Discrete Tchebycheff orthonormal polynomials and applications
NASA Technical Reports Server (NTRS)
Lear, W. M.
1980-01-01
Discrete Tchebycheff orthonormal polynomials offer a convenient way to make least squares polynomial fits of uniformly spaced discrete data. Computer programs to do so are simple and fast, and appear to be less affected by computer roundoff error, for the higher order fits, than conventional least squares programs. They are useful for any application of polynomial least squares fits: approximation of mathematical functions, noise analysis of radar data, and real time smoothing of noisy data, to name a few.
Approximation and compression with sparse orthonormal transforms.
Sezer, Osman Gokhan; Guleryuz, Onur G; Altunbasak, Yucel
2015-08-01
We propose a new transform design method that targets the generation of compression-optimized transforms for next-generation multimedia applications. The fundamental idea behind transform compression is to exploit regularity within signals such that redundancy is minimized subject to a fidelity cost. Multimedia signals, in particular images and video, are well known to contain a diverse set of localized structures, leading to many different types of regularity and to nonstationary signal statistics. The proposed method designs sparse orthonormal transforms (SOTs) that automatically exploit regularity over different signal structures and provides an adaptation method that determines the best representation over localized regions. Unlike earlier work that is motivated by linear approximation constructs and model-based designs that are limited to specific types of signal regularity, our work uses general nonlinear approximation ideas and a data-driven setup to significantly broaden its reach. We show that our SOT designs provide a safe and principled extension of the Karhunen-Loeve transform (KLT) by reducing to the KLT on Gaussian processes and by automatically exploiting non-Gaussian statistics to significantly improve over the KLT on more general processes. We provide an algebraic optimization framework that generates optimized designs for any desired transform structure (multiresolution, block, lapped, and so on) with significantly better n -term approximation performance. For each structure, we propose a new prototype codec and test over a database of images. Simulation results show consistent increase in compression and approximation performance compared with conventional methods. PMID:25823033
Stable pure state quantum tomography from five orthonormal bases
NASA Astrophysics Data System (ADS)
Carmeli, Claudio; Heinosaari, Teiko; Kech, Michael; Schultz, Jussi; Toigo, Alessandro
2016-08-01
For any finite-dimensional Hilbert space, we construct explicitly five orthonormal bases such that the corresponding measurements allow for efficient tomography of an arbitrary pure quantum state. This means that such measurements can be used to distinguish an arbitrary pure state from any other state, pure or mixed, and the pure state can be reconstructed from the outcome distribution in a feasible way. The set of measurements we construct is independent of the unknown state, and therefore our results provide a fixed scheme for pure state tomography, as opposed to the adaptive (state-dependent) scheme proposed by Goyeneche et al. (Phys. Rev. Lett., 115 (2015) 090401). We show that our scheme is robust with respect to noise, in the sense that any measurement scheme which approximates these measurements well enough is equally suitable for pure state tomography. Finally, we present two convex programs which can be used to reconstruct the unknown pure state from the measurement outcome distributions.
Error estimates of Lagrange interpolation and orthonormal expansions for Freud weights
NASA Astrophysics Data System (ADS)
Kwon, K. H.; Lee, D. W.
2001-08-01
Let Sn[f] be the nth partial sum of the orthonormal polynomials expansion with respect to a Freud weight. Then we obtain sufficient conditions for the boundedness of Sn[f] and discuss the speed of the convergence of Sn[f] in weighted Lp space. We also find sufficient conditions for the boundedness of the Lagrange interpolation polynomial Ln[f], whose nodal points are the zeros of orthonormal polynomials with respect to a Freud weight. In particular, if W(x)=e-(1/2)x2 is the Hermite weight function, then we obtain sufficient conditions for the inequalities to hold:andwhere and k=0,1,2...,r.
NASA Astrophysics Data System (ADS)
Raduenz, Brian D.
1992-12-01
A number of new concepts and tools for the analysis of signals using variable overlapped windows and orthonormal bases are developed and evaluated. Windowing, often employed as a spectral estimation technique, can result in irreparable distortions in the transformed signal. By placing conditions on the window and incorporating it into the orthonormal representation, any signal distortion resulting from the transformation can be eliminated or cancelled in reconstruction. This concept is critical to the theory discussed. As part of this evaluation, a tensor product based general N-point fast Fourier transform algorithm was implemented in the DOD standard language, Ada. The most prevalent criticism of Ada is slow execution time. This code is shown to be comparable in execution time performance to the corresponding FORTRAN code. Also, a new paradigm is presented for solving the finite length data problem associated with filter banks and lapped transforms. This result could have significant importance in many Air Force applications, such as processing images in which the objects of interest are near the borders. Additionally, a limited number of experiments were performed with the coding of speech. The results indicate the lapped transform evaluated has potential as a low bit rate speech coder.
NASA Astrophysics Data System (ADS)
Lo, Shih-Chung B.; Li, Huai; Wang, Yue J.; Freedman, Matthew T.; Mun, Seong K.
1996-04-01
A neural network based framework has been developed to search for an optimal wavelet kernel that is most suitable for a specific image processing task. In this paper, we demonstrate that only the low-pass filter, hu, is needed for orthonormal wavelet decomposition. A convolution neural network can be trained to obtain a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications on mammograms. We have used this method to evaluate the performance of tap-4 orthonormal wavelets on mammograms, CTs, MRIs, and Lena image. We found that Daubechies' wavelet (or those wavelets possessing similar filtering characteristics) produces satisfactory compression efficiency with the smallest error using a global measure (e.g., mean- square-error). However, we found that Harr's wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet, whose low-pass filter coefficients are (0.32252136, 0.85258927, 0.38458542, -0.14548269), can greatly preserve the microcalcification features such as signal-to-noise ratio during a course of compression. Several interesting wavelet filters (i.e., the g filters) were reviewed and explanations of the results are provided. We believe that this newly developed optimization method can be generalized to other image analysis applications where a wavelet decomposition is employed.
Borzdov
2000-04-01
Vector plane-wave superpositions defined by a given set of orthonormal scalar functions on a two- or three-dimensional manifold-beam manifold-are treated. We present a technique for composing orthonormal beams and some other specific types of fields such as three-dimensional standing waves, moving and evolving whirls. It can be used for any linear fields, in particular, electromagnetic fields in complex media and elastic fields in crystals. For electromagnetic waves in an isotropic medium or free space, unique families of exact solutions of Maxwell's equations are obtained. The solutions are illustrated by calculating fields, energy densities, and energy fluxes of beams defined by the spherical harmonics. It is shown that the obtained results can be used for a transition from the plane-wave approximation to more accurate models of real incident beams in free-space techniques for characterizing complex media. A mathematical formalism convenient for the treatment of various beams defined by the spherical harmonics is presented.
Takagi-Sugeno fuzzy models in the framework of orthonormal basis functions.
Machado, Jeremias B; Campello, Ricardo J G B; Amaral, Wagner Caradori
2013-06-01
An approach to obtain Takagi-Sugeno (TS) fuzzy models of nonlinear dynamic systems using the framework of orthonormal basis functions (OBFs) is presented in this paper. This approach is based on an architecture in which local linear models with ladder-structured generalized OBFs (GOBFs) constitute the fuzzy rule consequents and the outputs of the corresponding GOBF filters are input variables for the rule antecedents. The resulting GOBF-TS model is characterized by having only real-valued parameters that do not depend on any user specification about particular types of functions to be used in the orthonormal basis. The fuzzy rules of the model are initially obtained by means of a well-known technique based on fuzzy clustering and least squares. Those rules are then simplified, and the model parameters (GOBF poles, GOBF expansion coefficients, and fuzzy membership functions) are subsequently adjusted by using a nonlinear optimization algorithm. The exact gradients of an error functional with respect to the parameters to be optimized are computed analytically. Those gradients provide exact search directions for the optimization process, which relies solely on input-output data measured from the system to be modeled. An example is presented to illustrate the performance of this approach in the modeling of a complex nonlinear dynamic system. PMID:23096073
Ultrasonic flaw detection using threshold modified S-transform.
Benammar, Abdessalem; Drai, Redouane; Guessoum, Abderrezak
2014-02-01
Interference noising originating from the ultrasonic testing defect signal seriously influences the accuracy of the signal extraction and defect location. Time-frequency analysis methods are mainly used to improve the defects detection resolution. In fact, the S-transform, a hybrid of the Short time Fourier transform (STFT) and wavelet transform (WT), has a time frequency resolution which is far from ideal. In this paper, a new modified S-transform based on thresholding technique, which offers a better time frequency resolution compared to the original S-transform is proposed. The improvement is achieved by the introduction of a new scaling rule for the Gaussian window used in S-transform. Simulation results are presented and show correct time frequency information of multiple Gaussian echoes under low signal-to-noise ratio (SNR) environment. In addition, experimental results demonstrate better and reliable detection of close echoes drowned in the noise.
NASA Astrophysics Data System (ADS)
Gibbon, John
2007-06-01
More than 160 years after their invention by Hamilton, quaternions are now widely used in the aerospace and computer animation industries to track the orientation and paths of moving objects undergoing three-axis rotations. Here it is shown that they provide a natural way of selecting an appropriate orthonormal frame—designated the quaternion-frame—for a particle in a Lagrangian flow, and of obtaining the equations for its dynamics. How these ideas can be applied to the three-dimensional Euler fluid equations is then considered. This work has some bearing on the issue of whether the Euler equations develop a singularity in a finite time. Some of the literature on this topic is reviewed, which includes both the Beale-Kato-Majda theorem and associated work on the direction of vorticity by Constantin, Fefferman, and Majda and by Deng, Hou, and Yu. It is then shown how the quaternion formalism provides an alternative formulation in terms of the Hessian of the pressure.
Lu, Yuzhen; Li, Richard; Lu, Renfu
2016-09-01
Structured illumination using sinusoidal patterns has been used for optical imaging of biological tissues in biomedical research, and of horticultural products in food quality evaluation. Implementation of structured-illumination imaging relies on retrieval of amplitude images, which is conventionally achieved by a phase-shifting technique that requires collecting a minimum of three phase-shifted images. In this study, we have proposed Gram-Schmidt orthonormalization (GSO) to retrieve amplitude component (AC) images using only two phase-shifted images. We have proposed two forms of GSO implementation, and prior to GSO processing, we eliminated the direct component (DC) background by subtracting a DC image we recovered using a spiral phase function (SPF) in the Fourier space. We demonstrated the GSO methods through numerical simulations and application examples of detection of bruise defects in apples by structured-illumination reflectance imaging (SIRI). GSO performed comparably to conventional three-phase-based demodulation. It is simple, fast and effective for amplitude retrieval and requires no prior phase information, which could facilitate fast implementation of structured-illumination imaging. PMID:27607260
Du, Hubing; Gao, Honghong
2016-08-20
Affected by the height dependent effects, the phase-shifting shadow moiré can only be implemented in an approximate way. In the technique, a fixed phase step around π/2 rad between two adjacent frames is usually introduced by a grating translation in its own plane. So the method is not flexible in some situations. Additionally, because the shadow moiré fringes have a complex intensity distribution, computing the introduced phase shift from the existing arccosine function or arcsine function-based phase shift extraction algorithm always exhibits instability. To solve it, we developed a Gram-Schmidt orthonormalization approach based on a three-frame self-calibration phase-shifting algorithm with equal but unknown phase steps. The proposed method using the arctangent function is fast and can be implemented robustly in many applications. We also do optical experiments to demonstrate the correction of the proposed method by referring to the result of the conventional five-step phase-shifting shadow moiré. The results show the correctness of the proposed method. PMID:27556993
On representing rotations by Rodrigues parameters in non-orthonormal reference systems.
Morawiec, A
2016-09-01
A Rodrigues vector is a triplet of real numbers used for parameterizing rotations or orientations in three-dimensional space. Because of its properties (e.g. simplicity of fundamental regions for misorientations) this parameterization is frequently applied in analysis of orientation maps of polycrystalline materials. By conventional definition, the Rodrigues parameters are specified in orthonormal coordinate systems, whereas the bases of crystal lattices are generally non-orthogonal. Therefore, the definition of Rodrigues parameters is extended so they can be directly linked to non-Cartesian bases of a crystal. The new parameters are co- or contravariant components of vectors specified with respect to the same basis as atomic positions in a unit cell. The generalized formalism allows for redundant crystallographic axes. The formulas for rotation composition and the relationship to the rotation matrix are similar to those used in the Cartesian case, but they have a wider range of applicability: calculations can be performed with an arbitrary metric tensor of the crystal lattice. The parameterization in oblique coordinate frames of lattices is convenient for crystallographic applications because the generalized parameters are directly related to indices of rotation-invariant lattice directions and rotation-invariant lattice planes. PMID:27580203
On the L^p_\\mu-strong property of orthonormal systems
NASA Astrophysics Data System (ADS)
Grigorian, M. G.
2003-10-01
Let \\{\\varphi_n(x)\\} be a system of bounded functions complete and orthonormal in L^2_{ \\lbrack 0,1 \\rbrack } and assume that \\Vert\\varphi_n\\Vert _{p_0}\\leqslant\\mathrm{const}, n\\geqslant 1, for some p_0>2. Then the elements of the system can be rearranged so that the resulting system has the L^p_\\mu-strong property: for each \\varepsilon>0 there exists a (measurable) subset E\\subset \\lbrack 0,1 \\rbrack of measure \\vert E\\vert>1-\\varepsilon and a measurable function \\mu(x), 0<\\mu(x)\\leqslant 1, \\mu(x)=1 on E such that for all p>2 and f(x)\\in L^p_\\mu \\lbrack 0,1 \\rbrack one can find a function g(x)\\in L^1_{ \\lbrack 0,1 \\rbrack } coinciding with f(x) on E such that its Fourier series in the system \\{\\varphi_{\\sigma(k)}(x)\\} converges to g(x) in the L^p_\\mu \\lbrack 0,1 \\rbrack -norm and the sequence of Fourier coefficients of this function belongs to all spaces l^q, q>2.
Distributed mean curvature on a discrete manifold for Regge calculus
NASA Astrophysics Data System (ADS)
Conboye, Rory; Miller, Warner A.; Ray, Shannon
2015-09-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.
An asymptotic formula for polynomials orthonormal with respect to a varying weight. II
Komlov, A V; Suetin, S P
2014-09-30
This paper gives a proof of the theorem announced by the authors in the preceding paper with the same title. The theorem states that asymptotically the behaviour of the polynomials which are orthonormal with respect to the varying weight e{sup −2nQ(x)}p{sub g}(x)/√(∏{sub j=1}{sup 2p}(x−e{sub j})) coincides with the asymptotic behaviour of the Nuttall psi-function, which solves a special boundary-value problem on the relevant hyperelliptic Riemann surface of genus g=p−1. Here e{sub 1}
NASA Astrophysics Data System (ADS)
Hung, K. C.; Liew, K. M.; Lim, M. K.; Leong, S. L.
An investigation on the effects of boundary constraints on the vibratory characteristics of symmetrically laminated rectangular plates is carried out. The research findings are reported in a two-part paper. Vibration frequency parameters and mode shapes for symmetric laminates with classical boundary conditions are reported in Part I and elastically restrained boundaries in Part II. The analysis is performed based on the use of admissible beam characteristics orthonormal polynomial functions in the Rayleigh-Ritz method to derive the governing eigenvalue equation. In this paper, several examples for laminates with different combinations of free, simply supported and clamped edges are solved to demonstrate the accuracy and flexibility of the present method. Discussion on the effects of boundary conditions, fiber orientations and stacking sequences on the vibrational response is included.
NASA Astrophysics Data System (ADS)
Pavlović, Vlastimir D.; Ilić, Aleksandar D.
2011-12-01
The new originally capital general solution of determining the prototype filter function as the response that satisfies the specifications of all pole low-pass continual time filter functions of odd and even order is presented in this article. In this article, two new classes of filter functions are proposed using orthogonal and orthonormal Jacobi polynomials. The approximation problem of filter function was solved mathematically, most directly applying the summed Christoffel-Darboux formula for the orthogonal polynomials. The starting point in solving the approximation problem is a direct application of the Christoffel-Darboux formula for the initial set of continual Jacobi orthogonal polynomials in the finite interval ? in full respect to the weighting function with two free real parameters. General solution of the filter functions is obtained in a compact explicit form, which is shown to enable generation the Jacobi filter functions in a simple way by choosing the numerical values of the free real parameters. For particular specifications of free parameters, the proposed solution is used with the same criterion of approximation to generate the appropriate particular filter functions as are: the Gegenbauer, Legendre and Chebyshev filter functions of the first and second kind as well. The examples of proposed filter functions of even and odd order are illustrated and compared with classical solutions.
Application of S-transform profilometry in train wheel surface three dimensional measurement
NASA Astrophysics Data System (ADS)
Wang, Haiqing; Zhang, Yu; Li, Jinlong; Hu, Jiayuan
2015-12-01
A three dimensional (3D) measurement method for train wheel surface is proposed based on S-transform profilometry. This method is based on S-transform in fringe analysis. A fringe pattern with a carrier frequency component is projected onto the wheel tread, the deformed fringe patterns caused by the height distribution of wheel surface is recorded as an image, and the fundamental spectrum of S-transform spectra from the image is abstracted by use of weighting filters, then the wrapped phase is obtained by IFFT of the fundamental spectrum. 2D-SRNCP (sorting by reliability following a non-continuous path) phase unwrapping algorithm is used to unwrap phase, which can be used to reconstruct the surface distribution of wheel. Simulation and testing experiment is taken and the result shows that, comparing with light-section method, this method can realize a faster inspection and a higher accuracy measurement of 3D wheel surface.
Patwary, Nurmohammed; Preza, Chrysanthe
2015-01-01
A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634
NASA Astrophysics Data System (ADS)
Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.
2015-12-01
Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the
Orthogonal basis functions in discrete least-squares rational approximation
NASA Astrophysics Data System (ADS)
Bultheel, A.; van Barel, M.; van Gucht, P.
2004-03-01
We consider a problem that arises in the field of frequency domain system identification. If a discrete-time system has an input-output relation Y(z)=G(z)U(z), with transfer function G, then the problem is to find a rational approximation for G. The data given are measurements of input and output spectra in the frequency points zk: {U(zk),Y(zk)}k=1N together with some weight. The approximation criterion is to minimize the weighted discrete least squares norm of the vector obtained by evaluating in the measurement points. If the poles of the system are fixed, then the problem reduces to a linear least-squares problem in two possible ways: by multiplying out the denominators and hide these in the weight, which leads to the construction of orthogonal vector polynomials, or the problem can be solved directly using an orthogonal basis of rational functions. The orthogonality of the basis is important because if the transfer function is represented with respect to a nonorthogonal basis, then this least-squares problem can be very ill conditioned. Even if an orthogonal basis is used, but with respect to the wrong inner product (e.g., the Lebesgue measure on the unit circle) numerical instability can be fatal in practice. We show that both approaches lead to an inverse eigenvalue problem, which forms the common framework in which fast and numerically stable algorithms can be designed for the computation of the orthonormal basis.
Seizure detection approach using S-transform and singular value decomposition.
Xia, Yudan; Zhou, Weidong; Li, Chengcheng; Yuan, Qi; Geng, Shujuan
2015-11-01
Automatic seizure detection plays a significant role in the diagnosis of epilepsy. This paper presents a novel method based on S-transform and singular value decomposition (SVD) for seizure detection. Primarily, S-transform is performed on EEG signals, and the obtained time-frequency matrix is divided into submatrices. Then, the singular values of each submatrix are extracted using singular value decomposition (SVD). Effective features are constructed by adding the largest singular values in the same frequency band together and fed into Bayesian linear discriminant analysis (BLDA) classifier for decision. Finally, postprocessing is applied to obtain higher sensitivity and lower false detection rate. A total of 183.07 hours of intracranial EEG recordings containing 82 seizure events from 20 patients were used to evaluate the system. The proposed method had a sensitivity of 96.40% and a specificity of 99.01%, with a false detection rate of 0.16/h.
Detection of near-surface cavities by generalized S-transform of Rayleigh waves
NASA Astrophysics Data System (ADS)
Shao, Guang-zhou; Tsoflias, George P.; Li, Chang-jiang
2016-06-01
The near-surface cavities can cause a huge hidden trouble for urban infrastructure construction, such as, foundation settlement and roadbed subsidence, and so on. So, it is an important task to detect the underground cavities effectively for many engineering projects. At the same time, because of the complexity of near-surface materials and the limited resolution of geophysical methods, detecting the location of the hidden cavities quantitatively is still a technical challenge which needs to be studied further. Base on the study of Xia et al. (Xia et al., 2007), we performed a little modification to the travel time equation for the Rayleigh-wave diffraction. We put forward another way to detect the shallow subsurface voids. The generalized S-transform was adopted to extract the arrival times of the diffracted Rayleigh waves from the near and far-offset boundaries of the void at a certain receiver. Then the arrival times were used to calculate the boundary locations of the void. Three half-space void models and a two-layered void model were used to demonstrate the feasibility and effect of detecting a void with the generalized S-transform. A rotated staggered-grid finite-difference method was adopted in wave field modeling to obtain the synthetic seismic record. Finally, a real world field data was used to verify the detecting effect. The theoretical models and the real world example showed that it is feasible and effective to use the generalized S-transform to detect the near-surface cavities.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
Intelligent Power Swing Detection Scheme to Prevent False Relay Tripping Using S-Transform
NASA Astrophysics Data System (ADS)
Mohamad, Nor Z.; Abidin, Ahmad F.; Musirin, Ismail
2014-06-01
Distance relay design is equipped with out-of-step tripping scheme to ensure correct distance relay operation during power swing. The out-of-step condition is a consequence result from unstable power swing. It requires proper detection of power swing to initiate a tripping signal followed by separation of unstable part from the entire power system. The distinguishing process of unstable swing from stable swing poses a challenging task. This paper presents an intelligent approach to detect power swing based on S-Transform signal processing tool. The proposed scheme is based on the use of S-Transform feature of active power at the distance relay measurement point. It is demonstrated that the proposed scheme is able to detect and discriminate the unstable swing from stable swing occurring in the system. To ascertain validity of the proposed scheme, simulations were carried out with the IEEE 39 bus system and its performance has been compared with the wavelet transform-based power swing detection scheme.
Power Disturbances Classification Using S-Transform Based GA-PNN
NASA Astrophysics Data System (ADS)
Manimala, K.; Selvi, K.
2015-09-01
The significance of detection and classification of power quality events that disturb the voltage and/or current waveforms in the electrical power distribution networks is well known. Consequently, in spite of a large number of research reports in this area, a research on the selection of proper parameter for specific classifiers was so far not explored. The parameter selection is very important for successful modelling of input-output relationship in a function approximation model. In this study, probabilistic neural network (PNN) has been used as a function approximation tool for power disturbance classification and genetic algorithm (GA) is utilised for optimisation of the smoothing parameter of the PNN. The important features extracted from raw power disturbance signal using S-Transform are given to the PNN for effective classification. The choice of smoothing parameter for PNN classifier will significantly impact the classification accuracy. Hence, GA based parameter optimization is done to ensure good classification accuracy by selecting suitable parameter of the PNN classifier. Testing results show that the proposed S-Transform based GA-PNN model has better classification ability than classifiers based on conventional grid search method for parameter selection. The noisy and practical signals are considered for the classification process to show the effectiveness of the proposed method in comparison with existing methods.
Discrete Mathematics Re "Tooled."
ERIC Educational Resources Information Center
Grassl, Richard M.; Mingus, Tabitha T. Y.
1999-01-01
Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Synchronous Discrete Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2008-10-17
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
Carlsten, B.E.; Haynes, W.B.
1996-08-01
The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.
ERIC Educational Resources Information Center
Peters, James V.
2004-01-01
Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.
NASA Astrophysics Data System (ADS)
Assous, S.; Humeau, A.; Tartas, M.; Abraham, P.; L'Huillier, J. P.
2005-05-01
Conventional signal processing typically involves frequency selective techniques which are highly inadequate for nonstationary signals. In this paper, we present an approach to perform time-frequency selective processing of laser Doppler flowmetry (LDF) signals using the S-transform. The approach is motivated by the excellent localization, in both time and frequency, afforded by the wavelet basis functions. Suitably chosen Gaussian wavelet functions are used to characterize the subspace of signals that have a given localized time-frequency support, thus enabling a time-frequency partitioning of signals. In this paper, the goal is to study the influence of various pharmacological substances taken by the oral way (celecobix (Celebrex®), indomethacin (Indocid®) and placebo) on the physiological activity behaviour. The results show that no statistical differences are observed in the energy computed from the time-frequency representation of LDF signals, for the myogenic, neurogenic and endothelial related metabolic activities between Celebrex and placebo, and Indocid and placebo. The work therefore proves that these drugs do not affect these physiological activities. For future physiological studies, there will therefore be no need to exclude patients having taken cyclo-oxygenase 1 inhibitions.
Fractional S-transform-part 2: Application to reservoir prediction and fluid identification
NASA Astrophysics Data System (ADS)
Du, Zheng-Cong; Xu, De-Ping; Zhang, Jin-Ming
2016-06-01
The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method.
Hilbert-Huang transform and S-transform of geomagnetic pulsations at auroral expansion onset
NASA Astrophysics Data System (ADS)
Kataoka, R.; Miyoshi, Y.; Morioka, A.
2009-12-01
The waveform of geomagnetic pulsations at auroral expansion onset looks irregular and is hardly resolved by Fourier transform. Here we perform a novel analysis of the Hilbert-Huang Transform (HHT) to address this problem, focusing on the event investigated in detail by Morioka et al. [2008], in which the AKR (auroral kilometric radiation) breakup was clearly identified. From the HHT analysis of high-latitude search-coil ground magnetometer data, Pi1, Pc3, and Pi2 pulsations are extracted as the first, second, and third intrinsic mode functions, respectively. Amplification of the Pi1 and Pc3 pulsations is first detected as a clear precursor to the AKR breakup. The Pi1 and Pc3 pulsations show sudden enhancement at the AKR breakup. We suggest that the HHT is capable of automatically extracting the Pi1, Pi2, and Pc3 from the irregular high-latitude geomagnetic pulsations, providing a new type of diagnostic tools for understanding the onset mechanism of auroral substorms. A comprehensive time-frequency spectral view is obtained from the instantaneous frequency, especially when complemented with the S-transform, and the instantaneous frequency provides a new objective criterion to identify the type of geomagnetic pulsations such as Pi and Pc. It would be useful to apply the HHT to all the available both ground- and space-based magnetic datasets across all local times and latitudes for diagnosing the wave activities and underlying physics associated with the substorm onset.
Depression: discrete or continuous?
Bowins, Brad
2015-01-01
Elucidating the true structure of depression is necessary if we are to advance our understanding and treatment options. Central to the issue of structure is whether depression represents discrete types or occurs on a continuum. Nature almost universally operates on the basis of continuums, whereas human perception favors discrete categories. This reality might be formalized into a 'continuum principle': natural phenomena tend to occur on a continuum, and any instance of hypothesized discreteness requires unassailable proof. Research evidence for discrete types falls far short of this standard, with most evidence supporting a continuum. However, quantitative variation can yield qualitative differences as an emergent property, fostering the appearance of discreteness. Depression as a continuum is best characterized by duration and severity dimensions, with the latter understood in terms of depressive inhibition. In the absence of some degree of cognitive, emotional, social, and physical inhibition, depression should not be diagnosed. Combining the dimensions of duration and severity provides an optimal way to characterize the quantitative and related qualitative aspects of depression and to describe the overall degree of dysfunction. The presence of other symptom types occurs when anxiety, hypomanic/manic, psychotic, and personality continuums interface with the depression continuum. PMID:25531962
ERIC Educational Resources Information Center
Doucet, Fabienne; Grayman-Simpson, Nyasha; Shapses Wertheim, Samantha
2013-01-01
This article documents the transformation of cognitive and relational dispositions within a group of 14 White female undergraduate students ranging in age from 18 to 21 years and enrolled in a semester-long diversity course. Using Mezirow's transformative learning theory as an interpretive frame to guide our phenomenological analysis of…
NASA Astrophysics Data System (ADS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
Discrete breathers in crystals
NASA Astrophysics Data System (ADS)
Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.
2016-05-01
It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite
ERIC Educational Resources Information Center
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
Peschel, U; Egorov, O; Lederer, F
2004-08-15
We derive evolution equations describing light propagation in an array of coupled-waveguide resonators and predict the existence of discrete cavity solitons. We identify stable, unstable, and oscillating solitons by varying the coupling strength between the anticontinuous and the continuous limit. PMID:15357356
MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism.
Ji, Weidong; Yang, Lei; Yuan, Jianhui; Yang, Linqing; Zhang, Mei; Qi, Defeng; Duan, Xiaolu; Xuan, Aiguo; Zhang, Wenjuan; Lu, Jiachun; Zhuang, Zhixiong; Zeng, Guohua
2013-02-01
Nickel (Ni) compounds are well-recognized human carcinogens, yet the molecular mechanisms by which they cause human cancer are still not well understood. MicroRNAs (miRNAs), which are small non-coding RNAs, are involved in diverse biological functions and carcinogenesis. In previous study, we identified upregulation of DNA methyltransferase 1 (DNMT1) expression in nickel sulfide (NiS)-transformed human bronchial epithelial (16HBE) cells. Here, we investigated whether some miRNAs are aberrantly expressed and targets DNMT1 in NiS-transformed cells. Our results showed that the expression of miRNA-152 (miR-152) was specifically downregulated in NiS-transformed cells via promoter DNA hypermethylation, whereas ectopic expression of miR-152 in NiS-transformed cells resulted in a marked reduction of DNMT1 expression. Further experiments revealed that miR-152 directly downregulated DNMT1 expression by targeting the 3' untranslated regions of its transcript. Interestingly, treatment of DNMT inhibitor, 5-aza-2-deoxycytidine, or depletion of DNMT1 led to increased miR-152 expression by reversion of promoter hypermethylation, DNMT1 and MeCP2 binding to miR-152 promoter in NiS-transformed cells. Moreover, inhibition of miR-152 expression in 16HBE cells could increase DNMT1 expression and result in an increase in DNA methylation, DNMT1 and MeCP2 binding to miR-152 promoter, indicating an interaction between miR-152 and DNMT1 is regulated by a double-negative circuit. Furthermore, ectopic expression of miR-152 in NiS-transformed cells led to a significant decrease of cell growth. Conversely, inhibition of miR-152 expression in 16HBE cells significantly increased cell growth. Taken together, these observations demonstrate a crucial functional crosstalk between miR-152 and the DNMT1 via a feedback loop involved in NiS-induced malignant transformation. PMID:23125218
Discreteness induced extinction
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira; da Silva, Linaena Méricy
2015-11-01
Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.
A paradigm for discrete physics
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2011-08-01
The original continuous-time ''goldfish'' dynamical system is characterized by two neat formulas, the first of which provides the N Newtonian equations of motion of this dynamical system, while the second provides the solution of the corresponding initial-value problem. Several other, more general, solvable dynamical systems ''of goldfish type'' have been identified over time, featuring, in the right-hand (''forces'') side of their Newtonian equations of motion, in addition to other contributions, a velocity-dependent term such as that appearing in the right-hand side of the first formula mentioned above. The solvable character of these models allows detailed analyses of their behavior, which in some cases is quite remarkable (for instance isochronous or asymptotically isochronous). In this paper we introduce and discuss various discrete-time dynamical systems, which are as well solvable, which also display interesting behaviors (including isochrony and asymptotic isochrony) and which reduce to dynamical systems of goldfish type in the limit when the discrete-time independent variable l=0,1,2,... becomes the standard continuous-time independent variable t, 0≤t<∞.
The S-transform: a Tool for Assessing Local Changes in Biogenic Gas Content in Peat from GPR Data?
NASA Astrophysics Data System (ADS)
Terry, N.; Zhongjie, Y.; Slater, L. D.
2013-12-01
Time-domain analysis of ground penetrating radar (GPR) data has been used to infer variation in biogenic gas content in peat soils. We examine the potential of frequency-domain methods for further assessing biogenic gas variation from GPR data. In particular, the S-transform is an algorithm to assess time-dependent frequency content. Each returned GPR trace is a time-series, therefore it is straightforward to compute frequency content of a returned radar trace to see how frequency content varies along that trace. The physical properties of soils will affect the frequency content of returned ground penetrating radar signals. Specifically, we postulate that development of gas bubbles in peat will cause preferential attenuation of the high frequency portion of the returned signal as a result of signal scattering. Laboratory results from a time-lapse GPR transmission study are presented. In this study, 1200 MHz antennas were used to sample a ~0.25 m by 0.25 m peat block taken from Caribou Bog, Maine for eight weeks on a twice daily basis. Data were collected across an upper, middle and lower section of the peat at three horizontal positions. Meanwhile, a dynamic chamber system was used to monitor methane flux from the peat surface. The frequency content of GPR data shows a clear correspondence with the dynamic chamber gas flux measurements. In particular, total methane flux shows an increasing trend for the duration of the experiment; these changes coincide with increases in low-frequency (500-1000 MHz) S-transform amplitudes primarily focused within a particular region of the peat block. These results suggest that the S-transform is a useful tool for monitoring changes in biogenic gas content in peat soils where time-lapse GPR data are available.
Smirnov, Yu. F.; Asherova, R. M.
2011-06-15
The structure of all discrete series of unitary irreducible representations of the U{sub q}(u(3, 1)) and U{sub q}(u(n, 1)) noncompact quantum algebras are investigated with the aid of extremal projection operators and the q-analog of the Mickelsson-Zhelobenko algebra Z(g, g Prime ){sub q}. The orthonormal basis constructed in the infinite-dimensional space of irreducible representations of the U{sub q}(u(n, 1)) Superset-Of-Or-Equal-To U{sub q}(u(n)) algebra is the q-analog of the Gelfand-Graev basis in the space of the corresponding irreducible representations of the u(n, 1) Superset-Of-Or-Equal-To u(n) classical algebra.
Integrable discrete PT symmetric model.
Ablowitz, Mark J; Musslimani, Ziad H
2014-09-01
An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
Nonintegrable Schrodinger discrete breathers.
Gómez-Gardeñes, J; Floría, L M; Peyrard, M; Bishop, A R
2004-12-01
In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.
Discrete bisoliton fiber laser
Liu, X. M.; Han, X. X.; Yao, X. K.
2016-01-01
Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats. PMID:27767075
Discrete Minimal Surface Algebras
NASA Astrophysics Data System (ADS)
Arnlind, Joakim; Hoppe, Jens
2010-05-01
We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Discrete Pearson distributions
Bowman, K.O. ); Shenton, L.R. ); Kastenbaum, M.A. , Basye, VA )
1991-11-01
These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.
Noyes, H.P. ); Starson, S. )
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.
Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix
NASA Astrophysics Data System (ADS)
Zhao, Minghang; Tang, Baoping; Tan, Qian
2015-08-01
Time-frequency analysis is an effective tool to extract machinery health information contained in non-stationary vibration signals. Various time-frequency analysis methods have been proposed and successfully applied to machinery fault diagnosis. However, little research has been done on bearing fault diagnosis using texture features extracted from time-frequency representations (TFRs), although they may contain plenty of sensitive information highly related to fault pattern. Therefore, to make full use of the textural information contained in the TFRs, this paper proposes a novel fault diagnosis method based on S transform, gray level co-occurrence matrix (GLCM) and multi-class support vector machine (Multi-SVM). Firstly, S transform is chosen to generate the TFRs due to its advantages of providing frequency-dependent resolution while keeping a direct relationship with the Fourier spectrum. Secondly, the famous GLCM-based texture features are extracted for capturing fault pattern information. Finally, as a classifier which has good discrimination and generalization abilities, Multi-SVM is used for the classification. Experimental results indicate that the GLCM-based texture features extracted from TFRs can identify bearing fault patterns accurately, and provide higher accuracies than the traditional time-domain and frequency-domain features, wavelet packet node energy or two-direction 2D linear discriminant analysis based features of the same TFRs in most cases.
NASA Astrophysics Data System (ADS)
Wang, Yuqing; Peng, Zhenming
2016-06-01
As the extension of time-bandwidth product (TBP) in the fractional domain, the generalized time-bandwidth product (GTBP) provides a rotation-independent measure of compactness. A new fractional S transform (FrST) is proposed to avoid missing the physical meaning of the fractional time-frequency plane. FrST is based on the GTBP criterion and the time-frequency rotation property of fractional Fourier transform (FrFT). In addition, we introduce the normalized second-order central moment (NSOCM) calculation method to determine the optimal order. The optimal order searching process can be converted into the NSOCM calculation. Compared with TBP search algorithms, the NSOCM approach has higher computational efficiency. The qualitative advantage of the NSOCM approach in the optimal order selection is demonstrated by a series of model tests. The optimal FrST based on NSOCM (OFrST) can produce more compact time-frequency support than the S transform. The real seismic data spectral decomposition results show that the proposed algorithm can obtain single-frequency visualization with better time-frequency concentration, thereby enhancing the precision of reservoir prediction.
Discrete Mathematics and Its Applications
ERIC Educational Resources Information Center
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Khan, M M; Varma, M P; Cleland, J; O'Kane, H O; Webb, S W; Mulholland, H C; Adgey, A A
1981-01-01
Data concerning 17 consecutive patients with discrete subaortic stenosis are recorded. Twelve patients underwent operative resection of the obstructing lesion. Of these all except one were symptomatic and all had electrocardiographic evidence of left ventricular hypertrophy or left ventricular hypertrophy with strain. They had a peak resting systolic left ventricular outflow tract gradient of greater than 50 mmHg as predicted from the combined cuff measurement of systolic blood pressure and the echocardiographically estimated left ventricular systolic pressure and/or as determined by cardiac catheterisation. The outflow tract gradient as predicted from M-mode echocardiography and peak systolic pressure showed close correlation with that measured at cardiac catheterisation or operation. During the postoperative follow-up from one month to 11 years, of 11 patients, one patient required a further operation for recurrence of the obstruction four years after the initial operation. All patients are now asymptomatic. Five patients have not had an operation. The left ventricular outflow tract gradient as assessed at the time of cardiac catheterisation was greater than 50 mmHg. One patient has been lost to follow-up. The remaining four have been followed from four to eight years and have remained asymptomatic and the electrocardiograms have remained unchanged. Careful follow-up of all patients is essential with continuing clinical assessment, electrocardiograms, M-mode and two-dimensional echocardiograms, and if necessary cardiac catheterisation. Prophylaxis against bacterial endocarditis is also essential. Images PMID:6457617
Discreteness inducing coexistence
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira
2013-12-01
Consider two species that diffuse through space. Consider further that they differ only in initial densities and, possibly, in diffusion constants. Otherwise they are identical. What happens if they compete with each other in the same environment? What is the influence of the discrete nature of the interactions on the final destination? And what are the influence of diffusion and additive fluctuations corresponding to random migration and immigration of individuals? This paper aims to answer these questions for a particular competition model that incorporates intra and interspecific competition between the species. Based on mean field theory, the model has a stationary state dependent on the initial density conditions. We investigate how this initial density dependence is affected by the presence of demographic multiplicative noise and additive noise in space and time. There are three main conclusions: (1) Additive noise favors denser populations at the expense of the less dense, ratifying the competitive exclusion principle. (2) Demographic noise, on the other hand, favors less dense populations at the expense of the denser ones, inducing equal densities at the quasi-stationary state, violating the aforementioned principle. (3) The slower species always suffers the more deleterious effects of statistical fluctuations in a homogeneous medium.
Discrete Darboux transformation for discrete polynomials of hypergeometric type
NASA Astrophysics Data System (ADS)
Bangerezako, Gaspard
1998-03-01
The Darboux transformation, well known in second-order differential operator theory, is applied to the difference equations satisfied by the discrete hypergeometric polynomials (Charlier, Meixner-Kravchuk, Hahn).
Discrete Dirac Structures and Implicit Discrete Lagrangian and Hamiltonian Systems
NASA Astrophysics Data System (ADS)
Leok, Melvin; Ohsawa, Tomoki
2010-07-01
We present discrete analogues of Dirac structures and the Tulczyjew's triple by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete analogues of implicit Lagrangian and Hamiltonian systems. In particular, this yields implicit nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. In addition to providing a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of Dirac mechanics, it provides a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.
NASA Astrophysics Data System (ADS)
Jones, J. P.; Carniel, R.; Malone, S.
2005-12-01
The time-varying properties of volcanic tremor demand advanced techniques capable of analyzing changes in both time and frequency domains. Specifically, rapid data preprocessing techniques with the ability to distinguish signal from noise are especially valuable in analyzing the temporal, spatial, and spectral properties of these signals. To this end, we use the Discrete Wavelet Packet Transform and the Best Shift Basis algorithm to select an orthonormal basis for continuous volcanic tremor data, then apply a simple statistical test to eliminate frequency bands that primarily consist of Gaussian white noise. We then use the Maximal Overlap Discrete Wavelet Packet Transform to compute and analyze features in the detail coefficients of each "signal" band. Because MODWPT detail coefficients are equivalent to a time series convolved with a zero phase filter, we apply standard polarization and amplitude-based location techniques to each frequency band's detail coefficients to analyze possible source locations and mechanisms. To demonstrate the usefulness of these techniques, we present a sample analysis of data from Erta 'Ale volcano, Ethiopia, recorded on a temporary network in November 2003. Data were sampled at 100 Hz and the DWPT was computed with the LA(16) wavelet to a maximum level of j = 7. The optimal basis for this data set consists of 54 frequency bands, but only 9 contain meaningful "signal" energy. We identify two frequency bands whose locations suggest a distributed source; three frequency bands whose signals may come from the lava lake itself; three high-frequency bands of scattered energy; and one very high frequency band of non-Gaussian instrument noise. Finally, we discuss optimization efforts, computational efficiency, and the feasibility of using similar wavelet methods to preprocess data in real time or near real time.
Nie, Xinhua; Pan, Zhongming; Zhang, Dasha; Zhou, Han; Chen, Min; Zhang, Wenna
2014-01-01
Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a power spectral density of 1/fa (0orthonormal wavelet decomposition can play the role of a Karhunen-Loève-type expansion to the 1/f-type signal by its decorrelation abilities, an effective energy detection method based on undecimated discrete wavelet transform (UDWT) is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT), the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method. PMID:25343484
Novel approach to data discretization
NASA Astrophysics Data System (ADS)
Borowik, Grzegorz; Kowalski, Karol; Jankowski, Cezary
2015-09-01
Discretization is an important preprocessing step in data mining. The data discretization method involves determining the ranges of values for numeric attributes, which ultimately represent discrete intervals for new attributes. The ranges for the proposed set of cuts are analyzed, in order to obtain a minimal set of ranges while retaining the possibility of classification. For this purpose, a special discernibility function can be constructed as a conjunction of alternative cuts set for each pair of different objects of different decisions- cuts discern these objects. However, the data mining methods based on discernibility matrix are insufficient for large databases. The purpose of this paper is the idea of implementation of a new data discretization algorithm that is based on statistics of attribute values and that avoids building the discernibility matrix explicitly. Evaluation of time complexity has shown that the proposed method is much more efficient than currently available solutions for large data sets.
Concurrency and discrete event control
NASA Technical Reports Server (NTRS)
Heymann, Michael
1990-01-01
Much of discrete event control theory has been developed within the framework of automata and formal languages. An alternative approach inspired by the theories of process-algebra as developed in the computer science literature is presented. The framework, which rests on a new formalism of concurrency, can adequately handle nondeterminism and can be used for analysis of a wide range of discrete event phenomena.
Discrete photonics in waveguide arrays.
Moison, J M; Belabas, N; Minot, C; Levenson, J A
2009-08-15
In homogeneous arrays of coupled waveguides, Floquet-Bloch waves are known to travel freely across the waveguides. We introduce a systematic discussion of the built-in patterning of the coupling constant between neighboring waveguides. Key patterns provide functions such as redirecting, guiding, and focusing these waves, up to nonlinear all-optical routing. This opens the way to light control in a functionalized discrete space, i.e., discrete photonics.
Distributed Relaxation for Conservative Discretizations
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2001-01-01
A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.
Discrete event simulation of continuous systems
Nutaro, James J
2007-01-01
Computer simulation of a system described by differential equations requires that some element of the system be approximated by discrete quantities. There are two system aspects that can be made discrete; time and state. When time is discrete, the differential equation is approximated by a difference equation (i.e., a discrete time system), and the solution is calculated at fixed points in time. When the state is discrete, the differential equation is approximated by a discrete event system. Events correspond to jumps through the discrete state space of the approximation.
Geometry of discrete quantum computing
NASA Astrophysics Data System (ADS)
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
Discrete cloud structure on Neptune
NASA Astrophysics Data System (ADS)
Hammel, H. B.
1989-07-01
Recent CCD imaging data for the discrete cloud structure of Neptune shows that while cloud features at CH4-band wavelengths are manifest in the southern hemisphere, they have not been encountered in the northern hemisphere since 1986. A literature search has shown the reflected CH4-band light from the planet to have come from a single discrete feature at least twice in the last 10 years. Disk-integrated photometry derived from the imaging has demonstrated that a bright cloud feature was responsible for the observed 8900 A diurnal variation in 1986 and 1987.
Some discrete multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Arvesú, J.; Coussement, J.; van Assche, W.
2003-04-01
In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.
Reduced discretization error in HZETRN
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Tweed, John
2013-02-01
The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm2 exposed to both solar particle event and galactic cosmic ray environments.
Reduced discretization error in HZETRN
Slaba, Tony C.; Blattnig, Steve R.; Tweed, John
2013-02-01
The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.
Discrete gauge symmetries in discrete MSSM-like orientifolds
NASA Astrophysics Data System (ADS)
Ibáñez, L. E.; Schellekens, A. N.; Uranga, A. M.
2012-12-01
Motivated by the necessity of discrete ZN symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z2 (R-parity) and Z3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
A FORTRAN Program for Discrete Discriminant Analysis
ERIC Educational Resources Information Center
Boone, James O.; Brewer, James K.
1976-01-01
A Fortran program is presented for discriminant analysis of discrete variables. The program assumes discrete, nominal data with no distributional, variance-covariance assumptions. The program handles a maximum of fifty predictor variables and twelve outcome groups. (Author/JKS)
Anomalies and Discrete Chiral Symmetries
Creutz, M.
2009-09-07
The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
NASA Astrophysics Data System (ADS)
Guo, Jiming; Zhou, Mingduan; Wang, Chao; Mei, Lianhui
2012-11-01
Based on the model of coordinate S-transformation, a novel method of stability analysis of datum points in high-precision GPS deformation monitoring networks is proposed. The model of coordinate S-transformation is used to calculate seven transformation parameters in adjacent two measurement stages, in order to confirm the stability of stations by coordinate differences. To judge the stability of stations, in comparison to the traditional method by a fixed the same datum point, the "threshold approach" and "statistical test approach" have been developed and applied to evaluate the stability of datum points of a first-order GPS deformation monitoring network of a hydropower station located in the West Region of China.
Discreteness effects in population dynamics
NASA Astrophysics Data System (ADS)
Guevara Hidalgo, Esteban; Lecomte, Vivien
2016-05-01
We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.
Discrete auroras and magnetotail processes.
NASA Astrophysics Data System (ADS)
Lyons, L. R.
Important information about magnetospheric phenomena associated with auroras and substorms can be inferred from low-altitude auroral observations. Satellite observations have shown that discrete auroral arcs lie within a boundary plasma sheet (BPS) region that is outside the central plasma sheet (CPS). The observations imply that arcs are generated along BPS field lines by magnetospheric processes that form large, perpendicular electric field structures. The BPS and the arc generation processes apparently lie along field lines that are in the vicinity of the boundary between open and closed field lines and cross the tail (or magnetopause) current sheet. Ground-based observations show that the first indication of a substorm onset is the brightening of a quiet, discrete arc. This suggests that substorms are initiated along the BPS field lines associated with arc generation, and not within the CPS. Finally, auroral observations have shown that the area of open, polar-cap field lines varies considerably during periods of geomagnetic activity. Expansion of the polar cap has the potential for releasing trapped plasma sheet particles along freshly open field lines. The resulting evacuation of field lines has the potential for being an important loss process for the plasma sheet and for being a source of tailward flows and energetic particle bursts in the tail.
Observers for discrete-time nonlinear systems
NASA Astrophysics Data System (ADS)
Grossman, Walter D.
Observer synthesis for discrete-time nonlinear systems with special applications to parameter estimation is analyzed. Two new types of observers are developed. The first new observer is an adaptation of the Friedland continuous-time parameter estimator to discrete-time systems. The second observer is an adaptation of the continuous-time Gauthier observer to discrete-time systems. By adapting these observers to discrete-time continuous-time parameter estimation problems which were formerly intractable become tractable. In addition to the two newly developed observers, two observers already described in the literature are analyzed and deficiencies with respect to noise rejection are demonstrated. Improved versions of these observers are proposed and their performance demonstrated. The issues of discrete-time observability, discrete-time system inversion, and optimal probing are also addressed.
Ideal shrinking and expansion of discrete sequences
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1986-01-01
Ideal methods are described for shrinking or expanding a discrete sequence, image, or image sequence. The methods are ideal in the sense that they preserve the frequency spectrum of the input up to the Nyquist limit of the input or output, whichever is smaller. Fast implementations that make use of the discrete Fourier transform or the discrete Hartley transform are described. The techniques lead to a new multiresolution image pyramid.
Determinant Expressions for Discrete Integrable Maps
NASA Astrophysics Data System (ADS)
Sogo, Kiyoshi
2006-08-01
Explicit formulas for several discrete integrable maps with periodic boundary condition are obtained, which give the sequential time developments in a form of the quotient of successive determinants of tri-diagonal matrices. We can expect that such formulas make the corresponding numerical simulations simple and stable. The cases of discrete Lotka-Volterra and discrete KdV equations are demonstrated by using the common algorithm computing determinants of tri-diagonal matrices.
Discrete modelling of drapery systems
NASA Astrophysics Data System (ADS)
Thoeni, Klaus; Giacomini, Anna
2016-04-01
Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R
Discretizing gravity in warped spacetime
Schwartz, Matthew; Randall, Lisa; Schwartz, Matthew D.; Thambyahpillai, Shiyamala
2005-07-11
We investigate the discretized version of the compact Randall-Sundrum model. By studying the mass eigenstates of the lattice theory, we demonstrate that for warped space, unlike for flat space, the strong coupling scale does not depend on the IR scale and lattice size. However, strong coupling does prevent us from taking the continuum limit of the lattice theory. Nonetheless, the lattice theory works in the manifestly holographic regime and successfully reproduces the most significant features of the warped theory. It is even in some respects better than the KK theory, which must be carefully regulated to obtain the correct physical results. Because it is easier to construct lattice theories than to find exact solutions to GR, we expect lattice gravity to be a useful tool for exploring field theory in curved space.
Lepton mixing and discrete symmetries
NASA Astrophysics Data System (ADS)
Hernandez, D.; Smirnov, A. Yu.
2012-09-01
The pattern of lepton mixing can emerge from breaking a flavor symmetry in different ways in the neutrino and charged lepton Yukawa sectors. In this framework, we derive the model-independent conditions imposed on the mixing matrix by the structure of discrete groups of the von Dyck type which include A4, S4, and A5. We show that, in general, these conditions lead to at least two equations for the mixing parameters (angles and CP phase δ). These constraints, which correspond to unbroken residual symmetries, are consistent with nonzero 13 mixing and deviations from maximal 2-3 mixing. For the simplest case, which leads to an S4 model and reproduces the allowed values of the mixing angles, we predict δ=(90°-120°).
Scalar discrete nonlinear multipoint boundary value problems
NASA Astrophysics Data System (ADS)
Rodriguez, Jesus; Taylor, Padraic
2007-06-01
In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].
A discrete event method for wave simulation
Nutaro, James J
2006-01-01
This article describes a discrete event interpretation of the finite difference time domain (FDTD) and digital wave guide network (DWN) wave simulation schemes. The discrete event method is formalized using the discrete event system specification (DEVS). The scheme is shown to have errors that are proportional to the resolution of the spatial grid. A numerical example demonstrates the relative efficiency of the scheme with respect to FDTD and DWN schemes. The potential for the discrete event scheme to reduce numerical dispersion and attenuation errors is discussed.
Peña, J; Solano, E; Mendoza, A; Casals, J; Planell, J A; Gil, F J
2005-01-01
The main objective of this work has been the characterisation and correlation of the wear behaviour of the NiTi shape memory alloys in their different phases. The weight losses for the different alloys in function of the present phase, and of the M(s) transformation temperature are studied. Adhesive wear tests, Pin-on-Disk, according to the ASTM-G99 standard have been carried out. The thermoelastic martensitic transformations that cause the super-elastic effect, the reorientation and coalescence of martensitic plates and the damping effect promotes a high ability to accommodate large deformations without generating permanent damages that causes the wear. The resulting plastic deformation may be accumulated during wear process without generating fracture. The results show that the wear resistance is mainly dependent of the M(s) transformation temperature for both alloys. For the NiTi alloys also the Ni atomic percentage and the hardness of the alloys are important parameters in the wear behavior.
5 CFR 572.102 - Agency discretion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Agency discretion. 572.102 Section 572.102 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS TRAVEL AND TRANSPORTATION EXPENSES; NEW APPOINTEES AND INTERVIEWS § 572.102 Agency discretion. Payment of travel...
Discretization vs. Rounding Error in Euler's Method
ERIC Educational Resources Information Center
Borges, Carlos F.
2011-01-01
Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…
Current Density and Continuity in Discretized Models
ERIC Educational Resources Information Center
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Covariance control of discrete stochastic bilinear systems
NASA Technical Reports Server (NTRS)
Skelton, R. E.; Kherat, S. M.; Yaz, E.
1991-01-01
The covariances that certain bilinear stochastic discrete time systems may possess are characterized. An explicit parameterization of all controllers that assign such covariances is given. The state feedback assignability and robustness of the system are discussed from a deterministic point of view. This work extends the theory of covariance control for continuous time bilinear systems to a discrete time setting.
Discrete/PWM Ballast-Resistor Controller
NASA Technical Reports Server (NTRS)
King, Roger J.
1994-01-01
Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.
Discreteness and Gradience in Intonational Contrasts.
ERIC Educational Resources Information Center
Gussenhoven, Carlos
1999-01-01
Three experimental techniques that can be used to investigate the gradient of discrete nature of intonational differences, the semantic task, the imitation task, and the pitch range task are discussed and evaluated. It is pointed out that categorical perception is a sufficient but not a necessary, property of phonological discreteness. (Author/VWL)
Active control of turbomachine discrete tones
NASA Astrophysics Data System (ADS)
Fleeter, Sanford
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Generalized exponential function and discrete growth models
NASA Astrophysics Data System (ADS)
Souto Martinez, Alexandre; Silva González, Rodrigo; Lauri Espíndola, Aquino
2009-07-01
Here we show that a particular one-parameter generalization of the exponential function is suitable to unify most of the popular one-species discrete population dynamic models into a simple formula. A physical interpretation is given to this new introduced parameter in the context of the continuous Richards model, which remains valid for the discrete case. From the discretization of the continuous Richards’ model (generalization of the Gompertz and Verhulst models), one obtains a generalized logistic map and we briefly study its properties. Notice, however that the physical interpretation for the introduced parameter persists valid for the discrete case. Next, we generalize the (scramble competition) θ-Ricker discrete model and analytically calculate the fixed points as well as their stabilities. In contrast to previous generalizations, from the generalized θ-Ricker model one is able to retrieve either scramble or contest models.
Discrete elements method of neutral particle transport
Mathews, K.A.
1983-01-01
A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method.
Clutter from non-discrete seabed structures.
Holland, Charles W; Ellis, Dale D
2012-06-01
Clutter, or discrete target-like returns, is the most significant problem in the employment of active sonar. It is well understood that discrete objects, which are of the same spatial scale as the target and which possess a significant impedance contrast to the surrounding ocean, can lead to clutter. Here a somewhat counter-intuitive result is shown: that discrete target-like returns can occur from slowly varying seabed structures. The range dependence of the seabed can be weak and smooth-due to changes in layer thicknesses, sound speed, or both. Thus, this clutter mechanism may be a viable hypothesis for areas in which seabed clutter has been observed, but no discrete features, buried or proud, could be found. By using a broadband source, the time-frequency evolution of this clutter could be a useful way to discriminate against other kinds of clutter; e.g., that due to discrete objects.
MULTISCALE DISCRETIZATION OF SHAPE CONTOURS
Prasad, L.; Rao, R.
2000-09-01
We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.
Medical futility and physician discretion
Wreen, M
2004-01-01
Some patients have no chance of surviving if not treated, but very little chance if treated. A number of medical ethicists and physicians have argued that treatment in such cases is medically futile and a matter of physician discretion. This paper critically examines that position. According to Howard Brody and others, a judgment of medical futility is a purely technical matter, which physicians are uniquely qualified to make. Although Brody later retracted these claims, he held to the view that physicians need not consult the patient or his family to determine their values before deciding not to treat. This is because professional integrity dictates that treatment should not be undertaken. The argument for this claim is that medicine is a profession and a social practice, and thus capable of breaches of professional integrity. Underlying professional integrity are two moral principles, one concerning harm, the other fraud. According to Brody both point to the fact that when the odds of survival are very low treatment is a violation of professional integrity. The details of this skeletal argument are exposed and explained, and the full argument is criticised. On a number of counts, it is found wanting. If anything, professional integrity points to the opposite conclusion. PMID:15173362
Compatible Spatial Discretizations for Partial Differential Equations
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
On the definition of discrete hydrodynamic variables.
Español, Pep; Zúñiga, Ignacio
2009-10-28
The Green-Kubo formula for discrete hydrodynamic variables involves information about not only the fluid transport coefficients but also about discrete versions of the differential operators that govern the evolution of the discrete variables. This gives an intimate connection between discretization procedures in fluid dynamics and coarse-graining procedures used to obtain hydrodynamic behavior of molecular fluids. We observed that a natural definition of discrete hydrodynamic variables in terms of Voronoi cells leads to a Green-Kubo formula which is divergent, rendering the full coarse-graining strategy useless. In order to understand this subtle issue, in the present paper we consider the coarse graining of noninteracting Brownian particles. The discrete hydrodynamic variable for this problem is the number of particles within Voronoi cells. Thanks to the simplicity of the model we spot the origin of the singular behavior of the correlation functions. We offer an alternative definition, based on the concept of a Delaunay cell that behaves properly, suggesting the use of the Delaunay construction for the coarse graining of molecular fluids at the discrete hydrodynamic level.
Discrete symmetries and de Sitter spacetime
Cotăescu, Ion I. Pascu, Gabriel
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Multigravity from a discrete extra dimension
NASA Astrophysics Data System (ADS)
Deffayet, C.; Mourad, J.
2004-06-01
Multigravity theories are constructed from the discretization of the extra dimension of five-dimensional gravity. Using an ADM decomposition, the discretization is performed while maintaining the four-dimensional diffeomorphism invariance on each site. We relate the Goldstone bosons used to realize nonlinearly general covariance in discretized gravity to the shift fields of the higher-dimensional metric. We investigate the scalar excitations of the resulting theory and show the absence of ghosts and massive modes; this is due to a local symmetry inherited from the reparametrization invariance along the fifth dimension.
High-accuracy discrete positioning device
NASA Technical Reports Server (NTRS)
Brooks, John J. (Inventor)
1994-01-01
An article (30) is controllably and precisely positioned at one of three discrete locations defined by a linkage. The positioning apparatus includes two independently driven cranks (34, 42), with a link (50) pivotably connected between the two cranks (34, 42). Another connector (44) is pivotably connected between one of the cranks (34 or 42) and the article (30) to be positioned. The cranks (34, 42) are rotationally adjusted so that the pivot points (52, 54) of the link (50) are collinear with the axes of rotation of the cranks (40, 48), thereby defining one of the three discrete locations. Additional cranks and links can be provided to define additional discrete locations.
Discrete flavour symmetries from the Heisenberg group
NASA Astrophysics Data System (ADS)
Floratos, E. G.; Leontaris, G. K.
2016-04-01
Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular, on the PSL2 (p) groups which contain the phenomenologically interesting cases.
Local discrete symmetries from superstring derived models
NASA Astrophysics Data System (ADS)
Faraggi, Alon E.
1997-02-01
Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model I illustrate how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.
Geometric phases in discrete dynamical systems
NASA Astrophysics Data System (ADS)
Cartwright, Julyan H. E.; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2016-10-01
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Dynamic discretization method for solving Kepler's equation
NASA Astrophysics Data System (ADS)
Feinstein, Scott A.; McLaughlin, Craig A.
2006-09-01
Kepler’s equation needs to be solved many times for a variety of problems in Celestial Mechanics. Therefore, computing the solution to Kepler’s equation in an efficient manner is of great importance to that community. There are some historical and many modern methods that address this problem. Of the methods known to the authors, Fukushima’s discretization technique performs the best. By taking more of a system approach and combining the use of discretization with the standard computer science technique known as dynamic programming, we were able to achieve even better performance than Fukushima. We begin by defining Kepler’s equation for the elliptical case and describe existing solution methods. We then present our dynamic discretization method and show the results of a comparative analysis. This analysis will demonstrate that, for the conditions of our tests, dynamic discretization performs the best.
A discrete control model of PLANT
NASA Technical Reports Server (NTRS)
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
Motion of Discrete Interfaces Through Mushy Layers
NASA Astrophysics Data System (ADS)
Braides, Andrea; Solci, Margherita
2016-08-01
We study the geometric motion of sets in the plane derived from the homogenization of discrete ferromagnetic energies with weak inclusions. We show that the discrete sets are composed by a `bulky' part and an external `mushy region' composed only of weak inclusions. The relevant motion is that of the bulky part, which asymptotically obeys to a motion by crystalline mean curvature with a forcing term, due to the energetic contribution of the mushy layers, and pinning effects, due to discreteness. From an analytical standpoint, it is interesting to note that the presence of the mushy layers implies only a weak and not strong convergence of the discrete motions, so that the convergence of the energies does not commute with the evolution. From a mechanical standpoint it is interesting to note the geometrical similarity of some phenomena in the cooling of binary melts.
Running Parallel Discrete Event Simulators on Sierra
Barnes, P. D.; Jefferson, D. R.
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
Comparing the Discrete and Continuous Logistic Models
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
A Few Continuous and Discrete Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Rui, Wenjuan
2016-08-01
Starting from a 2-unimodular group, we construct its new Lie algebras for which the positive-order Lax pairs and the negative-order Lax pairs are introduced, respectively. With the help of the resulting structure equation of the group we generate some partial differential equations including the well-known MKdV equation, the sine-Gordon equation, the hyperbolic sine-Gordon equation and other new nonlinear evolution equations. With the aid of the Tu scheme combined with the given Lax pairs, we obtain the isospectral and nonisospectral hierarchies of evolution equations, from which we generate two sets of symmetries of a generalized nonlinear Schrödinger (gNLS) equation. Finally, we discretize the Lax pairs to obtain a set of coupled semi-discrete equations. As their reduction, we produce the semi-discrete MKdV equation and semi-discrete NLS equation.
Development of discrete components. Final report
Brown, R.J.
1995-11-01
Allied-Signal Inc, Kansas City Division, was provided with funding to maintain the capability to procure discrete components for various applications. A development project was undertaken to procure transistor die from one supplier for assembly into finished components by a different supplier. These components would be SA-equivalent with appropriate preconditioning, testing, and certification, The methodologies developed herein go far to ensure the future availability of discrete components.
NASA Astrophysics Data System (ADS)
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-05-01
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Discrete differential geometry: the nonplanar quadrilateral mesh.
Twining, Carole J; Marsland, Stephen
2012-06-01
We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids.
Seleson, Pablo; Du, Qiang; Parks, Michael L.
2016-08-16
The peridynamic theory of solid mechanics is a nonlocal reformulation of the classical continuum mechanics theory. At the continuum level, it has been demonstrated that classical (local) elasticity is a special case of peridynamics. Such a connection between these theories has not been extensively explored at the discrete level. This paper investigates the consistency between nearest-neighbor discretizations of linear elastic peridynamic models and finite difference discretizations of the Navier–Cauchy equation of classical elasticity. While nearest-neighbor discretizations in peridynamics have been numerically observed to present grid-dependent crack paths or spurious microcracks, this paper focuses on a different, analytical aspect of suchmore » discretizations. We demonstrate that, even in the absence of cracks, such discretizations may be problematic unless a proper selection of weights is used. Specifically, we demonstrate that using the standard meshfree approach in peridynamics, nearest-neighbor discretizations do not reduce, in general, to discretizations of corresponding classical models. We study nodal-based quadratures for the discretization of peridynamic models, and we derive quadrature weights that result in consistency between nearest-neighbor discretizations of peridynamic models and discretized classical models. The quadrature weights that lead to such consistency are, however, model-/discretization-dependent. We motivate the choice of those quadrature weights through a quadratic approximation of displacement fields. The stability of nearest-neighbor peridynamic schemes is demonstrated through a Fourier mode analysis. Finally, an approach based on a normalization of peridynamic constitutive constants at the discrete level is explored. This approach results in the desired consistency for one-dimensional models, but does not work in higher dimensions. The results of the work presented in this paper suggest that even though nearest
PREFACE: 4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014)
NASA Astrophysics Data System (ADS)
Di Domenico, Antonio; Mavromatos, Nick E.; Mitsou, Vasiliki A.; Skliros, Dimitri P.
2015-07-01
The DISCRETE 2014: Fourth Symposium in the Physics of Discrete Symmetries took place at King's College London, Strand Campus, London WC2R 2LS, from Tuesday, December 2 2014 till Saturday, December 6 2014. This is the fourth Edition of the DISCRETE conference series, which is a biannual event, having been held previously in Valencia (Discrete'08), Rome (Discrete2010) and Lisbon (Discrete2012). The topics covered at the DISCRETE series of conferences are: T, C, P, CP symmetries; accidental symmetries (B, L conservation); CPT symmetry, decoherence and entangled states, Lorentz symmetry breaking (phenomenology and current bounds); neutrino mass and mixing; implications for cosmology and astroparticle physics, dark matter searches; experimental prospects at LHC, new facilities. In DISCRETE 2014 we have also introduced two new topics: cosmological aspects of non-commutative space-times as well as PT symmetric Hamiltonians (non-Hermitian but with real eigenvalues), a topic that has wide applications in particle physics and beyond. The conference was opened by the King's College London Vice Principal on Research and Innovation, Mr Chris Mottershead, followed by a welcome address by the Chair of DISCRETE 2014 (Professor Nick E. Mavromatos). After these introductory talks, the scientific programme of the DISCRETE 2014 symposium started. Following the tradition of DISCRETE series of conferences, the talks (138 in total) were divided into plenary-review talks (25), invited research talks (50) and shorter presentations (63) — selected by the conveners of each session in consultation with the organisers — from the submitted abstracts. We have been fortunate to have very high-quality, thought stimulating and interesting talks at all levels, which, together with the discussions among the participants, made the conference quite enjoyable. There were 152 registered participants for the event.
Constraint analysis for variational discrete systems
Dittrich, Bianca; Höhn, Philipp A.
2013-09-15
A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.
Time-Symmetric Discretization of The Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2010-11-24
We explicitly and analytically demonstrate that simple time-symmetric discretization of the harmonic oscillator (used as a simple model of a discrete dynamical system), leads to discrete equations of motion whose solutions are perfectly stable at all time scales, and whose energy is exactly conserved. This result is important for both fundamental discrete physics, as well as for numerical analysis and simulation.
ERIC Educational Resources Information Center
Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.
This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major effort now underway to…
Liu, Yushun; Zhou, Wenjun; Li, Pengfei; Yang, Shuai; Tian, Yan
2016-01-01
Due to electromagnetic interference in power substations, the partial discharge (PD) signals detected by ultrahigh frequency (UHF) antenna sensors often contain various background noises, which may hamper high voltage apparatus fault diagnosis and localization. This paper proposes a novel de-noising method based on the generalized S-transform and module time-frequency matrix to suppress noise in UHF PD signals. The sub-matrix maximum module value method is employed to calculate the frequencies and amplitudes of periodic narrowband noise, and suppress noise through the reverse phase cancellation technique. In addition, a singular value decomposition de-noising method is employed to suppress Gaussian white noise in UHF PD signals. Effective singular values are selected by employing the fuzzy c-means clustering method to recover the PD signals. De-noising results of simulated and field detected UHF PD signals prove the feasibility of the proposed method. Compared with four conventional de-noising methods, the results show that the proposed method can suppress background noise in the UHF PD signal effectively, with higher signal-to-noise ratio and less waveform distortion. PMID:27338409
Liu, Yushun; Zhou, Wenjun; Li, Pengfei; Yang, Shuai; Tian, Yan
2016-01-01
Due to electromagnetic interference in power substations, the partial discharge (PD) signals detected by ultrahigh frequency (UHF) antenna sensors often contain various background noises, which may hamper high voltage apparatus fault diagnosis and localization. This paper proposes a novel de-noising method based on the generalized S-transform and module time-frequency matrix to suppress noise in UHF PD signals. The sub-matrix maximum module value method is employed to calculate the frequencies and amplitudes of periodic narrowband noise, and suppress noise through the reverse phase cancellation technique. In addition, a singular value decomposition de-noising method is employed to suppress Gaussian white noise in UHF PD signals. Effective singular values are selected by employing the fuzzy c-means clustering method to recover the PD signals. De-noising results of simulated and field detected UHF PD signals prove the feasibility of the proposed method. Compared with four conventional de-noising methods, the results show that the proposed method can suppress background noise in the UHF PD signal effectively, with higher signal-to-noise ratio and less waveform distortion. PMID:27338409
The Cauchy-Kovalevskaya Extension Theorem in Discrete Clifford Analysis
NASA Astrophysics Data System (ADS)
De Ridder, H.; De Schepper, H.; Sommen, F.
2010-09-01
Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac operator, i.e. a first order, Clifford vector valued difference operator. In this contribution, we establish a Cauchy-Kovalevskaya extension theorem for discrete monogenic functions defined on the grid Zhm of m-tuples of integer multiples of a variable mesh width h. Convergence to the continuous case is investigated. As illustrative examples we explicitly construct the Cauchy-Kovalevskaya extensions of the discrete delta function and of a discretized exponential.
Discrete Roughness Transition for Hypersonic Flight Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.
2007-01-01
The importance of discrete roughness and the correlations developed to predict the onset of boundary layer transition on hypersonic flight vehicles are discussed. The paper is organized by hypersonic vehicle applications characterized in a general sense by the boundary layer: slender with hypersonic conditions at the edge of the boundary layer, moderately blunt with supersonic, and blunt with subsonic. This paper is intended to be a review of recent discrete roughness transition work completed at NASA Langley Research Center in support of agency flight test programs. First, a review is provided of discrete roughness wind tunnel data and the resulting correlations that were developed. Then, results obtained from flight vehicles, in particular the recently flown Hyper-X and Shuttle missions, are discussed and compared to the ground-based correlations.
Natural discretization in noncommutative field theory
Acatrinei, Ciprian Sorin
2015-12-07
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
An algebra of discrete event processes
NASA Technical Reports Server (NTRS)
Heymann, Michael; Meyer, George
1991-01-01
This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.
Discrete-time Markovian stochastic Petri nets
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco
1995-01-01
We revisit and extend the original definition of discrete-time stochastic Petri nets, by allowing the firing times to have a 'defective discrete phase distribution'. We show that this formalism still corresponds to an underlying discrete-time Markov chain. The structure of the state for this process describes both the marking of the Petri net and the phase of the firing time for each transition, resulting in a large state space. We then modify the well-known power method to perform a transient analysis even when the state space is infinite, subject to the condition that only a finite number of states can be reached in a finite amount of time. Since the memory requirements might still be excessive, we suggest a bounding technique based on truncation.
Discrete breathers in hexagonal dusty plasma lattices.
Koukouloyannis, V; Kourakis, I
2009-08-01
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
The ultimatum game: Discrete vs. continuous offers
NASA Astrophysics Data System (ADS)
Dishon-Berkovits, Miriam; Berkovits, Richard
2014-09-01
In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.
Discrete breathers in hexagonal dusty plasma lattices
Koukouloyannis, V.; Kourakis, I.
2009-08-15
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
The discrete regime of flame propagation
NASA Astrophysics Data System (ADS)
Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew
The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment
Cortical Neural Computation by Discrete Results Hypothesis
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast
Euler-Poincare reduction for discrete field theories
Vankerschaver, Joris
2007-03-15
In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed.
Hybrid Discrete-Continuous Markov Decision Processes
NASA Technical Reports Server (NTRS)
Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich
2003-01-01
This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.
Stabilization of discrete-event processes
NASA Technical Reports Server (NTRS)
Brave, Y.; Heymann, M.
1990-01-01
Discrete-event processes are modeled by state-machines in the Ramadge-Wonham framework with control by a feedback event disablement mechanism. In this paper, concepts of stabilization of discrete-event processes are defined and investigated. The possibility of driving a process (under control) from arbitrary initial states to a prescribed subset of the state set and then keeping it there indefinitely is examined. This stabilization property is studied also with respect to 'open-loop' processes and their asymptotic behavior is characterized. Polynomial time algorithms are presented for verifying various types of attraction and for the synthesis of attractors.
Engineering Fano resonances in discrete arrays
Miroshnichenko, Andrey E.; Kivshar, Yuri S.
2005-11-01
We study transmission properties of discrete arrays composed of a linear waveguide coupled to a system of N side defect states. This simple system can be used to model discrete networks of coupled defect modes in photonic crystals, complex waveguide arrays in two-dimensional nonlinear lattices, and ring-resonator structures. We demonstrate the basic principles of the resonant scattering management through engineering Fano resonances and find exact results for the wave transmission coefficient. We reveal conditions for perfect reflections and transmissions due to either destructive or constructive interferences, and associate them with Fano resonances, also demonstrating how these resonances can be tuned by nonlinear defects.
Discrete Gabor Filters For Binocular Disparity Measurement
NASA Technical Reports Server (NTRS)
Weiman, Carl F. R.
1995-01-01
Discrete Gabor filters proposed for use in determining binocular disparity - difference between positions of same feature or object depicted in stereoscopic images produced by two side-by-side cameras aimed in parallel. Magnitude of binocular disparity used to estimate distance from cameras to feature or object. In one potential application, cameras charge-coupled-device video cameras in robotic vision system, and binocular disparities and distance estimates used as control inputs - for example, to control approaches to objects manipulated or to maintain safe distances from obstacles. Binocular disparities determined from phases of discretized Gabor transforms.
Discretely holomorphic parafermions and integrable boundary conditions
NASA Astrophysics Data System (ADS)
Ikhlef, Yacine
2012-07-01
In two-dimensional statistical models possessing a discretely holomorphic parafermion, we introduce a modified discrete Cauchy-Riemann equation on the boundary of the domain, and we show that the solution of this equation yields integrable boundary Boltzmann weights. This approach is applied to (i) the square-lattice O(n) loop model, where the exact locations of the special and ordinary transitions are recovered, and (ii) the Fateev-Zamolodchikov {Z}_N spin model, where a new rotation-invariant, integrable boundary condition is discovered for generic N.
Discrete wavelength-locked external cavity laser
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)
2005-01-01
An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.
Fast Mix Table Construction for Material Discretization
Johnson, Seth R
2013-01-01
An effective hybrid Monte Carlo--deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a ``mix table,'' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table in $O(\\text{number of voxels}\\times \\log \\text{number of mixtures})$ time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation.
Teaching Discrete Mathematics with Graphing Calculators.
ERIC Educational Resources Information Center
Masat, Francis E.
Graphing calculator use is often thought of in terms of pre-calculus or continuous topics in mathematics. This paper contains examples and activities that demonstrate useful, interesting, and easy ways to use a graphing calculator with discrete topics. Examples are given for each of the following topics: functions, mathematical induction and…
Conjugacy classes in discrete Heisenberg groups
Budylin, R Ya
2014-08-01
We study an extension of a discrete Heisenberg group coming from the theory of loop groups and find invariants of conjugacy classes in this group. In some cases, including the case of the integer Heisenberg group, we make these invariants more explicit. Bibliography: 4 titles.
Discrete Gust Model for Launch Vehicle Assessments
NASA Technical Reports Server (NTRS)
Leahy, Frank B.
2008-01-01
Analysis of spacecraft vehicle responses to atmospheric wind gusts during flight is important in the establishment of vehicle design structural requirements and operational capability. Typically, wind gust models can be either a spectral type determined by a random process having a wide range of wavelengths, or a discrete type having a single gust of predetermined magnitude and shape. Classical discrete models used by NASA during the Apollo and Space Shuttle Programs included a 9 m/sec quasi-square-wave gust with variable wavelength from 60 to 300 m. A later study derived discrete gust from a military specification (MIL-SPEC) document that used a "1-cosine" shape. The MIL-SPEC document contains a curve of non-dimensional gust magnitude as a function of non-dimensional gust half-wavelength based on the Dryden spectral model, but fails to list the equation necessary to reproduce the curve. Therefore, previous studies could only estimate a value of gust magnitude from the curve, or attempt to fit a function to it. This paper presents the development of the MIL-SPEC curve, and provides the necessary information to calculate discrete gust magnitudes as a function of both gust half-wavelength and the desired probability level of exceeding a specified gust magnitude.
Geometry of Discrete-Time Spin Systems
NASA Astrophysics Data System (ADS)
McLachlan, Robert I.; Modin, Klas; Verdier, Olivier
2016-10-01
Classical Hamiltonian spin systems are continuous dynamical systems on the symplectic phase space (S^2)^n. In this paper, we investigate the underlying geometry of a time discretization scheme for classical Hamiltonian spin systems called the spherical midpoint method. As it turns out, this method displays a range of interesting geometrical features that yield insights and sets out general strategies for geometric time discretizations of Hamiltonian systems on non-canonical symplectic manifolds. In particular, our study provides two new, completely geometric proofs that the discrete-time spin systems obtained by the spherical midpoint method preserve symplecticity. The study follows two paths. First, we introduce an extended version of the Hopf fibration to show that the spherical midpoint method can be seen as originating from the classical midpoint method on T^*{R}^{2n} for a collective Hamiltonian. Symplecticity is then a direct, geometric consequence. Second, we propose a new discretization scheme on Riemannian manifolds called the Riemannian midpoint method. We determine its properties with respect to isometries and Riemannian submersions, and, as a special case, we show that the spherical midpoint method is of this type for a non-Euclidean metric. In combination with Kähler geometry, this provides another geometric proof of symplecticity.
A deterministic discrete ordinates transport proxy application
2014-06-03
Kripke is a simple 3D deterministic discrete ordinates (Sn) particle transport code that maintains the computational load and communications pattern of a real transport code. It is intended to be a research tool to explore different data layouts, new programming paradigms and computer architectures.
Analysis hierarchical model for discrete event systems
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2015-11-01
The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.
Kinematics of foldable discrete space cranes
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.
1985-01-01
Exact kinematic description of a NASA proposed prototype foldable-deployable discrete space crane are presented. A computer program is developed which maps the geometry of the crane once controlling parameters are specified. The program uses a building block type approach in which it calculates the local coordinates of each repeating cell and then combines them with respect to a global coordinates system.
Discrete Resource Allocation in Visual Working Memory
ERIC Educational Resources Information Center
Barton, Brian; Ester, Edward F.; Awh, Edward
2009-01-01
Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand, flexible resource models suggest that capacity is determined by a central resource pool that can be flexibly divided such that items of greater complexity receive a larger share of resources. On the other hand, if capacity in working memory is…
Stable discrete representation of relativistically drifting plasmas
NASA Astrophysics Data System (ADS)
Kirchen, M.; Lehe, R.; Godfrey, B. B.; Dornmair, I.; Jalas, S.; Peters, K.; Vay, J.-L.; Maier, A. R.
2016-10-01
Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-In-Cell algorithm that is intrinsically free of the numerical Cherenkov instability for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.
Weight discretization paradigm for optical neural networks
NASA Astrophysics Data System (ADS)
Fiesler, Emile; Choudry, Amar; Caulfield, H. John
1990-08-01
Neural networks are a primary candidate architecture for optical computing. One of the major problems in using neural networks for optical computers is that the information holders: the interconnection strengths (or weights) are normally real valued (continuous), whereas optics (light) is only capable of representing a few distinguishable intensity levels (discrete). In this paper a weight discretization paradigm is presented for back(ward error) propagation neural networks which can work with a very limited number of discretization levels. The number of interconnections in a (fully connected) neural network grows quadratically with the number of neurons of the network. Optics can handle a large number of interconnections because of the fact that light beams do not interfere with each other. A vast amount of light beams can therefore be used per unit of area. However the number of different values one can represent in a light beam is very limited. A flexible, portable (machine independent) neural network software package which is capable of weight discretization, is presented. The development of the software and some experiments have been done on personal computers. The major part of the testing, which requires a lot of computation, has been done using a CRAY X-MP/24 super computer.
Web-Based Implementation of Discrete Mathematics
ERIC Educational Resources Information Center
Love, Tanzy; Keinert, Fritz; Shelley, Mack
2006-01-01
The Department of Mathematics at Iowa State University teaches a freshman-level Discrete Mathematics course with total enrollment of about 1,800 students per year. The traditional format includes large lectures, with about 150 students each, taught by faculty and temporary instructors in two class sessions per week and recitation sections, with…
Discrete Events as Units of Perceived Time
ERIC Educational Resources Information Center
Liverence, Brandon M.; Scholl, Brian J.
2012-01-01
In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…
Models for neutrino mass with discrete symmetries
NASA Astrophysics Data System (ADS)
Morisi, S.
2011-08-01
Discrete non-abelian flavor symmetries give in a natural way tri-bimaximal (TBM) mixing as showed in a prototype model. However neutrino mass matrix pattern may be very different from the tri-bimaximal one if small deviations of TBM will be observed. We give the result of a model independent analysis for TBM neutrino mass pattern.
Discrete ordinates methods in xy geometry with spatially varying angular discretization
Bal, G.; Warin, X.
1997-10-01
The efficiency of a new quadrature rule adapted to the numerical resolution of a neutron transport problem in xy geometry is presented based on the use of the discrete ordinates method for the angular variable. The purpose of introducing this quadrature rule is to couple two different angular discretizations used on two nonoverlapping subdomains, which is useful for performing local refinement. This coupling and some numerical results of source problems are presented.
Discrete photonics resonator in coupled waveguide arrays.
Plougonven, Nadia Belabas; Minot, Christophe; Bouwmans, Géraud; Levenson, Ariel; Moison, Jean-Marie
2014-05-19
We demonstrate both theoretically and experimentally that discrete diffraction resonance can be designed, fabricated, and successfully probed in functionalized - guidonic - coupled waveguide arrays. We evidence that double-barrier patterning of the coupling creates wavelength-independent angular tunnel resonance in the transmitted and the reflected intensity of light beams freely propagating in the plane of the array. Transmission peaks obtained are associated with resonant excitation of the engineered array bound supermodes of the functionalized array, in agreement with accurate and practical numerical modeling based on extended coupled-mode theory. The linear operation of the guidonic resonant tunneling double barrier makes up an original resonator for discrete photonics, suitable for all-optical control of light.
Hydraulically controlled discrete sampling from open boreholes
Harte, Philip T.
2013-01-01
Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.
Polarized pulse waves in random discrete scatterers.
Ishimaru, A; Jaruwatanadilok, S; Kuga, Y
2001-10-20
In recent years there has been increasing interest in the use of polarization for imaging objects in a cluttered environment. Examples are optical imaging through clouds, optical detection of objects in a biological medium, and microwave detection of objects in clutter. We extend previous studies of continuous-wave scattering to pulse-polarization scattering in discrete scatterers. We solve the time-dependent vector radiative transfer equation for a plane-parallel medium by using Mie scattering and the discrete ordinates method. The time-dependent degree of polarization and cross-polarization discrimination are calculated and verify the advantages of circular over linear polarization in maintaining greater copolarized components rather than cross-polarized components.
Optimal Discretization Resolution in Algebraic Image Reconstruction
NASA Astrophysics Data System (ADS)
Sharif, Behzad; Kamalabadi, Farzad
2005-11-01
In this paper, we focus on data-limited tomographic imaging problems where the underlying linear inverse problem is ill-posed. A typical regularized reconstruction algorithm uses algebraic formulation with a predetermined discretization resolution. If the selected resolution is too low, we may loose useful details of the underlying image and if it is too high, the reconstruction will be unstable and the representation will fit irrelevant features. In this work, two approaches are introduced to address this issue. The first approach is using Mallow's CL method or generalized cross-validation. For each of the two methods, a joint estimator of regularization parameter and discretization resolution is proposed and their asymptotic optimality is investigated. The second approach is a Bayesian estimator of the model order using a complexity-penalizing prior. Numerical experiments focus on a space imaging application from a set of limited-angle tomographic observations.
Semi-Discrete Ingham-Type Inequalities
Komornik, Vilmos Loreti, Paola
2007-03-15
One of the general methods in linear control theory is based on harmonic and non-harmonic Fourier series. The key of this approach is the establishment of various suitable adaptations and generalizations of the classical Parseval equality. A new and systematic approach was begun in our papers in collaboration with Baiocchi. Many recent results of this kind, obtained through various Ingham-type theorems, were exposed recently. Although this work concentrated on continuous models, in connection with numerical simulations a natural question is whether these results also admit useful discrete versions. The purpose of this paper is to establish discrete versions of various Ingham-type theorems by using our approach. They imply the earlier continuous results by a simple limit process.
Discrete Abelian gauge symmetries and axions
NASA Astrophysics Data System (ADS)
Honecker, Gabriele; Staessens, Wieland
2015-07-01
We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.
Fluid Coupling in a Discrete Cochlear Model
NASA Astrophysics Data System (ADS)
Elliott, S. J.; Lineton, B.; Ni, G.
2011-11-01
The interaction between the basilar membrane, BM, dynamics and the fluid coupling in the cochlea can be formulated using a discrete model by assuming that the BM is divided into a number of longitudinal elements. The form of the fluid coupling can then be understood by dividing it into a far field component, due to plane wave acoustic coupling, and a near field component, due to higher order evanescent acoustic modes. The effects of non-uniformity and asymmetry in the cross-sectional areas of the fluid chambers can also be accounted for within this formulation. The discrete model is used to calculate the effect on the coupled BM response of a short cochlear implant, which reduces the volume of one of the fluid chambers over about half its length. The passive response of the coupled cochlea at lower frequencies is shown to be almost unaffected by this change in volume.
Degeneracy and discreteness in cosmological model fitting
NASA Astrophysics Data System (ADS)
Teng, Huan-Yu; Huang, Yuan; Zhang, Tong-Jie
2016-03-01
We explore the problems of degeneracy and discreteness in the standard cosmological model (ΛCDM). We use the Observational Hubble Data (OHD) and the type Ia supernovae (SNe Ia) data to study this issue. In order to describe the discreteness in fitting of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way of model differentiation when using different models to fit the observational data.
Multiple Autonomous Discrete Event Controllers for Constellations
NASA Technical Reports Server (NTRS)
Esposito, Timothy C.
2003-01-01
The Multiple Autonomous Discrete Event Controllers for Constellations (MADECC) project is an effort within the National Aeronautics and Space Administration Goddard Space Flight Center's (NASA/GSFC) Information Systems Division to develop autonomous positioning and attitude control for constellation satellites. It will be accomplished using traditional control theory and advanced coordination algorithms developed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). This capability will be demonstrated in the discrete event control test-bed located at JHU/APL. This project will be modeled for the Leonardo constellation mission, but is intended to be adaptable to any constellation mission. To develop a common software architecture. the controllers will only model very high-level responses. For instance, after determining that a maneuver must be made. the MADECC system will output B (Delta)V (velocity change) value. Lower level systems must then decide which thrusters to fire and for how long to achieve that (Delta)V.
On Discrete Lotka-Volterra Type Models
NASA Astrophysics Data System (ADS)
Mukhamedov, Farrukh; Saburov, Mansoor
The Lotka-Volterra (in short LV) model is a second order nonlinear differential equation frequently used to describe the dynamics of biological systems in which two groups of species, predators and their preys interact. One of the basic results of the LV model is that under suitable conditions the LV model can exhibit any asymptotical behavior such as equilibrium states, periodic cycles, and attractors. The discrete analogy of LV model has been considered by many researchers and has been called a quadratic LV model. In a discrete case, one of the unexpected results is that a quadratic LV model cannot exhibit a periodic cycle. In this paper we study nonlinear LV type models which include quadratic LV as a particular case. Unlike quadratic LV models, LV type models can exhibit any asymptotical behavior such as equilibrium states, periodic cycles, and attractors.
Is Discrete Mathematics the New Math of the Eighties?
ERIC Educational Resources Information Center
Hart, Eric W.
1985-01-01
Considered are what discrete mathematics includes, some parallels and differences between new math and discrete mathematics (listed in a table), and lessons to be learned. A list of references is included. (MNS)
Program For Parallel Discrete-Event Simulation
NASA Technical Reports Server (NTRS)
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
Discrete sequence prediction and its applications
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
Learning from experience to predict sequences of discrete symbols is a fundamental problem in machine learning with many applications. We apply sequence prediction using a simple and practical sequence-prediction algorithm, called TDAG. The TDAG algorithm is first tested by comparing its performance with some common data compression algorithms. Then it is adapted to the detailed requirements of dynamic program optimization, with excellent results.
Discrete Bimodal Probes for Thrombus Imaging
Uppal, Ritika; Ciesienski, Kate L.; Chonde, Daniel B.; Loving, Galen S.; Caravan, Peter
2012-01-01
Here we report a generalizable solid/solution phase strategy for the synthesis of discrete bimodal fibrin-targeted imaging probes. A fibrin-specific peptide was conjugated with two distinct imaging reporters at the C- and N-terminus. In vitro studies demonstrated retention of fibrin affinity and specificity. Imaging studies showed that these probes could detect fibrin over a wide range of probe concentrations by optical, magnetic resonance, and positron emission tomography imaging. PMID:22698259
Joint discrete universality of Hurwitz zeta functions
Laurinčikas, A
2014-11-30
We obtain a joint discrete universality theorem for Hurwitz zeta functions. Here the parameters of zeta functions and the step of shifts of these functions approximating a given family of analytic functions are connected by some condition of linear independence. Nesterenko's theorem gives an example satisfying this condition. The universality theorem is applied to estimate the number of zeros of a linear combination of Hurwitz zeta functions. Bibliography: 20 titles.
DOS: the discrete-ordinates system. [LMFBR
Rhoades, W. A.; Emmett, M. B.
1982-09-01
The Discrete Ordinates System determines the flux of neutrons or photons due either to fixed sources specified by the user or to sources generated by particle interaction with the problem materials. It also determines numerous secondary results which depend upon flux. Criticality searches can be performed. Numerous input, output, and file manipulation facilities are provided. The DOS driver program reads the problem specification from an input file and calls various program modules into execution as specified by the input file.
The discrete-time compensated Kalman filter
NASA Technical Reports Server (NTRS)
Lee, W.-H.; Athans, M.
1979-01-01
A suboptimal dynamic compensator to be used in conjunction with the ordinary discrete-time Kalman filter is derived. The resultant compensated Kalman filter has the property that steady-state bias estimation errors, resulting from modelling errors, are eliminated. The implementation of the compensated Kalman filter involves the use of accumulators in the residual channels in addition to the nominal dynamic model of the stochastic system.
Symmetric extensions of normal discrete velocity models
NASA Astrophysics Data System (ADS)
Bobylev, A. V.; Vinerean, M. C.
2012-11-01
In this paper we discuss a general problem related to spurious conservation laws for discrete velocity models (DVMs) of the classical (elastic) Boltzmann equation. Models with spurious conservation laws appeared already at the early stage of the development of discrete kinetic theory. The well-known theorem of uniqueness of collision invariants for the continuous velocity space very often does not hold for a set of discrete velocities. In our previous works we considered the general problem of the construction of normal DVMs, we found a general algorithm for the construction of all such models and presented a complete classification of normal DVMs with small number n of velocities (n<11). Even if we have a general method to classify all normal discrete kinetic models (and in particular DVMs), the existing method is relatively slow and the amount of possible cases to check increases rapidly with n. We remarked that many of our normal DVMs appear to be axially symmetric. In this paper we consider a connection between symmetric transformations and normal DVMs. We first develop a new inductive method that, starting with a given normal DVM, leads by symmetric extensions to a new normal DVM. This method can produce very fast many new normal DVMs with larger number of velocities, showing that the class of normal DVMs contains a large subclass of symmetric models. We finally apply the method to several normal DVMs and construct new models that are not only normal, but also symmetric relatively to more and more axes. We hope that such symmetric velocity sets can be used for DSMC methods of solving Boltzmann equation.
Continuous limit of discrete quantum walks
NASA Astrophysics Data System (ADS)
M N, Dheeraj; Brun, Todd A.
2015-06-01
Quantum walks can be defined in two quite distinct ways: discrete-time and continuous-time quantum walks (DTQWs and CTQWs). For classical random walks, there is a natural sense in which continuous-time walks are a limit of discrete-time walks. Quantum mechanically, in the discrete-time case, an additional "coin space" must be appended for the walk to have nontrivial time evolution. Continuous-time quantum walks, however, have no such constraints. This means that there is no completely straightforward way to treat a CTQW as a limit of a DTQW, as can be done in the classical case. Various approaches to this problem have been taken in the past. We give a construction for walks on d -regular, d -colorable graphs when the coin flip operator is Hermitian: from a standard DTQW we construct a family of discrete-time walks with a well-defined continuous-time limit on a related graph. One can think of this limit as a "coined" continuous-time walk. We show that these CTQWs share some properties with coined DTQWs. In particular, we look at a spatial search by a DTQW over the two-dimensional (2D) torus (a grid with periodic boundary conditions) of size √{N }×√{N } , where it was shown that a coined DTQW can search in time O (√{N }logN ) , but a standard CTQW takes Ω (N ) time to search for a marked element. The continuous limit of the DTQW search over the 2D torus exhibits the O (√{N }logN ) scaling, like the coined walk it is derived from. We also look at the effects of graph symmetry on the limiting walk, and show that the properties are similar to those of the DTQW as shown in Krovi and Brun, Phys. Rev. A 75, 062332 (2007), 10.1103/PhysRevA.75.062332.
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
An essay on discrete foundations for physics
Noyes, H.P.; McGoveran, D.O.
1988-07-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
Dynamical properties of Discrete Reaction Networks.
Paulevé, Loïc; Craciun, Gheorghe; Koeppl, Heinz
2014-07-01
Reaction networks are commonly used to model the dynamics of populations subject to transformations that follow an imposed stoichiometry. This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic transitions of stochastic models of reaction networks. In that sense, a proof of non-reachability in a given DRN has immediate implications for any concrete stochastic model based on that DRN, independent of the choice of kinetic laws and constants. Moreover, if we assume that stochastic kinetic rates are given by the mass-action law (or any other kinetic law that gives non-vanishing probability to each reaction if the required number of interacting substrates is present), then reachability properties are equivalent in the two settings. The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e., the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return to any initial state. Our results consider both the verification of such properties when species are present in a large copy number, and in the general case. The necessary and sufficient conditions obtained involve algebraic conditions on the network reactions which in most cases can be verified using linear programming. Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of stochastic and continuous models of reaction networks is discussed.
Quantum cosmology based on discrete Feynman paths
Chew, Geoffrey F.
2002-10-10
Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''.
Police investigations: discretion denied yet undeniably exercised
Belur, J.; Tilley, N.; Osrin, D.; Daruwalla, N.; Kumar, M.; Tiwari, V.
2014-01-01
Police investigations involve determining whether a crime has been committed, and if so what type of crime, who has committed it and whether there is the evidence to charge the perpetrators. Drawing on fieldwork in Delhi and Mumbai, this paper explores how police investigations unfolded in the specific context of women’s deaths by burning in India. In particular, it focuses on the use of discretion despite its denial by those exercising it. In India, there are distinctive statutes relating to women’s suspicious deaths, reflecting the widespread expectation that the bride’s family will pay a dowry to the groom’s family and the tensions to which this may on occasion give rise in the early years of a marriage. Often, there are conflicting claims influencing how the woman’s death is classified. These in turn affect police investigation. The nature and direction of police discretion in investigating women’s deaths by burning reflect in part the unique nature of the legislation and the particular sensitivities in relation to these types of death. They also highlight processes that are liable to be at work in any crime investigation. It was found that police officers exercised unacknowledged discretion at seven specific points in the investigative process, with potentially significant consequences for the achievement of just outcomes: first response, recording the victim’s ‘dying declaration’, inquest, registering of the ‘First Information Report’, collecting evidence, arrest and framing of the charges. PMID:26376482
An essay on discrete foundations for physics
Noyes, H.P.; McGoveran, D.O.
1988-10-05
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
Light Adaptation of Discrete Waves in the Limulus Photoreceptor
Srebro, Richard; Behbehani, Mahmood
1972-01-01
Light adaptation affects discrete waves in two ways. It reduces their average size and decreases the probability that a photon incident at the cornea causes a discrete wave. There is no effect of light adaptation on the latency of discrete waves, or on their time-course. PMID:5042025
Breaking and Restoring of Diffeomorphism Symmetry in Discrete Gravity
Bahr, B.; Dittrich, B.
2009-12-15
We discuss the fate of diffeomorphism symmetry in discrete gravity. Diffeomorphism symmetry is typically broken by the discretization. This has repercussions for the observable content and the canonical formulation of the theory. It might however be possible to construct discrete actions, so-called perfect actions, with exact symmetries and we will review first steps towards this end.
Fluctuations and discreteness in diffusion limited growth
NASA Astrophysics Data System (ADS)
Devita, Jason P.
This thesis explores the effects of fluctuations and discreteness on the growth of physical systems where diffusion plays an important role. It focuses on three related problems, all dependent on diffusion in a fundamental way, but each with its own unique challenges. With diffusion-limited aggregation (DLA), the relationship between noisy and noise-free Laplacian growth is probed by averaging the results of noisy growth. By doing so in a channel geometry, we are able to compare to known solutions of the noise-free problem. We see that while the two are comparable, there are discrepancies which are not well understood. In molecular beam epitaxy (MBE), we create efficient computational algorithms, by replacing random walkers (diffusing atoms) with approximately equivalent processes. In one case, the atoms are replaced by a continuum field. Solving for the dynamics of the field yields---in an average sense---the dynamics of the atoms. In the other case, the atoms are treated as individual random-walking particles, but the details of the dynamics are changed to an (approximately) equivalent set of dynamics. This approach involves allowing adatoms to take long hops. We see approximately an order of magnitude speed up for simulating island dynamics, mound growth, and Ostwald ripening. Some ideas from the study of MBE are carried over to the study of front propagation in reaction-diffusion systems. Many of the analytic results about front propagation are derived from continuum models. It is unclear, however, that these results accurately describe the properties of a discrete system. It is reasonable to think that discrete systems will converge to the continuum results when sufficiently many particles are included. However, computational evidence of this is difficult to obtain, since the interesting properties tend to depend on a power law of the logarithm of the number of particles. Thus, the number of particles included in simulations must be exceedingly large. By
Constitutive equations for discrete electromagnetic problems over polyhedral grids
Codecasa, Lorenzo . E-mail: codecasa@elet.polimi.it; Trevisan, Francesco . E-mail: trevisan@uniud.it
2007-08-10
In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field.
Projected discrete ordinates methods for numerical transport problems
Larsen, E.W.
1985-01-01
A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.
Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra
NASA Astrophysics Data System (ADS)
Rezakhah, Saeid; Maleki, Yasaman
2016-07-01
Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.
Interventional tool tracking using discrete optimization.
Heibel, Hauke; Glocker, Ben; Groher, Martin; Pfister, Marcus; Navab, Nassir
2013-03-01
This work presents a novel scheme for tracking of motion and deformation of interventional tools such as guide-wires and catheters in fluoroscopic X-ray sequences. Being able to track and thus to estimate the correct positions of these tools is crucial in order to offer guidance enhancement during interventions. The task of estimating the apparent motion is particularly challenging due to the low signal-to-noise ratio (SNR) of fluoroscopic images and due to combined motion components originating from patient breathing and tool interactions performed by the physician. The presented approach is based on modeling interventional tools with B-splines whose optimal configuration of control points is determined through efficient discrete optimization. Each control point corresponds to a discrete random variable in a Markov random field (MRF) formulation where a set of labels represents the deformation space. In this context, the optimal curve corresponds to the maximum a posteriori (MAP) estimate of the MRF energy. The main motivation for employing a discrete approach is the possibility to incorporate a multi-directional search space which is robust to local minima. This is of particular interest for curve tracking under large deformation. This work analyzes feasibility of employing efficient first-order MRFs for tracking. In particular it shows how to achieve a good compromise between energy approximations and computational efficiency. Experimental results suggest to define both the external and internal energy in terms of pairwise potential functions. The method was successfully applied to the tracking of guide-wires in fluoroscopic X-ray sequences of several hundred frames which requires extremely robust techniques. Comparisons with state-of-the-art guide-wire tracking algorithms confirm the effectiveness of the proposed method. PMID:23232412
Construction of Discrete Time Shadow Price
Rogala, Tomasz Stettner, Lukasz
2015-12-15
In the paper expected utility from consumption over finite time horizon for discrete time markets with bid and ask prices and strictly concave utility function is considered. The notion of weak shadow price, i.e. an illiquid price, depending on the portfolio, under which the model without bid and ask price is equivalent to the model with bid and ask price is introduced. Existence and the form of weak shadow price is shown. Using weak shadow price usual (called in the paper strong) shadow price is then constructed.
Optical tomography with discretized path integral
Yuan, Bingzhi; Tamaki, Toru; Kushida, Takahiro; Mukaigawa, Yasuhiro; Kubo, Hiroyuki; Raytchev, Bisser; Kaneda, Kazufumi
2015-01-01
Abstract. We present a framework for optical tomography based on a path integral. Instead of directly solving the radiative transport equations, which have been widely used in optical tomography, we use a path integral that has been developed for rendering participating media based on the volume rendering equation in computer graphics. For a discretized two-dimensional layered grid, we develop an algorithm to estimate the extinction coefficients of each voxel with an interior point method. Numerical simulation results are shown to demonstrate that the proposed method works well. PMID:26839903
Proportional hazards models with discrete frailty.
Caroni, Chrys; Crowder, Martin; Kimber, Alan
2010-07-01
We extend proportional hazards frailty models for lifetime data to allow a negative binomial, Poisson, Geometric or other discrete distribution of the frailty variable. This might represent, for example, the unknown number of flaws in an item under test. Zero frailty corresponds to a limited failure model containing a proportion of units that never fail (long-term survivors). Ways of modifying the model to avoid this are discussed. The models are illustrated on a previously published set of data on failures of printed circuit boards and on new data on breaking strengths of samples of cord.
Scalable networks for discrete quantum random walks
Fujiwara, S.; Osaki, H.; Buluta, I.M.; Hasegawa, S.
2005-09-15
Recently, quantum random walks (QRWs) have been thoroughly studied in order to develop new quantum algorithms. In this paper we propose scalable quantum networks for discrete QRWs on circles, lines, and also in higher dimensions. In our method the information about the position of the walker is stored in a quantum register and the network consists of only one-qubit rotation and (controlled){sup n}-NOT gates, therefore it is purely computational and independent of the physical implementation. As an example, we describe the experimental realization in an ion-trap system.
Compartmentalization analysis using discrete fracture network models
La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Partitioning technique for discrete quantum systems
Jin, L.; Song, Z.
2011-06-15
We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.
Discrete quantum spectrum of black holes
NASA Astrophysics Data System (ADS)
Lochan, Kinjalk; Chakraborty, Sumanta
2016-04-01
The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.
Compressor Stability Enhancement Using Discrete Tip Injection
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Hathaway, Michael D.; Thorp, Scott A.; Strazisar, Anthony J.; Bright, Michelle B.
2001-01-01
Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing small in tip-critical rotors. This process is examined in a transonic axial compressor rotor through experiments and time-averaged Navier-Stokes CFD simulations. Measurements and simulations for discrete injection are presented for a range of injection rates and distributions of injectors around the annulus. The simulations indicate that tip injection increases stability by unloading the rotor tip and that increasing injection velocity improves the effectiveness of tip injection. For the tested rotor, experimental results demonstrate that at 70 percent speed the stalling flow coefficient can be reduced by 30 percent using an injected mass- flow equivalent to 1 percent of the annulus flow. At design speed, the stalling flow coefficient was reduced by 6 percent using an injected mass-fiow equivalent to 2 percent of the annulus flow. The experiments show that stability enhancement is related to the mass-averaged axial velocity at the tip. For a given injected mass-flow, the mass-averaged axial velocity at the tip is increased by injecting flow over discrete portions of the circumference as opposed to full-annular injection. The implications of these results on the design of recirculating casing treatments and other methods to enhance stability will be discussed.
A Family of Discrete Magnetically Switchable Nanoballs
Duriska, Martin B.; Neville, Suzanne M.; Moubaraki, Boujemaa; Murray, Keith S.; Balde, Chérif; Létard, Jean-François; Kepert, Cameron J.; Batten, Stuart R.
2012-08-01
The thermal and light-induced magnetic properties of a family of discrete magnetically switchable 'nanoball' species (3 nm in diameter) is reported. The self-assembly of these materials is accomplished by the use of the metallo building block, [Cu([Tp{sup 4-py}])(NCCH{sub 3})] ([Tp{sup 4-py}]=tris-[3-(4{prime}-pyridyl)pyrazol-1-yl]hydroborate), combined with a [Fe(NCX){sub 2}] (X = S, Se and BH{sub 3}) species. We previously showed that the thiocyanate analogue (Fe(NCS)-nano) undergoes a thermal and light-induced spin crossover (SCO) - the largest such discrete SCO material reported. Now included in this family are the Se and BH{sub 3} analogues, Fe(NCSe)-nano and Fe(NCBH{sub 3})-nano, which show increased thermal transition temperatures (T{sub 1/2} = 124 K, 162 and 173 K). This variation in transition temperature over the series S < Se < BH{sub 3} results in diverse photomagnetic properties, such that the light-induced excited spin state trapping (LIESST) effect is exhibited to varying degrees and at different temperatures by the S, Se and BH{sub 3} analogues.
Analysis of discretization errors in LES
NASA Technical Reports Server (NTRS)
Ghosal, Sandip
1995-01-01
All numerical simulations of turbulence (DNS or LES) involve some discretization errors. The integrity of such simulations therefore depend on our ability to quantify and control such errors. In the classical literature on analysis of errors in partial differential equations, one typically studies simple linear equations (such as the wave equation or Laplace's equation). The qualitative insight gained from studying such simple situations is then used to design numerical methods for more complex problems such as the Navier-Stokes equations. Though such an approach may seem reasonable as a first approximation, it should be recognized that strongly nonlinear problems, such as turbulence, have a feature that is absent in linear problems. This feature is the simultaneous presence of a continuum of space and time scales. Thus, in an analysis of errors in the one dimensional wave equation, one may, without loss of generality, rescale the equations so that the dependent variable is always of order unity. This is not possible in the turbulence problem since the amplitudes of the Fourier modes of the velocity field have a continuous distribution. The objective of the present research is to provide some quantitative measures of numerical errors in such situations. Though the focus of this work is LES, the methods introduced here can be just as easily applied to DNS. Errors due to discretization of the time-variable are neglected for the purpose of this analysis.
A Discrete Model for Color Naming
NASA Astrophysics Data System (ADS)
Menegaz, G.; Le Troter, A.; Sequeira, J.; Boi, J. M.
2006-12-01
The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the membership values of any other point in the color space. Model validation is performed both directly, through the comparison of the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), and indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically meaningful color-based segmentation map.
Discrete Bubble Modeling for Cavitation Bubbles
NASA Astrophysics Data System (ADS)
Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung
2007-03-01
Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.
Discrete elements for 3D microfluidics.
Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah
2014-10-21
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
Is power grasping contact continuous or discrete?
Pataky, Todd C.; Slota, Greg P.; Latash, Mark L.; Zatsiorsky, Vladimir M.
2014-01-01
During power grasp the number of local force maxima reflects either the central nervous system’s preferential use of particular hand regions, or anatomical constraints, or both. Previously both biomdal and trimodal force maxima have been hypothesized for power grasp of a cylindrical handle. Here we measure the number of local force maxima, with a resolution of 4.8°, when performing pushing and pulling efforts in the plane perpendicular to the cylinder’s long axis. Twelve participants produced external forces to eight targets. The number of contacts was defined as the number of local maxima exceeding background variance. A minimum of four and a maximum of five discrete contacts were observed in all subjects at the distal phalanges and metacarpal heads. We thus reject previous hypotheses of bimodal or trimodal force control for cylindrical power grasping. Since we presently observed only 4–5 contacts, which is rather low considering the hand’s kinematic flexibility in the flexion plane, we also reject hypotheses of continuous contact, which are inherent to current grasping taxonomy. A modification to current grasping taxonomy is proposed wherein power grasp contains separate branches for continuous and discrete contacts, and where power and precision grasps are distinguished only by grasp manipulability. PMID:23271322
Is power grasping contact continuous or discrete?
Pataky, Todd C; Slota, Greg P; Latash, Mark L; Zatsiorsky, Vladimir M
2013-10-01
During power grasp, the number of local force maxima reflects either the central nervous system's preferential use of particular hand regions, or anatomical constraints, or both. Previously, both bimodal and trimodal force maxima have been hypothesized for power grasp of a cylindrical handle. Here we measure the number of local force maxima, with a resolution of 4.8°, when performing pushing and pulling efforts in the plane perpendicular to the cylinder's long axis. Twelve participants produced external forces to eight targets. The number of contacts was defined as the number of local maxima exceeding background variance. A minimum of four and a maximum of five discrete contacts were observed in all subjects at the distal phalanges and metacarpal heads. We thus reject previous hypotheses of bimodal or trimodal force control for cylindrical power grasping. Since we presently observed only 4-5 contacts, which is rather low considering the hand's kinematic flexibility in the flexion plane, we also reject hypotheses of continuous contact, which are inherent to current grasping taxonomy. A modification to current grasping taxonomy is proposed wherein power grasp contains separate branches for continuous and discrete contacts, and where power and precision grasps are distinguished only by grasp manipulability. PMID:23271322
Pattern Formation in Spatially Discrete Systems
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Fedotov, Sergei; Horsthemke, Werner
The preceding chapters have dealt with the spatiotemporal behavior of spatially continuous systems. We now turn our attention to the dynamical behavior and stability properties of spatially discrete systems. A wide variety of phenomena in chemistry, biology, physics, and other fields involve the coupling between nonlinear, discrete units. Examples include arrays of Josephson junctions, chains of coupled diode resonators, coupled chemical or biochemical reactors, myelinated nerve fibers, neuronal networks, and patchy ecosystems. Such networks of coupled nonlinear units often combine dynamical and structural complexity [422]. Cells in living tissues, for example, are arranged in a variety of geometries. One-dimensional rings of cells were already considered by Turing [440]. Other types of lattices, such as open-ended linear arrays, tubes, rectangular and hexagonal arrays, and irregular arrangements in two or three dimensions are also found, see for example [5]. Cells interact with adjacent cells in various distinct ways. For example, signaling between cells may occur via diffusion through gap junctions [352, 230] or by membrane-bound proteins, juxtacrine signaling [339, 340, 471].
Harmonic Pinnacles in the Discrete Gaussian Model
NASA Astrophysics Data System (ADS)
Lubetzky, Eyal; Martinelli, Fabio; Sly, Allan
2016-06-01
The 2 D Discrete Gaussian model gives each height function {η : {mathbb{Z}^2tomathbb{Z}}} a probability proportional to {exp(-β mathcal{H}(η))}, where {β} is the inverse-temperature and {mathcal{H}(η) = sum_{x˜ y}(η_x-η_y)^2} sums over nearest-neighbor bonds. We consider the model at large fixed {β}, where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an {L× L} box with 0 boundary conditions concentrates on two integers M, M + 1 with {M˜ √{(1/2πβ)log Lloglog L}}. The key is a large deviation estimate for the height at the origin in {mathbb{Z}2}, dominated by "harmonic pinnacles", integer approximations of a harmonic variational problem. Second, in this model conditioned on {η≥ 0} (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where {H˜ M/√{2}}. This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5-6):743-798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order {√{log L}}. Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.
Neutrino mass, mixing and discrete symmetries
NASA Astrophysics Data System (ADS)
Smirnov, Alexei Y.
2013-07-01
Status of the discrete symmetry approach to explanation of the lepton masses and mixing is summarized in view of recent experimental results, in particular, establishing relatively large 1-3 mixing. The lepton mixing can originate from breaking of discrete flavor symmetry Gf to different residual symmetries Gl and Gv in the charged lepton and neutrino sectors. In this framework the symmetry group condition has been derived which allows to get relations between the lepton mixing elements immediately without explicit model building. The condition has been applied to different residual neutrino symmetries Gv. For generic (mass independent) Gv = Z2 the condition leads to two relations between the mixing parameters and fixes one column of the mixing matrix. In the case of Gv = Z2 × Z2 the condition fixes the mixing matrix completely. The non-generic (mass spectrum dependent) Gv lead to relations which include mixing angles, neutrino masses and Majorana phases. The symmetries Gl, Gv, Gf are identified which lead to the experimentally observed values of the mixing angles and allow to predict the CP phase.
DelGrande, J. Mark; Mathews, Kirk A.
2001-09-15
Conventional discrete ordinates transport calculations often produce negative fluxes due to unphysical negative scattering cross sections and/or as artifacts of spatial differencing schemes such as diamond difference. Inherently nonnegative spatial methods, such as the nonlinear, exponential characteristic spatial quadrature, eliminate negative fluxes while providing excellent accuracy, presuming the group-to-group, ordinate-to-ordinate cross sections are all nonnegative. A hybrid approach is introduced in which the flow from spatial cell to spatial cell uses discrete ordinates spatial quadratures, while anisotropic scattering of flux from one energy-angle bin (energy group and discrete element of solid angle) to another such bin is modeled using a Monte Carlo simulation to evaluate the bin-to-bin cross sections. The directional elements tile the sphere of directions; the ordinates for the spatial quadrature are at the centroids of the elements. The method is developed and contrasted with previous schemes for positive cross sections. An algorithm for evaluating the Monte Carlo (MC)-discrete elements (MC-DE) cross sections is described, and some test cases are presented. Transport calculations using MC-DE cross sections are compared with calculations using conventional cross sections and with MCNP calculations. In this testing, the new method is about as accurate as the conventional approach, and often is more accurate. The exponential characteristic spatial quadrature, using the MC-DE cross sections, is shown to provide useful results where linear characteristic and spherical harmonics provide negative scalar fluxes in every cell in a region.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-05-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of
Joint probability distributions for projection probabilities of random orthonormal states
NASA Astrophysics Data System (ADS)
Alonso, L.; Gorin, T.
2016-04-01
The quantum chaos conjecture applied to a finite dimensional quantum system implies that such a system has eigenstates that show similar statistical properties as the column vectors of random orthogonal or unitary matrices. Here, we consider the different probabilities for obtaining a specific outcome in a projective measurement, provided the system is in one of its eigenstates. We then give analytic expressions for the joint probability density for these probabilities, with respect to the ensemble of random matrices. In the case of the unitary group, our results can be applied, also, to the phenomenon of universal conductance fluctuations, where the same mathematical quantities describe partial conductances in a two-terminal mesoscopic scattering problem with a finite number of modes in each terminal.
Variance Components in Discrete Force Production Tasks
SKM, Varadhan; Zatsiorsky, Vladimir M.; Latash, Mark L.
2010-01-01
The study addresses the relationships between task parameters and two components of variance, “good” and “bad”, during multi-finger accurate force production. The variance components are defined in the space of commands to the fingers (finger modes) and refer to variance that does (“bad”) and does not (“good”) affect total force. Based on an earlier study of cyclic force production, we hypothesized that speeding-up an accurate force production task would be accompanied by a drop in the regression coefficient linking the “bad” variance and force rate such that variance of the total force remains largely unaffected. We also explored changes in parameters of anticipatory synergy adjustments with speeding-up the task. The subjects produced accurate ramps of total force over different times and in different directions (force-up and force-down) while pressing with the four fingers of the right hand on individual force sensors. The two variance components were quantified, and their normalized difference was used as an index of a total force stabilizing synergy. “Good” variance scaled linearly with force magnitude and did not depend on force rate. “Bad” variance scaled linearly with force rate within each task, and the scaling coefficient did not change across tasks with different ramp times. As a result, a drop in force ramp time was associated with an increase in total force variance, unlike the results of the study of cyclic tasks. The synergy index dropped 100-200 ms prior to the first visible signs of force change. The timing and magnitude of these anticipatory synergy adjustments did not depend on the ramp time. Analysis of the data within an earlier model has shown adjustments in the variance of a timing parameter, although these adjustments were not as pronounced as in the earlier study of cyclic force production. Overall, we observed qualitative differences between the discrete and cyclic force production tasks: Speeding-up the cyclic
Beta oscillations define discrete perceptual cycles in the somatosensory domain
Baumgarten, Thomas J.; Schnitzler, Alfons; Lange, Joachim
2015-01-01
Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8–20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain. PMID:26324922
Discrete Constrained Lagrangian Systems and Geometric Constraint Stabilization
NASA Astrophysics Data System (ADS)
Yoshimura, Hiroaki; Yoshida, Azumi
2010-09-01
We develop discrete Lagrangian systems with holonomic constraints by employing the discrete Lagrange-d'Alembert principle, which was originally proposed by [5, 6]. Especially, we focus on the class of discrete holonomic Lagrangian systems in the context of the index 2 model, i.e., discrete Lagrange-d'Alembert equations with velocity-level constraints, while the lower index formulation may induce constraint violations called drift-off phenomena. So we incorporate geometric constraint stabilization proposed by [7, 8] into the discrete holonomic Lagrangian systems in order to avoid the constraint violations. We demonstrate numerical validity in making use of discrete Lagrange-d'Alembert equations for the index 2 model of holonomic mechanical systems with an illustrative example of linkage mechanisms.
An integrable semi-discretization of the Boussinesq equation
NASA Astrophysics Data System (ADS)
Zhang, Yingnan; Tian, Lixin
2016-10-01
In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the 'time' variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of 'good' Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.
The canonical Kravchuk basis for discrete quantum mechanics
NASA Astrophysics Data System (ADS)
Hakioglu, Tugrul; Wolf, Kurt Bernardo
2000-04-01
The well known Kravchuk formalism of the harmonic oscillator obtained from the direct discretization method is shown to be a new way of formulating discrete quantum phase space. It is shown that the Kravchuk oscillator Hamiltonian has a well defined unitary canonical partner which we identify with the quantum phase of the Kravchuk oscillator. The generalized discrete Wigner function formalism based on the action and angle variables is applied to the Kravchuk oscillator and its continuous limit is examined.
Stability of Discrete Stokes Operators in Fractional Sobolev Spaces
NASA Astrophysics Data System (ADS)
Guermond, Jean-Luc; Pasciak, Joseph E.
2008-11-01
Using a general approximation setting having the generic properties of finite-elements, we prove uniform boundedness and stability estimates on the discrete Stokes operator in Sobolev spaces with fractional exponents. As an application, we construct approximations for the time-dependent Stokes equations with a source term in L p (0, T; L q (Ω)) and prove uniform estimates on the time derivative and discrete Laplacian of the discrete velocity that are similar to those in Sohr and von Wahl [20].
Identification of parameters of discrete-continuous models
Cekus, Dawid Warys, Pawel
2015-03-10
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.
Cosmology of biased discrete symmetry breaking
NASA Technical Reports Server (NTRS)
Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.
1988-01-01
The cosmological consequences of spontaneous breaking of an approximate discrete symmetry are studied. The breaking leads to formation of proto-domains of false and true vacuum separated by domain walls of thickness determined by the mass scale of the model. The cosmological evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are possible, depending on the interplay between the surface tension on the walls and the volume pressure from the biasing. Walls may disappear almost immediately after they form, or may live long enough to dominate the energy density of the Universe and cause power-law inflation. Limits are obtained on the biasing that characterizes each possible scenario.
Item diagnostics in multivariate discrete data.
Maydeu-Olivares, Alberto; Liu, Yang
2015-06-01
Researchers who evaluate the fit of psychometric models to binary or multinomial items often look at univariate and bivariate residuals to determine how a poorly fitting model can be improved. There is a class of z statistics and also a class of generalized X₂ statistics that can be used for examining these marginal fits. We describe these statistics and compare them with regard to the control of Type I error and statistical power. We show how the class of z statistics can be extended to accommodate items with multinomial response options. We provide guidelines for the use of these statistics, including how to control for multiple testing, and present 2 detailed examples. Using the root mean square error of approximation (RMSEA) for discrete data to adjudge fit, the examples illustrate how the use of these methods can dramatically improve the fit of item response theory models to widely used measures in personality and clinical psychology. PMID:25867486
Quantum mechanical Hamiltonian models of discrete processes
Benioff, P.
1981-03-01
Here the results of other work on quantum mechanical Hamiltonian models of Turing machines are extended to include any discrete process T on a countably infinite set A. The models are constructed here by use of scattering phase shifts from successive scatterers to turn on successive step interactions. Also a locality requirement is imposed. The construction is done by first associating with each process T a model quantum system M with associated Hilbert space H/sub M/ and step operator U/sub T/. Since U/sub T/ is not unitary in general, M, H/sub M/, and U/sub T/ are extended into a (continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. The construction is compared with the minimal unitary dilation of U/sub T/. It is seen that the model constructed here is larger than the minimal one. However, the minimal one does not satisfy the locality requirement.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1977-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Entanglement swapping between discrete and continuous variables.
Takeda, Shuntaro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira
2015-03-13
We experimentally realize "hybrid" entanglement swapping between discrete-variable (DV) and continuous-variable (CV) optical systems. DV two-mode entanglement as obtainable from a single photon split at a beam splitter is robustly transferred by means of efficient CV entanglement and operations, using sources of squeezed light and homodyne detections. The DV entanglement after the swapping is verified without postselection by the logarithmic negativity of up to 0.28±0.01. Furthermore, our analysis shows that the optimally transferred state can be postselected into a highly entangled state that violates a Clauser-Horne-Shimony-Holt inequality by more than 4 standard deviations, and thus it may serve as a resource for quantum teleportation and quantum cryptography. PMID:25815914
Automatic Mesh Coarsening for Discrete Ordinates Codes
Turner, Scott A.
1999-03-11
This paper describes the use of a ''mesh potential'' function for automatic coarsening of meshes in discrete ordinates neutral particle transport codes. For many transport calculations, a user may find it helpful to have the code determine a ''good'' neutronics mesh. The complexity of a problem involving millions of mesh cells, dozens of materials, and many energy groups makes it difficult to determine an adequate level of mesh refinement with a minimum number of cells. A method has been implemented in PARTISN (Parallel Time-dependent SN) to calculate a ''mesh potential'' in each original cell of a problem, and use this information to determine the maximum coarseness allowed in the mesh while maintaining accuracy in the solution. Results are presented for a simple x-y-z fuel/control/reflector problem.
A discrete decentralized variable structure robotic controller
NASA Technical Reports Server (NTRS)
Tumeh, Zuheir S.
1989-01-01
A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for.
Belief-propagation reconstruction for discrete tomography
NASA Astrophysics Data System (ADS)
Gouillart, E.; Krzakala, F.; Mézard, M.; Zdeborová, L.
2013-03-01
We consider the reconstruction of a two-dimensional discrete image from a set of tomographic measurements corresponding to the Radon projection. Assuming that the image has a structure where neighbouring pixels have a larger probability of taking the same value, we follow a Bayesian approach and introduce a fast message-passing reconstruction algorithm based on belief propagation. For numerical results, we specialize to the case of binary tomography. We test the algorithm on binary synthetic images with different length scales and compare our results against a more usual convex optimization approach. We investigate the reconstruction error as a function of the number of tomographic measurements, corresponding to the number of projection angles. The belief-propagation algorithm turns out to be more efficient than the convex-optimization algorithm, both in terms of recovery bounds for noise-free projections and reconstruction quality when moderate Gaussian noise is added to the projections.
Discrete impulses in ephaptically coupled nerve fibers.
Maïna, I; Tabi, C B; Ekobena Fouda, H P; Mohamadou, A; Kofané, T C
2015-04-01
We exclusively analyze the condition for modulated waves to emerge in two ephaptically coupled nerve fibers. Through the multiple scale expansion, it is shown that a set of coupled cable-like Hodgkin-Huxley equations can be reduced to a single differential-difference nonlinear equation. The standard approach of linear stability analysis of a plane wave is used to predict regions of parameters where nonlinear structures can be observed. Instability features are shown to be importantly controlled not only by the ephaptic coupling parameter, but also by the discreteness parameter. Numerical simulations, to verify our analytical predictions, are performed, and we explore the longtime dynamics of slightly perturbed plane waves in the coupled nerve fibers. On initially exciting only one fiber, quasi-perfect interneuronal communication is discussed along with the possibility of recruiting damaged or non-myelinated nerve fibers, by myelinated ones, into conduction.
Holography and Mottness: A Discrete Marriage
NASA Astrophysics Data System (ADS)
Phillips, Philip
2012-02-01
Gauge-gravity duality has allowed us to solve the physics of certain strongly coupled quantum mechanical systems using gravity. I will show how a space-time consisting of a charged black hole and a bulk Pauli coupling corresponds to a boundary theory with a dynamically generated gap (with no obvious symmetry breaking) and a massive rearrangement of the spectral weight as in classic Mott systems such as VO2. In this holographic set-up, the gap opens only when discrete scale invariance is present. This raises the possibility that the elusive symmetry that might be broken in Mott insulators, in general, might pertain to scale invariance. The relevance of this claim to recent theories of Mott systems that possess massless charged bosons is explored.
Isomer ratio calculations using modeled discrete levels
Gardner, M.A.; Gardner, D.G.; Hoff, R.W.
1984-10-16
Isomer ratio calculations were made for the reactions: /sup 175/Lu(n,..gamma..)/sup 176m,g/Lu, /sup 175/Lu(n,2n)/sup 174m,g/Lu, /sup 237/Np(n,2n)/sup 236m,g/Np, /sup 241/Am(n,..gamma..)/sup 242m,g/Am, and /sup 243/Am(n,..gamma..)/sup 244m,g/Am using modeled level structures in the deformed, odd-odd product nuclei. The hundreds of discrete levels and their gamma-ray branching ratios provided by the modeling are necessary to achieve agreement with experiment. Many rotational bands must be included in order to obtain a sufficiently representative selection of K quantum numbers. The levels of each band must be extended to appropriately high values of angular momentum.
Energy-pointwise discrete ordinates transport methods
Williams, M.L.; Asgari, M.; Tashakorri, R.
1997-06-01
A very brief description is given of a one-dimensional code, CENTRM, which computes a detailed, space-dependent flux spectrum in a pointwise-energy representation within the resolved resonance range. The code will become a component in the SCALE system to improve computation of self-shielded cross sections, thereby enhancing the accuracy of codes such as KENO. CENTRM uses discrete-ordinates transport theory with an arbitrary angular quadrature order and a Legendre expansion of scattering anisotropy for moderator materials and heavy nuclides. The CENTRM program provides capability to deterministically compute full energy range, space-dependent angular flux spectra, rigorously accounting for resonance fine-structure and scattering anisotropy effects.
Preconditioning for first-order spectral discretization
NASA Technical Reports Server (NTRS)
Streett, C. L.; Macaraeg, M. G.
1986-01-01
Efficient solution of the equations from spectral discretizations is essential if the high-order accuracy of these methods is to be realized. Direct solution of these equations is rarely feasible, thus iterative techniques are required. A preconditioning scheme for first-order Chebyshev collocation operators is proposed herein, in which the central finite difference mesh is finer than the collocation mesh. Details of the proper techniques for transferring information between the meshes are given here, and the scheme is analyzed by examination of the eigenvalue spectra of the preconditioned operators. The effect of artificial viscosity required in the inversion of the finite difference operator is examined. A second preconditioning scheme, involving a high-order upwind finite difference operator of the van Leer type is also analyzed to provide a comparison with the present scheme. Finally, the performance of the present scheme is verified by application to several test problems.
Stochastic discrete model of karstic networks
NASA Astrophysics Data System (ADS)
Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.
Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.
Covalent Polymers Containing Discrete Heterocyclic Anion Receptors
Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.
2010-01-01
This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions. PMID:20871791
Discrete Fourier transforms of nonuniformly spaced data
NASA Technical Reports Server (NTRS)
Swan, P. R.
1982-01-01
Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.
Anomaly Detection for Discrete Sequences: A Survey
Chandola, Varun; Banerjee, Arindam; Kumar, Vipin
2012-01-01
This survey attempts to provide a comprehensive and structured overview of the existing research for the problem of detecting anomalies in discrete/symbolic sequences. The objective is to provide a global understanding of the sequence anomaly detection problem and how existing techniques relate to each other. The key contribution of this survey is the classification of the existing research into three distinct categories, based on the problem formulation that they are trying to solve. These problem formulations are: 1) identifying anomalous sequences with respect to a database of normal sequences; 2) identifying an anomalous subsequence within a long sequence; and 3) identifying a pattern in a sequence whose frequency of occurrence is anomalous. We show how each of these problem formulations is characteristically distinct from each other and discuss their relevance in various application domains. We review techniques from many disparate and disconnected application domains that address each of these formulations. Within each problem formulation, we group techniques into categories based on the nature of the underlying algorithm. For each category, we provide a basic anomaly detection technique, and show how the existing techniques are variants of the basic technique. This approach shows how different techniques within a category are related or different from each other. Our categorization reveals new variants and combinations that have not been investigated before for anomaly detection. We also provide a discussion of relative strengths and weaknesses of different techniques. We show how techniques developed for one problem formulation can be adapted to solve a different formulation, thereby providing several novel adaptations to solve the different problem formulations. We also highlight the applicability of the techniques that handle discrete sequences to other related areas such as online anomaly detection and time series anomaly detection.
Distributed discrete event simulation. Final report
De Vries, R.C.
1988-02-01
The presentation given here is restricted to discrete event simulation. The complexity of and time required for many present and potential discrete simulations exceeds the reasonable capacity of most present serial computers. The desire, then, is to implement the simulations on a parallel machine. However, certain problems arise in an effort to program the simulation on a parallel machine. In one category of methods deadlock care arise and some method is required to either detect deadlock and recover from it or to avoid deadlock through information passing. In the second category of methods, potentially incorrect simulations are allowed to proceed. If the situation is later determined to be incorrect, recovery from the error must be initiated. In either case, computation and information passing are required which would not be required in a serial implementation. The net effect is that the parallel simulation may not be much better than a serial simulation. In an effort to determine alternate approaches, important papers in the area were reviewed. As a part of that review process, each of the papers was summarized. The summary of each paper is presented in this report in the hopes that those doing future work in the area will be able to gain insight that might not otherwise be available, and to aid in deciding which papers would be most beneficial to pursue in more detail. The papers are broken down into categories and then by author. Conclusions reached after examining the papers and other material, such as direct talks with an author, are presented in the last section. Also presented there are some ideas that surfaced late in the research effort. These promise to be of some benefit in limiting information which must be passed between processes and in better understanding the structure of a distributed simulation. Pursuit of these ideas seems appropriate.
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B.
2014-01-01
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form on an m-dimensional space (called multi-time, m>d), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals for any d-dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler–Lagrange equations for a discrete pluri-Lagrangian problem with d=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations. PMID:24511254
Universal quantum computation using the discrete-time quantum walk
Lovett, Neil B.; Cooper, Sally; Everitt, Matthew; Trevers, Matthew; Kendon, Viv
2010-04-15
A proof that continuous-time quantum walks are universal for quantum computation, using unweighted graphs of low degree, has recently been presented by A. M. Childs [Phys. Rev. Lett. 102, 180501 (2009)]. We present a version based instead on the discrete-time quantum walk. We show that the discrete-time quantum walk is able to implement the same universal gate set and thus both discrete and continuous-time quantum walks are computational primitives. Additionally, we give a set of components on which the discrete-time quantum walk provides perfect state transfer.
A priori discretization quality metrics for distributed hydrologic modeling applications
NASA Astrophysics Data System (ADS)
Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita
2016-04-01
In distributed hydrologic modelling, a watershed is treated as a set of small homogeneous units that address the spatial heterogeneity of the watershed being simulated. The ability of models to reproduce observed spatial patterns firstly depends on the spatial discretization, which is the process of defining homogeneous units in the form of grid cells, subwatersheds, or hydrologic response units etc. It is common for hydrologic modelling studies to simply adopt a nominal or default discretization strategy without formally assessing alternative discretization levels. This approach lacks formal justifications and is thus problematic. More formalized discretization strategies are either a priori or a posteriori with respect to building and running a hydrologic simulation model. A posteriori approaches tend to be ad-hoc and compare model calibration and/or validation performance under various watershed discretizations. The construction and calibration of multiple versions of a distributed model can become a seriously limiting computational burden. Current a priori approaches are more formalized and compare overall heterogeneity statistics of dominant variables between candidate discretization schemes and input data or reference zones. While a priori approaches are efficient and do not require running a hydrologic model, they do not fully investigate the internal spatial pattern changes of variables of interest. Furthermore, the existing a priori approaches focus on landscape and soil data and do not assess impacts of discretization on stream channel definition even though its significance has been noted by numerous studies. The primary goals of this study are to (1) introduce new a priori discretization quality metrics considering the spatial pattern changes of model input data; (2) introduce a two-step discretization decision-making approach to compress extreme errors and meet user-specified discretization expectations through non-uniform discretization threshold
Tejero, E. M.; Gatling, G.
2009-03-15
A method for approximating arbitrary axial magnetic field profiles for a given solenoidal electromagnet coil array is described. The method casts the individual contributions from each coil as a truncated orthonormal basis for the space within the array. This truncated basis allows for the linear decomposition of an arbitrary profile function, which returns the appropriate currents for each coil to best reproduce the desired profile. We present the mathematical details of the method along with a detailed example of its use. The results from the method are used in a simulation and compared with magnetic field measuremen0008.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical
Laurent phenomenon algebras and the discrete BKP equation
NASA Astrophysics Data System (ADS)
Okubo, Naoto
2016-09-01
We construct the Laurent phenomenon algebras the cluster variables of which satisfy the discrete BKP equation, the discrete Sawada-Kotera equation and other difference equations obtained by its reduction. These Laurent phenomenon algebras are constructed from seeds with a generalization of mutation-period property. We show that a reduction of a seed corresponds to a reduction of a difference equation.
Discrete rotational symmetry and quantum-key-distribution protocols
Shirokoff, David; Fung, Chi-Hang Fred; Lo, Hoi-Kwong
2007-03-15
We study the role of discrete rotational symmetry in the quantum key distribution by generalizing the well-known Bennett-Brassard 1984 and Scarani-Acin-Ribordy-Gisin 2004 protocols. We observe that discrete rotational symmetry results in the protocol's invariance to continuous rotations, thus leading to a simplified relation between bit and phase error rates and consequently a straightforward security proof.
31 CFR 101.8 - Discretion of the Secretary.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Discretion of the Secretary. 101.8 Section 101.8 Money and Finance: Treasury Regulations Relating to Money and Finance MONETARY OFFICES, DEPARTMENT OF THE TREASURY MITIGATION OF FORFEITURE OF COUNTERFEIT GOLD COINS § 101.8 Discretion of...
31 CFR 101.8 - Discretion of the Secretary.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Discretion of the Secretary. 101.8 Section 101.8 Money and Finance: Treasury Regulations Relating to Money and Finance MONETARY OFFICES, DEPARTMENT OF THE TREASURY MITIGATION OF FORFEITURE OF COUNTERFEIT GOLD COINS § 101.8 Discretion of...
Discretion in Student Discipline: Insight into Elementary Principals' Decision Making
ERIC Educational Resources Information Center
Findlay, Nora M.
2015-01-01
Little research exists that examines the exercise of discretion by principals in their disciplinary decision making. This study sought to understand the application of values by principals as they engage in student disciplinary decision making within legally fixed parameters of their administrative discretion. This qualitative methodology used…
Finite Mathematics and Discrete Mathematics: Is There a Difference?
ERIC Educational Resources Information Center
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
Discrete Photodetection and Susskind-Glogower Phase Operators
NASA Technical Reports Server (NTRS)
Ben-Aryeh, Y.
1996-01-01
State reduction processes in different types of photodetection experiments are described by using different kinds of ladder operators. A special model of discrete photodetection is developed by the use of superoperators which are based on the Susskind-Glogower raising and lower operators. The possibility to realize experimentally the discrete photodetection scheme in a micromaser is discussed.
Dynamics of discrete screw dislocations on glide directions
NASA Astrophysics Data System (ADS)
Alicandro, R.; De Luca, L.; Garroni, A.; Ponsiglione, M.
2016-07-01
We consider a simple discrete model for screw dislocations in crystals. Using a variational discrete scheme we study the motion of a configuration of dislocations toward low energy configurations. We deduce an effective fully overdamped dynamics that follows the maximal dissipation criterion introduced in Cermelli and Gurtin (1999) and predicts motion along the glide directions of the crystal.
29 CFR 541.202 - Discretion and independent judgment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... discretion and independent judgment with respect to matters of significance. In general, the exercise of... “matters of significance” refers to the level of importance or consequence of the work performed. (b) The phrase “discretion and independent judgment” must be applied in the light of all the facts involved...
On multiple orthogonal polynomials for discrete Meixner measures
Sorokin, Vladimir N
2010-12-07
The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.
Discrete Latent Markov Models for Normally Distributed Response Data
ERIC Educational Resources Information Center
Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.
2005-01-01
Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…
How Bob Barker Would (Probably) Teach Discrete Mathematics
ERIC Educational Resources Information Center
Urness, Timothy
2010-01-01
This article proposes a discrete mathematics course in which games from "The Price Is Right" are used to engage students in a deeper, practical study of discrete mathematics. The games themselves are not the focus of the course; rather, the mathematical principles of the games give motivation for the concepts being taught. The game examples are…
CDM: Teaching Discrete Mathematics to Computer Science Majors
ERIC Educational Resources Information Center
Sutner, Klaus
2005-01-01
CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…
5 CFR 7.1 - Discretion in filling vacancies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Discretion in filling vacancies. 7.1 Section 7.1 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE RULES GENERAL PROVISIONS... Regulations. He shall exercise his discretion in all personnel actions solely on the basis of merit...
Laurent phenomenon algebras and the discrete BKP equation
NASA Astrophysics Data System (ADS)
Okubo, Naoto
2016-09-01
We construct the Laurent phenomenon algebras the cluster variables of which satisfy the discrete BKP equation, the discrete Sawada–Kotera equation and other difference equations obtained by its reduction. These Laurent phenomenon algebras are constructed from seeds with a generalization of mutation-period property. We show that a reduction of a seed corresponds to a reduction of a difference equation.
A Two-Timescale Discretization Scheme for Collocation
NASA Technical Reports Server (NTRS)
Desai, Prasun; Conway, Bruce A.
2004-01-01
The development of a two-timescale discretization scheme for collocation is presented. This scheme allows a larger discretization to be utilized for smoothly varying state variables and a second finer discretization to be utilized for state variables having higher frequency dynamics. As such. the discretization scheme can be tailored to the dynamics of the particular state variables. In so doing. the size of the overall Nonlinear Programming (NLP) problem can be reduced significantly. Two two-timescale discretization architecture schemes are described. Comparison of results between the two-timescale method and conventional collocation show very good agreement. Differences of less than 0.5 percent are observed. Consequently. a significant reduction (by two-thirds) in the number of NLP parameters and iterations required for convergence can be achieved without sacrificing solution accuracy.
Setting up virgin stress conditions in discrete element models
Rojek, J.; Karlis, G.F.; Malinowski, L.J.; Beer, G.
2013-01-01
In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain. PMID:27087731
Discretizing singular point sources in hyperbolic wave propagation problems
NASA Astrophysics Data System (ADS)
Petersson, N. Anders; O'Reilly, Ossian; Sjögreen, Björn; Bydlon, Samuel
2016-09-01
We develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as the number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
Information storage capacity of discrete spin systems
Yoshida, Beni
2013-11-15
Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.
Dynamics of a discrete auroral arc
NASA Astrophysics Data System (ADS)
Bruening, K.; Goertz, C. K.
1986-06-01
Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.
Discrete network models of interacting nephrons
NASA Astrophysics Data System (ADS)
Moss, Rob; Kazmierczak, Ed; Kirley, Michael; Harris, Peter
2009-11-01
The kidney is one of the major organs involved in whole-body homeostasis, and exhibits many of the properties of a complex system. The functional unit of the kidney is the nephron, a complex, segmented tube into which blood plasma is filtered and its composition adjusted. Although the behaviour of individual nephrons can fluctuate widely and even chaotically, the behaviour of the kidney remains stable. In this paper, we investigate how the filtration rate of a multi-nephron system is affected by interactions between nephrons. We introduce a discrete-time multi-nephron network model. The tubular mechanisms that have the greatest effect on filtration rate are the transport of sodium and water, consequently our model attempts to capture these mechanisms. Multi-nephron systems also incorporate two competing coupling mechanisms-vascular and hemodynamic-that enforce in-phase and anti-phase synchronisations respectively. Using a two-nephron model, we demonstrate how changing the strength of the hemodynamic coupling mechanism and changing the arterial blood pressure have equivalent effects on the system. The same two-nephron system is then used to demonstrate the interactions that arise between the two coupling mechanisms. We conclude by arguing that our approach is scalable to large numbers of nephrons, based on the performance characteristics of the model.
Better relaxations of classical discrete optimization problems.
Lancia, Giuseppe; Konjevod, Goran; Carr, Robert D.; Parehk, Ojas
2008-08-01
A mathematical program is an optimization problem expressed as an objective function of multiple variables subject to set of constraints. When the optimization problem has specific structure, the problem class usually has a special name. A linear program is the optimization of a linear objective function subject to linear constraints. An integer program is a linear program where some of the variables must take only integer values. A semidefinite program is a linear program where the variables are arranged in a matrix and for all feasible solutions, this matrix must be positive semidefinite. There are general-purpose solvers for each of these classes of mathematical program. There are usually many ways to express a problem as a correct, say, linear program. However, equivalent formulations can have significantly different practical tractability. In this poster, we present new formulations for two classic discrete optimization problems, maximum cut (max cut) and the graphical traveling salesman problem (GTSP), that are significantly stronger, and hence more computationally tractable, than any previous formulations of their class. Both partially answer longstanding open theoretical questions in polyhedral combinatorics.
Discrete breathers in alpha-uranium
NASA Astrophysics Data System (ADS)
Murzaev, Ramil T.; Babicheva, Rita I.; Zhou, Kun; Korznikova, Elena A.; Fomin, Sergey Yu.; Dubinko, Vladimir I.; Dmitriev, Sergey V.
2016-07-01
Uranium is an important radioactive material used in the field of nuclear energy and it is interesting from the scientific point of view because it possesses unique structure and properties. There exist several experimental reports on anomalies of physical properties of uranium that have not been yet explained. Manley et al. [Phys. Rev. Lett. 96, 125501 (2006); Phys. Rev. B 77, 214305 (2008)] speculate that the excitation of discrete breathers (DBs) could be the reason for anisotropy of thermal expansion and for the deviation of heat capacity from the theoretical prediction in the high temperature range. In the present work, with the use of molecular dynamics, the existence of DBs in α-uranium is demonstrated and their properties are studied. It is found that DB frequency lies above the phonon band and increases with DB amplitude. DB is localized on half a dozen of atoms belonging to a straight atomic chain. DB in uranium, unlike DBs in fcc, bcc and hcp metals, is almost immobile. Thus, the DB reported in this study cannot contribute to thermal conductivity and the search for other types of DBs in α-uranium should be continued. Our results demonstrate that even metals with low-symmetry crystal lattices such as the orthorhombic lattice of α-uranium can support DBs.
Dynamics of a discrete auroral arc
NASA Technical Reports Server (NTRS)
Bruening, K.; Goertz, C. K.
1986-01-01
Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.
HODIF:High-Order Discretizations, Interpolations and
2006-06-20
This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to domore » prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.« less
Discrete analysis of stochastic NMR.II
NASA Astrophysics Data System (ADS)
Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.
Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.
Discrete Pathophysiology is Uncommon in Patients with Nonspecific Arm Pain
Kortlever, Joost T.P.; Janssen, Stein J.; Molleman, Jeroen; Hageman, Michiel G.J.S.; Ring, David
2016-01-01
Background: Nonspecific symptoms are common in all areas of medicine. Patients and caregivers can be frustrated when an illness cannot be reduced to a discrete pathophysiological process that corresponds with the symptoms. We therefore asked the following questions: 1) Which demographic factors and psychological comorbidities are associated with change from an initial diagnosis of nonspecific arm pain to eventual identification of discrete pathophysiology that corresponds with symptoms? 2) What is the percentage of patients eventually diagnosed with discrete pathophysiology, what are those pathologies, and do they account for the symptoms? Methods: We evaluated 634 patients with an isolated diagnosis of nonspecific upper extremity pain to see if discrete pathophysiology was diagnosed on subsequent visits to the same hand surgeon, a different hand surgeon, or any physician within our health system for the same pain. Results: There were too few patients with discrete pathophysiology at follow-up to address the primary study question. Definite discrete pathophysiology that corresponded with the symptoms was identified in subsequent evaluations by the index surgeon in one patient (0.16% of all patients) and cured with surgery (nodular fasciitis). Subsequent doctors identified possible discrete pathophysiology in one patient and speculative pathophysiology in four patients and the index surgeon identified possible discrete pathophysiology in four patients, but the five discrete diagnoses accounted for only a fraction of the symptoms. Conclusion: Nonspecific diagnoses are not harmful. Prospective randomized research is merited to determine if nonspecific, descriptive diagnoses are better for patients than specific diagnoses that imply pathophysiology in the absence of discrete verifiable pathophysiology. PMID:27517064
NASA Astrophysics Data System (ADS)
Seslija, Marko; van der Schaft, Arjan; Scherpen, Jacquelien M. A.
2012-06-01
This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce a simplicial Dirac structure as a discrete analogue of the Stokes-Dirac structure and demonstrate that it provides a natural framework for deriving finite-dimensional port-Hamiltonian systems that emulate their infinite-dimensional counterparts. The spatial domain, in the continuous theory represented by a finite-dimensional smooth manifold with boundary, is replaced by a homological manifold-like simplicial complex and its augmented circumcentric dual. The smooth differential forms, in discrete setting, are mirrored by cochains on the primal and dual complexes, while the discrete exterior derivative is defined to be the coboundary operator. This approach of discrete differential geometry, rather than discretizing the partial differential equations, allows to first discretize the underlying Stokes-Dirac structure and then to impose the corresponding finite-dimensional port-Hamiltonian dynamics. In this manner, a number of important intrinsically topological and geometrical properties of the system are preserved.
Odefy -- From discrete to continuous models
2010-01-01
Background Phenomenological information about regulatory interactions is frequently available and can be readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As biological interaction networks have steadily grown in size and complexity, a fully automated framework for the conversion process is desirable. Results We present Odefy, a MATLAB- and Octave-compatible toolbox for the automated transformation of Boolean models into systems of ordinary differential equations. Models can be created from sets of Boolean equations or graph representations of Boolean networks. Alternatively, the user can import Boolean models from the CellNetAnalyzer toolbox, GINSim and the PBN toolbox. The Boolean models are transformed to systems of ordinary differential equations by multivariate polynomial interpolation and optional application of sigmoidal Hill functions. Our toolbox contains basic simulation and visualization functionalities for both, the Boolean as well as the continuous models. For further analyses, models can be exported to SQUAD, GNA, MATLAB script files, the SB toolbox, SBML and R script files. Odefy contains a user-friendly graphical user interface for convenient access to the simulation and exporting functionalities. We illustrate the validity of our transformation approach as well as the usage and benefit of the Odefy toolbox for two biological systems: a mutual inhibitory switch known from stem cell differentiation and a regulatory network giving rise to a specific spatial expression pattern at the mid-hindbrain boundary. Conclusions Odefy provides an easy-to-use toolbox for the automatic conversion of Boolean models to systems of ordinary differential equations. It can be
LAN attack detection using Discrete Event Systems.
Hubballi, Neminath; Biswas, Santosh; Roopa, S; Ratti, Ritesh; Nandi, Sukumar
2011-01-01
Address Resolution Protocol (ARP) is used for determining the link layer or Medium Access Control (MAC) address of a network host, given its Internet Layer (IP) or Network Layer address. ARP is a stateless protocol and any IP-MAC pairing sent by a host is accepted without verification. This weakness in the ARP may be exploited by malicious hosts in a Local Area Network (LAN) by spoofing IP-MAC pairs. Several schemes have been proposed in the literature to circumvent these attacks; however, these techniques either make IP-MAC pairing static, modify the existing ARP, patch operating systems of all the hosts etc. In this paper we propose a Discrete Event System (DES) approach for Intrusion Detection System (IDS) for LAN specific attacks which do not require any extra constraint like static IP-MAC, changing the ARP etc. A DES model is built for the LAN under both a normal and compromised (i.e., spoofed request/response) situation based on the sequences of ARP related packets. Sequences of ARP events in normal and spoofed scenarios are similar thereby rendering the same DES models for both the cases. To create different ARP events under normal and spoofed conditions the proposed technique uses active ARP probing. However, this probing adds extra ARP traffic in the LAN. Following that a DES detector is built to determine from observed ARP related events, whether the LAN is operating under a normal or compromised situation. The scheme also minimizes extra ARP traffic by probing the source IP-MAC pair of only those ARP packets which are yet to be determined as genuine/spoofed by the detector. Also, spoofed IP-MAC pairs determined by the detector are stored in tables to detect other LAN attacks triggered by spoofing namely, man-in-the-middle (MiTM), denial of service etc. The scheme is successfully validated in a test bed. PMID:20804980
Discrete Element Modeling of Triboelectrically Charged Particles
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.
2008-01-01
Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and
LAN attack detection using Discrete Event Systems.
Hubballi, Neminath; Biswas, Santosh; Roopa, S; Ratti, Ritesh; Nandi, Sukumar
2011-01-01
Address Resolution Protocol (ARP) is used for determining the link layer or Medium Access Control (MAC) address of a network host, given its Internet Layer (IP) or Network Layer address. ARP is a stateless protocol and any IP-MAC pairing sent by a host is accepted without verification. This weakness in the ARP may be exploited by malicious hosts in a Local Area Network (LAN) by spoofing IP-MAC pairs. Several schemes have been proposed in the literature to circumvent these attacks; however, these techniques either make IP-MAC pairing static, modify the existing ARP, patch operating systems of all the hosts etc. In this paper we propose a Discrete Event System (DES) approach for Intrusion Detection System (IDS) for LAN specific attacks which do not require any extra constraint like static IP-MAC, changing the ARP etc. A DES model is built for the LAN under both a normal and compromised (i.e., spoofed request/response) situation based on the sequences of ARP related packets. Sequences of ARP events in normal and spoofed scenarios are similar thereby rendering the same DES models for both the cases. To create different ARP events under normal and spoofed conditions the proposed technique uses active ARP probing. However, this probing adds extra ARP traffic in the LAN. Following that a DES detector is built to determine from observed ARP related events, whether the LAN is operating under a normal or compromised situation. The scheme also minimizes extra ARP traffic by probing the source IP-MAC pair of only those ARP packets which are yet to be determined as genuine/spoofed by the detector. Also, spoofed IP-MAC pairs determined by the detector are stored in tables to detect other LAN attacks triggered by spoofing namely, man-in-the-middle (MiTM), denial of service etc. The scheme is successfully validated in a test bed.
a Distributed Gaussian Discrete Variable Representation
NASA Astrophysics Data System (ADS)
Karabulut, Hasan
In this work a discrete variable representation (DVR) is constructed from a distributed Gaussian basis (DGB). A DGB is a finite or infinite chain of uniformly distributed Gaussians g_{n}(x) = e^{-c^2(x/d-n)^2} where n takes integer values. There are three main parts of this thesis. In the first part (Chapter III) the finite chain distributed Gaussian DVR (Finite Chain DG-DVR) is derived. In order to accomplish this, the distributed Gaussian orthogonal polynomials are introduced. The connection of these polynomials to Stieltjes-Wigert polynomials is shown. The recurrence relation for these orthogonal polynomials is derived. Tested recipes are given to calculate the quadrature points and weights and to construct the corresponding Lagrange functions which are analogs of Lagrange interpolation polynomials. The symmetries of quadrature points, weights, and Lagrange functions are derived. Limit cases ctoinfty and cto 0 are studied. In the second part (Chapter IV)the infinite chain limit DG-DVR is derived from a limit of the finite chain DG-DVR. The quadrature points and weights and the Lagrange functions are found in this limit and kinetic energy operator is constructed. It is shown that in the limit c to 0 the infinite chain DG-DVR reduces to Colbert and Miller's DVR. A discussion of ability of a distributed Gaussian basis to represent an arbitrary function is given. The results of this treatment yield a possible explanation of surprising accuracy of Colbert-Miller DVR. In the third part construction of the DG-DVR is given when one point is chosen arbitrarily. Some interesting identities and integral representations for the b _{n} and sigma_ {n} coefficients that are introduced in the second part are found.
Discrete element modelling of subglacial sediment deformation
NASA Astrophysics Data System (ADS)
Christensen, A. D.; Egholm, D. L.; Piotrowski, J. A.; Tulaczyk, S.
2012-04-01
Soft, deformable sediments are often present under glaciers. Subglacial sediments deform under the differential load of the ice, and this causes the overlying glacier to accelerate its motion. Understanding the rheology of subglacial sediment is therefore important for models of glacial dynamics. Previous studies of the mechanical behaviour of subglacial sediments have primarily relied on analytical considerations and laboratory shearing experiments. As a novel approach, the Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed that is exposed to stress conditions comparable to subglacial environments. The numerical approach allows close monitoring of the mechanical and rheological behaviour under a range of conditions. Of special interest is bed shear strength, strain distribution and -localization, mode of deformation, and role of effective normal pressure during shearing. As a calibration benchmark, results from laboratory ring-shear experiments on granular material are compared to similar numerical experiments. The continuously recorded stress dynamics in the laboratory shear experiments are compared to DEM experiments, and the micro-mechanical parameters in the contact model of the DEM code are calibrated to match the macroscopic Mohr-Coulomb failure criteria parameters, constrained from successive laboratory shear tests under a range of normal pressures. The data-parallel nature of the basic DEM formulation makes the problem ideal for utilizing the high arithmetic potential of modern general-purpose GPUs. Using the Nvidia Cuda C toolkit, the algorithm is formulated for spherical particles in three dimensions with a soft-body contact model. Scene rendering is performed using a custom Cuda ray-tracing algorithm. Efforts on optimization of the particle algorithm are discussed, and future plans of expansion are presented.
Discrete elements method of neutral particle transport. Doctoral thesis
Mathews, K.A.
1983-10-01
A new 'discrete elements' (LN) transport method is derived and compared to the discrete ordinates SN method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, LN is more consistently convergent toward a Monte Carlo benchmark solution than SN, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the LN method. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The zeroth and first angular moments of the directional flux, over each element, are estimated by numerical quadrature and yield a flux-weighted average streaming direction for the element. (Data for this estimation are fluxes in fixed directions calculated as in SN.)
Fast and Accurate Learning When Making Discrete Numerical Estimates.
Sanborn, Adam N; Beierholm, Ulrik R
2016-04-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
Fast and Accurate Learning When Making Discrete Numerical Estimates.
Sanborn, Adam N; Beierholm, Ulrik R
2016-04-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates.
Fast and Accurate Learning When Making Discrete Numerical Estimates
Sanborn, Adam N.; Beierholm, Ulrik R.
2016-01-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
Energy Criterion for the Spectral Stability of Discrete Breathers.
Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E
2016-08-26
Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.
Multiplexing of discrete chaotic signals in presence of noise
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Vaidya, Prabhakar G.
2009-09-01
Multiplexing of discrete chaotic signals in presence of noise is investigated. The existing methods are based on chaotic synchronization, which is susceptible to noise, precision limitations, and requires more iterates. Furthermore, most of these methods fail for multiplexing more than two discrete chaotic signals. We propose novel methods to multiplex multiple discrete chaotic signals based on the principle of symbolic sequence invariance in presence of noise and finite precision implementation of finding the initial condition of an arbitrarily long symbolic sequence of a chaotic map. Our methods work for single precision and as less as 35 iterates. For two signals, our method is robust up to 50% noise level.
Energy Criterion for the Spectral Stability of Discrete Breathers
NASA Astrophysics Data System (ADS)
Kevrekidis, Panayotis G.; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E.
2016-08-01
Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.
Multidimensional electron-photon transport with standard discrete ordinates codes
Drumm, C.R.
1995-12-31
A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems.
Discretization chaos - Feedback control and transition to chaos
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
Energy Criterion for the Spectral Stability of Discrete Breathers.
Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E
2016-08-26
Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials. PMID:27610856
A Stochastic Model for Discrete Waves in the Limulus Photoreceptor
Srebro, Richard; Behbehani, Mahmood
1971-01-01
A stochastic model that links the absorption of a photon to the production of a discrete wave in the photoreceptor of the lateral eye of Limulus is proposed. By separating a discrete wave into an initial component due directly to the absorption of a photon, and a second quasi all-or-nothing component, a mathematical description of the latencies of discrete waves is deduced and some important features of their time courses are suggested. The predictions of the model are compared to observations from 60 different ommatidia. PMID:5095679
A Discrete Lagrangian Algorithm for Optimal Routing Problems
Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.
2008-11-06
The ideas of discrete Lagrangian methods for conservative systems are exploited for the construction of algorithms applicable in optimal ship routing problems. The algorithm presented here is based on the discretisation of Hamilton's principle of stationary action Lagrangian and specifically on the direct discretization of the Lagrange-Hamilton principle for a conservative system. Since, in contrast to the differential equations, the discrete Euler-Lagrange equations serve as constrains for the optimization of a given cost functional, in the present work we utilize this feature in order to minimize the cost function for optimal ship routing.
PREFACE: DISCRETE 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries
NASA Astrophysics Data System (ADS)
Branco, G. C.; Emmanuel-Costa, D.; González Felipe, R.; Joaquim, F. R.; Lavoura, L.; Palomares-Ruiz, S.; Rebelo, M. N.; Romão, J. C.; Silva, J. P.
2013-07-01
The Third Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2012) was held at Instituto Superior Técnico, Portugal, from 3-7 December 2012 and was organised by Centro de Física Teórica de Partículas (CFTP) of Instituto Superior Técnico, Universidade Técnica de Lisboa. This is the sequel to the Symposia that was successfully organised in Valéncia in 2008 and in Rome in 2010. The topics covered included: T, C, P, CP symmetries CPT symmetry, decoherence, Lorentz symmetry breaking Discrete symmetries and models of flavour mixing Baryogenesis, leptogenesis Neutrino physics Electroweak symmetry breaking and physics beyond the Standard Model Accidental symmetries (B, L conservation) Experimental prospects at LHC Dark matter searches Super flavour factories, and other new experimental facilities The Symposium was organised in plenary sessions with a total of 24 invited talks, and parallel sessions with a total of 70 talks, including both invited and selected contributions from the submitted abstracts. The speakers of the plenary sessions were: Ignatios Antoniadis, Abdelhak Djouadi, Rabindra Mohapatra, André Rubbia, Alexei Yu Smirnov, José Bernabéu, Marco Cirelli, Apostolos Pilaftsis, Antonio Di Domenico, Robertus Potting, João Varela, Frank Rathmann, Michele Gallinaro, Dumitru Ghilencea, Neville Harnew, John Walsh, Patrícia Conde Muíño, Juan Aguilar-Saavedra, Nick Mavromatos, Ulrich Nierste, Ferruccio Feruglio, Vasiliki Mitsou, Masanori Yamauchi, and Marcello Giorgi. The Symposium was attended by about 140 participants. Among the social events, there was a social dinner in the historical Associação Comercial de Lisboa, which included a musical performance of 'Fado', the traditional music from Lisbon. The next symposium of the series will be organised by King's College, London University, UK, from 1-5 December 2014. Guest Editors G C Branco, D Emmanuel-Costa, R González Felipe, F R Joaquim, L Lavoura, S Palomares-Ruiz, M N Rebelo, J C
Implementing the Standards. Teaching Discrete Mathematics in Grades 7-12.
ERIC Educational Resources Information Center
Hart, Eric W.; And Others
1990-01-01
Discrete mathematics are defined briefly. A course in discrete mathematics for high school students and teaching discrete mathematics in grades 7 and 8 including finite differences, recursion, and graph theory are discussed. (CW)
Discrete element modelling of bedload transport
NASA Astrophysics Data System (ADS)
Loyer, A.; Frey, P.
2011-12-01
Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth
Electromagnetic scattering in a discrete basis
NASA Astrophysics Data System (ADS)
Trampel, Christopher Paul
In this dissertation, I use discrete eigenfunction expansions to study three electromagnetic scattering problems in the frequency domain. Chapter 2 describes an eddy-current coil interacting with a perfectly conducting wedge of arbitrary angle. A closed-form expression for the impedance of a tangential eddy-current coil in the presence of an infinite conducting wedge of arbitrary angle is derived. The truncated eigenfunction expansion (TREE) solution given here is valid in the quasi-static frequency regime. The theory was validated via comparison to an independent analytical expression for the impedance change of a horizontal coil over a conducting half-space due to Burke. I present results for three geometries: a conducting quarter-space, a conducting wedge of angle 225 degrees, and a semi-infinite conducting sheet. Our theory predicts a measurable change in the tangent coil reactance in the presence of all three geometries. Chapter 3 discusses the control of electromagnetic edge effects in electrically-small rectangular plasma reactors. Expressions for the fields in an electrically-small rectangular reactor with plasma in the chamber are derived. Modal field decompositions are employed under the homogeneous plasma slab approximation. The amplitude of each mode is determined analytically. It is shown that the field can be represented by the standing wave, evanescent waves tied to the edges, and an evanescent wave tied to the corners of the reactor. The impact of boundary conditions at the plasma edge on nonuniformity is quantified. Uniformity may be improved by placing a lossy magnetic layer on the reactor sidewalls. It is demonstrated that nonuniformity is a decreasing function of layer thickness. Chapter 4 is a theoretical investigation of extraordinary optical transmission (EOT) through a silver film perforated by an infinite square array of circular holes. A mode-matching solution to plane wave scattering by a silver film perforated by an infinite array of
Implementation of quantum and classical discrete fractional Fourier transforms
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander
2016-01-01
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089
Supervised discretization can discover risk groups in cancer survival analysis.
Gómez, Iván; Ribelles, Nuria; Franco, Leonardo; Alba, Emilio; Jerez, José M
2016-11-01
Discretization of continuous variables is a common practice in medical research to identify risk patient groups. This work compares the performance of gold-standard categorization procedures (TNM+A protocol) with that of three supervised discretization methods from Machine Learning (CAIM, ChiM and DTree) in the stratification of patients with breast cancer. The performance for the discretization algorithms was evaluated based on the results obtained after applying standard survival analysis procedures such as Kaplan-Meier curves, Cox regression and predictive modelling. The results show that the application of alternative discretization algorithms could lead the clinicians to get valuable information for the diagnosis and outcome of the disease. Patient data were collected from the Medical Oncology Service of the Hospital Clínico Universitario (Málaga, Spain) considering a follow up period from 1982 to 2008. PMID:27686699
Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement
Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate
2002-07-26
The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.
Hybrid discrete/continuum algorithms for stochastic reaction networks
Safta, Cosmin Sargsyan, Khachik Debusschere, Bert Najm, Habib N.
2015-01-15
Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker–Planck equation. The Fokker–Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. The performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.
31 CFR 101.8 - Discretion of the Secretary.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FORFEITURE OF COUNTERFEIT GOLD COINS § 101.8 Discretion of the Secretary. The Secretary of the Treasury... not convinced that the petitoner was an innocent purchaser or holder without knowledge that the...
46 CFR 296.23 - Discretion within priority.
Code of Federal Regulations, 2010 CFR
2010-10-01
... within a priority— (1) In accordance with operational requirements specified by the SecDef; (2) In the...; and (3) Subject to the approval of the SecDef. (c) The Secretary does not have discretion to...
Hybrid discrete/continuum algorithms for stochastic reaction networks
NASA Astrophysics Data System (ADS)
Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.
2015-01-01
Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. The performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.
Distinguishing between discreteness effects in stochastic reaction processes
NASA Astrophysics Data System (ADS)
Haruna, Taichi
2015-05-01
The effect of discreteness on stochastic dynamics of chemically reacting systems is studied analytically. We apply the scheme bridging the chemical master equation and the chemical Fokker-Planck equation by a parameter representing the degree of discreteness previously proposed by the author for two concrete systems. One is an autocatalytic reaction system, and the other is a branching-annihilation reaction system. It is revealed that the change in characteristic time scales when discreteness is decreased is yielded between the two systems for different reasons. In the former system, it originates from the boundaries where one of the chemical species is zero, whereas in the latter system, it is due to modification of the most probable extinction path caused by discreteness loss.
Implementation of quantum and classical discrete fractional Fourier transforms
NASA Astrophysics Data System (ADS)
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander
2016-03-01
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.
Hybrid discrete/continuum algorithms for stochastic reaction networks
Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.
2014-10-22
Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.
Discrete-time quantum walk approach to state transfer
Kurzynski, Pawel; Wojcik, Antoni
2011-06-15
We show that a quantum-state transfer, previously studied as a continuous-time process in networks of interacting spins, can be achieved within the model of discrete-time quantum walks with a position-dependent coin. We argue that, due to additional degrees of freedom, discrete-time quantum walks allow one to observe effects which cannot be observed in the corresponding continuous-time case. First, we study a discrete-time version of the engineered coupling protocol due to Christandl et al. [Phys. Rev. Lett. 92, 187902 (2004)] and then we discuss the general idea of conversion between continuous-time quantum walks and discrete-time quantum walks.
PREFACE: DISCRETE '08: Symposium on Prospects in the Physics of Discrete Symmetries
NASA Astrophysics Data System (ADS)
Bernabéu, José; Botella, Francisco J.; Mavromatos, Nick E.; Mitsou, Vasiliki A.
2009-07-01
The Symposium DISCRETE'08 on Prospects in the Physics of Discrete Symmetries was held at the Instituto de Física Corpuscular (IFIC) in Valencia, Spain from 11 to 16 December 2008. IFIC is a joint centre of the Consejo Superior de Investigaciones Científicas (CSIC) and the Universitat de València (UVEG). The aim of the Symposium was to bring together experts on the field of Discrete Symmetries in order to discuss its prospects on the eve of the LHC era. The general state of the art for CP, T and CPT symmetries was reviewed and their interplay with Baryogenesis, Early Cosmology, Quantum Gravity, String Theory and the Dark Sector of the Universe was emphasised. Connections with physics beyond the Standard Model, in particular Supersymmetry, were investigated. Experimental implications in current and proposed facilities received particular attention. The scientific programme consisted of 24 invited Plenary Talks and 93 contributions selected among the submitted papers. Young researchers, in particular, were encouraged to submit an abstract. The Special Lecture on ''CERN and the Future of Particle Physics'', given by the CERN Director General Rolf-Dieter Heuer to close the Symposium, was of particular relevance. On the last day of the Symposium, an open meeting took place between Professor Heuer and the Spanish community of particle physics. The Symposium covered recent developments on the subject of Discrete Symmetries in the following topics: Quantum Vacuum Entanglement, Symmetrisation Principle CPT in Quantum Gravity and String Theory, Decoherence, Lorentz Violation Ultra-high-energy Messengers Time Reversal CP violation in the SM and beyond Neutrino Mass, Mixing and CP Baryogenesis, Leptogenesis Family Symmetries Supersymmetry and other searches Experimental Prospects: LHC, Super-B Factories, DAΦNE-2, Neutrino Beams The excellence of most of the presentations during the Symposium was pointed out by many participants. The broad spectrum of topics under the
On embedded bifurcation structure in some discretized vector fields
NASA Astrophysics Data System (ADS)
Kang, Hunseok; Tsuda, Ichiro
2009-09-01
In this paper, we study a dynamic structure of discretized vector fields obtained from the Brusselator, which is described by two-dimensional ordinary differential equations (ODEs). We found that a bifurcation structure of the logistic map is embedded in the discretized vector field. The embedded bifurcation structure was unraveled by the dynamical orbits that eventually converge to a fixed point. We provide a detailed mathematical analysis to explain this phenomenon and relate it to the solution of the original ODEs.
On embedded bifurcation structure in some discretized vector fields.
Kang, Hunseok; Tsuda, Ichiro
2009-09-01
In this paper, we study a dynamic structure of discretized vector fields obtained from the Brusselator, which is described by two-dimensional ordinary differential equations (ODEs). We found that a bifurcation structure of the logistic map is embedded in the discretized vector field. The embedded bifurcation structure was unraveled by the dynamical orbits that eventually converge to a fixed point. We provide a detailed mathematical analysis to explain this phenomenon and relate it to the solution of the original ODEs. PMID:19792012
Singularity confinement for matrix discrete Painlevé equations
NASA Astrophysics Data System (ADS)
Cassatella-Contra, Giovanni A.; Mañas, Manuel; Tempesta, Piergiulio
2014-09-01
We study the analytic properties of a matrix discrete system introduced by Cassatella and Mañas (2012 Stud. Appl. Math. 128 252-74). The singularity confinement for this system is shown to hold generically, i.e. in the whole space of parameters except possibly for algebraic subvarieties. This paves the way to a generalization of Painlevé analysis to discrete matrix models.
Strongly asymmetric discrete Painlevé equations: The additive case
Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Satsuma, J.
2014-05-15
We examine a class of discrete Painlevé equations which present a strong asymmetry. These equations can be written as a system of two equations, the right-hand-sides of which do not have the same functional form. We limit here our investigation to two canonical families of the Quispel-Roberts-Thompson (QRT) classification both of which lead to difference equations. Several new integrable discrete systems are identified.
Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement
Dershowitz, William S.; Cladouhos, Trenton
2001-09-06
This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.
The ergodic decomposition of stationary discrete random processes
NASA Technical Reports Server (NTRS)
Gray, R. M.; Davisson, L. D.
1974-01-01
The ergodic decomposition is discussed, and a version focusing on the structure of individual sample functions of stationary processes is proved for the special case of discrete-time random processes with discrete alphabets. The result is stronger in this case than the usual theorem, and the proof is both intuitive and simple. Estimation-theoretic and information-theoretic interpretations are developed and applied to prove existence theorems for universal source codes, both noiseless and with a fidelity criterion.
Efficient entanglement criteria for discrete, continuous, and hybrid variables
NASA Astrophysics Data System (ADS)
Gessner, Manuel; Pezzè, Luca; Smerzi, Augusto
2016-08-01
We develop a method to construct entanglement criteria for arbitrary multipartite systems of discrete or continuous variables and hybrid combinations of both. While any set of local operators generates a sufficient condition for entanglement of arbitrary quantum states, a suitable set leads to a necessary and sufficient criterion for pure states. The criteria are readily implementable with existing technology and reveal entanglement that remains undetected by the respective state-of-the-art methods for discrete and continuous variables.
Construction of Superconvergent Discretizations with Differential-Difference Invariants
R.A. Axford
2005-08-12
To incorporate symmetry properties of second-order differential equations into finite difference equations, the concept of differential-difference invariants is introduced. This concept is applied to discretizing homogeneous eigenvalue problems and inhomogeneous two-point boundary value problems with various combinations of Dirichlet, Neumann, and Robin boundary conditions. It is demonstrated that discretizations constructed with differential-difference invariants yield exact results for eigenvalue spectra and superconvergent results for numerical solutions of differential equations.
Aircraft landing response in a discrete multipath environment
NASA Technical Reports Server (NTRS)
Guarino, C. R.
1975-01-01
This paper considers the problem of discrete multipath reflections upon an aircraft in the landing phase. A model is developed for the communication channel for a typical receiver. Simulation studies are presented showing the effects of discrete multipath upon the aircraft's ability to follow a specified flight path. A development is presented for the analytical determination of the probability density function of the angular errors.
Isolation of Discrete Nanoparticle-DNA Conjugates for Plasmonic Applications
Alivisatos, Paul; Claridge, Shelley A.; Liang, Huiyang W.; Basu, Sourav Roger; Frechet, Jean M.J.; Alivisatos, A. Paul
2008-04-11
Discrete DNA-gold nanoparticle conjugates with DNA lengths as short as 15 bases for both 5 nm and 20 nm gold particles have been purified by anion-exchange HPLC. Conjugates comprising short DNA (<40 bases) and large gold particles (>_ 20 nm) are difficult to purify by other means, and are potential substrates for plasmon coupling experiments. Conjugate purity is demonstrated by hybridizing complementary conjugates to form discrete structures, which are visualized by TEM.
Riesz Riemann-Liouville difference on discrete domains
NASA Astrophysics Data System (ADS)
Wu, Guo-Cheng; Baleanu, Dumitru; Xie, He-Ping
2016-08-01
A Riesz difference is defined by the use of the Riemann-Liouville differences on time scales. Then the definition is considered for discrete fractional modelling. A lattice fractional equation method is proposed among which the space variable is defined on discrete domains. Finite memory effects are introduced into the lattice system and the numerical formulae are given. Adomian decomposition method is adopted to solve the fractional partial difference equations numerically.
Riesz Riemann-Liouville difference on discrete domains.
Wu, Guo-Cheng; Baleanu, Dumitru; Xie, He-Ping
2016-08-01
A Riesz difference is defined by the use of the Riemann-Liouville differences on time scales. Then the definition is considered for discrete fractional modelling. A lattice fractional equation method is proposed among which the space variable is defined on discrete domains. Finite memory effects are introduced into the lattice system and the numerical formulae are given. Adomian decomposition method is adopted to solve the fractional partial difference equations numerically.
All covariance controllers for linear discrete-time systems
NASA Technical Reports Server (NTRS)
Hsieh, Chen; Skelton, Robert E.
1990-01-01
The set of covariances that a linear discrete-time plant with a specified-order controller can have is characterized. The controllers that assign such covariances to any linear discrete-time system are given explicitly in closed form. The freedom in these covariance controllers is explicit and is parameterized by two orthogonal matrices. By appropriately choosing these free parameters, additional system objectives can be achieved without altering the state covariance, and the stability of the closed-loop system is guaranteed.
Riesz Riemann-Liouville difference on discrete domains.
Wu, Guo-Cheng; Baleanu, Dumitru; Xie, He-Ping
2016-08-01
A Riesz difference is defined by the use of the Riemann-Liouville differences on time scales. Then the definition is considered for discrete fractional modelling. A lattice fractional equation method is proposed among which the space variable is defined on discrete domains. Finite memory effects are introduced into the lattice system and the numerical formulae are given. Adomian decomposition method is adopted to solve the fractional partial difference equations numerically. PMID:27586625
Lepton flavor models with discrete values of θ13
NASA Astrophysics Data System (ADS)
Ishimori, Hajime; Kobayashi, Tatsuo
2012-06-01
We study the lepton flavor models with the flavor symmetry (ZN×ZN×ZN)⋊Z3. Our models lead nonvanishing discrete values of θ13 as well as θ12 and θ23 depending on N. For certain values, our models realize the tribimaximal mixing angles with θ13=0. For other values, our models provide discrete deviation from the tribimaximal mixing angles.
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Comparing performance in discrete and continuous comparison tasks.
Leibovich, Tali; Henik, Avishai
2014-05-01
The approximate number system (ANS) theory suggests that all magnitudes, discrete (i.e., number of items) or continuous (i.e., size, density, etc.), are processed by a shared system and comply with Weber's law. The current study reexamined this notion by comparing performance in discrete (comparing numerosities of dot arrays) and continuous (comparisons of area of squares) tasks. We found that: (a) threshold of discrimination was higher for continuous than for discrete comparisons; (b) while performance in the discrete task complied with Weber's law, performance in the continuous task violated it; and (c) performance in the discrete task was influenced by continuous properties (e.g., dot density, dot cumulative area) of the dot array that were not predictive of numerosities or task relevant. Therefore, we propose that the magnitude processing system (MPS) is actually divided into separate (yet interactive) systems for discrete and continuous magnitude processing. Further subdivisions are discussed. We argue that cooperation between these systems results in a holistic comparison of magnitudes, one that takes into account continuous properties in addition to numerosities. Considering the MPS as two systems opens the door to new and important questions that shed light on both normal and impaired development of the numerical system.
Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response
Michel, Claire; Kibler, Bertrand; Picozzi, Antonio
2011-02-15
We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic equation and the nonlinear Schroedinger equation. Discrete spectral incoherent solitons may be supported in both the normal dispersion regime or the anomalous dispersion regime. These incoherent structures find their origin in the causality condition inherent to the nonlinear response function of the material. Considering the concrete example of the Raman effect, we show that discrete incoherent solitons may be spontaneously generated through the process of supercontinuum generation in photonic crystal fibers.
Comte, J C; Marquié, P; Remoissenet, M
1999-12-01
We introduce a nonlinear Klein-Gordon lattice model with specific double-well on-site potential, additional constant external force and dissipation terms, which admits exact discrete kink or traveling wave fronts solutions. In the non-dissipative or conservative regime, our numerical simulations show that narrow kinks can propagate freely, and reveal that static or moving discrete breathers, with a finite but long lifetime, can emerge from kink-antikink collisions. In the general dissipative regime, the lifetime of these breathers depends on the importance of the dissipative effects. In the overdamped or diffusive regime, the general equation of motion reduces to a discrete reaction diffusion equation; our simulations show that, for a given potential shape, discrete wave fronts can travel without experiencing any propagation failure but their collisions are inelastic. PMID:11970697
Comte, J C; Marquié, P; Remoissenet, M
1999-12-01
We introduce a nonlinear Klein-Gordon lattice model with specific double-well on-site potential, additional constant external force and dissipation terms, which admits exact discrete kink or traveling wave fronts solutions. In the non-dissipative or conservative regime, our numerical simulations show that narrow kinks can propagate freely, and reveal that static or moving discrete breathers, with a finite but long lifetime, can emerge from kink-antikink collisions. In the general dissipative regime, the lifetime of these breathers depends on the importance of the dissipative effects. In the overdamped or diffusive regime, the general equation of motion reduces to a discrete reaction diffusion equation; our simulations show that, for a given potential shape, discrete wave fronts can travel without experiencing any propagation failure but their collisions are inelastic.
Chakrabarti, C. . Dept. of Electrical Engineering); Ja Ja, J. . Dept. of Electrical Engineering)
1990-11-01
This paper proposes two-dimensional systolic array implementations for computing the discrete Hartley (DHT) and the discrete cosine transforms (DCT) when the transform size N is decomposable into mutually prime factors. The existing two-dimensional formulations for DHT and DCT are modified and the corresponding algorithms are mapped into two-dimensional systolic arrays. The resulting architecture is fully pipelined with no control units. The hardware design is based on bit serial left to right MSB to LSB binary arithmetic.
NASA Astrophysics Data System (ADS)
Hayashi, Yusuke; Higuchi, Yusuke; Nomura, Yuji; Ogurisu, Osamu
2016-08-01
On the d-dimensional lattice Z^d and the r-regular tree {T^r} , an exact expression for the number of discrete eigenvalues of a discrete Laplacian with a finitely supported potential is described in terms of the support and the intensities of the potential on each case. In particular, the number of eigenvalues less than the infimum of the essential spectrum is bounded by the number of negative intensities.
NASA Astrophysics Data System (ADS)
Hayashi, Yusuke; Higuchi, Yusuke; Nomura, Yuji; Ogurisu, Osamu
2016-11-01
On the d-dimensional lattice Z^d and the r-regular tree {T^r}, an exact expression for the number of discrete eigenvalues of a discrete Laplacian with a finitely supported potential is described in terms of the support and the intensities of the potential on each case. In particular, the number of eigenvalues less than the infimum of the essential spectrum is bounded by the number of negative intensities.
NASA Astrophysics Data System (ADS)
Karimi-Fard, M.; Durlofsky, L. J.
2016-10-01
A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.
Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus
NASA Astrophysics Data System (ADS)
Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.
2015-05-01
We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.
On the Importance of the Dynamics of Discretizations
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, H. C.; Rai, ManMohan (Technical Monitor)
1995-01-01
It has been realized recently that the discrete maps resulting from numerical discretizations of differential equations can possess asymptotic dynamical behavior quite different from that of the original systems. This is the case not only for systems of Ordinary Differential Equations (ODEs) but in a more complicated manner for Partial Differential Equations (PDEs) used to model complex physics. The impact of the modified dynamics may be mild and even not observed for some numerical methods. For other classes of discretizations the impact may be pronounced, but not always obvious depending on the nonlinear model equations, the time steps, the grid spacings and the initial conditions. Non-convergence or convergence to periodic solutions might be easily recognizable but convergence to incorrect but plausible solutions may not be so obvious - even for discretized parameters within the linearized stability constraint. Based on our past four years of research, we will illustrate some of the pathology of the dynamics of discretizations, its possible impact and the usage of these schemes for model nonlinear ODEs, convection-diffusion equations and grid adaptations.
Discrete Variational Approach for Modeling Laser-Plasma Interactions
NASA Astrophysics Data System (ADS)
Reyes, J. Paxon; Shadwick, B. A.
2014-10-01
The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.
Compensatory neurofuzzy model for discrete data classification in biomedical
NASA Astrophysics Data System (ADS)
Ceylan, Rahime
2015-03-01
Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.
Discrete-continuous variable structural synthesis using dual methods
NASA Technical Reports Server (NTRS)
Schmit, L. A.; Fleury, C.
1980-01-01
Approximation concepts and dual methods are extended to solve structural synthesis problems involving a mix of discrete and continuous sizing type of design variables. Pure discrete and pure continuous variable problems can be handled as special cases. The basic mathematical programming statement of the structural synthesis problem is converted into a sequence of explicit approximate primal problems of separable form. These problems are solved by constructing continuous explicit dual functions, which are maximized subject to simple nonnegativity constraints on the dual variables. A newly devised gradient projection type of algorithm called DUAL 1, which includes special features for handling dual function gradient discontinuities that arise from the discrete primal variables, is used to find the solution of each dual problem. Computational implementation is accomplished by incorporating the DUAL 1 algorithm into the ACCESS 3 program as a new optimizer option. The power of the method set forth is demonstrated by presenting numerical results for several example problems, including a pure discrete variable treatment of a metallic swept wing and a mixed discrete-continuous variable solution for a thin delta wing with fiber composite skins.
Discrete-time minimal control synthesis adaptive algorithm
NASA Astrophysics Data System (ADS)
di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.
2010-12-01
This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.
Weight-lattice discretization of Weyl-orbit functions
NASA Astrophysics Data System (ADS)
Hrivnák, Jiří; Walton, Mark A.
2016-08-01
Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.
The discrete adjoint approach to aerodynamic shape optimization
NASA Astrophysics Data System (ADS)
Nadarajah, Siva Kumaran
A viscous discrete adjoint approach to automatic aerodynamic shape optimization is developed, and the merits of the viscous discrete and continuous adjoint approaches are discussed. The viscous discrete and continuous adjoint gradients for inverse design and drag minimization cost functions are compared with finite-difference and complex-step gradients. The optimization of airfoils in two-dimensional flow for inverse design and drag minimization is illustrated. Both the discrete and continuous adjoint methods are used to formulate two new design problems. First, the time-dependent optimal design problem is established, and both the time accurate discrete and continuous adjoint equations are derived. An application to the reduction of the time-averaged drag coefficient while maintaining time-averaged lift and thickness distribution of a pitching airfoil in transonic flow is demonstrated. Second, the remote inverse design problem is formulated. The optimization of a three-dimensional biconvex wing in supersonic flow verifies the feasibility to reduce the near field pressure peak. Coupled drag minimization and remote inverse design cases produce wings with a lower drag and a reduced near field peak pressure signature.
Discrete Diffusion Monte Carlo for grey Implicit Monte Carlo simulations.
Densmore, J. D.; Urbatsch, T. J.; Evans, T. M.; Buksas, M. W.
2005-01-01
Discrete Diffusion Monte Carlo (DDMC) is a hybrid transport-diffusion method for Monte Carlo simulations in diffusive media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Thus, DDMC produces accurate solutions while increasing the efficiency of the Monte Carlo calculation. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for grey Implicit Monte Carlo calculations. First, we employ a diffusion equation that is discretized in space but is continuous time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. In addition, we treat particles incident on an optically thick region using the asymptotic diffusion-limit boundary condition. This interface technique can produce accurate solutions even if the incident particles are distributed anisotropically in angle. Finally, we develop a method for estimating radiation momentum deposition during the DDMC simulation. With a set of numerical examples, we demonstrate the accuracy and efficiency of our improved DDMC method.
PREFACE: DISCRETE 2010: Symposium on Prospects in the Physics of Discrete Symmetries
NASA Astrophysics Data System (ADS)
Di Domenico, Antonio; Bini, Cesare; Bloise, Caterina; Bossi, Fabio; Faccini, Riccardo; Gauzzi, Paolo; Isidori, Gino; Lipari, Paolo; Ludovici, Lucio; Silvestrini, Luca
2011-12-01
The Symposium DISCRETE2010 on Prospects in the Physics of Discrete Symmetries was held at the Sapienza Universitàa di Roma, Italy from 6-11 December 2010. This second edition, after the successful one in Valencia in 2008, covered all theoretical and experimental progress in the field, and aimed at a thorough discussion on the latest developments. The topics covered included: T, C, P, CP symmetries; accidental symmetries (B, L conservation); CPT symmetry, decoherence, Lorentz symmetry breaking; neutrino mass and mixing; cosmology and astroparticles, dark matter searches; experimental prospects at LHC, Super flavor factories, and new facilities. The Symposium was organized in plenary sessions with a total of 23 invited talks, and parallel sessions with a total of 80 talks including both invited and selected contributions from the submitted abstracts. The speakers of the plenary sessions were: Achille Stocchi, Andreas Weiler, Kevin Pitts, Tim Gershon, Marco Sozzi, Neal Weiner, Vasiliki Mitsou, Bernard Sadoulet, Gianfranco Bertone, J. Eric Grove, Mauro Mezzetto, Alexei Yu Smirnov, Oliviero Cremonesi, Antonio Riotto, Reno Mandolesi, Brett Altschul, Jose Bernabeu, Lawrence Hall, Marco Grassi, Yannis K. Semertzidis, Riccardo Barbieri, Gigi Rolandi, Luciano Maiani. The Symposium venue was the CNR (Consiglio Nazionale delle Ricerche) headquarter building, close to the Sapienza University. At the end of the Symposium a special open session, devoted to a wider audience, was held at the Pontifical University of the Holy Cross, in the historical center of Rome. The symposium was attended by about 140 participants, about half coming from Italy, and the rest mainly from other European countries and United States. Among the social events was a concert at the Aula Magna of the Sapienza University, and a social dinner in the historical Palazzo Pallavicini-Rospigliosi on the Quirinale Hill. The next symposium of the series will be organised by IST, Universidade Tàecnica de Lisboa
Modelling and real-time simulation of continuous-discrete systems in mechatronics
Lindow, H.
1996-12-31
This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.
On the Chirality of a Discrete Dirac-Kähler Equation
NASA Astrophysics Data System (ADS)
Sushch, Volodymyr
2015-10-01
We discuss a discrete analogue of the Dirac-Kähler equation in which chiral properties of the continuum counterpart are captured. We pay special attention to a discrete Hodge star operator. To build such an operator combinatorial construction of a double complex is used. We describe discrete exterior calculus operations on a double complex and obtain the discrete Dirac-Kähler equation using these tools. Self-dual and anti-self-dual discrete inhomogeneous forms are presented. The chiral invariance of the massless discrete Dirac-Kähler equation is shown. Moreover, in the massive case we prove that a discrete Dirac-Kähler operator flips the chirality.
Bell-Curve Genetic Algorithm for Mixed Continuous and Discrete Optimization Problems
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Griffith, Michelle; Sykes, Ruth; Sobieszczanski-Sobieski, Jaroslaw
2002-01-01
In this manuscript we have examined an extension of BCB that encompasses a mix of continuous and quasi-discrete, as well as truly-discrete applications. FVe began by testing two refinements to the discrete version of BCB. The testing of midpoint versus fitness (Tables 1 and 2) proved inconclusive. The testing of discrete normal tails versus standard mutation showed was conclusive and demonstrated that the discrete normal tails are better. Next, we implemented these refinements in a combined continuous and discrete BCB and compared the performance of two discrete distance on the hub problem. Here we found when "order does matter" it pays to take it into account.
Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile.
Martínez, P J; Meister, M; Floría, L M; Falo, F
2003-06-01
The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel-Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially localized solutions are easily obtained numerically using adiabatic continuation from the anticontinuous limit. Linear stability (Floquet) analysis allows the characterization of different types of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are generally impossible as exact solutions in Hamiltonian systems. Within a certain range of parameters, propagating breathers occur as attractors of the dissipative dynamics. General features of these excitations are discussed and the Peierls-Nabarro barrier is addressed. Numerical scattering experiments with mobile breathers reveal the existence of two-breather bound states and allow a first glimpse at the intricate phenomenology of these special multibreather configurations.
Understanding due discretion of judgment in Catholic marriage courts.
Young, J L; Griffith, E E
1991-01-01
Psychiatrists and psychologists provide consultation to the Catholic Church's marriage courts. Operating under the Church's legal code, these tribunals assess the validity of weddings that have ended in divorce. This report describes one of the standards used for this purpose, the lack of due discretion of judgment, which is concerned with the maturity, understanding, and appreciation that the couple brought to the ceremony. This normal capacity is vulnerable to various mental illnesses, which if present with sufficient severity may nullify the marriage vows as seen by the Church (though not necessarily by the state). Such a finding results in freedom to marry again despite the Church's ban on divorce, provided that due discretion of judgment is regained. Case examples and discussion of the assessment process for due discretion of judgment prepare the consultant to apply psychiatric findings to this unique and urgent legal issue.
Optimization of Operations Resources via Discrete Event Simulation Modeling
NASA Technical Reports Server (NTRS)
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Self-assembled fibre optoelectronics with discrete translational symmetry
NASA Astrophysics Data System (ADS)
Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoel
2016-10-01
Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ~104 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.
Hybrid discrete/continuum algorithms for stochastic reaction networks
Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.
2014-10-22
Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less
A three-level BDDC algorithm for Mortar discretizations
Kim, H.; Tu, X.
2007-12-09
In this paper, a three-level BDDC algorithm is developed for the solutions of large sparse algebraic linear systems arising from the mortar discretization of elliptic boundary value problems. The mortar discretization is considered on geometrically non-conforming subdomain partitions. In two-level BDDC algorithms, the coarse problem needs to be solved exactly. However, its size will increase with the increase of the number of the subdomains. To overcome this limitation, the three-level algorithm solves the coarse problem inexactly while a good rate of convergence is maintained. This is an extension of previous work, the three-level BDDC algorithms for standard finite element discretization. Estimates of the condition numbers are provided for the three-level BDDC method and numerical experiments are also discussed.
A space-time discretization procedure for wave propagation problems
NASA Technical Reports Server (NTRS)
Davis, Sanford
1989-01-01
Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.
Emotion word recognition: discrete information effects first, continuous later?
Briesemeister, Benny B; Kuchinke, Lars; Jacobs, Arthur M
2014-05-20
Manipulations of either discrete emotions (e.g. happiness) or affective dimensions (e.g. positivity) have a long tradition in emotion research, but interactive effects have never been studied, based on the assumption that the two underlying theories are incompatible. Recent theorizing suggests, however, that the human brain relies on two affective processing systems, one working on the basis of discrete emotion categories, and the other working along affective dimensions. Presenting participants with an orthogonal manipulation of happiness and positivity in a lexical decision task, the present study meant to test the appropriateness of this assumption in emotion word recognition. Behavioral and electroencephalographic data revealed independent effects for both variables, with happiness affecting the early visual N1 component, while positivity affected an N400-like component and the late positive complex. These results are interpreted as evidence for a sequential processing of affective information, with discrete emotions being the basis for later dimensional appraisal processes. PMID:24713350
Discreteness-induced transitions in multibody reaction systems.
Saito, Yohei; Sughiyama, Yuki; Kaneko, Kunihiko; Kobayashi, Tetsuya J
2016-08-01
A decrease in system size can induce qualitatively different behavior compared to the macroscopic behavior of the corresponding large-size system. The mechanisms of this transition, which is known as the small-size transition, can be attributed to either a relative increase in the noise intensity or to the discreteness of the state space due to the small system size. The former mechanism has been intensively investigated using several toy and realistic models. However, the latter has rarely been analyzed and is sometimes confused with the former, because a toy model that extracts the essence of the discreteness-induced transition mechanism is lacking. In this work, we propose a one- and three-body reaction system as a minimal model of the discreteness-induced transition and derive the conditions under which this transition occurs in more complex systems. This work enriches our understanding of the influence of small system size on system behavior. PMID:27627279
Model and Parameter Discretization Impacts on Estimated ASR Recovery Efficiency
NASA Astrophysics Data System (ADS)
Forghani, A.; Peralta, R. C.
2015-12-01
We contrast computed recovery efficiency of one Aquifer Storage and Recovery (ASR) well using several modeling situations. Test situations differ in employed finite difference grid discretization, hydraulic conductivity, and storativity. We employ a 7-layer regional groundwater model calibrated for Salt Lake Valley. Since the regional model grid is too coarse for ASR analysis, we prepare two local models with significantly smaller discretization capable of analyzing ASR recovery efficiency. Some addressed situations employ parameters interpolated from the coarse valley model. Other situations employ parameters derived from nearby well logs or pumping tests. The intent of the evaluations and subsequent sensitivity analysis is to show how significantly the employed discretization and aquifer parameters affect estimated recovery efficiency. Most of previous studies to evaluate ASR recovery efficiency only consider hypothetical uniform specified boundary heads and gradient assuming homogeneous aquifer parameters. The well is part of the Jordan Valley Water Conservancy District (JVWCD) ASR system, that lies within Salt Lake Valley.
Self-assembled fibre optoelectronics with discrete translational symmetry
Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoel
2016-01-01
Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼104 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout. PMID:27698454
Discreteness-induced transitions in multibody reaction systems
NASA Astrophysics Data System (ADS)
Saito, Yohei; Sughiyama, Yuki; Kaneko, Kunihiko; Kobayashi, Tetsuya J.
2016-08-01
A decrease in system size can induce qualitatively different behavior compared to the macroscopic behavior of the corresponding large-size system. The mechanisms of this transition, which is known as the small-size transition, can be attributed to either a relative increase in the noise intensity or to the discreteness of the state space due to the small system size. The former mechanism has been intensively investigated using several toy and realistic models. However, the latter has rarely been analyzed and is sometimes confused with the former, because a toy model that extracts the essence of the discreteness-induced transition mechanism is lacking. In this work, we propose a one- and three-body reaction system as a minimal model of the discreteness-induced transition and derive the conditions under which this transition occurs in more complex systems. This work enriches our understanding of the influence of small system size on system behavior.
Stability analysis of the Euler discretization for SIR epidemic model
Suryanto, Agus
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.
Li, Zhelong; Zhang, Dongxiao; Li, Xiqing
2010-02-15
Advances in pore structure characterization and lattice-Boltzmann (LB) simulations of flow fields in pore spaces are making mechanistic simulations of colloid transport in real porous media a realistic goal. The primary challenge to reach this goal may be the computational demand of LB flow simulations in discretized porous medium domains at an assemblage scale. In this work, flow fields in simple cubic and dense packing systems were simulated at different discretization resolutions using the LB method. The simulated flow fields were incorporated into to a three-dimensional particle tracking model to simulate colloid transport in the two systems. The simulated colloid deposition tended to become asymptotic at a critical discretization resolution (voxel-grain size ratio = 0.01) at groundwater flow regimes for colloids down to submicrometer level under favorable conditions and down to around 1 microm under unfavorable conditions. The average simulated fluid velocities near grain surfaces were extracted to explain the sensitivities of simulated depositions to space discretization under both conditions. At the critical discretization resolution, current computation capacity would allow flow simulations and particle tracking in assemblage porous medium domains. In addition, particle tracking simulations revealed that colloids may be retained in flow vortices under conditions both favorable and unfavorable for deposition. Colloid retention in flow vortices has been proposed only very recently. Here we provide a mechanistic confirmation to this novel retention process. PMID:20088544
Discrete event simulation in the artificial intelligence environment
Egdorf, H.W.; Roberts, D.J.
1987-01-01
Discrete Event Simulations performed in an Artificial Intelligence (AI) environment provide benefits in two major areas. The productivity provided by Object Oriented Programming, Rule Based Programming, and AI development environments allows simulations to be developed and maintained more efficiently than conventional environments allow. Secondly, the use of AI techniques allows direct simulation of human decision making processes and Command and Control aspects of a system under study. An introduction to AI techniques is presented. Two discrete event simulations produced in these environments are described. Finally, a software engineering methodology is discussed that allows simulations to be designed for use in these environments. 3 figs.
Scattering from rough thin films: discrete-dipole-approximation simulations.
Parviainen, Hannu; Lumme, Kari
2008-01-01
We investigate the wave-optical light scattering properties of deformed thin circular films of constant thickness using the discrete-dipole approximation. Effects on the intensity distribution of the scattered light due to different statistical roughness models, model dependent roughness parameters, and uncorrelated, random, small-scale porosity of the inhomogeneous medium are studied. The suitability of the discrete-dipole approximation for rough-surface scattering problems is evaluated by considering thin films as computationally feasible rough-surface analogs. The effects due to small-scale inhomogeneity of the scattering medium are compared with the analytic approximation by Maxwell Garnett, and the results are found to agree with the approximation.
Discrete random media techniques for microwave modeling of vegetated terrain
NASA Technical Reports Server (NTRS)
Lang, Roger H.
1991-01-01
Microwave remote sensing models of vegetated terrain are investigated. The problem is to determine canopy characteristics such as biomass, canopy height, and the moisture of the underlying soil. The report describes a discrete scatter model which has been employed to model backscatter in the active (radar) case and to model brightness temperature in the passive (radiometric) case. The acquisition of ground truth data is discussed, as well as the comparison of theory and experiment. The overall conclusion of the work has been that the discrete scatter model in conjunction with efficient scatter algorithms and the distorted Born approximation is a most appropriate methodology to use for modeling purposes in the microwave region.
New discretization and solution techniques for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.
1983-01-01
Several topics arising in the finite element solution of the incompressible Navier-Stokes equations are considered. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. The role of artificial viscosity in viscous flow calculations is studied, emphasizing work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some modifications are mentioned.
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Moulton, J.D.; Ascher, U.M.; Morel, J.E.
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
Gravity cutoff in theories with large discrete symmetries.
Dvali, Gia; Redi, Michele; Sibiryakov, Sergey; Vainshtein, Arkady
2008-10-10
We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z(N) discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not imply a large number of species. Thus, there emerges a potentially wide class of new theories that address the hierarchy problem by lowering the gravitational cutoff due to the existence of large Z(10(32))-type symmetries. PMID:18999587
An improved switching converter model using discrete and average techniques
NASA Technical Reports Server (NTRS)
Shortt, D. J.; Lee, F. C.
1982-01-01
The nonlinear modeling and analysis of dc-dc converters has been done by averaging and discrete-sampling techniques. The averaging technique is simple, but inaccurate as the modulation frequencies approach the theoretical limit of one-half the switching frequency. The discrete technique is accurate even at high frequencies, but is very complex and cumbersome. An improved model is developed by combining the aforementioned techniques. This new model is easy to implement in circuit and state variable forms and is accurate to the theoretical limit.
Strongly asymmetric discrete Painlevé equations: The multiplicative case
NASA Astrophysics Data System (ADS)
Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Satsuma, J.
2016-04-01
We examine a class of multiplicative discrete Painlevé equations which may possess a strongly asymmetric form. When the latter occurs, the equation is written as a system of two equations the right hand sides of which have different functional forms. The present investigation focuses upon two canonical families of the Quispel-Roberts-Thompson classification which contain equations associated with the affine Weyl groups D5 ( 1 ) and E6 ( 1 ) (or groups appearing lower in the degeneration cascade of these two). Many new discrete Painlevé equations with strongly asymmetric forms are obtained.
New discretization and solution techniques for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.
1983-01-01
This paper considers several topics arising in the finite element solution of the incompressible Navier-Stokes equations. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. Following this, the role of artificial viscosity in viscous flow calculations is studied, emphasizing recent work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some recent modifications are mentioned.
Methodology for characterizing modeling and discretization uncertainties in computational simulation
ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.
2000-03-01
This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.
Unsuccessful reinforcement of a discrete action in paramecia, P. caudatum.
Mingee, Catherine M; Armus, Harvard L
2009-10-01
Previous research into the possibility of learning in paramecium in this laboratory has shown that these organisms can learn to remain in a specific location based on cathode shock reinforcement. The present experiment was designed to assess whether paramecium could learn a discrete action as opposed to remaining in a specific area, using cathode shock as a reinforcer. Results for a sample of 40 indicate that such learning did not take place. It is possible that the learning of discrete actions requires a nervous system.
FAST TRACK COMMUNICATION: Particle propagators on discrete spacetime
NASA Astrophysics Data System (ADS)
Johnston, Steven
2008-10-01
A quantum mechanical description of particle propagation on the discrete spacetime of a causal set is presented. The model involves a discrete path integral in which trajectories within the causal set are summed over to obtain a particle propagator. The sum-over-trajectories is achieved by a matrix geometric series. For causal sets generated by sprinkling points into 1+1 and 3+1 dimensional Minkowski spacetime the propagator calculated on the causal set is shown to agree, in a suitable sense, with the causal retarded propagator for the Klein Gordon equation. The particle propagator described here is a step towards quantum field theory on causal set spacetime.
Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
Beattie, Kenneth L.
1998-01-01
An improved microfabricated apparatus for conducting a multiplicity of individual and simultaneous binding reactions is described. The apparatus comprises a substrate on which are located discrete and isolated sites for binding reactions. The apparatus is characterized by discrete and isolated regions that extend through said substrate and terminate on a second surface thereof such that when a test sample is allowed to the substrate, it is capable of penetrating through each such region during the course of said binding reaction. The apparatus is especially useful for sequencing by hybridization of DNA molecules.
Slow convergence to effective medium in finite discrete metamaterials
NASA Astrophysics Data System (ADS)
Lapine, M.; McPhedran, R. C.; Poulton, C. G.
2016-06-01
It is known that metamaterial properties may differ significantly from the predictions of effective-medium theory. In many cases this is due to the finite size and discrete structure, which cannot be neglected in practical samples with a relatively small amount of elements. We analyze the response of finite discrete metamaterial objects of a spherical shape and demonstrate the role of boundary effects in these structures, pointing out an interplay between the size of the structure and the dissipation. We conclude that the discrepancy between the actual resonance frequency of a sphere and the effective-medium prediction is inversely proportional to the size of the sphere.
Designing of discrete mechatronic vibrating systems with negative value parameters
NASA Astrophysics Data System (ADS)
Buchacz, Andrzej; Gałęziowski, Damian
2016-10-01
In the paper, the known problem of vibration control, authors expanded for designing of mechatronic discrete systems that contains single or multiply piezoelectric elements connected to external electric networks. Main focus has been given for investigations in relation to damping performance and parameters study, in case of potential practical application. By different configurations of considered mechatronic discrete branched structures with two degrees of freedom, key negative parameters have been identified and investigated in case of vibration control effectiveness. Results have been presented in graphical form of amplitudes and dynamical flexibility functions.
A note on a Discrete Boltzmann Equation with multiple collisions
NASA Astrophysics Data System (ADS)
Oliveira, Filipe; Soares, Ana Jacinta
2008-05-01
We compute a non-trivial explicit solution for the one-dimensional plane 6-velocity discrete Boltzmann model with multiple collisions introduced in [E. Longo, R. Monaco, On the discrete kinetic theory with multiple collisions: Plane six-velocity and unsteady Couette flow, in: Muntz, et al. (Eds.), The Proceedings of Rarefied Gas Dynamics, in: AIAA Publ., vol. 118, 1989, pp. 118-130] which asymptotically connects two particular equilibrium states. We prove that such a solution exists provided that a suitable condition on the differential elastic cross sections holds.
Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.
2004-01-01
This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.
On classification of discrete, scalar-valued Poisson brackets
NASA Astrophysics Data System (ADS)
Parodi, E.
2012-10-01
We address the problem of classifying discrete differential-geometric Poisson brackets (dDGPBs) of any fixed order on a target space of dimension 1. We prove that these Poisson brackets (PBs) are in one-to-one correspondence with the intersection points of certain projective hypersurfaces. In addition, they can be reduced to a cubic PB of the standard Volterra lattice by discrete Miura-type transformations. Finally, by improving a lattice consolidation procedure, we obtain new families of non-degenerate, vector-valued and first-order dDGPBs that can be considered in the framework of admissible Lie-Poisson group theory.
Compressed wideband spectrum sensing based on discrete cosine transform.
Wang, Yulin; Zhang, Gengxin
2014-01-01
Discrete cosine transform (DCT) is a special type of transform which is widely used for compression of speech and image. However, its use for spectrum sensing has not yet received widespread attention. This paper aims to alleviate the sampling requirements of wideband spectrum sensing by utilizing the compressive sampling (CS) principle and exploiting the unique sparsity structure in the DCT domain. Compared with discrete Fourier transform (DFT), wideband communication signal has much sparser representation and easier implementation in DCT domain. Simulation result shows that the proposed DCT-CSS scheme outperforms the conventional DFT-CSS scheme in terms of MSE of reconstruction signal, detection probability, and computational complexity.
Compressed Wideband Spectrum Sensing Based on Discrete Cosine Transform
Wang, Yulin; Zhang, Gengxin
2014-01-01
Discrete cosine transform (DCT) is a special type of transform which is widely used for compression of speech and image. However, its use for spectrum sensing has not yet received widespread attention. This paper aims to alleviate the sampling requirements of wideband spectrum sensing by utilizing the compressive sampling (CS) principle and exploiting the unique sparsity structure in the DCT domain. Compared with discrete Fourier transform (DFT), wideband communication signal has much sparser representation and easier implementation in DCT domain. Simulation result shows that the proposed DCT-CSS scheme outperforms the conventional DFT-CSS scheme in terms of MSE of reconstruction signal, detection probability, and computational complexity. PMID:24526894
Discrete-time adaptive control of robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1989-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation.
3D imaging of nanomaterials by discrete tomography.
Batenburg, K J; Bals, S; Sijbers, J; Kübel, C; Midgley, P A; Hernandez, J C; Kaiser, U; Encina, E R; Coronado, E A; Van Tendeloo, G
2009-05-01
The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively. PMID:19269094
Modular packaging technique for combining integrated circuits and discrete components
NASA Technical Reports Server (NTRS)
Lacchia, J. F.
1969-01-01
Technique for packaging electronic modules interconnects integrated circuits and discrete components by means of beryllium-copper strips in a molded diallyphthalate tray. Simple girder-like construction provides ease of assembly, high rigidity, excellent vibration resistance, and good heat dissipation characteristics.
Polynomial Transformations For Discrete-Time Linear Systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1991-01-01
Transformations based on polynomial matrices of finite degree developed for use in computing functions for compensation, inversion, and approximation of discrete-time, multivariable, linear systems. Method derived from z-transform transfer-function form of matrices. Applicable to cascade-compensation problems in design of control systems.
Discrete dipole approximation in time domain through the Laplace transform.
Chaumet, Patrick C; Zhang, Ting; Rahmani, Adel; Gralak, Boris; Belkebir, Kamal
2013-12-01
We present a form of the discrete dipole approximation for electromagnetic scattering computations in time domain. We show that the introduction of complex frequencies, through the Laplace transform, significantly improves the computation time. We also show that the Laplace transform and its inverse can be combined to extract the field inside a scatterer at a real resonance frequency.
Exploring Discretization Error in Simulation-Based Aerodynamic Databases
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian
2010-01-01
This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.
Parameter redundancy in discrete state‐space and integrated models
McCrea, Rachel S.
2016-01-01
Discrete state‐space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state‐space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state‐space models using discrete analogues of methods for continuous state‐space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. PMID:27362826
Discrete Glimpses of the Physics Landscape after the Higgs Discovery
NASA Astrophysics Data System (ADS)
Ellis, John
2015-07-01
What is the Higgs boson telling us? What else is there? How do we find it? This talk discusses these current topics in particle physics in the wake of the Higgs discovery, with particular emphasis on the discrete symmetries CP and R-parity, not forgetting flavour physics and dark matter, and finishing with some remarks about possible future colliders.
KERNEL-SMOOTHED CONDITIONAL QUANTILES OF CORRELATED BIVARIATE DISCRETE DATA
De Gooijer, Jan G.; Yuan, Ao
2012-01-01
Socio-economic variables are often measured on a discrete scale or rounded to protect confidentiality. Nevertheless, when exploring the effect of a relevant covariate on the outcome distribution of a discrete response variable, virtually all common quantile regression methods require the distribution of the covariate to be continuous. This paper departs from this basic requirement by presenting an algorithm for nonparametric estimation of conditional quantiles when both the response variable and the covariate are discrete. Moreover, we allow the variables of interest to be pairwise correlated. For computational efficiency, we aggregate the data into smaller subsets by a binning operation, and make inference on the resulting prebinned data. Specifically, we propose two kernel-based binned conditional quantile estimators, one for untransformed discrete response data and one for rank-transformed response data. We establish asymptotic properties of both estimators. A practical procedure for jointly selecting band- and binwidth parameters is also presented. Simulation results show excellent estimation accuracy in terms of bias, mean squared error, and confidence interval coverage. Typically prebinning the data leads to considerable computational savings when large datasets are under study, as compared to direct (un)conditional quantile kernel estimation of multivariate data. With this in mind, we illustrate the proposed methodology with an application to a large dataset concerning US hospital patients with congestive heart failure. PMID:23667297
Reasoning and Proof in Precalculus and Discrete Mathematics.
ERIC Educational Resources Information Center
Thompson, Denisse R.
Precalculus and Discrete Mathematics (PDM) is the sixth and final course in the secondary mathematics curriculum developed by the University of Chicago (Illinois) School Mathematics Project. During the 1989-90 academic year, a formative evaluation of the third field-trial edition of PDM was conducted among a volunteer sample of 9 high schools with…
An adaptive mesh refinement algorithm for the discrete ordinates method
Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.
1996-03-01
The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.
Using Discrete Trial Instruction to Teach Children with Angelman Syndrome
ERIC Educational Resources Information Center
Summers, Jane; Szatmari, Peter
2009-01-01
Discrete trial instruction (DTI) was used to teach functional skills to three children with Angelman syndrome, a neurogenetic disorder that overlaps with autism and is associated with severe cognitive, speech, and motor impairments. Children received individual DTI teaching sessions 2 to 3 times per week over a 12-month period and displayed…
On Projecting Discretized Electromagnetic Fields with Unstructured Grids
Lee, Lie-Quan; Candel, Arno; Kabel, Andrea; Li, Zenghai; /SLAC
2008-08-13
A new method for projecting discretized electromagnetic fields on one unstructured grid to another grid is presented in this paper. Two examples are used for studying the errors of different projection methods. The analysis shows that the new method is very effective on balancing both the error of the electric field and that of the magnetic field (or curl of the electric field).
Nonlinear stability of discrete shocks for systems of conservation laws
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Xin, Zhouping
1993-09-01
In this paper we study the asymptotic nonlinear stability of discrete shocks for the Lax-Friedrichs scheme for approximating general m×m systems of nonlinear hyperbolic conservation laws. It is shown that weak single discrete shocks for such a scheme are nonlinearly stable in the L p-norm for all p ≧ 1, provided that the sums of the initial perturbations equal zero. These results should shed light on the convergence of the numerical solution constructed by the Lax-Friedrichs scheme for the single-shock solution of system of hyperbolic conservation laws. If the Riemann solution corresponding to the given far-field states is a superposition of m single shocks from each characteristic family, we show that the corresponding multiple discrete shocks are nonlinearly stable in L p (P ≧ 2). These results are proved by using both a weighted estimate and a characteristic energy method based on the internal structures of the discrete shocks and the essential monotonicity of the Lax-Friedrichs scheme.
Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions.
ERIC Educational Resources Information Center
Holland, Paul W.; Thayer, Dorothy T.
2000-01-01
Applied the theory of exponential families of distributions to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. Considers efficient computation of the maximum likelihood estimates of the parameters using Newton's Method and computationally efficient…
A COMPARISON OF INTERCELL METRICS ON DISCRETE GLOBAL GRID SYSTEMS
A discrete global grid system (DGGS) is a spatial data model that aids in global research by serving as a framework for environmental modeling, monitoring and sampling across the earth at multiple spatial scales. Topological and geometric criteria have been proposed to evaluate a...
Teaching Discrete Mathematics Entirely from Primary Historical Sources
ERIC Educational Resources Information Center
Barnett, Janet Heine; Bezhanishvili, Guram; Lodder, Jerry; Pengelley, David
2016-01-01
We describe teaching an introductory discrete mathematics course entirely from student projects based on primary historical sources. We present case studies of four projects that cover the content of a one-semester course, and mention various other courses that we have taught with primary source projects.
Physical Education & Outdoor Education: Complementary but Discrete Disciplines
ERIC Educational Resources Information Center
Martin, Peter; McCullagh, John
2011-01-01
The Australian Council for Health, Physical Education and Recreation (ACHPER) includes Outdoor Education (OE) as a component of Physical Education (PE). Yet Outdoor Education is clearly thought of by many as a discrete discipline separate from Physical Education. Outdoor Education has a body of knowledge that differs from that of Physical…
Controlling the path of discretized light in waveguide lattices
Longhi, Stefano
2011-01-15
A general method for flexible control of the path of discretized light beams in homogeneous waveguide lattices, based on longitudinal modulation of the coupling constant, is theoretically proposed. As compared to beam steering and refraction achievable in graded-index waveguide arrays, the proposed approach enables the synthesis of rather arbitrary target paths.
Conformal variations and quantum fluctuations in discrete gravity
NASA Astrophysics Data System (ADS)
Marzuoli, Annalisa; Merzi, Dario
2016-05-01
After an overview of variational principles for discrete gravity, and on the basis of the approach to conformal transformations in a simplicial PL setting proposed by Luo and Glickenstein, we present at a heuristic level an improved scheme for addressing the gravitational (Euclidean) path integral and geometrodynamics.
Discrete Waves and Phototransduction in Voltage-damped Ventral Photoreceptors
Behbehani, Michael; Srebro, Richard
1974-01-01
Discrete waves in the voltage-clamped photoreceptor of Limulus are remarkably similar in all essential properties to those found in an unclamped cell. The latency distribution of discrete waves is not affected by considerable changes in the holding potential in a voltage-clamped cell. Both large and small waves occur in voltage-clamped and unclamped cells and in approximately the same proportion. Large and small waves also share the same latency distributions and spectral sensitivity. We suggest that small waves may result from the activation of damaged membrane areas. Large waves have an average amplitude of approximately 5 nA in voltage-clamped photoreceptors. It probably requires several square microns of cell membrane to support this much photo-current. Thus the amplification inherent in the discrete wave process may involve spatial spread of activation from unimolecular dimensions to several square microns of cell membrane surface. Neither local current flow, nor pre-packaging of any transmitter substance appears to be involved in the amplification process. The possible mechanisms of the amplification are evaluated with relationship to the properties of discrete waves. PMID:4846766
Parameter redundancy in discrete state-space and integrated models.
Cole, Diana J; McCrea, Rachel S
2016-09-01
Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant.
Discrete virus infection model of hepatitis B virus.
Zhang, Pengfei; Min, Lequan; Pian, Jianwei
2015-01-01
In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.
29 CFR 541.202 - Discretion and independent judgment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and acting or making a decision after the various possibilities have been considered. The term “matters of significance” refers to the level of importance or consequence of the work performed. (b) The... can exercise discretion and independent judgment even if their decisions or recommendations...
Smooth surfaces from bilinear patches: Discrete affine minimal surfaces.
Käferböck, Florian; Pottmann, Helmut
2013-06-01
Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application.
Power Analysis for Trials with Discrete-Time Survival Endpoints
ERIC Educational Resources Information Center
Jozwiak, Katarzyna; Moerbeek, Mirjam
2012-01-01
Studies on event occurrence aim to investigate if and when subjects experience a particular event. The timing of events may be measured continuously using thin precise units or discretely using time periods. The latter metric of time is often used in social science research and the generalized linear model (GLM) is an appropriate model for data…
Judgments of Discrete and Continuous Quantity: An Illusory Stroop Effect
ERIC Educational Resources Information Center
Barth, Hilary C.
2008-01-01
Evidence from human cognitive neuroscience, animal neurophysiology, and behavioral research demonstrates that human adults, infants, and children share a common nonverbal quantity processing system with nonhuman animals. This system appears to represent both discrete and continuous quantity, but the proper characterization of the relationship…
System for Automatic Generation of Examination Papers in Discrete Mathematics
ERIC Educational Resources Information Center
Fridenfalk, Mikael
2013-01-01
A system was developed for automatic generation of problems and solutions for examinations in a university distance course in discrete mathematics and tested in a pilot experiment involving 200 students. Considering the success of such systems in the past, particularly including automatic assessment, it should not take long before such systems are…
Using a Card Trick to Teach Discrete Mathematics
ERIC Educational Resources Information Center
Simonson, Shai; Holm, Tara S.
2003-01-01
We present a card trick that can be used to review or teach a variety of topics in discrete mathematics. We address many subjects, including permutations, combinations, functions, graphs, depth first search, the pigeonhole principle, greedy algorithms, and concepts from number theory. Moreover, the trick motivates the use of computers in…
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Analyzing neuronal networks using discrete-time dynamics
NASA Astrophysics Data System (ADS)
Ahn, Sungwoo; Smith, Brian H.; Borisyuk, Alla; Terman, David
2010-05-01
We develop mathematical techniques for analyzing detailed Hodgkin-Huxley like models for excitatory-inhibitory neuronal networks. Our strategy for studying a given network is to first reduce it to a discrete-time dynamical system. The discrete model is considerably easier to analyze, both mathematically and computationally, and parameters in the discrete model correspond directly to parameters in the original system of differential equations. While these networks arise in many important applications, a primary focus of this paper is to better understand mechanisms that underlie temporally dynamic responses in early processing of olfactory sensory information. The models presented here exhibit several properties that have been described for olfactory codes in an insect’s Antennal Lobe. These include transient patterns of synchronization and decorrelation of sensory inputs. By reducing the model to a discrete system, we are able to systematically study how properties of the dynamics, including the complex structure of the transients and attractors, depend on factors related to connectivity and the intrinsic and synaptic properties of cells within the network.
Constructing Contracts: Making Discrete Mathematics Relevant to Beginning Programmers
ERIC Educational Resources Information Center
Gegg-Harrison, Timothy S.
2005-01-01
Although computer scientists understand the importance of discrete mathematics to the foundations of their field, computer science (CS) students do not always see the relevance. Thus, it is important to find a way to show students its relevance. The concept of program correctness is generally taught as an activity independent of the programming…
Thermal modelling using discrete vasculature for thermal therapy: a review
Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.
2013-01-01
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700
Hardware implementation of a discrete-time analog adaptive filter
Donohoe, G.W.
1981-01-01
This paper describes a hardware implementation of a discrete-time adaptive filter using a bucket-brigade device (BBD) tapped analog delay line, analog voltage multipliers and operational amplifier integrators and summing circuits. Some design considerations for this class of circuits are discussed.
Phase computations and phase models for discrete molecular oscillators
2012-01-01
Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330
Sebastian Schunert; Yousry Y. Azmy; Damien Fournier
2011-05-01
We present a comprehensive error estimation of four spatial discretization schemes of the two-dimensional Discrete Ordinates (SN) equations on Cartesian grids utilizing a Method of Manufactured Solution (MMS) benchmark suite based on variants of Larsen’s benchmark featuring different orders of smoothness of the underlying exact solution. The considered spatial discretization schemes include the arbitrarily high order transport methods of the nodal (AHOTN) and characteristic (AHOTC) types, the discontinuous Galerkin Finite Element method (DGFEM) and the recently proposed higher order diamond difference method (HODD) of spatial expansion orders 0 through 3. While AHOTN and AHOTC rely on approximate analytical solutions of the transport equation within a mesh cell, DGFEM and HODD utilize a polynomial expansion to mimick the angular flux profile across each mesh cell. Intuitively, due to the higher degree of analyticity, we expect AHOTN and AHOTC to feature superior accuracy compared with DGFEM and HODD, but at the price of potentially longer grind times and numerical instabilities. The latter disadvantages can result from the presence of exponential terms evaluated at the cell optical thickness that arise from the semianalytical solution process. This work quantifies the order of accuracy and the magnitude of the error of all four discretization methods for different optical thicknesses, scattering ratios and degrees of smoothness of the underlying exact solutions in order to verify or contradict the aforementioned intuitive expectation.
ERIC Educational Resources Information Center
Falkenstine, Karen Jones; Collins, Belva C.; Schuster, John W.; Kleinert, Harold
2009-01-01
Special education teachers often search for effective strategies to teach a variety of skills to students with moderate to severe disabilities through small group instruction. The investigators examined the acquisition of academic skills as well as chained and discrete tasks presented as nontargeted information by a small group of students with…
A discrete model for compressible flows in heterogeneous media
Le Metayer, O.; Massol, A.; Hank, S.
2011-04-01
This work deals with the building of a discrete model able to describe and to predict the evolution of complex gas flows in heterogeneous media. In many physical applications, large scales numerical simulation is no longer possible because of a lack of computing resources. Indeed the medium topology may be complex due to the presence of many obstacles (walls, pipes, equipments, geometric singularities etc.). Aircraft powerplant compartments are examples where topology is complex due to the presence of pipes, ducts, coolers and other equipment. Other important examples are gas explosions and large scale dispersion of hazardous materials in urban places, cities or underground involving obstacles such as buildings and various infrastructures. In all cases efficient safety responses are required. Then a new discrete model is built and solved in reasonable execution times for large cells volumes including such obstacles. Quantitative comparisons between experimental and numerical results are shown for different significant test cases, showing excellent agreement.
Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices
NASA Astrophysics Data System (ADS)
Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.
2016-02-01
In the present work, we consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. We quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilities to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. For weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.
Modeling Discrete Survival Time Using Genomic Feature Data
Ferber, Kyle; Archer, Kellie J
2015-01-01
Researchers have recently shown that penalized models perform well when applied to high-throughput genomic data. Previous researchers introduced the generalized monotone incremental forward stagewise (GMIFS) method for fitting overparameterized logistic regression models. The GMIFS method was subsequently extended by others for fitting several different logit link ordinal response models to high-throughput genomic data. In this study, we further extended the GMIFS method for ordinal response modeling using a complementary log-log link, which allows one to model discrete survival data. We applied our extension to a publicly available microarray gene expression dataset (GSE53733) with a discrete survival outcome. The dataset included 70 primary glioblastoma samples from patients of the German Glioma Network with long-, intermediate-, and short-term overall survival. We tested the performance of our method by examining the prediction accuracy of the fitted model. The method has been implemented as an addition to the ordinalgmifs package in the R programming environment. PMID:25861216
Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor
NASA Astrophysics Data System (ADS)
Arif, Khalid Mahmood
2016-08-01
We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations.
Statistics of primordial density perturbations from discrete seed masses
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Bertschinger, Edmund
1991-01-01
The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.
Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models
NASA Astrophysics Data System (ADS)
Giesen, Joachim; Mueller, Klaus; Taneva, Bilyana; Zolliker, Peter
Conjoint analysis is a family of techniques that originated in psychology and later became popular in market research. The main objective of conjoint analysis is to measure an individual's or a population's preferences on a class of options that can be described by parameters and their levels. We consider preference data obtained in choice-based conjoint analysis studies, where one observes test persons' choices on small subsets of the options. There are many ways to analyze choice-based conjoint analysis data. Here we discuss the intuition behind a classification based approach, and compare this approach to one based on statistical assumptions (discrete choice models) and to a regression approach. Our comparison on real and synthetic data indicates that the classification approach outperforms the discrete choice models.
Inference in infinite-dimensional inverse problems - Discretization and duality
NASA Technical Reports Server (NTRS)
Stark, Philip B.
1992-01-01
Many techniques for solving inverse problems involve approximating the unknown model, a function, by a finite-dimensional 'discretization' or parametric representation. The uncertainty in the computed solution is sometimes taken to be the uncertainty within the parametrization; this can result in unwarranted confidence. The theory of conjugate duality can overcome the limitations of discretization within the 'strict bounds' formalism, a technique for constructing confidence intervals for functionals of the unknown model incorporating certain types of prior information. The usual computational approach to strict bounds approximates the 'primal' problem in a way that the resulting confidence intervals are at most long enough to have the nominal coverage probability. There is another approach based on 'dual' optimization problems that gives confidence intervals with at least the nominal coverage probability. The pair of intervals derived by the two approaches bracket a correct confidence interval. The theory is illustrated with gravimetric, seismic, geomagnetic, and helioseismic problems and a numerical example in seismology.
Exponential convergence through linear finite element discretization of stratified subdomains
NASA Astrophysics Data System (ADS)
Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali
2016-10-01
Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.
Spontaneous breaking of a discrete symmetry and holography
NASA Astrophysics Data System (ADS)
Bajc, Borut; Lugo, Adrián R.; Sturla, Mauricio B.
2012-04-01
We present an exactly solvable model of a scalar field in an AdSd+1 like background interpolating between a Z2 preserving and a Z2 breaking minima of the potential. We define its holographic dual through the AdS/CFT dictionary and argue that at zero temperature the d - dimensional strongly coupled system on the boundary of AdSd+1 exhibits a phase with a spontaneously broken discrete symmetry. In the presence of a black hole in the bulk ( T≠0) we find that, although the metastable phase is present, the discrete symmetry gets restored. We compute exactly the lowest order boundary correlation functions in the spontaneously broken phase at T = 0, finding out a pole of the propagator for zero momenta that signals the presence of a massless mode and argue that it should not be present at ( T≠0).
On the spectral and conservation properties of nonlinear discretization operators
NASA Astrophysics Data System (ADS)
Fauconnier, D.; Dick, E.
2011-06-01
Following the study of Pirozzoli [1], the objective of the present work is to provide a detailed theoretical analysis of the spectral properties and the conservation properties of nonlinear finite difference discretizations. First, a Nonlinear Spectral Analysis (NSA) is proposed in order to study the statistical behavior of the modified wavenumber of a nonlinear finite difference operator, for a large set of synthetic scalar fields with prescribed energy spectrum and random phase. Second, the necessary conditions for local and global conservation of momentum and kinetic energy are derived and verified for nonlinear discretizations. Because the nonlinear mechanisms result in a violation of the energy conservation conditions, the NSA is used to quantify the energy imbalance. Third, the effect of aliasing errors due to the nonlinearity is analyzed. Finally, the theoretical observations are verified for two simple, thought relevant, numerical simulations.
Discrete geometry: speculations on a new framework for classical electrodynamics
Hemion, G.
1988-10-01
An attempt is made to describe the basic principles of physics in terms of discrete partially ordered sets. Geometric ideas are introduced by means of an action at a distance formulation of classical electrodynamics. The speculations are in two main directions: (i) Gravity, one of the four elementary forces of nature, seems to be fundamentally different from the other three forces. Could it be that gravity can be explained as a natural consequence of the discrete structure. (ii) The problem of the observer in quantum mechanics continues to cause conceptual problems. Can quantum statistics be explained in terms of finite ensembles of possible partially ordered sets. The development is guided at all stages by reference to the simplest, and most well-established principles of physics.
The discrete Kalman filtering approach for seismic signals deconvolution
Kurniadi, Rizal; Nurhandoko, Bagus Endar B.
2012-06-20
Seismic signals are a convolution of reflectivity and seismic wavelet. One of the most important stages in seismic data processing is deconvolution process; the process of deconvolution is inverse filters based on Wiener filter theory. This theory is limited by certain modelling assumptions, which may not always valid. The discrete form of the Kalman filter is then used to generate an estimate of the reflectivity function. The main advantage of Kalman filtering is capability of technique to handling continually time varying models and has high resolution capabilities. In this work, we use discrete Kalman filter that it was combined with primitive deconvolution. Filtering process works on reflectivity function, hence the work flow of filtering is started with primitive deconvolution using inverse of wavelet. The seismic signals then are obtained by convoluting of filtered reflectivity function with energy waveform which is referred to as the seismic wavelet. The higher frequency of wavelet gives smaller wave length, the graphs of these results are presented.
Gaussian estimation for discretely observed Cox-Ingersoll-Ross model
NASA Astrophysics Data System (ADS)
Wei, Chao; Shu, Huisheng; Liu, Yurong
2016-07-01
This paper is concerned with the parameter estimation problem for Cox-Ingersoll-Ross model based on discrete observation. First, a new discretized process is built based on the Euler-Maruyama scheme. Then, the parameter estimators are obtained by employing the maximum likelihood method and the explicit expressions of the error of estimation are given. Subsequently, the consistency property of all parameter estimators are proved by applying the law of large numbers for martingales, Holder's inequality, B-D-G inequality and Cauchy-Schwarz inequality. Finally, a numerical simulation example for estimators and the absolute error between estimators and true values is presented to demonstrate the effectiveness of the estimation approach used in this paper.
Directed self-assembly of proteins into discrete radial patterns
Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas
2013-01-01
Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678
Four-body continuum-discretized coupled-channels calculations
Rodriguez-Gallardo, M.; Arias, J. M.; Moro, A. M.; Gomez-Camacho, J.; Thompson, I. J.; Tostevin, J. A.
2009-11-15
The development of a continuum-bin scheme of discretization for three-body projectiles is necessary for studies of reactions of Borromean nuclei such as {sup 6}He within the continuum-discretized coupled-channels approach. Such a procedure, for constructing bin states on selected continuum energy intervals, is formulated and applied for the first time to reactions of a three-body projectile. The continuum representation uses the eigenchannel expansion of the three-body S matrix. The method is applied to the challenging case of the {sup 6}He+{sup 208}Pb reaction at 22 MeV, where an accurate treatment of both the Coulomb and the nuclear interactions with the target is necessary.
Applications of Discrete Molecular Dynamics in biology and medicine.
Proctor, Elizabeth A; Dokholyan, Nikolay V
2016-04-01
Discrete Molecular Dynamics (DMD) is a physics-based simulation method using discrete energetic potentials rather than traditional continuous potentials, allowing microsecond time scale simulations of biomolecular systems to be performed on personal computers rather than supercomputers or specialized hardware. With the ongoing explosion in processing power even in personal computers, applications of DMD have similarly multiplied. In the past two years, researchers have used DMD to model structures of disease-implicated protein folding intermediates, study assembly of protein complexes, predict protein-protein binding conformations, engineer rescue mutations in disease-causative protein mutants, design a protein conformational switch to control cell signaling, and describe the behavior of polymeric dispersants for environmental cleanup of oil spills, among other innovative applications. PMID:26638022
Discrete Ordinates Solutions for Highly Forward Peaked Scattering
Sanchez, Richard; McCormick, Norman J.
2004-07-15
The limitations of asymptotic methods for numerically solving highly forward peaked scattering (HFPS) problems are reviewed before resorting to a discrete ordinates solution for such problems based on biased angular quadrature formulas to increase the precision of the angular representation and on source evaluation from cell-averaged angular fluxes to reduce memory requirements. Also, a twice-collided source is introduced to avoid numerical representation of singularities in the solution. As an example the propagation and spreading of a collimated particle beam in an HFPS medium has been calculated with a discrete ordinates diamond-differenced numerical solution of the transport equation in two-dimensional curvilinear cylindrical coordinates. The calculation was carried out for a strongly forward peaked Henyey-Greenstein scattering law for which Fokker-Planck asymptotic models are not valid. The results show promise for numerically calculated reference solutions based on accurate spatial representations for checking the accuracy of standard asymptotic models for these types of problems.
Nonlinear wave propagation in discrete and continuous systems
NASA Astrophysics Data System (ADS)
Rothos, V. M.
2016-09-01
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.
Discrete neural dynamic programming in wheeled mobile robot control
NASA Astrophysics Data System (ADS)
Hendzel, Zenon; Szuster, Marcin
2011-05-01
In this paper we propose a discrete algorithm for a tracking control of a two-wheeled mobile robot (WMR), using an advanced Adaptive Critic Design (ACD). We used Dual-Heuristic Programming (DHP) algorithm, that consists of two parametric structures implemented as Neural Networks (NNs): an actor and a critic, both realized in a form of Random Vector Functional Link (RVFL) NNs. In the proposed algorithm the control system consists of the DHP adaptive critic, a PD controller and a supervisory term, derived from the Lyapunov stability theorem. The supervisory term guaranties a stable realization of a tracking movement in a learning phase of the adaptive critic structure and robustness in face of disturbances. The discrete tracking control algorithm works online, uses the WMR model for a state prediction and does not require a preliminary learning. Verification has been conducted to illustrate the performance of the proposed control algorithm, by a series of experiments on the WMR Pioneer 2-DX.
Discrete Roughness Effects on Shuttle Orbiter at Mach 6
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Hamilton, H. Harris, II
2002-01-01
Discrete roughness boundary layer transition results on a Shuttle Orbiter model in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed with new boundary layer calculations to provide consistency for comparison to other published results. The experimental results were previously obtained utilizing the phosphor thermography system to monitor the status of the boundary layer via global heat transfer images of the Orbiter windward surface. The size and location of discrete roughness elements were systematically varied along the centerline of the 0.0075-scale model at an angle of attack of 40 deg and the boundary layer response recorded. Various correlative approaches were attempted, with the roughness transition correlations based on edge properties providing the most reliable results. When a consistent computational method is used to compute edge conditions, transition datasets for different configurations at several angles of attack have been shown to collapse to a well-behaved correlation.
A study of discrete and continuum joint modeling techniques
Jung, J.; Brown, S.R.
1992-05-01
This paper presents the results of a numerical and experimental study in which finite element and discrete element techniques were used to analyze a layered polycarbonate plate model subjected to uniaxial compression. Also, the two analysis techniques were used to compute the response of an eight meter diameter drift in jointed-rock. The drift was subjected to in-situ and far-field induced thermal stresses. The finite element analyses used a continuum rock model to represent the jointed-rock. A comparison of the analyses showed that the finite element continuum joint model consistently predicted less joint slippage than did the discrete element analyses, although far-field displacements compared well.
Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
Disaster Response Modeling Through Discrete-Event Simulation
NASA Technical Reports Server (NTRS)
Wang, Jeffrey; Gilmer, Graham
2012-01-01
Organizations today are required to plan against a rapidly changing, high-cost environment. This is especially true for first responders to disasters and other incidents, where critical decisions must be made in a timely manner to save lives and resources. Discrete-event simulations enable organizations to make better decisions by visualizing complex processes and the impact of proposed changes before they are implemented. A discrete-event simulation using Simio software has been developed to effectively analyze and quantify the imagery capabilities of domestic aviation resources conducting relief missions. This approach has helped synthesize large amounts of data to better visualize process flows, manage resources, and pinpoint capability gaps and shortfalls in disaster response scenarios. Simulation outputs and results have supported decision makers in the understanding of high risk locations, key resource placement, and the effectiveness of proposed improvements.
Thermodynamic framework for discrete optimal control in multiphase flow systems
NASA Astrophysics Data System (ADS)
Sieniutycz, Stanislaw
1999-08-01
Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.
A discrete geometric approach to solving time independent Schroedinger equation
Specogna, Ruben; Trevisan, Francesco
2011-02-20
The time independent Schroedinger equation stems from quantum theory axioms as a partial differential equation. This work aims at providing a novel discrete geometric formulation of this equation in terms of integral variables associated with precise geometric elements of a pair of three-dimensional interlocked grids, one of them based on tetrahedra. We will deduce, in a purely geometric way, a computationally efficient discrete counterpart of the time independent Schroedinger equation in terms of a standard symmetric eigenvalue problem. Moreover boundary and interface conditions together with non homogeneity and anisotropy of the media involved are accounted for in a straightforward manner. This approach yields to a sensible computational advantage with respect to the finite element method, where a generalized eigenvalue problem has to be solved instead. Such a modeling tool can be used for analyzing a number of quantum phenomena in modern nano-structured devices, where the accounting of the real 3D geometry is a crucial issue.
Applications of Discrete Molecular Dynamics in biology and medicine.
Proctor, Elizabeth A; Dokholyan, Nikolay V
2016-04-01
Discrete Molecular Dynamics (DMD) is a physics-based simulation method using discrete energetic potentials rather than traditional continuous potentials, allowing microsecond time scale simulations of biomolecular systems to be performed on personal computers rather than supercomputers or specialized hardware. With the ongoing explosion in processing power even in personal computers, applications of DMD have similarly multiplied. In the past two years, researchers have used DMD to model structures of disease-implicated protein folding intermediates, study assembly of protein complexes, predict protein-protein binding conformations, engineer rescue mutations in disease-causative protein mutants, design a protein conformational switch to control cell signaling, and describe the behavior of polymeric dispersants for environmental cleanup of oil spills, among other innovative applications.
Fabrication and optical enhancing properties of discrete supercrystals
NASA Astrophysics Data System (ADS)
Tebbe, Moritz; Lentz, Sarah; Guerrini, Luca; Fery, Andreas; Alvarez-Puebla, Ramon A.; Pazos-Perez, Nicolas
2016-06-01
Discrete gold nanoparticle crystals with tunable size and morphology are fabricated via a fast and inexpensive template-assisted method. The highly precise hierarchical organization of the plasmonic building blocks yields superstructures with outstanding behaviour for surface-enhanced Raman scattering analysis.Discrete gold nanoparticle crystals with tunable size and morphology are fabricated via a fast and inexpensive template-assisted method. The highly precise hierarchical organization of the plasmonic building blocks yields superstructures with outstanding behaviour for surface-enhanced Raman scattering analysis. Electronic supplementary information (ESI) available: UV-Vis spectra and TEM and SEM images of different particles and supercrystals. See DOI: 10.1039/c5nr09017b
Identification of micro parameters for discrete element simulation of agglomerates
NASA Astrophysics Data System (ADS)
Palis, Stefan; Antonyuk, Sergiy; Dosta, Maksym; Heinrich, Stefan
2013-06-01
The mechanical behaviour of solid particles like agglomerates, granules or crystals strongly depends on their micro structure, e.g. structural defects and porosity. In order to model the mechanical behaviour of these inhomogeneous media the discrete element method has been proven to be an appropriate tool. The model parameters used are typically micro parameters like bond stiffness, particle-particle contact stiffness, strength of the bonds. Due to the lack of general methods for a direct micro parameter determination, normally laborious parameter adaptation has to be done in order to fit experiment and simulation. In this contribution a systematic and automatic way for parameter adaptation using real experiments is proposed. Due to the fact, that discrete element models are typically systems of differential equations of very high order, gradient based methods are not suitable. Hence, the focus will be on derivative free methods.
A deterministic global approach for mixed-discrete structural optimization
NASA Astrophysics Data System (ADS)
Lin, Ming-Hua; Tsai, Jung-Fa
2014-07-01
This study proposes a novel approach for finding the exact global optimum of a mixed-discrete structural optimization problem. Although many approaches have been developed to solve the mixed-discrete structural optimization problem, they cannot guarantee finding a global solution or they adopt too many extra binary variables and constraints in reformulating the problem. The proposed deterministic method uses convexification strategies and linearization techniques to convert a structural optimization problem into a convex mixed-integer nonlinear programming problem solvable to obtain a global optimum. To enhance the computational efficiency in treating complicated problems, the range reduction technique is also applied to tighten variable bounds. Several numerical experiments drawn from practical structural design problems are presented to demonstrate the effectiveness of the proposed method.
Discrete neocortical dynamics predict behavioral categorization of sounds.
Bathellier, Brice; Ushakova, Lyubov; Rumpel, Simon
2012-10-18
The ability to group stimuli into perceptual categories is essential for efficient interaction with the environment. Discrete dynamics that emerge in brain networks are believed to be the neuronal correlate of category formation. Observations of such dynamics have recently been made; however, it is still unresolved if they actually match perceptual categories. Using in vivo two-photon calcium imaging in the auditory cortex of mice, we show that local network activity evoked by sounds is constrained to few response modes. Transitions between response modes are characterized by an abrupt switch, indicating attractor-like, discrete dynamics. Moreover, we show that local cortical responses quantitatively predict discrimination performance and spontaneous categorization of sounds in behaving mice. Our results therefore demonstrate that local nonlinear dynamics in the auditory cortex generate spontaneous sound categories which can be selected for behavioral or perceptual decisions.
Excitation of Continuous and Discrete Modes in Incompressible Boundary Layers
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Reshotko, Eli
1998-01-01
This report documents the full details of the condensed journal article by Ashpis & Reshotko (JFM, 1990) entitled "The Vibrating Ribbon Problem Revisited." A revised formal solution of the vibrating ribbon problem of hydrodynamic stability is presented. The initial formulation of Gaster (JFM, 1965) is modified by application of the Briggs method and a careful treatment of the complex double Fourier transform inversions. Expressions are obtained in a natural way for the discrete spectrum as well as for the four branches of the continuous spectra. These correspond to discrete and branch-cut singularities in the complex wave-number plane. The solutions from the continuous spectra decay both upstream and downstream of the ribbon, with the decay in the upstream direction being much more rapid than that in the downstream direction. Comments and clarification of related prior work are made.
Some unsolved problems in discrete mathematics and mathematical cybernetics
NASA Astrophysics Data System (ADS)
Korshunov, Aleksei D.
2009-10-01
There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.
Ontogeny of pig discrete Peyer's patches: expression of surface antigens.
Makala, L H; Kamada, T; Nagasawa, H; Igarashi, I; Fujisaki, K; Suzuki, N; Mikami, T; Haverson, K; Bailey, M; Stokes, C R; Bland, P W
2001-06-01
Leukocyte populations present in the discrete Peyer's patches (PP) of the pig were characterized from birth (Day 0) to day 35 after birth by immunohistochemistry and image analysis. Immediately after birth, cell membrane expression of CD2 and CD3, major histocompatibilty complex (MHC) class 11 (both SLA (swine leukocyte antigen) -DQ+ and SLA-DR+), CD21, 74-22-15 and surface immunoglobulin (sIg) were all demonstrable. Computer assisted morphometric techniques were used to confirm the significant expansion of these cell populations from birth onwards. The distribution of the cell types was not random but suggested a preferential retention of cells at specific sites. This implies a degree of organization of immunological cells within the discrete PP, enhancing the potential to mount immune responses in the most efficient manner.
Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices
Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.
2016-01-14
We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less
Directed assembly of discrete gold nanoparticle groupings usingbranched DNA scaffolds
Claridge, Shelley A.; Goh, Sarah L.; Frechet, Jean M.J.; Williams, Shara C.; Micheel, Christine M.; Alivisatos, A. Paul
2004-09-14
The concept of self-assembled dendrimers is explored for the creation of discrete nanoparticle assemblies. Hybridization of branched DNA trimers and nanoparticle-DNA conjugates results in the synthesis of nanoparticle trimer and tetramer complexes. Multiple tetramer architectures are investigated, utilizing Au-DNA conjugates with varying secondary structural motifs. Hybridization products are analyzed by gel electrophoresis, and discrete bands are observed corresponding to structures with increasing numbers of hybridization events. Samples extracted from each band are analyzed by transmission electron microscopy, and statistics compiled from micrographs are used to compare assembly characteristics for each architecture. Asymmetric structures are also produced in which both 5 and 10 nm Au particles are assembled on branched scaffolds.
Input-output identification of controlled discrete manufacturing systems
NASA Astrophysics Data System (ADS)
Estrada-Vargas, Ana Paula; López-Mellado, Ernesto; Lesage, Jean-Jacques
2014-03-01
The automated construction of discrete event models from observations of external system's behaviour is addressed. This problem, often referred to as system identification, allows obtaining models of ill-known (or even unknown) systems. In this article, an identification method for discrete event systems (DESs) controlled by a programmable logic controller is presented. The method allows processing a large quantity of observed long sequences of input/output signals generated by the controller and yields an interpreted Petri net model describing the closed-loop behaviour of the automated DESs. The proposed technique allows the identification of actual complex systems because it is sufficiently efficient and well adapted to cope with both the technological characteristics of industrial controllers and data collection requirements. Based on polynomial-time algorithms, the method is implemented as an efficient software tool which constructs and draws the model automatically; an overview of this tool is given through a case study dealing with an automated manufacturing system.
Lepton mixing patterns from a scan of finite discrete groups
NASA Astrophysics Data System (ADS)
Holthausen, Martin; Lim, Kher Sham; Lindner, Manfred
2013-04-01
The recent discovery of a non-zero value of the mixing angle θ13 has ruled out tri-bimaximal mixing as the correct lepton mixing pattern generated by some discrete flavor symmetry (barring large next-to-leading order corrections in concrete models). In this work we assume that neutrinos are Majorana particles and perform a general scan of all finite discrete groups with order less than 1536 to obtain their predictions for lepton mixing angles. To our surprise, the scan of over one million groups only yields 3 interesting groups that give lepton mixing patterns which lie within 3-sigma of the current best global fit values. A systematic way to categorize such groups and the implications for flavor symmetry are discussed.
Discrete symmetries in the heterotic-string landscape
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.
2015-07-01
We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.
A discrete-time adaptive control scheme for robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.
Distributed LQR control for discrete-time homogeneous systems
NASA Astrophysics Data System (ADS)
Wang, Wei; Zhang, Fangfang; Han, Chunyan
2016-11-01
This paper investigates the distributed linear quadratic regulation (LQR) controller design method for discrete-time homogeneous scalar systems. Based on the optimal centralised control theory, the existence condition for distributed optimal controller is firstly proposed. It shows that the globally optimal distributed controller is dependent on the structure of the penalty matrix. Such results can be used in consensus problems and used to find under which communication topology (may not be an all-to-all form) the optimal distributed controller exists. When the proposed condition cannot hold, a suboptimal design method with the aid of the decomposition of discrete algebraic Riccati equations and robustness of local controllers is proposed. The computation complexity and communication load for each subsystem are only dependent on the number of its neighbours.
Discrete echo signal modeling of ultrasound imaging systems
NASA Astrophysics Data System (ADS)
Chen, Ming; Zhang, Cishen
2008-03-01
In this paper, a discrete model representing the pulse-tissue interaction in the medical ultrasound scanning and imaging process is developed. The model is based on discretizing the acoustical wave equation and is in terms of convolution between the input ultrasound pulses and the tissue mass density variation. Such a model can provide a useful means for ultrasound echo signal processing and imaging. Most existing models used for ultrasound imaging are based on frequency domain transform. A disadvantage of the frequency domain transform is that it is only applicable to shift-invariant models. Thus it has ignored the shift-variant nature of the original acoustic wave equation where the tissue compressibility and mass density distributions are spatial-variant factors. The discretized frequency domain model also obscures the compressibility and mass density representations of the tissue, which may mislead the physical understanding and interpretation of the image obtained. Moreover, only the classical frequency domain filtering methods have been applied to the frequency domain model for acquiring some tissue information from the scattered echo signals. These methods are non-parametric and require a prior knowledge of frequency spectra of the transmitted pulses. Our proposed model technique will lead to discrete, multidimensional, shift-variant and parametric difference or convolution equations with the transmitted pulse pressure as the input, the measurement data of the echo signals as the output, and functions of the tissue compressibility and mass density distributions as shift-variant parameters that can be readily identified from input-output measurements. The proposed model represents the entire multiple scattering process, and hence overcomes the key limitation in the current ultrasound imaging methods.
Pinning synchronization of discrete dynamical networks with delay coupling
NASA Astrophysics Data System (ADS)
Cheng, Ranran; Peng, Mingshu; Zuo, Jun
2016-05-01
The purpose of this paper is to investigate the pinning synchronization analysis for nonlinear coupled delayed discrete dynamical networks with the identical or nonidentical topological structure. Based on the Lyapunov stability theory, pinning control method and linear matrix inequalities, several adaptive synchronization criteria via two kinds of pinning control method are obtained. Two examples based on Rulkov chaotic system are included to illustrate the effectiveness and verification of theoretical analysis.
Discrete-time infinity control problem with measurement feedback
NASA Technical Reports Server (NTRS)
Stoorvogel, A. A.; Saberi, A.; Chen, B. M.
1992-01-01
The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.
Algebraic moment closure for population dynamics on discrete structures.
House, Thomas
2015-04-01
Moment closure on general discrete structures often requires one of the following: (i) an absence of short-closed loops (zero clustering); (ii) existence of a spatial scale; (iii) ad hoc assumptions. Algebraic methods are presented to avoid the use of such assumptions for populations based on clumps and are applied to both SIR and macroparasite disease dynamics. One approach involves a series of approximations that can be derived systematically, and another is exact and based on Lie algebraic methods.
Asymptotics of solutions of the discrete string equation
NASA Astrophysics Data System (ADS)
Vereschagin, Vadim L.
The main subject of the paper is the so-called Discrete Painlevé-1 Equation (DP1). Solutions of DP1 are classified under the criterion of their behavior while the argument tends to infinity. The Isomonodromic Deformations Method (IDM) yields asymptotic formulae for regular solutions of DP1. DP1 is an integrable system, which allows to develop the appropriate Whitham theory. Asymptotics of singular solutions of DP1 are calculated by using the Whitham method.
Discrete homoclinic orbits in a laser with feedback
Pisarchik; Meucci; Arecchi
2000-12-01
We provide experimental evidence of the discrete character of homoclinic chaos in a laser with feedback. We show that the narrow chaotic windows are distributed exponentially as a function of a control parameter. The number of consecutive chaotic regions corresponds to the number of loops around the saddle focus responsible for Shilnikov chaos. The characterization of homoclinic chaos is also done through the return map of the return times at a suitable reference point. PMID:11138193
On necessary optimality conditions in discrete control systems
NASA Astrophysics Data System (ADS)
Mardanov, M. J.; Melikov, T. K.; Mahmudov, N. I.
2015-10-01
The paper deals with a nonlinear discrete-time optimal control problem with a cost functional of terminal type. Using a new variation of the control and new properties of optimal controls, we prove the linearised optimality conditions extending such classical optimality conditions. Along with this, various optimality conditions of quasi-singular controls are obtained. Finally, the examples illustrating the rich content of the obtained results are illustrated.
Multidimensional discretization of conservation laws for unstructured polyhedral grids
Burton, D.E.
1994-08-22
To the extent possible, a discretized system should satisfy the same conservation laws as the physical system. The author considers the conservation properties of a staggered-grid Lagrange formulation of the hydrodynamics equations (SGH) which is an extension of a ID scheme due to von Neumann and Richtmyer (VNR). The term staggered refers to spatial centering in which position, velocity, and kinetic energy are centered at nodes, while density, pressure, and internal energy are at cell centers. Traditional SGH formulations consider mass, volume, and momentum conservation, but tend to ignore conservation of total energy, conservation of angular momentum, and requirements for thermodynamic reversibility. The author shows that, once the mass and momentum discretizations have been specified, discretization for other quantities are dictated by the conservation laws and cannot be independently defined. The spatial discretization method employs a finite volume procedure that replaces differential operators with surface integrals. The method is appropriate for multidimensional formulations (1D, 2D, 3D) on unstructured grids formed from polygonal (2D) or polyhedral (3D) cells. Conservation equations can then be expressed in conservation form in which conserved currents are exchanged between control volumes. In addition to the surface integrals, the conservation equations include source terms derived from physical sources or geometrical considerations. In Cartesian geometry, mass and momentum are conserved identically. Discussion of volume conservation will be temporarily deferred. The author shows that the momentum equation leads to a form-preserving definition for kinetic energy and to an exactly conservative evolution equation for internal energy. Similarly, the author derives a form-preserving definition and corresponding conservation equation for a zone-centered angular momentum.
Three-dimensional discrete ordinates reactor assembly calculations on GPUs
Evans, Thomas M; Joubert, Wayne; Hamilton, Steven P; Johnson, Seth R; Turner, John A; Davidson, Gregory G; Pandya, Tara M
2015-01-01
In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.
Direct discretization of planar div-curl problems
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.
1989-01-01
A control volume method is proposed for planar div-curl systems. The method is independent of potential and least squares formulations, and works directly with the div-curl system. The novelty of the technique lies in its use of a single local vector field component and two control volumes rather than the other way around. A discrete vector field theory comes quite naturally from this idea and is developed. Error estimates are proved for the method, and other ramifications investigated.
Spurious haloes and discreteness-driven relaxation in cosmological simulations
NASA Astrophysics Data System (ADS)
Power, C.; Robotham, A. S. G.; Obreschkow, D.; Hobbs, A.; Lewis, G. F.
2016-10-01
There is strong evidence that cosmological N-body simulations dominated by warm dark matter (WDM) contain spurious or unphysical haloes, most readily apparent as regularly spaced low-mass haloes strung along filaments. We show that spurious haloes are a feature of traditional N-body simulations of cosmological structure formation models, including WDM and cold dark matter models, in which gravitational collapse proceeds in an initially anisotropic fashion, and arises naturally as a consequence of discreteness-driven relaxation. We demonstrate this using controlled N-body simulations of plane-symmetric collapse and show that spurious haloes are seeded at shell crossing by localized velocity perturbations induced by the discrete nature of the density field, and that their characteristic separation should be approximately the mean inter-particle separation of the N-body simulation, which is fixed by the mass resolution within the volume. Using cosmological N-body simulations in which particles are split into two collisionless components of fixed mass ratio, we find that the spatial distribution of the two components show signatures of discreteness-driven relaxation on both large and small scales. Adopting a spline kernel gravitational softening that is of order the comoving mean inter-particle separation helps to suppress the effect of discreteness-driven relaxation, but cannot eliminate it completely. These results provide further motivation for recent developments of new algorithms, which include, for example, revisions of the traditional N-body approach by means of spatially adaptive anistropric gravitational softenings or explicit solution of the evolution of dark matter in phase space.
Use of discrete choice experiments to elicit preferences
Ryan, M; Bate, A; Eastmond, C; Ludbrook, A
2001-01-01
This paper considers the application of discrete choice experiments for eliciting preferences in the delivery of health care. Drawing upon the results from a recently completed systematic review, the paper summarises the application of this technique in health care. It then presents a case study applying the technique to rheumatology outpatient clinics. 200 patients were questioned about the importance of six attributes: staff seen (junior doctor or specialist nurse); time in waiting area; continuity of contact with same staff; provision of a phone-in/advice service; length of consultation; and change in pain levels. The systematic review indicated that discrete choice experiments have been applied to a wide number of areas and a number of methodological issues have been addressed. Consistent with this literature, the case study found evidence of both rationality and theoretical validity of responses. The approach was used to establish the relative importance of different attributes, how individuals trade between these attributes, and overall benefit scores for different clinic configurations. The value of attributes was estimated in terms of time, and this was converted to a monetary measure using the value of waiting time for public transport. Discrete choice experiments represent a potentially useful instrument for eliciting preferences. Future methodological work should explore issues related to the experimental design of the study, methods of data collection and analysis, and satisfaction with the economic axioms of the instrument. Collaborative work with psychologists and qualitative researchers will prove useful in this research agenda. Key Words: discrete choice experiments; patient preference; decision making; patient-caregiver communication PMID:11533440
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
The continuum discretized coupled-channels method and its applications
NASA Astrophysics Data System (ADS)
Yahiro, Masanobu; Ogata, Kazuyuki; Matsumoto, Takuma; Minomo, Kosho
2012-09-01
This is a review of recent developments in the continuum discretized coupled-channels method (CDCC) and its applications to nuclear physics, cosmology and astrophysics, and nuclear engineering. The theoretical foundation of CDCC is shown, and a microscopic reaction theory for nucleus-nucleus scattering is constructed as an underlying theory of CDCC. CDCC is then extended to treat Coulomb breakup and four-body breakup. We also propose a new theory that makes CDCC applicable to inclusive reactions.
Transitions between discrete and rhythmic primitives in a unimanual task
Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville
2013-01-01
Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139
Synchronization of autonomous objects in discrete event simulation
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1990-01-01
Autonomous objects in event-driven discrete event simulation offer the potential to combine the freedom of unrestricted movement and positional accuracy through Euclidean space of time-driven models with the computational efficiency of event-driven simulation. The principal challenge to autonomous object implementation is object synchronization. The concept of a spatial blackboard is offered as a potential methodology for synchronization. The issues facing implementation of a spatial blackboard are outlined and discussed.
Genetic algorithm for extracting rules in discrete domain
Neruda, R.
1995-09-20
We propose a genetic algorithm that evolves families of rules from a set of examples. Inputs and outputs of the problem are discrete and nominal values which makes it difficult to use alternative learning methods that implicitly regard a metric space. A way how to encode sets of rules is presented together with special variants of genetic operators suitable for this encoding. The solution found by means of this process can be used as a core of a rule-based expert system.
Galerkin/Runge-Kutta discretizations for semilinear parabolic equations
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1987-01-01
A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for semilinear parabolic initial boundary value problems. Unlike any classical counterpart, this class offers arbitrarily high, optimal order convergence. In support of this claim, error estimates are proved, and computational results are presented. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.
An Introductory Overview of Statistical Methods for Discrete Time Series
NASA Astrophysics Data System (ADS)
Meng, X.-L.; California-Harvard AstroStat Collaboration
2004-08-01
A number of statistical problems encounted in astrophysics are concerned with discrete time series, such as photon counts with variation in source intensity over time. This talk provides an introductory overview of the current state-of-the-art methods in statistics, including Bayesian methods aided by Markov chain Monte Carlo, for modeling and analyzing such data. These methods have also been successfully applied in other fields, such as economics.
A Domain-Specific Language for Discrete Mathematics
NASA Astrophysics Data System (ADS)
Jha, Rohit; Samuel, Alfy; Pawar, Ashmee; Kiruthika, M.
2013-05-01
This paper discusses a Domain Specific Language (DSL) that has been developed to enable implementation of concepts of discrete mathematics. A library of data types and functions provides functionality which is frequently required by users. Covering the areas of Mathematical Logic, Set Theory, Functions, Graph Theory, Number Theory, Linear Algebra and Combinatorics, the language's syntax is close to the actual notation used in the specific fields.
A discrete Fourier transform for virtual memory machines
NASA Technical Reports Server (NTRS)
Galant, David C.
1992-01-01
An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.
Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Litt, Jonathan (Technical Monitor); Ray, Asok
2004-01-01
This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.
Discrete quadratic solitons with competing second-harmonic components
Setzpfandt, Frank; Pertsch, Thomas; Sukhorukov, Andrey A.
2011-11-15
We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.
Multifractal analysis of time series generated by discrete Ito equations
Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele
2015-06-15
In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.
Dynamic response and noise transmission of discretely stiffened composite panels
NASA Astrophysics Data System (ADS)
Lyrintzis, Constantinos S.; Vaicatis, Rimas
The surface protection systems of aerospace and aircraft structures are often constructed from discretely stiffened composite panels. This paper presents an analytical study of the dynamic response and structure-borne sound transmission of these structures due to random loading conditions. A generalized transfer matrix procedure is developed to obtain the required dynamic response solution. Modal decomposition is used to predict the interior noise transmission. Numerical results are presented for acousto-structural applications.
Intraband discrete breathers in disordered nonlinear systems. II. Localization
NASA Astrophysics Data System (ADS)
Kopidakis, G.; Aubry, S.
2000-05-01
We find spatially localized, time-periodic solutions (discrete breathers or DBs) in disordered nonlinear systems with frequency inside the linear phonon spectrum under conditions that strictly prohibit their existence in their periodic counterparts. For that purpose, we develop a new in situ method for the accurate calculation of these solutions which does not make use of any continuation from an anticontinuous limit. Using this method, we demonstrate that intraband localized modes (intraband discrete breathers or IDBs) at a given site with frequencies inside the discrete linear spectrum do exist, provided these frequencies do not belong to forbidden resonance gaps. Since there is a dense set of resonant frequencies, we illustrate numerically, in agreement with a theorem by Albanese and Fröhlich, that the localized DBs exist provided that their frequencies belong to fat Cantor sets (i.e., with finite measure). Such a set contains as accumulation points the linear frequency of the normal mode at the occupied site. We check that many of these solutions are linearly stable and conjecture that their frequency belongs to another smaller fat Cantor set. Our numerical methods provide a much wider set of exact solutions which are multisite breathers and suggest conjectures extending the existing theorems. The physical implications of the existence of IDBs and possible applications for glasses and the persistent spectral hole burning are discussed.
On discrete symmetries for a whole Abelian model
NASA Astrophysics Data System (ADS)
Chauca, J.; Doria, R.
2012-10-01
Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {Dμ,Xiμ} and the physical basis {GμI}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {GμI} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.
Dust grain coagulation modelling : From discrete to continuous
NASA Astrophysics Data System (ADS)
Paruta, P.; Hendrix, T.; Keppens, R.
2016-07-01
In molecular clouds, stars are formed from a mixture of gas, plasma and dust particles. The dynamics of this formation is still actively investigated and a study of dust coagulation can help to shed light on this process. Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its properties and its suitability for numerical validation. The crucial step is in our reinterpretation from its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski coagulation equation. This opens up the possibility of exploiting previous results in order to prove the existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution. Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is demonstrated that there is an exact numerical agreement with the initial discrete model, with improved accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.
Study of Ray Effects in Discrete Ordinates Calculations.
NASA Astrophysics Data System (ADS)
Gomes, Luisa Maria Torres
Ray effects, an inherent problem in the formulation of the discrete ordinates approximation to the transport equation, is studied in this research. In particular, the effectiveness of using Monte Carlo procedures to generate a first collision source or a second collision source is investigated. Monte Carlo procedures provide a general methodology that can be applied to the discrete ordinates solution of complex problems in either two- or three-dimensional geometries, for which ray effects are likely to occur. The Monte Carlo method, which is intrinsically free from ray effects, performs the transport of the source particle to the first collision site. The Monte Carlo estimated uncollided fluxes or first collided fluxes are used to compute the scattering sources in a format suitable for input into the DORT two-dimensional and the TORT three -dimensional discrete ordinates codes. The computational time and precision requirements of the Monte Carlo calculation are analyzed. Also, three procedures for estimating the second collision source with the modified version of MORSE are investigated. The results show that significant improvements are achieved in the solution of the test problems when using the first collision source and that virtual elimination of ray effects is realized when using the second collision source.
A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Spreng, Fabian; Schnabel, Dirk; Mueller, Alexandra; Eberhard, Peter
2014-06-01
In this paper, an extension to the Smoothed Particle Hydrodynamics (SPH) method is proposed that allows for an adaptation of the discretization level of a simulated continuum at runtime. By combining a local adaptive refinement technique with a newly developed coarsening algorithm, one is able to improve the accuracy of the simulation results while reducing the required computational cost at the same time. For this purpose, the number of particles is, on the one hand, adaptively increased in critical areas of a simulation model. Typically, these are areas that show a relatively low particle density and high gradients in stress or temperature. On the other hand, the number of SPH particles is decreased for domains with a high particle density and low gradients. Besides a brief introduction to the basic principle of the SPH discretization method, the extensions to the original formulation providing such a local adaptive refinement and coarsening of the modeled structure are presented in this paper. After having introduced its theoretical background, the applicability of the enhanced formulation, as well as the benefit gained from the adaptive model discretization, is demonstrated in the context of four different simulation scenarios focusing on solid continua. While presenting the results found for these examples, several properties of the proposed adaptive technique are discussed, e.g. the conservation of momentum as well as the existing correlation between the chosen refinement and coarsening patterns and the observed quality of the results.
Multidimensional electron-photon transport with standard discrete ordinates codes
Drumm, C.R.
1997-04-01
A method is described for generating electron cross sections that are comparable with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the method is a simultaneous solution of the continuous-slowing-down (CSD) portion and elastic-scattering portion of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre cross sections are much smaller than the true scattering cross sections that they represent. Under certain conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion.
Multidimensional electron-photon transport with standard discrete ordinates codes
Drumm, C.R.
1997-09-01
A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages to using an established discrete ordinates solver, e.g., immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and synthetic radiation environments. The cross sections have been successfully used in the DORT, TWODANT, and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the method is a simultaneous solution of the continuous-slowing-down and elastic-scattering portions of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre cross sections are much smaller than the true scattering cross sections that they represent. Under certain conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion.
Distributed versus exclusive preference in discrete-trial choice.
Mazur, James E
2010-07-01
Two experiments on discrete-trial choice examined the conditions under which pigeons would exhibit exclusive preference for the better of two alternatives as opposed to distributed preference (making some choices for each alternative). In Experiment 1, pigeons chose between red and green response keys that delivered food after delays of different durations, and in Experiment 2 they chose between red and green keys that delivered food with different probabilities. Some conditions of Experiment 1 had fixed delays to food and other conditions had variable delays. In both experiments, exclusive or nearly exclusive preference for the better alternative was found in some conditions, but distributed preference was found in other conditions, especially in Experiment 2 when key location varied randomly over trials. The results were used to evaluate several different theories about discrete-trial choice. The results suggest that exclusive preference for one alternative is a frequent outcome in discrete-trial choice. When distributed preference does occur, it is not the result of inherent tendencies to sample alternatives or to match response percentages to the values of the alternatives. Rather, distributed preference may occur when two factors (such as reinforcer delay and position bias) compete for the control of choice, or when the consequences for the two alternatives are similar and difficult to discriminate.
(Discrete kinetic theory, lattice gas dynamics and foundations of hydrodynamics)
Protopopescu, V.
1988-10-07
The traveler participated successively in the Workshop of Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, Villa Gualino-Torino, Italy, and in the Third International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Salice Terme-Pavia, Italy, as a guest of the Italian CNR (National Council for Research, Mathematical Physics Group). At the first Workshop, there were approximately 65 participants among whom 35 were speakers. The topics discussed were discrete kinetic theory, cellular automata, and the relationship between microscopic/mesoscopic and macroscopic evolution equations. Cellular automata and lattice gas dynamics emerged as main areas of promising research and future applications. At the second Workshop, there were approximately 80 attendants, 20 contributed papers, and 15 invited papers. The main subjects of the papers were general methods to study nonlinear equations, advances in plasma theory, numerical methods, efficient computational schemes, and nonlinear transport problems. The Italian scientists expressed interest in strengthening the collaboration with ORNL in the areas of nonlinear partial differential equations, and discrete dynamics with applications to competitive systems.
Discrete Averaging Relations for Micro to Macro Transition
NASA Astrophysics Data System (ADS)
Liu, Chenchen; Reina, Celia
2016-05-01
The well-known Hill's averaging theorems for stresses and strains as well as the so-called Hill-Mandel principle of macrohomogeneity are essential ingredients for the coupling and the consistency between the micro and macro scales in multiscale finite element procedures (FE$^2$). We show in this paper that these averaging relations hold exactly under standard finite element discretizations, even if the stress field is discontinuous across elements and the standard proofs based on the divergence theorem are no longer suitable. The discrete averaging results are derived for the three classical types of boundary conditions (affine displacement, periodic and uniform traction boundary conditions) using the properties of the shape functions and the weak form of the microscopic equilibrium equations. The analytical proofs are further verified numerically through a simple finite element simulation of an irregular representative volume element undergoing large deformations. Furthermore, the proofs are extended to include the effects of body forces and inertia, and the results are consistent with those in the smooth continuum setting. This work provides a solid foundation to apply Hill's averaging relations in multiscale finite element methods without introducing an additional error in the scale transition due to the discretization.
Discrete threshold versus continuous strength models of perceptual recognition.
Paap, K R; Chun, E; Vonnahme, P
1999-12-01
Two experiments were designed to test discrete-threshold models of letter and word recognition against models that assume that decision criteria are applied to measures of continuous strength. Although our goal is to adjudicate this matter with respect to broad classes of models, some of the specific predictions for discrete-threshold are generated from Grainger and Jacobs' (1994) Dual-Readout Model (DROM) and some of the predictions for continuous strength are generated from a revised version of the Activation-Verification Model (Paap, Newsome, McDonald, & Schvaneveldt, 1982). Experiment 1 uses a two-alternative forced-choice task that is followed by an assessment of confidence and then a whole report if a word is recognized. Factors are manipulated to assess the presence or magnitude of a neighbourhood-frequency effect, a lexical-bias effect, a word-superiority effect, and a pseudoword advantage. Several discrepancies between DROM's predictions and the obtained data are noted. Both types of models were also used to predict the distribution of responses across the levels of confidence for each individual participant. The predictions based on continuous strength were superior. Experiment 2 used a same-different task and confidence ratings to enable the generation of receiver operating characteristics (ROCs). The shapes of the ROCs are more consistent with the continuous strength assumption than with a discrete threshold. PMID:10646200
Transport and discrete particle noise in gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Lee, W. W.
2006-10-01
We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.
Pricing of path dependent derivatives with discretely monitored underlying assets
NASA Astrophysics Data System (ADS)
Choi, Hyomin
This dissertation presents two different approaches to path dependent option pricing with discrete sampling. Provided the underlying asset of a path dependent derivative contract follows an affine process, we use the forward characteristic method to evaluate its fair price. Our study shows that the valuation method is numerically accessible as long as the contract payoff is a linear combination of log return of its underlying asset price. We compute various examples of such contracts and give contract-tailored formulas that we use in these examples. In the second part, we consider variance options under stochastic volatility model. We analyze the difference between variance option prices with discrete and continuous sampling as a function of N, the number of observations made in the former. We find the series expansion of the difference with respect to 1/N and find its leading term. By adding this leading term to the value of continuously sampled variance option, we obtain a simple and well-understood approximation of discretely sample variance option price.
On discrete symmetries for a whole Abelian model
Chauca, J.; Doria, R.
2012-09-24
Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {l_brace}D{sub {mu}},X{sup i}{sub {mu}}{r_brace} and the physical basis {l_brace}G{sub {mu}I}{r_brace}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {l_brace}G{sub {mu}I}{r_brace} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.
Temporal Trends of Discrete Extreme Events - A Case Study
NASA Astrophysics Data System (ADS)
Rahmat, S. N.; Jayasuriya, N.; Bhuiyan, M.; Adnan, M. S.
2016-07-01
Investigating trends in discrete events is essential for the study of changing patterns of extreme events. Temporal trends in the inter-arrival times of occurrence of drought events were examined for 21 selected stations across Victoria, Australia. In the present study, the Standardize Precipitation Index (SPI) was applied for 12-month time scale to identify drought. A drought event here is defined as a period in which the SPI is continuously negative and reaching a value of -1.0 or less. Often, nonparametric tests are commonly used to test for trends including in discrete events. However, discrete events are not constant because of the presence of zero values or non-normality of data. The methodology applies to long-term records of event counts and is based on the stochastic concepts of Poisson process and standard linear regression. Overall, of the 21 stations, 15 showed statistically significant increasing frequency indicates those events are becoming more frequent. Only one station gave insignificant result. The remaining 5 stations showed the time between events was significantly increasing designates droughts are becoming less frequent.
Determination of slender body aerodynamics using discrete vortex methods
NASA Astrophysics Data System (ADS)
Gebert, G. A.
1994-03-01
Current aerodynamic interest has turned to the study of supermaneuverable fighters and weapon performance when launched in extreme flight conditions. The evaluation of design missile performance requires multiple runs of six degree-of-freedom (6-DOF) simulations, analyzing the missile behavior for a variety of launch and flight conditions. Before wind-tunnel tests, it is necessary to produce the aerodynamic loading of candidate missiles for 6-DOF analyses. Since semi-empirical formulas fail in regions of nonlinear aerodynamics, and solutions to the full Navier-Stokes equations are too costly and time consuming, an alternative method of discrete vortex analysis is re-examined. The present theory examines the three-dimensional nature of the shed vorticity and generalizes previous discrete vortex analyses. Consequently, the results demonstrate relative user independence in determining all slender-body loading at angles of attack from 0 to 70 deg. The rapid calculations of the discrete vortex method makes it a prime candidate for the determinations of high angle-of-attack aerodynamic databases.
B-decay CP asymmetries, discrete ambiguities, and new physics
NASA Astrophysics Data System (ADS)
Kayser, Boris; London, David
2000-06-01
The first measurements of CP violation in the B system will likely probe sin 2α, sin 2β, and cos 2γ. Assuming that the CP angles α, β, and γ are the interior angles of the unitarity triangle, these measurements determine the angle set (α,β,γ) except for a twofold discrete ambiguity. If one allows for the possibility of new physics, the presence of this discrete ambiguity can make its discovery difficult: if only one of the two candidate solutions is consistent with constraints from other measurements in the B and K systems, one is not sure whether or not new physics is present. We review the methods used to resolve the discrete ambiguity and show that, even in the presence of new physics, they can usually be used to uncover this new physics. There are some exceptions, which we describe in detail. We systematically scan the parameter space and present examples of values of (α,β,γ) and the new-physics parameters which correspond to all possibilities. Finally, we show that if one relaxes the assumption that the bag parameters BBd and BK are positive, one can no longer definitively establish the presence of new physics.
Rainbow-shift mechanism behind discrete optical-potential ambiguities
Brandan, M.E. ); McVoy, K.W. )
1991-03-01
Some years ago, Drisko {ital et} {ital al}. suggested that the discrete ambiguity often encountered for elastic scattering optical potentials could be understood as being due to the interior or small-{ital l} {ital S}-matrix elements for two equivalent'' potentials differing in phase by 2{pi}, {ital l}-by-{ital l}. We point out that the {ital absence} of this phase change for peripheral partial waves is equally essential, and suggest that a deeper understanding of the ambiguity may be achieved by viewing it as a consequence of a farside interference between interior and peripheral partial waves. It is this interference which produces the broad Airy maxima'' of a nuclear rainbow, and we show that a Drisko-type phase-shift increment {delta}{sub {ital l}}{r arrow}({delta}{sub {ital l}}+{pi}) for low-{ital l} phases relative to the high-{ital l} ones is exactly what is needed to shift a farside rainbow pattern by one Airy maximum, thus providing an equivalent rainbow-shift'' interpretation of the discrete ambiguity. The physical importance of both interpretations lies in the fact that the existence of discrete ambiguities (as well as of nuclear rainbows) is explicit evidence for low-{ital l} transparency in nucleus-nucleus collisions. The essential role played by low partial waves explains why peripheral reactions have generally not proven helpful in resolving this ambiguity.
A study of discrete control signal fault conditions in the shuttle DPS
NASA Technical Reports Server (NTRS)
Reddi, S. S.; Retter, C. T.
1976-01-01
An analysis of the effects of discrete failures on the data processing subsystem is presented. A functional description of each discrete together with a list of software modules that use this discrete are included. A qualitative description of the consequences that may ensue due to discrete failures is given followed by a probabilistic reliability analysis of the data processing subsystem. Based on the investigation conducted, recommendations were made to improve the reliability of the subsystem.
Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom
NASA Astrophysics Data System (ADS)
Lorente, Miguel
2001-07-01
The Kravchuk and Meixner polynomials of discrete variable are introduced for the discrete models of the harmonic oscillator and hydrogen atom. Starting from Rodrigues formula we construct raising and lowering operators, commutation and anticommutation relations. The physical properties of discrete models are figured out through the equivalence with the continuous models obtained by limit process.
31 CFR 356.33 - Does the Treasury have any discretion in the auction process?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Does the Treasury have any discretion... CIRCULAR, PUBLIC DEBT SERIES NO. 1-93) Miscellaneous Provisions § 356.33 Does the Treasury have any discretion in the auction process? (a) We have the discretion to: (1) Accept, reject, or refuse to...
31 CFR 375.30 - Does the Treasury have any discretion in this process?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Does the Treasury have any discretion... TREASURY SECURITIES REDEMPTION OPERATIONS Miscellaneous Provisions § 375.30 Does the Treasury have any discretion in this process? (a) We have the discretion to: (1) Accept or reject any offers or...