-GFEM). The stability conditions are analyzed in terms of the spatial discretization length perpendicular to the fracture, the flow velocity, the diffusion coefficient, the matrix porosity, the fracture aperture, and the fracture longitudinal dispersivity. In addition, we verify applicability of the recently developed finite element method-flux corrected transport (FEM-FCT) method by Kuzmin () to suppress oscillations in the hybrid system, with a comparison to the commonly utilized Streamline Upwinding/Petrov-Galerkin (SUPG) method. Major findings of this study are (1) the mesh von Neumann number (Fo) ≥ 0.373 must be satisfied to avoid undershooting in the matrix, (2) in addition to an upper bound, the Courant number also has a lower bound in the fracture in cases of low dispersivity, and (3) the FEM-FCT method can effectively suppress the oscillations in both the fracture and the matrix. The results imply that, in cases of low dispersivity, prerefinement of a numerical mesh is not sufficient to avoid the instability in the hybrid system if a problem involves evolutionary flow fields and dynamic material parameters. Applying the FEM-FCT method to such problems is recommended if negative concentrations cannot be tolerated and computing time is not a strong issue.
A PLUG-AND-PLAY ARCHITECTURE FOR PROBABILISTIC PROGRAMMING
2017-04-01
programs that use discrete numerical distributions, but even then, the space of possible outcomes may be uncountable (as a solution can be infinite...also identify conditions guaranteeing that all possible outcomes are finite (and then the probability space is discrete ). 2.2.2 The PlogiQL...and not determined at runtime. Nevertheless, the PRAiSE team plans to extend their solution to support numerical (continuous or discrete
Numerical insight into the micromechanics of jet erosion of a cohesive granular material
NASA Astrophysics Data System (ADS)
Cuéllar, Pablo; Benseghier, Zeyd; Luu, Li-Hua; Bonelli, Stéphane; Delenne, Jean-Yves; Radjaï, Farhang; Philippe, Pierre
2017-06-01
Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.
Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.
Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa
2010-01-21
Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hager, Robert, E-mail: rhager@pppl.gov; Yoon, E.S., E-mail: yoone@rpi.edu; Ku, S., E-mail: sku@pppl.gov
2016-06-15
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable onmore » high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.« less
High-order hydrodynamic algorithms for exascale computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Nathaniel Ray
Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broadmore » range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.« less
Hager, Robert; Yoon, E. S.; Ku, S.; ...
2016-04-04
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less
Transonic Flow Computations Using Nonlinear Potential Methods
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
2000-01-01
This presentation describes the state of transonic flow simulation using nonlinear potential methods for external aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations, including steady, unsteady, space marching, and design methods, are described. Both spatial discretization and iteration scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommendations for future work. Overall. nonlinear potential solvers are efficient, highly developed and routinely used in the aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Chacon, Luis; Knoll, Dana Alan
2015-07-31
A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω peΔt >>1, and Δx >> λ D), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylovmore » (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.« less
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto
2012-05-01
Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.
NASA Astrophysics Data System (ADS)
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi
2017-11-01
Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).
NASA Astrophysics Data System (ADS)
Hoque, Sazid Zamal; Anand, D. Vijay; Patnaik, B. S. V.
2017-11-01
The state of the red blood cell (either healthy or infected RBC) will influence its deformation dynamics. Since the pathological condition related to RBC, primarily originates from a single cell infection, therefore, it is important to relate the deformation dynamics to the mechanical properties (such as, bending rigidity and membrane elasticity). In the present study, numerical simulation of a healthy and malaria infected RBC in a constricted channel is analyzed. The flow simulations are carried out using finite sized dissipative particle dynamics (FDPD) method in conjunction with a discrete model that represents the membrane of the RBC. The numerical equivalent of optical tweezers test is validated against the experimental studies. Two different types of constrictions, viz., a converging-diverging type tapered channel and a stenosed microchannel are considered for the simulation. The effect of degree of constriction and the flow rate effect on the RBC is investigated. It was observed that, as the flow rate decreases, the infected RBC completely blocks the micro vessel. The transit time for infected cell drastically increases compared to healthy RBC. Our simulations indicate that, there is a critical flow rate below which infected RBC cannot pass through the micro capillary.
TH-AB-BRA-09: Stability Analysis of a Novel Dose Calculation Algorithm for MRI Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelyak, O; Fallone, B; Cross Cancer Institute, Edmonton, AB
2016-06-15
Purpose: To determine the iterative deterministic solution stability of the Linear Boltzmann Transport Equation (LBTE) in the presence of magnetic fields. Methods: The LBTE with magnetic fields under investigation is derived using a discrete ordinates approach. The stability analysis is performed using analytical and numerical methods. Analytically, the spectral Fourier analysis is used to obtain the convergence rate of the source iteration procedures based on finding the largest eigenvalue of the iterative operator. This eigenvalue is a function of relevant physical parameters, such as magnetic field strength and material properties, and provides essential information about the domain of applicability requiredmore » for clinically optimal parameter selection and maximum speed of convergence. The analytical results are reinforced by numerical simulations performed using the same discrete ordinates method in angle, and a discontinuous finite element spatial approach. Results: The spectral radius for the source iteration technique of the time independent transport equation with isotropic and anisotropic scattering centers inside infinite 3D medium is equal to the ratio of differential and total cross sections. The result is confirmed numerically by solving LBTE and is in full agreement with previously published results. The addition of magnetic field reveals that the convergence becomes dependent on the strength of magnetic field, the energy group discretization, and the order of anisotropic expansion. Conclusion: The source iteration technique for solving the LBTE with magnetic fields with the discrete ordinates method leads to divergent solutions in the limiting cases of small energy discretizations and high magnetic field strengths. Future investigations into non-stationary Krylov subspace techniques as an iterative solver will be performed as this has been shown to produce greater stability than source iteration. Furthermore, a stability analysis of a discontinuous finite element space-angle approach (which has been shown to provide the greatest stability) will also be investigated. Dr. B Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less
Koh, Wonryull; Blackwell, Kim T
2011-04-21
Stochastic simulation of reaction-diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.
Making chaotic behavior in a damped linear harmonic oscillator
NASA Astrophysics Data System (ADS)
Konishi, Keiji
2001-06-01
The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.
Development of a Chemically Reacting Flow Solver on the Graphic Processing Units
2011-05-10
been implemented on the GPU by Schive et al. (2010). The outcome of their work is the GAMER code for astrophysical simulation. Thibault and...Euler equations at each cell. For simplification, consider the Euler equations in one dimension with no source terms; the discretized form of the...is known to be more diffusive than the other fluxes due to the large bound of the numerical signal velocities: b+, b-. 3.4 Time Marching Methods
Using the ALEGRA Code for Analysis of Quasi-Static Magnetization of Metals
2015-09-01
covariant Levi - Civita skew-symmetric tensor. Using tensorial notation per- mits one to present all the equations in the universal covariant (i.e., coordinate...tensors numerically coincide with the corresponding values of the Kronnekker symbol δij, δij, δij. The Levi - Civita tensor z ijk has the main com...simulations: body -fitted (left) and regular (right). 6.1 Spatial Discretization Two mesh configurations were used: (1) a body -fitted irregular mesh
Erosion of cohesive soil layers above underground conduits
NASA Astrophysics Data System (ADS)
Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier
2017-06-01
Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.
Lattice Boltzmann model for simulation of magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William
1991-01-01
A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.
2007-08-01
the deposition process. This model is applied to Ti-6Al-4V. 1. Instruction Laser deposition is an extension of the laser cladding process...uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected into the melt pool...melt pool Deposited layer Remelted zone Substrate Shielding gas Laser beam Powder The governing equations have been discretized using a
A Flow Solver for Three-Dimensional DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2002-01-01
DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.
Yang, Xiuping; Min, Lequan; Wang, Xue
2015-05-01
This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2(1345). As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.
NASA Astrophysics Data System (ADS)
Yang, Xiuping; Min, Lequan; Wang, Xue
2015-05-01
This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 21345. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.
NASA Astrophysics Data System (ADS)
Dimas, Athanassios A.; Kolokythas, Gerasimos A.
Numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme is used where central finite-differences, in the horizontal direction, and a pseudo-spectral approximation method with Chebyshev polynomials, in the vertical direction, are applied. A fractional time-step scheme is used for the temporal discretization. Over the rippled bed, the wave boundary layer thickness increases significantly, in comparison to the one over flat bed, due to flow separation at the ripple crests, which generates alternating circulation regions. The amplitude of the wall shear stress over the ripples increases with increasing ripple height or decreasing Reynolds number, while the corresponding friction force is insensitive to the ripple height change. The amplitude of the form drag forces due to dynamic and hydrostatic pressures increase with increasing ripple height but is insensitive to the Reynolds number change, therefore, the percentage of friction in the total drag force decreases with increasing ripple height or increasing Reynolds number.
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen; ...
2017-08-12
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
Simulations of relativistic quantum plasmas using real-time lattice scalar QED
NASA Astrophysics Data System (ADS)
Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.
2018-05-01
Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiuping, E-mail: yangxiuping-1990@163.com; Min, Lequan, E-mail: minlequan@sina.com; Wang, Xue, E-mail: wangxue-20130818@163.com
This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% keymore » streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2{sup 1345}. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.« less
NASA Astrophysics Data System (ADS)
Pilz, Tobias; Francke, Till; Bronstert, Axel
2016-04-01
Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.
NASA Astrophysics Data System (ADS)
Escobar Gómez, J. D.; Torres-Verdín, C.
2018-03-01
Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddhu, M.; Jiang, M.Y.; Whitfield, D.L.
The original intention for this work was to impart the technology that was developed in the field of computational aeronautics to the field of computational physical oceanography. This technology transfer involved grid generation techniques and solution procedures to solve the governing equations over the grids thus generated. Specifically, boundary fitting non-orthogonal grids would be generated over a sphere taking into account the topography of the ocean floor and the topography of the continents. The solution methodology to be employed involved the application of an upwind, finite volume discretization procedure that uses higher order numerical fluxes at the cell faces tomore » discretize the governing equations and an implicit Newton relaxation technique to solve the discretized equations. This report summarizes the efforts put forth during the past three years to achieve these goals and indicates the future direction of this work as it is still an ongoing effort.« less
Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model
NASA Astrophysics Data System (ADS)
Sánchez-Rey, Bernardo; Quintero, Niurka R.; Cuevas-Maraver, Jesús; Alejo, Miguel A.
2014-10-01
A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.
Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model.
Sánchez-Rey, Bernardo; Quintero, Niurka R; Cuevas-Maraver, Jesús; Alejo, Miguel A
2014-10-01
A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.
Essentially Entropic Lattice Boltzmann Model
NASA Astrophysics Data System (ADS)
Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh
2017-12-01
The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.
NASA Astrophysics Data System (ADS)
Kang, S.; Muralikrishnan, S.; Bui-Thanh, T.
2017-12-01
We propose IMEX HDG-DG schemes for Euler systems on cubed sphere. Of interest is subsonic flow, where the speed of the acoustic wave is faster than that of the nonlinear advection. In order to simulate these flows efficiently, we split the governing system into stiff part describing the fast waves and non-stiff part associated with nonlinear advection. The former is discretized implicitly with HDG method while explicit Runge-Kutta DG discretization is employed for the latter. The proposed IMEX HDG-DG framework: 1) facilitates high-order solution both in time and space; 2) avoids overly small time stepsizes; 3) requires only one linear system solve per time step; and 4) relatively to DG generates smaller and sparser linear system while promoting further parallelism owing to HDG discretization. Numerical results for various test cases demonstrate that our methods are comparable to explicit Runge-Kutta DG schemes in terms of accuracy, while allowing for much larger time stepsizes.
Robust preview control for a class of uncertain discrete-time systems with time-varying delay.
Li, Li; Liao, Fucheng
2018-02-01
This paper proposes a concept of robust preview tracking control for uncertain discrete-time systems with time-varying delay. Firstly, a model transformation is employed for an uncertain discrete system with time-varying delay. Then, the auxiliary variables related to the system state and input are introduced to derive an augmented error system that includes future information on the reference signal. This leads to the tracking problem being transformed into a regulator problem. Finally, for the augmented error system, a sufficient condition of asymptotic stability is derived and the preview controller design method is proposed based on the scaled small gain theorem and linear matrix inequality (LMI) technique. The method proposed in this paper not only solves the difficulty problem of applying the difference operator to the time-varying matrices but also simplifies the structure of the augmented error system. The numerical simulation example also illustrates the effectiveness of the results presented in the paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Three-dimensional discrete element method simulation of core disking
NASA Astrophysics Data System (ADS)
Wu, Shunchuan; Wu, Haoyan; Kemeny, John
2018-04-01
The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.
Phillips, Carolyn L.; Peterka, Tom; Karpeyev, Dmitry; ...
2015-02-20
In type II superconductors, the dynamics of superconducting vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter. Extracting their precise positions and motion from discretized numerical simulation data is an important, but challenging, task. In the past, vortices have mostly been detected by analyzing the magnitude of the complex scalar field representing the order parameter and visualized by corresponding contour plots and isosurfaces. However, these methods, primarily used for small-scale simulations, blur the fine details of the vortices, scale poorly to large-scale simulations, and do not easily enable isolating andmore » tracking individual vortices. In this paper, we present a method for exactly finding the vortex core lines from a complex order parameter field. With this method, vortices can be easily described at a resolution even finer than the mesh itself. The precise determination of the vortex cores allows the interplay of the vortices inside a model superconductor to be visualized in higher resolution than has previously been possible. Finally, by representing the field as the set of vortices, this method also massively reduces the data footprint of the simulations and provides the data structures for further analysis and feature tracking.« less