Stabilizing a graphene platform toward discrete components
NASA Astrophysics Data System (ADS)
Mzali, Sana; Montanaro, Alberto; Xavier, Stéphane; Servet, Bernard; Mazellier, Jean-Paul; Bezencenet, Odile; Legagneux, Pierre; Piquemal-Banci, Maëlis; Galceran, Regina; Dlubak, Bruno; Seneor, Pierre; Martin, Marie-Blandine; Hofmann, Stephan; Robertson, John; Cojocaru, Costel-Sorin; Centeno, Alba; Zurutuza, Amaia
2016-12-01
We report on statistical analysis and consistency of electrical performances of devices based on a large scale passivated graphene platform. More than 500 graphene field effect transistors (GFETs) based on graphene grown by chemical vapor deposition and transferred on 4 in. SiO2/Si substrates were fabricated and tested. We characterized the potential of a two-step encapsulation process including an Al2O3 protection layer to avoid graphene contamination during the lithographic process followed by a final Al2O3 passivation layer subsequent to the GFET fabrication. Devices were investigated for occurrence and reproducibility of conductance minimum related to the Dirac point. While no conductance minimum was observed in unpassivated devices, 75% of the passivated transistors exhibited a clear conductance minimum and low hysteresis. The maximum of the device number distribution corresponds to a residual doping below 5 × 1011 cm-2 (0.023 V/nm). This yield shows that GFETs integrating low-doped graphene and exhibiting small hysteresis in the transfer characteristics can be envisaged for discrete components, with even further potential for low power driven electronics.
Roux, A; Laporte, S; Lecompte, J; Gras, L-L; Iordanoff, I
2016-01-25
The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a material with a simple discretization scheme and help in understanding the influence of the orientation of fibers on the MTC׳s behavior. The aims of this study were to model the MTC in DEM at the macroscopic scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical behavior. A geometrical construction of the MTC was done using discrete element linked by springs. Young׳s modulus values of the MTC׳s components were retrieved from the literature to model the microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle׳s fibers with the tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The structure׳s effects, added to the geometrical parameters, highlight the MTC׳s mechanical behavior. It is also highlighted by the heterogeneity of the strain of the MTC׳s components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic microscopic elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Printed Graphene Derivative Circuits as Passive Electrical Filters
Sinar, Dogan
2018-01-01
The objective of this study is to inkjet print resistor-capacitor (RC) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated. PMID:29473890
Printed Graphene Derivative Circuits as Passive Electrical Filters.
Sinar, Dogan; Knopf, George K
2018-02-23
The objective of this study is to inkjet print resistor-capacitor ( RC ) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.
NASA Astrophysics Data System (ADS)
Carter, Andrew C.; Wale, Michael J.; Simmons, T.; Whitbread, Neil; Asghari, M.
2003-06-01
A key attribute emerging in the optoelectronic component supply industry is the ability to deliver 'solution level' products rather than discrete optical components to equipment manufacturers. This approach is primarily aimed at reducing cost for the equipment manufacturer both in engineering and assembly. Such 'solutions' must be designed to be cost effective - offering costs substantially below discrete components - and must be compatible with subcontract board manufacture without the traditional and expensive skills of fibre handling, splicing and management. Examples of 'solutions' in this context may be the core of a multifunctional OADM or a DWDM laser transmitter subsystem, with modulation, wavelength and power management all included in a simple to use module. Essential to the cost effective production of such solutions is a high degree of optical/optoelectronic integration. Co-packaging of discrete components and electronics into modules will not deliver the cost reduction demanded. At Bookham Technology we have brought together what we believe to be the three key integration technologies - InP for monolithic tunable sources, GaAs for high performance integrated modulation and ASOC for smart passives and hybrid platforms - which can deliver this cost reduction, together with performance enhancement, over a wide range of applications. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components.
A passivity criterion for sampled-data bilateral teleoperation systems.
Jazayeri, Ali; Tavakoli, Mahdi
2013-01-01
A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.
Sowmiya, C; Raja, R; Cao, Jinde; Rajchakit, G; Alsaedi, Ahmed
2017-01-01
This paper is concerned with the problem of enhanced results on robust finite-time passivity for uncertain discrete-time Markovian jumping BAM delayed neural networks with leakage delay. By implementing a proper Lyapunov-Krasovskii functional candidate, the reciprocally convex combination method together with linear matrix inequality technique, several sufficient conditions are derived for varying the passivity of discrete-time BAM neural networks. An important feature presented in our paper is that we utilize the reciprocally convex combination lemma in the main section and the relevance of that lemma arises from the derivation of stability by using Jensen's inequality. Further, the zero inequalities help to propose the sufficient conditions for finite-time boundedness and passivity for uncertainties. Finally, the enhancement of the feasible region of the proposed criteria is shown via numerical examples with simulation to illustrate the applicability and usefulness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, Francesco; Bellacicca, Andrea; Milani, Paolo, E-mail: pmilani@mi.infn.it
We report the rapid prototyping of passive electrical components (resistors and capacitors) on plain paper by an additive and parallel technology consisting of supersonic cluster beam deposition (SCBD) coupled with shadow mask printing. Cluster-assembled films have a growth mechanism substantially different from that of atom-assembled ones providing the possibility of a fine tuning of their electrical conduction properties around the percolative conduction threshold. Exploiting the precise control on cluster beam intensity and shape typical of SCBD, we produced, in a one-step process, batches of resistors with resistance values spanning a range of two orders of magnitude. Parallel plate capacitors withmore » paper as the dielectric medium were also produced with capacitance in the range of tens of picofarads. Compared to standard deposition technologies, SCBD allows for a very efficient use of raw materials and the rapid production of components with different shape and dimensions while controlling independently the electrical characteristics. Discrete electrical components produced by SCBD are very robust against deformation and bending, and they can be easily assembled to build circuits with desired characteristics. The availability of large batches of these components enables the rapid and cheap prototyping and integration of electrical components on paper as building blocks of more complex systems.« less
Robust passivity analysis for discrete-time recurrent neural networks with mixed delays
NASA Astrophysics Data System (ADS)
Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu
2015-02-01
This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor)
1998-01-01
The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.
A passive discrete-level multilayer ground-water sampler was evaluated to determine its capability to obtain representative discrete-interval samples within the screen intervals of traditional monitoring wells without purging. Results indicate that the device is able to provide ...
Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano
NASA Astrophysics Data System (ADS)
Falaize, Antoine; Hélie, Thomas
2017-03-01
This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.
Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires
NASA Astrophysics Data System (ADS)
Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong
2018-04-01
The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.
Cellular automaton formulation of passive scalar dynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Matthaeus, William H.
1987-01-01
Cellular automata modeling of the advection of a passive scalar in a two-dimensional flow is examined in the context of discrete lattice kinetic theory. It is shown that if the passive scalar is represented by tagging or 'coloring' automation particles a passive advection-diffusion equation emerges without use of perturbation expansions. For the specific case of the hydrodynamic lattice gas model of Frisch et al. (1986), the diffusion coefficient is calculated by perturbation.
Modular architecture for robotics and teleoperation
Anderson, Robert J.
1996-12-03
Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.
Geophysical Inversion with Adaptive Array Processing of Ambient Noise
NASA Astrophysics Data System (ADS)
Traer, James
2011-12-01
Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004 experiment, the response showed the array depth varied periodically with an amplitude of 1 m and a period of 7 s consistent with wave driven motion of the array. This introduced a destructive interference which prevents the SNR growing with averaging time, unless the motion is removed by use of a peak tracker.
Programmable Multi-Chip Module
Kautz, David; Morgenstern, Howard; Blazek, Roy J.
2005-05-24
A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.
Programmable Multi-Chip Module
Kautz, David; Morgenstern, Howard; Blazek, Roy J.
2004-11-16
A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.
Programmable multi-chip module
Kautz, David; Morgenstern, Howard; Blazek, Roy J.
2004-03-02
A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.
Amato, Elvio D; Covaci, Adrian; Town, Raewyn M; Hereijgers, Jonas; Bellekens, Ben; Giacometti, Valentina; Breugelmans, Tom; Weyn, Maarten; Dardenne, Freddy; Bervoets, Lieven; Blust, Ronny
2018-06-14
Passive sampling with in situ devices offers several advantages over traditional sampling methods (i.e., discrete spot sampling), however, data interpretation from conventional passive samplers is hampered by difficulties in estimating the thickness of the diffusion layer at the sampler/medium interface (δ), often leading to inaccurate determinations of target analyte concentrations. In this study, the performance of a novel device combining active and passive sampling was investigated in the laboratory. The active-passive sampling (APS) device is comprised of a diffusion cell fitted with a pump and a flowmeter. Three receiving phases traditionally used in passive sampling devices (i.e., chelex resin, Oasis HLB, and silicone rubber), were incorporated in the diffusion cell and allowed the simultaneous accumulation of cationic metals, polar, and non-polar organic compounds, respectively. The flow within the diffusion cell was accurately controlled and monitored, and, combined with diffusion coefficients measurements, enabled the average δ to be estimated. Strong agreement between APS and time-averaged total concentrations measured in discrete water samples was found for most of the substances investigated. Accuracies for metals ranged between 87 and 116%, except Cu and Pb (∼50%), whilst accuracies between 64 and 101%, and 92 and 151% were achieved for polar and non-polar organic compounds, respectively. These results indicate that, via a well-defined in situ preconcentration step, the proposed APS approach shows promise for monitoring the concentration of a range of pollutants in water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of a 3D Soil-Plant-Atmosphere Continuum (SPAC) coupled to a Land Surface Model
NASA Astrophysics Data System (ADS)
Bisht, G.; Riley, W. J.; Lorenzetti, D.; Tang, J.
2015-12-01
Exchange of water between the atmosphere and biosphere via evapotranspiration (ET) influences global hydrological, energy, and biogeochemical cycles. Isotopic analysis has shown that evapotranspiration over the continents is largely dominated by transpiration. Water is taken up from soil by plant roots, transported through the plant's vascular system, and evaporated from the leaves. Yet current Land Surface Models (LSMs) integrated into Earth System Models (ESMs) treat plant roots as passive components. These models distribute the ET sink vertically over the soil column, neglect the vertical pressure distribution along the plant vascular system, and assume that leaves can directly access water from any soil layer within the root zone. Numerous studies have suggested that increased warming due to climate change will lead drought and heat-induced tree mortality. A more mechanistic treatment of water dynamics in the soil-plant-atmosphere continuum (SPAC) is essential for investigating the fate of ecosystems under a warmer climate. In this work, we describe a 3D SPAC model that can be coupled to a LSM. The SPAC model uses the variably saturated Richards equations to simulate water transport. The model uses individual governing equations and constitutive relationships for the various SPAC components (i.e., soil, root, and xylem). Finite volume spatial discretization and backward Euler temporal discretization is used to solve the SPAC model. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is used to numerically integrate the discretized system of equations. Furthermore, PETSc's multi-physics coupling capability (DMComposite) is used to solve the tightly coupled system of equations of the SPAC model. Numerical results are presented for multiple test problems.
NASA Astrophysics Data System (ADS)
Ren, Xusheng; Qian, Longsheng; Zhang, Guiyan
2005-12-01
According to Generic Reliability Assurance Requirements for Passive Optical Components GR-1221-CORE (Issue 2, January 1999), reliability determination test of different kinds of passive optical components which using in uncontrolled environments is taken. The test condition of High Temperature Storage Test (Dry Test) and Damp Test is in below sheet. Except for humidity condition, all is same. In order to save test time and cost, after a sires of contrast tests, the replacement of Dry Heat is discussed. Controlling the Failure mechanism of dry heat and damp heat of passive optical components, the contrast test of dry heat and damp heat for passive optical components (include DWDM, CWDM, Coupler, Isolator, mini Isolator) is taken. The test result of isolator is listed. Telcordia test not only test the reliability of the passive optical components, but also test the patience of the experimenter. The cost of Telcordia test in money, manpower and material resources, especially in time is heavy burden for the company. After a series of tests, we can find that Damp heat could factually test the reliability of passive optical components, and equipment manufacturer in accord with component manufacture could omit the dry heat test if damp heat test is taken first and passed.
Generalized fiber Fourier optics.
Cincotti, Gabriella
2011-06-15
A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.
Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules
NASA Astrophysics Data System (ADS)
O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon
2016-01-01
Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.
Systems engineering: A formal approach. Part 1: System concepts
NASA Astrophysics Data System (ADS)
Vanhee, K. M.
1993-03-01
Engineering is the scientific discipline focused on the creation of new artifacts that are supposed to be of some use to our society. Different types of artifacts require different engineering approaches. However, in all these disciplines the development of a new artifact is divided into stages. Three stages can always be recognized: Analysis, Design, and Realization. The book considers only the first two stages of the development process. It focuses on a specific type of artifacts, called discrete dynamic systems. These systems consist of active components of actors that consume and produce passive components or tokens. Three subtypes are studied in more detail: business systems (like a factory or restaurant), information systems (whether automated or not), and automated systems (systems that are controlled by an automated information system). The first subtype is studied by industrial engineers, the last by software engineers and electrical engineers, whereas the second is a battlefield for all three disciplines. The union of these disciplines is called systems engineering.
Experimental demonstration of PAM-DWMT for passive optical network
NASA Astrophysics Data System (ADS)
Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei
2018-07-01
We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.
On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.
Feng, Zhiguang; Zheng, Wei Xing
2015-12-01
In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Heyliger, P. R.
1994-01-01
Unified mechanics are developed with the capability to model both sensory and active composite laminates with embedded piezoelectric layers. A discrete-layer formulation enables analysis of both global and local electromechanical response. The mechanics include the contributions from elastic, piezoelectric, and dielectric components. The incorporation of electric potential into the state variables permits representation of general electromechanical boundary conditions. Approximate finite element solutions for the static and free-vibration analysis of beams are presented. Applications on composite beams demonstrate the capability to represent either sensory or active structures and to model the complicated stress-strain fields, the interactions between passive/active layers, interfacial phenomena between sensors and composite plies, and critical damage modes in the material. The capability to predict the dynamic characteristics under various electrical boundary conditions is also demonstrated.
Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J; Twilley, K; Murvosh, H
2003-03-03
For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less
NASA Astrophysics Data System (ADS)
Loewe, H.; Picard, G.; Sandells, M. J.; Mätzler, C.; Kontu, A.; Dumont, M.; Maslanka, W.; Morin, S.; Essery, R.; Lemmetyinen, J.; Wiesmann, A.; Floury, N.; Kern, M.
2016-12-01
Forward modeling of snow-microwave interactions is widely used to interpret microwave remote sensing data from active and passive sensors. Though different models are yet available for that purpose, a joint effort has been undertaken in the past two years within the ESA Project "Microstructural origin of electromagnetic signatures in microwave remote sensing of snow". The new Snow Microwave Radiative Transfer (SMRT) model primarily facilitates a flexible treatment of snow microstructure as seen by X-ray tomography and seeks to unite respective advantages of existing models. In its main setting, SMRT considers radiation transfer in a plane-parallel snowpack consisting of homogeneous layers with a layer microstructure represented by an autocorrelation function. The electromagnetic model, which underlies permittivity, absorption and scattering calculations within a layer, is based on the improved Born approximation. The resulting vector-radiative transfer equation in the snowpack is solved using spectral decomposition of the discrete ordinates discretization. SMRT is implemented in Python and employs an object-oriented, modular design which intends to i) provide an intuitive and fail-safe API for basic users ii) enable efficient community developments for extensions (e.g. for improvements of sub-models for microstructure, permittivity, soil or interface reflectivity) from advanced users and iii) encapsulate the numerical core which is maintained by the developers. For cross-validation and inter-model comparison, SMRT implements various ingredients of existing models as selectable options (e.g. Rayleigh or DMRT-QCA phase functions) and shallow wrappers to invoke legacy model code directly (MEMLS, DMRT-QMS, HUT). In this paper we give an overview of the model components and show examples and results from different validation schemes.
Bitauld, David; Osborne, Simon; O'Brien, Stephen
2010-07-01
We demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.
Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.
2014-01-01
A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.
Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A
2014-03-01
A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garikapati, Venu; Astroza, Sebastian; Bhat, Prerna C.
This paper is motivated by the increasing recognition that modeling activity-travel demand for a single day of the week, as is done in virtually all travel forecasting models, may be inadequate in capturing underlying processes that govern activity-travel scheduling behavior. The considerable variability in daily travel suggests that there are important complementary relationships and competing tradeoffs involved in scheduling and allocating time to various activities across days of the week. Both limited survey data availability and methodological challenges in modeling week-long activity-travel schedules have precluded the development of multi-day activity-travel demand models. With passive and technology-based data collection methods increasinglymore » in vogue, the collection of multi-day travel data may become increasingly commonplace in the years ahead. This paper addresses the methodological challenge associated with modeling multi-day activity-travel demand by formulating a multivariate multiple discrete-continuous probit (MDCP) model system. The comprehensive framework ties together two MDCP model components, one corresponding to weekday time allocation and the other to weekend activity-time allocation. By tying the two MDCP components together, the model system also captures relationships in activity-time allocation between weekdays on the one hand and weekend days on the other. Model estimation on a week-long travel diary data set from the United Kingdom shows that there are significant inter-relationships between weekdays and weekend days in activity-travel scheduling behavior. The model system presented in this paper may serve as a higher-level multi-day activity scheduler in conjunction with existing daily activity-based travel models.« less
McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P
2018-04-11
A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.
New insights into the passive force enhancement in skeletal muscles.
Lee, Eun-Jeong; Joumaa, Venus; Herzog, Walter
2007-01-01
The steady-state isometric force following active stretching of a muscle is always greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This phenomenon has been termed "residual force enhancement" and it is associated with an active and a passive component. The origin of these components remains a matter of scientific debate. The purpose of this work was to test the hypothesis that the passive component of the residual force enhancement is caused by a passive structural element. In order to achieve this purpose, single fibers (n=6) from the lumbrical muscles of frog (Rana pipiens) were isolated and attached to a force transducer and a motor that could produce computer-controlled length changes. The passive force enhancement was assessed for three experimental conditions: in a normal Ringer's solution, and after the addition of 5 and 15mM 2,3-butanedione monoxime (BDM) which inhibits force production in a dose-dependent manner. If our hypothesis was correct, one would expect the passive force enhancement to be unaffected following BDM application. However, we found that increasing concentrations of BDM decreased the isometric forces, increased the normalized residual force enhancement, and most importantly for this study, increased the passive force enhancement. Furthermore, BDM decreased the rate of force relaxation after deactivation following active stretching of fibers, passive stretching in the Ringer's and BDM conditions produced the same passive force-sarcomere length relationship, and passive force enhancement required activation and force production. These results led to the conclusion that the passive force enhancement cannot be caused by a structural component exclusively as had been assumed up to date, but must be associated, directly or indirectly, with cross-bridge attachments upon activation and the associated active force.
Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System
NASA Technical Reports Server (NTRS)
Gershenfeld, Neil (Inventor); Carney, Matthew Eli (Inventor); Jenett, Benjamin (Inventor)
2017-01-01
A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.
Evaluating groundwater flow using passive electrical measurements
NASA Astrophysics Data System (ADS)
Voytek, E.; Revil, A.; Singha, K.
2016-12-01
Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.
Modeling molecular mechanisms in the axon
NASA Astrophysics Data System (ADS)
de Rooij, R.; Miller, K. E.; Kuhl, E.
2017-03-01
Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.
Segmentation of discrete vector fields.
Li, Hongyu; Chen, Wenbin; Shen, I-Fan
2006-01-01
In this paper, we propose an approach for 2D discrete vector field segmentation based on the Green function and normalized cut. The method is inspired by discrete Hodge Decomposition such that a discrete vector field can be broken down into three simpler components, namely, curl-free, divergence-free, and harmonic components. We show that the Green Function Method (GFM) can be used to approximate the curl-free and the divergence-free components to achieve our goal of the vector field segmentation. The final segmentation curves that represent the boundaries of the influence region of singularities are obtained from the optimal vector field segmentations. These curves are composed of piecewise smooth contours or streamlines. Our method is applicable to both linear and nonlinear discrete vector fields. Experiments show that the segmentations obtained using our approach essentially agree with human perceptual judgement.
Summary of Fuel Cell Programs at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla
2000-01-01
The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.
Reliability of hybrid microcircuit discrete components
NASA Technical Reports Server (NTRS)
Allen, R. V.
1972-01-01
Data accumulated during 4 years of research and evaluation of ceramic chip capacitors, ceramic carrier mounted active devices, beam-lead transistors, and chip resistors are presented. Life and temperature coefficient test data, and optical and scanning electron microscope photographs of device failures are presented and the failure modes are described. Particular interest is given to discrete component qualification, power burn-in, and procedures for testing and screening discrete components. Burn-in requirements and test data will be given in support of 100 percent burn-in policy on all NASA flight programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.
2014-09-12
This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.
Passive heat-transfer means for nuclear reactors. [LMFBR
Burelbach, J.P.
1982-06-10
An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.
NASA Technical Reports Server (NTRS)
Schwerdt, H. N.; Xu, W.; Shekhar, S.; Chae, J.; Miranda, F. A.
2011-01-01
We present analytical and experimental thermal characteristics of a battery-less, fully-passive wireless backscattering microsystem for recording of neuropotentials. A major challenge for cortically implantable microsystems involves minimizing the heat dissipated by on-chip circuitry, which can lead to permanent brain damage. Therefore, knowledge of temperature changes induced by implantable microsystems while in operation is of utmost importance. In this work, a discrete diode appended to the neuro-recording microsystem has been used to indirectly monitor the aforesaid temperature changes. Using this technique, the maximum temperature rise measured for the microsystem while in operation was 0.15 +/- 0.1 C, which is significantly less than current safety guidelines. Specific absorption ratio (SAR) due to the microsystem was also computed to further demonstrate fully-passive functionality of the neuro-recording microsystem.
Probe-Independent EEG Assessment of Mental Workload in Pilots
2015-05-18
Teager Energy Operator - Frequency Modulated Component - z- score 10.94 17.46 10 Hurst Exponent - Discrete Second Order Derivative 7.02 17.06 D. Best...Teager Energy Operator– Frequency Modulated Component – Z-score 45. Line Length – Time Series 46. Line Length – Time Series – Z-score 47. Hurst Exponent ...Discrete Second Order Derivative 48. Hurst Exponent – Wavelet Based Adaptation 49. Hurst Exponent – Rescaled Range 50. Hurst Exponent – Discrete
Astrelin, A V; Sokolov, M V; Behnisch, T; Reymann, K G; Voronin, L L
1997-04-25
A statistical approach to analysis of amplitude fluctuations of postsynaptic responses is described. This includes (1) using a L1-metric in the space of distribution functions for minimisation with application of linear programming methods to decompose amplitude distributions into a convolution of Gaussian and discrete distributions; (2) deconvolution of the resulting discrete distribution with determination of the release probabilities and the quantal amplitude for cases with a small number (< 5) of discrete components. The methods were tested against simulated data over a range of sample sizes and signal-to-noise ratios which mimicked those observed in physiological experiments. In computer simulation experiments, comparisons were made with other methods of 'unconstrained' (generalized) and constrained reconstruction of discrete components from convolutions. The simulation results provided additional criteria for improving the solutions to overcome 'over-fitting phenomena' and to constrain the number of components with small probabilities. Application of the programme to recordings from hippocampal neurones demonstrated its usefulness for the analysis of amplitude distributions of postsynaptic responses.
The Spatial Practices of School Administrative Clerks: Making Space for Contributive Justice
ERIC Educational Resources Information Center
Bayat, Abdullah
2012-01-01
This article discusses the work practices of the much neglected phenomenon of the work of school administrative clerks in schools. Popular accounts of school administrative clerks portray them as subjectified--assigned roles with limited power and discretion--as subordinate and expected to be compliant, passive and deferent to the principal and…
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
NASA Technical Reports Server (NTRS)
Barron, Andrew R. (Inventor); Hepp, Aloysius F. (Inventor); Jenkins, Phillip P. (Inventor); MacInnes, Andrew N. (Inventor)
1999-01-01
A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.
Zhou, Nanjia; Liu, Chengye; Lewis, Jennifer A; Ham, Donhee
2017-04-01
Radio-frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever-pervasive wireless networks. While transistors are best realized by top-down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver-nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave-based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self-sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; Pihl, Josh A.; Toops, Todd J.
A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.more » Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.« less
2017-01-11
discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End-to... discrete system components or measurements of latency in autonomous systems. 1.1 Basic Video Latency. Teleoperation latency, or lag, describes
Modeling and control of fuel cell based distributed generation systems
NASA Astrophysics Data System (ADS)
Jung, Jin Woo
This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.
Analysis of passive damping in thick composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.
1993-01-01
Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.
Integration and manufacture of multifunctional planar lightwave circuits
NASA Astrophysics Data System (ADS)
Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul
2001-11-01
The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.
ERIC Educational Resources Information Center
Blanchard-Fields, Fredda; Coats, Abby Heckman
2008-01-01
The authors examined regulation of the discrete emotions anger and sadness in adolescents through older adults in the context of describing everyday problem situations. The results support previous work; in comparison to younger age groups, older adults reported that they experienced less anger and reported that they used more passive and fewer…
Reaching Out to All Students: The Integrated English Approach.
ERIC Educational Resources Information Center
Peters, William H.
Traditional teaching of English language arts is based on a receptive-accrual view of learning, which places the learner in a passive rather than an active role in the teaching-learning process. This approach conveys to the learner the view that the subject matter is fragmented and that teachers prepare discrete, disconnected lessons. L.M.…
Michael Bevers; Curtis H. Flather
1999-01-01
We examine habitat size, shape, and arrangement effects on populations using a discrete reaction-diffusion model. Diffusion is modeled passively and applied to a cellular grid of territories forming a coupled map lattice. Dispersal mortality is proportional to the amount of nonhabitat and fully occupied habitat surrounding a given cell, with distance decay. After...
Surface modifications for carbon lithium intercalation anodes
Tran, Tri D.; Kinoshita, Kimio
2000-01-01
A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.
Passive micromixer using by convection and surface tension effects with air-liquid interface.
Ju, Jongil; Warrick, Jay
2013-12-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.
Passive micromixer using by convection and surface tension effects with air-liquid interface
Ju, Jongil; Warrick, Jay
2014-01-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979
Hardoüin, Jérôme; Sagués, Francesc
2018-01-01
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)–like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component. PMID:29740605
Guillamat, Pau; Kos, Žiga; Hardoüin, Jérôme; Ignés-Mullol, Jordi; Ravnik, Miha; Sagués, Francesc
2018-04-01
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.
Passive cooling system for a vehicle
Hendricks, Terry Joseph; Thoensen, Thomas
2005-11-15
A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).
Passive Cooling System for a Vehicle
Hendricks, T. J.; Thoensen, T.
2005-11-15
A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).
Active and Passive Spatial Learning in Human Navigation: Acquisition of Survey Knowledge
ERIC Educational Resources Information Center
Chrastil, Elizabeth R.; Warren, William H.
2013-01-01
It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to…
Integrated passive/active vibration absorber for multi-story buildings
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.
1995-01-01
Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
The facilitated component of intestinal glucose absorption
Kellett, George L
2001-01-01
Over the last decade, a debate has developed about the mechanism of the passive or ‘diffusive’ component of intestinal glucose absorption and, indeed, whether it even exists. Pappenheimer and colleagues have proposed that paracellular solvent drag contributes a passive component, which, at high concentrations of sugars similar to those in the jejunal lumen immediately after a meal, is severalfold greater than the active component mediated by the Na+-glucose cotransporter SGLT1. On the other hand, Ferraris & Diamond maintain that the kinetics of glucose absorption can be explained solely in terms of SGLT1 and that a passive or paracellular component plays little, if any, part. Recently, we have provided new evidence that the passive component of glucose absorption exists, but is in fact facilitated since it is mediated by the rapid, glucose-dependent activation and recruitment of the facilitative glucose transporter GLUT2 to the brush-border membrane; regulation involves a protein kinase C (PKC)-dependent pathway activated by glucose transport through SGLT1 and also involves mitogen-activated protein kinase (MAP kinase) signalling pathways. This topical review seeks to highlight the significant points of the debate, to show how our proposals on GLUT2 impact on different aspects of the debate and to look at the regulatory events that are likely to be involved in the short-term regulation of sugar absorption during the assimilation of a meal. PMID:11251042
Hybridization of active and passive elements for planar photonic components and interconnects
NASA Astrophysics Data System (ADS)
Pearson, M.; Bidnyk, S.; Balakrishnan, A.
2007-02-01
The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.
Passive heat transfer means for nuclear reactors
Burelbach, James P.
1984-01-01
An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Chang, A. T. C.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.
Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A
2016-12-01
An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.
Podlesnik, Christopher A; Fleet, James D
2014-09-01
Behavioral momentum theory asserts Pavlovian stimulus-reinforcer relations govern the persistence of operant behavior. Specifically, resistance to conditions of disruption (e.g., extinction, satiation) reflects the relation between discriminative stimuli and the prevailing reinforcement conditions. The present study assessed whether Pavlovian stimulus-reinforcer relations govern resistance to disruption in pigeons by arranging both response-dependent and -independent food reinforcers in two components of a multiple schedule. In one component, discrete-stimulus changes preceded response-independent reinforcers, paralleling methods that reduce Pavlovian conditioned responding to contextual stimuli. Compared to the control component with no added stimuli preceding response-independent reinforcement, response rates increased as discrete-stimulus duration increased (0, 5, 10, and 15 s) across conditions. Although resistance to extinction decreased as stimulus duration increased in the component with the added discrete stimulus, further tests revealed no effect of discrete stimuli, including other disrupters (presession food, intercomponent food, modified extinction) and reinstatement designed to control for generalization decrement. These findings call into question a straightforward conception that the stimulus-reinforcer relations governing resistance to disruption reflect the same processes as Pavlovian conditioning, as asserted by behavioral momentum theory. © Society for the Experimental Analysis of Behavior.
Scalar excursions in large-eddy simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheou, Georgios; Dimotakis, Paul E.
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
Scalar excursions in large-eddy simulations
Matheou, Georgios; Dimotakis, Paul E.
2016-08-31
Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less
A Passive System Reliability Analysis for a Station Blackout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, Acacia; Bucknor, Matthew; Grabaskas, David
2015-05-03
The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less
NASA Astrophysics Data System (ADS)
Kang, Jian; Takagi, Shinichi; Takenaka, Mitsuru
2018-04-01
We present the design methodology for Ge passive components including single-mode waveguide, grating couplers, multimode interferometer (MMI) couplers, and micro-ring resonators on the Ge-on-insulator wafer at a 1.95 µm wavelength. Characterizations of the fabricated Ge passive devices reveal a good consistence between the experimental and simulation results. By using the Ge micro-ring device, we also reveal that the thermo-optic coefficient in the Ge strip waveguide is 5.74 × 10-4/°C, which is much greater than that in Si.
78 FR 61113 - Acquisition Process: Task and Delivery Order Contracts, Bundling, Consolidation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... that a total set-aside is not appropriate but the procurement can be broken up into smaller discrete... discrete components to support a partial set-aside and market research shows that either: at least two... could divide a multiple award contract for divergent goods and services into discrete categories (which...
Ecological monitoring in a discrete-time prey-predator model.
Gámez, M; López, I; Rodríguez, C; Varga, Z; Garay, J
2017-09-21
The paper is aimed at the methodological development of ecological monitoring in discrete-time dynamic models. In earlier papers, in the framework of continuous-time models, we have shown how a systems-theoretical methodology can be applied to the monitoring of the state process of a system of interacting populations, also estimating certain abiotic environmental changes such as pollution, climatic or seasonal changes. In practice, however, there may be good reasons to use discrete-time models. (For instance, there may be discrete cycles in the development of the populations, or observations can be made only at discrete time steps.) Therefore the present paper is devoted to the development of the monitoring methodology in the framework of discrete-time models of population ecology. By monitoring we mean that, observing only certain component(s) of the system, we reconstruct the whole state process. This may be necessary, e.g., when in a complex ecosystem the observation of the densities of certain species is impossible, or too expensive. For the first presentation of the offered methodology, we have chosen a discrete-time version of the classical Lotka-Volterra prey-predator model. This is a minimal but not trivial system where the methodology can still be presented. We also show how this methodology can be applied to estimate the effect of an abiotic environmental change, using a component of the population system as an environmental indicator. Although this approach is illustrated in a simplest possible case, it can be easily extended to larger ecosystems with several interacting populations and different types of abiotic environmental effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
The minimum bandwidths of auroral kilometric radiation
NASA Technical Reports Server (NTRS)
Baumback, M. M.; Calvert, W.
1987-01-01
The bandwidths of the discrete spectral components of the auroral kilometric radiation can sometimes be as narrow as 5 Hz. Since this would imply an apparent source thickness of substantially less than the wavelength, it is inconsistent with the previous explanation for such discrete components based simply upon vertical localization of a cyclotron source. Instead, such narrow bandwidths can only be explained by radio lasing.
Coherent-Phase Monitoring Of Cavitation In Turbomachines
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.
Hedenstierna, Sofia; Halldin, Peter
2008-04-15
A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.
Wave-variable framework for networked robotic systems with time delays and packet losses
NASA Astrophysics Data System (ADS)
Puah, Seng-Ming; Liu, Yen-Chen
2017-05-01
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.
NASA Technical Reports Server (NTRS)
Ross, M. D.; Linton, S. W.; Parnas, B. R.
2000-01-01
A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.
K-Band Si/SiGe HBT MMIC Amplifiers Using Lumped Passive Components with a Micromachined Structure
NASA Technical Reports Server (NTRS)
Lu, Liang-Hung; Rieh, Jae-Sung; Bhattacharya, Pallab; Katechi, Linda P. B.; Croke, E. T.; Ponchak, George E.; Alterovitz, Samuel A.
2000-01-01
Using Si/SiGe heterojunction bipolar transistors with a maximum oscillation frequency of 52 GHz and a novel structure for passive components, a two-stage K-band lumped-element amplifier has been designed and fabricated on high-resistivity Si substrates. The chip size including biasing and RF chokes is 0.92 x 0.67 sq mm.
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.
2003-01-01
Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrnstein, Aaron R.
An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less
Analytical approximation of a distorted reflector surface defined by a discrete set of points
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Zaman, Afroz A.
1988-01-01
Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.
The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events
NASA Technical Reports Server (NTRS)
Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.
2008-01-01
In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are seen as UV explosive events, EUV blinkers, and type II spicules. These MHD waves propagate across field lines and dissipate, heating the plasma in the field between the bright loops and plumes.
Discrete mathematics, formal methods, the Z schema and the software life cycle
NASA Technical Reports Server (NTRS)
Bown, Rodney L.
1991-01-01
The proper role and scope for the use of discrete mathematics and formal methods in support of engineering the security and integrity of components within deployed computer systems are discussed. It is proposed that the Z schema can be used as the specification language to capture the precise definition of system and component interfaces. This can be accomplished with an object oriented development paradigm.
McDermott, Suzanne; Ruttenber, Margaret; Mann, Joshua; Smith, Michael G; Royer, Julie; Valdez, Rodolfo
2016-01-01
Background Owing to their low prevalence, single rare conditions are difficult to monitor through current state passive and active case ascertainment systems. However, such monitoring is important because, as a group, rare conditions have great impact on the health of affected individuals and the well-being of their caregivers. A viable approach could be to conduct passive and active case ascertainment of several rare conditions simultaneously. This is a report about the feasibility of such an approach. Objective To test the feasibility of a case ascertainment system with passive and active components aimed at monitoring 3 rare conditions simultaneously in 3 states of the United States (Colorado, Kansas, and South Carolina). The 3 conditions are spina bifida, muscular dystrophy, and fragile X syndrome. Methods Teams from each state evaluated the possibility of using current or modified versions of their local passive and active case ascertainment systems and datasets to monitor the 3 conditions. Together, these teams established the case definitions and selected the variables and the abstraction tools for the active case ascertainment approach. After testing the ability of their local passive and active case ascertainment system to capture all 3 conditions, the next steps were to report the number of cases detected actively and passively for each condition, to list the local barriers against the combined passive and active case ascertainment system, and to describe the experiences in trying to overcome these barriers. Results During the test period, the team from South Carolina was able to collect data on all 3 conditions simultaneously for all ages. The Colorado team was also able to collect data on all 3 conditions but, because of age restrictions in its passive and active case ascertainment system, it was able to report few cases of fragile X syndrome. The team from Kansas was able to collect data only on spina bifida. For all states, the implementation of an active component of the ascertainment system was problematic. The passive component appears viable with minor modifications. Conclusions Despite evident barriers, the joint passive and active case ascertainment of rare disorders using modified existing surveillance systems and datasets seems feasible, especially for systems that rely on passive case ascertainment. PMID:27574026
Using passive seismology to study the sub-surface and internal structure of Didymoon
NASA Astrophysics Data System (ADS)
Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.
2017-09-01
As there is evidence to suggest that asteroids are seismically active, passive rather than active seismology could be performed thus simplifying the mission design. Here we discuss the possibility of performing a passive seismic experiment on Didymoon; the secondary component of asteroid (65803) Didymos and the target of the joint ESA-NASA mission AIDA
ERIC Educational Resources Information Center
Alhusaini, Adel A. A.; Crosbie, Jack; Shepherd, Roberta B.; Dean, Catherine M.; Scheinberg, Adam
2010-01-01
Aim: To examine the passive length-tension relations in the myotendinous components of the plantarflexor muscles of children with and without cerebral palsy (CP) under conditions excluding reflex muscle contraction. Method: A cross-sectional, non-interventional study was conducted in a hospital outpatient clinic. Passive torque-angle…
Research gaps and technology needs in development of PHM for passive AdvSMR components
NASA Astrophysics Data System (ADS)
Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.
2014-02-01
Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.
Interior design for passive solar homes
NASA Astrophysics Data System (ADS)
Breen, J. C.
1981-07-01
The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.
Bean, Christopher G; Winefield, Helen R; Sargent, Charli; Hutchinson, Amanda D
2015-10-01
The Job Demand-Control-Support (JDCS) model is commonly used to investigate associations between psychosocial work factors and employee health, yet research considering obesity using the JDCS model remains inconclusive. This study investigates which parts of the JDCS model are associated with measures of obesity and provides a comparison between waist circumference (higher values imply central obesity) and body mass index (BMI, higher values imply overall obesity). Contrary to common practice, in this study the JDCS components are not reduced into composite or global scores. In light of emerging evidence that the two components of job control (skill discretion and decision authority) could have differential associations with related health outcomes, components of the JDCS model were analysed at the subscale level. A cross-sectional design with a South Australian cohort (N = 450) combined computer-assisted telephone interview data and clinic-measured height, weight and waist circumference. After controlling for sex, age, household income, work hours and job nature (blue vs. white-collar), the two components of job control were the only parts of the JDCS model to hold significant associations with measures of obesity. Notably, the associations between skill discretion and waist circumference (b = -.502, p = .001), and skill discretion and BMI (b = -.163, p = .005) were negative. Conversely, the association between decision authority and waist circumference (b = .282, p = .022) was positive. These findings are significant since skill discretion and decision authority are typically combined into a composite measure of job control or decision latitude. Our findings suggest skill discretion and decision authority should be treated separately since combining these theoretically distinct components may conceal their differential associations with measures of obesity, masking their individual importance. Psychosocial work factors displayed stronger associations and explained greater variance in waist circumference compared with BMI, and possible reasons for this are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Screen printed passive components for flexible power electronics.
Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C
2015-10-30
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
The Livingstone Model of a Main Propulsion System
NASA Technical Reports Server (NTRS)
Bajwa, Anupa; Sweet, Adam; Korsmeyer, David (Technical Monitor)
2003-01-01
Livingstone is a discrete, propositional logic-based inference engine that has been used for diagnosis of physical systems. We present a component-based model of a Main Propulsion System (MPS) and say how it is used with Livingstone (L2) in order to implement a diagnostic system for integrated vehicle health management (IVHM) for the Propulsion IVHM Technology Experiment (PITEX). We start by discussing the process of conceptualizing such a model. We describe graphical tools that facilitated the generation of the model. The model is composed of components (which map onto physical components), connections between components and constraints. A component is specified by variables, with a set of discrete, qualitative values for each variable in its local nominal and failure modes. For each mode, the model specifies the component's behavior and transitions. We describe the MPS components' nominal and fault modes and associated Livingstone variables and data structures. Given this model, and observed external commands and observations from the system, Livingstone tracks the state of the MPS over discrete time-steps by choosing trajectories that are consistent with observations. We briefly discuss how the compiled model fits into the overall PITEX architecture. Finally we summarize our modeling experience, discuss advantages and disadvantages of our approach, and suggest enhancements to the modeling process.
NASA Astrophysics Data System (ADS)
Guler Yigitoglu, Askin
In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.
Dispersion-relation phase spectroscopy of neuron transport
NASA Astrophysics Data System (ADS)
Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha; Leigh, Joseph Robert; Sobh, Nahil; Levine, Alex; Popescu, Gabreil
2012-02-01
Molecular motors move materials along prescribed biopolymer tracks. This sort of active transport is required to rapidly move products over large distances within the cell, where passive diffusion is too slow. We examine intracellular traffic patterns using a new application of spatial light interference microscopy (SLIM) and measure the dispersion relation, i.e. decay rate vs. spatial mode, associated with mass transport in live cells. This approach applies equally well to both discrete and continuous mass distributions without the need for particle tracking. From the quadratic experimental curve specific to diffusion, we extracted the diffusion coefficient as the only fitting parameter. The linear portion of the dispersion relation reveals the deterministic component of the intracellular transport. Our data show a universal behavior where the intracellular transport is diffusive at small scales and deterministic at large scales. We further applied this method to studying transport in neurons and are able to use SLIM to map the changes in index of refraction across the neuron and its extended processes. We found that in dendrites and axons, the transport is mostly active, i.e., diffusion is subdominant.
NASA Astrophysics Data System (ADS)
Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.
2016-11-01
Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.
Welby, S; van Schaik, G; Veldhuis, A; Brouwer-Middelesch, H; Peroz, C; Santman-Berends, I M; Fourichon, C; Wever, P; Van der Stede, Y
2017-12-01
Quick detection and recovery of country's freedom status remain a constant challenge in animal health surveillance. The efficacy and cost efficiency of different surveillance components in proving the absence of infection or (early) detection of bluetongue serotype 8 in cattle populations within different countries (the Netherlands, France, Belgium) using surveillance data from years 2006 and 2007 were investigated using an adapted scenario tree model approach. First, surveillance components (sentinel, yearly cross-sectional and passive clinical reporting) within each country were evaluated in terms of efficacy for substantiating freedom of infection. Yearly cross-sectional survey and passive clinical reporting performed well within each country with sensitivity of detection values ranging around 0.99. The sentinel component had a sensitivity of detection around 0.7. Secondly, how effective the components were for (early) detection of bluetongue serotype 8 and whether syndromic surveillance on reproductive performance, milk production and mortality data available from the Netherlands and Belgium could be of added value were evaluated. Epidemic curves were used to estimate the timeliness of detection. Sensitivity analysis revealed that expected within-herd prevalence and number of herds processed were the most influential parameters for proving freedom and early detection. Looking at the assumed direct costs, although total costs were low for sentinel and passive clinical surveillance components, passive clinical surveillance together with syndromic surveillance (based on reproductive performance data) turned out most cost-efficient for the detection of bluetongue serotype 8. To conclude, for emerging or re-emerging vectorborne disease that behaves such as bluetongue serotype 8, it is recommended to use passive clinical and syndromic surveillance as early detection systems for maximum cost efficiency and sensitivity. Once an infection is detected and eradicated, cross-sectional screening for substantiating freedom of infection and sentinel for monitoring the disease evolution are recommended. © 2016 Blackwell Verlag GmbH.
Process for producing dispersed particulate composite materials
Henager, Jr., Charles H.; Hirth, John P.
1995-01-01
This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.
2-Dimensional beamsteering using dispersive deflectors and wavelength tuning.
Chan, Trevor; Myslivets, Evgeny; Ford, Joseph E
2008-09-15
We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3 degrees by 11 degrees output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.
RFI Detection and Mitigation using Independent Component Analysis as a Pre-Processor
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Gholian, Armen; Bradley, Damon C.; Wong, Mark; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.
2016-01-01
Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
KERENA safety concept in the context of the Fukushima accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, T.; Novotny, C.; Bielor, E.
Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less
2017-04-03
setup in terms of temporal and spatial discretization . The second component was an extension of existing depth-integrated wave models to describe...equations (Abbott, 1976). Discretization schemes involve numerical dispersion and dissipation that distort the true character of the governing equations...represent a leading-order approximation of the Boussinesq-type equations. Tam and Webb (1993) proposed a wavenumber-based discretization scheme to preserve
Investigation of discrete component chip mounting technology for hybrid microelectronic circuits
NASA Technical Reports Server (NTRS)
Caruso, S. V.; Honeycutt, J. O.
1975-01-01
The use of polymer adhesives for high reliability microcircuit applications is a radical deviation from past practices in electronic packaging. Bonding studies were performed using two gold-filled conductive adhesives, 10/90 tin/lead solder and Indalloy no. 7 solder. Various types of discrete components were mounted on ceramic substrates using both thick-film and thin-film metallization. Electrical and mechanical testing were performed on the samples before and after environmental exposure to MIL-STD-883 screening tests.
Quasi-periodic solutions to the hierarchy of four-component Toda lattices
NASA Astrophysics Data System (ADS)
Wei, Jiao; Geng, Xianguo; Zeng, Xin
2016-08-01
Starting from a discrete 3×3 matrix spectral problem, the hierarchy of four-component Toda lattices is derived by using the stationary discrete zero-curvature equation. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve Km-2 of genus m - 2 and present the related Baker-Akhiezer function and meromorphic function on it. Asymptotic expansions for the Baker-Akhiezer function and meromorphic function are given near three infinite points on the trigonal curve, from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function.
Signal processing method and system for noise removal and signal extraction
Fu, Chi Yung; Petrich, Loren
2009-04-14
A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.
Picosecond Nd:BaY2F8 laser discretely tunable around 1 μm
NASA Astrophysics Data System (ADS)
Agnesi, A.; Pirzio, F.; Reali, G.; Toncelli, A.; Tonelli, M.
2010-09-01
Passive mode-locking of a diode-pumped Nd:BaY2F8 (Nd:BaYF) was achieved on four lines in the range 1040-1074 nm, employing a semiconductor saturable absorber mirror (SAM). Nearly Fourier-limited pulses with durations of 2.6 to 7.2 ps and output power ≈50 mW were generated in a dispersion-controlled resonator using a single prism for wavelength selection, tuning and dispersion management.
Passive Polarimetric Microwave Signatures Observed Over Antarctica
USDA-ARS?s Scientific Manuscript database
WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...
Install active/passive neutron examination and assay (APNEA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1996-04-01
This document describes activities pertinent to the installation of the prototype Active/Passive Neutron Examination and Assay (APNEA) system built in Area 336 into its specially designed trailer. It also documents the basic theory of operation, design and protective features, basic personnel training, and the proposed characterization site location at Lockheed Martin Specialty Components, Inc., (Specialty Components) with the estimated 10 mrem/year boundary. Additionally, the document includes the Preventive Change Analysis (PCA) form, and a checklist of items for verification prior to unrestricted system use.
A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems
Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok
2018-01-01
Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621
NASA Technical Reports Server (NTRS)
Barth, Timothy
2005-01-01
The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
ZN graded discrete Lax pairs and Yang-Baxter maps
NASA Astrophysics Data System (ADS)
Fordy, Allan P.; Xenitidis, Pavlos
2017-05-01
We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang-Baxter maps. Many well-known examples belong to this scheme for N=2, so, for N≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang-Baxter maps, which include HBIII (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N=2, and that associated with the discrete modified Boussinesq equation, for N=3. For N≥5 we introduce a new family of Yang-Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang-Baxter maps FIV and FV (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967-1007. (doi:10.4310/CAG.2004.v12.n5.a1)).
[Formula: see text] graded discrete Lax pairs and Yang-Baxter maps.
Fordy, Allan P; Xenitidis, Pavlos
2017-05-01
We recently introduced a class of [Formula: see text] graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang-Baxter maps. Many well-known examples belong to this scheme for N =2, so, for N ≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang-Baxter maps, which include H B III (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N =2, and that associated with the discrete modified Boussinesq equation, for N =3. For N ≥5 we introduce a new family of Yang-Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang-Baxter maps F IV and F V (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967-1007. (doi:10.4310/CAG.2004.v12.n5.a1)).
ZN graded discrete Lax pairs and Yang–Baxter maps
Fordy, Allan P.
2017-01-01
We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang–Baxter maps. Many well-known examples belong to this scheme for N=2, so, for N≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang–Baxter maps, which include HBIII (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N=2, and that associated with the discrete modified Boussinesq equation, for N=3. For N≥5 we introduce a new family of Yang–Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang–Baxter maps FIV and FV (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967–1007. (doi:10.4310/CAG.2004.v12.n5.a1)). PMID:28588406
Oh, Chin Wan; Cao, Zizheng; Tangdiongga, Eduward; Koonen, Ton
2016-08-22
In order to circumvent radio spectrum congestion, we propose an innovative system which can provide multiple infrared optical wireless beams simultaneously where each beam supports multi-gigabit-per-second communication. Scalable two-dimensional beam steering by means of wavelength tuning is proposed. A passive beam-steering module constructed with cascaded reflection gratings is designed for simultaneous multi-user coverage. We experimentally characterized the beam-steered system and thoroughly evaluated the performance of steered channels using the spectrally efficient and robust discrete multitone modulation in a bandwidth-limited system deploying 10 GHz telecom transceivers. This study reports the achievement of at least 37 Gbps free-space transmission per beam over a distance of up to 2 m over 5.61° × 12.66° scanning angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua
2014-11-01
Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less
Sensor Failure Detection of FASSIP System using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina
2018-02-01
In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.
NASA Astrophysics Data System (ADS)
Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter
2017-11-01
Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.
Screen printed passive components for flexible power electronics
NASA Astrophysics Data System (ADS)
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-10-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Screen printed passive components for flexible power electronics
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-01-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Pitman, Stan G.
The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components.more » This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.« less
Discrete Vector Solitons in Kerr Nonlinear Waveguide Arrays
NASA Astrophysics Data System (ADS)
Meier, Joachim; Hudock, Jared; Christodoulides, Demetrios; Stegeman, George; Silberberg, Y.; Morandotti, R.; Aitchison, J. S.
2003-10-01
We report the first experimental observation of discrete vector solitons in AlGaAs nonlinear waveguide arrays. These self-trapped states are possible through the coexistence of two orthogonally polarized fields and are stable in spite of the presence of four-wave mixing effects. We demonstrate that at sufficiently high power levels the two polarizations lock into a highly localized vector discrete soliton that would have been otherwise impossible in the absence of either one of these two components.
Passive and electro-optic polymer photonics and InP electronics integration
NASA Astrophysics Data System (ADS)
Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.
2015-05-01
Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.
A Profile of Defense Manufacturing Costs and Enabling Technologies
1992-01-01
RECEIVE MODULE F Missiles 75mm Cadmium Zinc Telluride F 94 GHZ MILLIMETER WAVE TRANSCEIVER F COMPOSITES FOR PASSIVE THERMAL MANAGEMENT F COMPOSITES FOR... PASSIVE THERMAL MANAGEMENT F Design standards for surface mount devices I Electro-optic Components Advanced Manufacturing PrDcess I FIBER OPTIC
Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-06-01
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
Planning Models for Tuberculosis Control Programs
Chorba, Ronald W.; Sanders, J. L.
1971-01-01
A discrete-state, discrete-time simulation model of tuberculosis is presented, with submodels of preventive interventions. The model allows prediction of the prevalence of the disease over the simulation period. Preventive and control programs and their optimal budgets may be planned by using the model for cost-benefit analysis: costs are assigned to the program components and disease outcomes to determine the ratio of program expenditures to future savings on medical and socioeconomic costs of tuberculosis. Optimization is achieved by allocating funds in successive increments to alternative program components in simulation and identifying those components that lead to the greatest reduction in prevalence for the given level of expenditure. The method is applied to four hypothetical disease prevalence situations. PMID:4999448
Physical Education & Outdoor Education: Complementary but Discrete Disciplines
ERIC Educational Resources Information Center
Martin, Peter; McCullagh, John
2011-01-01
The Australian Council for Health, Physical Education and Recreation (ACHPER) includes Outdoor Education (OE) as a component of Physical Education (PE). Yet Outdoor Education is clearly thought of by many as a discrete discipline separate from Physical Education. Outdoor Education has a body of knowledge that differs from that of Physical…
A Field Study of Discrete Emotions: Athletes' Cognitive Appraisals during Competition
ERIC Educational Resources Information Center
Martinent, Guillaume; Ferrand, Claude
2015-01-01
Purpose: Cognitive-motivational-relational theory (CMRT) emphasizes that cognitive appraisal components and core relational themes (in which the 6 separate appraisal judgments are brought together as 1) are the proximal determinants of athletes' emotions. This study aimed to explore appraisals associated with discrete emotions experienced by…
Manipulative and Numerical Spreadsheet Templates for the Study of Discrete Structures.
ERIC Educational Resources Information Center
Abramovich, Sergei
1998-01-01
Argues that basic components of discrete mathematics can be introduced to students through gradual elaboration of experiences with iconic spreadsheet-based simulations of concrete materials. Suggests that the study of homogeneous and heterogeneous patterns of manipulative spreadsheet templates allows for appreciation of the development of…
Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media
1994-01-18
time fat rfVWh ifl~ttUktOnS. watching e..,ing| galai• fld t gatlwnq and maintaningn~ te data needed. an cems~l~lzn andI reuiewing 1h cOllection Of...noise on the passive via are derived. The coupling responses in the frequency domain and crosstalk waveforms in the time domain for some multilayered...source, developed across the module-backplane connector. The finite-difference time -domain (FD-TD) technique, which is based on the discretization of
Current Laminar Flow Control Experiments at NASA Dryden
NASA Technical Reports Server (NTRS)
Bowers, Al
2010-01-01
An experiment to demonstrate laminar flow over the swept wing of a subsonic transport is being developed. Discrete Roughness Elements are being used to maintain laminar flow over a substantial portion of a wing glove. This passive laminar flow technology has only come to be recognized as a significant player in airliner drag reduction in the last few years. NASA is implementing this experiment and is planning to demonstrate this technology at full-scale Bight cruise conditions of a small-to-medium airliner.
Xu, Weifeng; Wolff, Brian S.
2014-01-01
Low-intensity alternating electric fields applied to the scalp are capable of modulating cortical activity and brain functions, but the underlying mechanisms remain largely unknown. Here, we report two distinct components of voltage-sensitive dye signals induced by low-intensity, alternating electric fields in rodent cortical slices: a “passive component,” which corresponds to membrane potential changes directly induced by the electric field; and an “active component,” which is a widespread depolarization that is dependent on excitatory synaptic transmission. The passive component is stationary, with amplitude and phase accurately reflecting the cortical cytoarchitecture. In contrast, the active component is initiated from a local “hot spot” of activity and spreads to a large population as a propagating wave with rich local dynamics. The propagation of the active component may play a role in modulating large-scale cortical activity by spreading a low level of excitation from a small initiation point to a vast neuronal population. PMID:25122710
NASA Astrophysics Data System (ADS)
Kanai, Yasuhiro; Abe, Keiji; Seki, Yoichi
2015-06-01
We propose a price percolation model to reproduce the price distribution of components used in industrial finished goods. The intent is to show, using the price percolation model and a component category as an example, that percolation behaviors, which exist in the matter system, the ecosystem, and human society, also exist in abstract, random phenomena satisfying the power law. First, we discretize the total potential demand for a component category, considering it a random field. Second, we assume that the discretized potential demand corresponding to a function of a finished good turns into actual demand if the difficulty of function realization is less than the maximum difficulty of the realization. The simulations using this model suggest that changes in a component category's price distribution are due to changes in the total potential demand corresponding to the lattice size and the maximum difficulty of realization, which is an occupation probability. The results are verified using electronic components' sales data.
Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies
NASA Technical Reports Server (NTRS)
Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.
1994-01-01
A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.
Time-dependent behavior of passive skeletal muscle
NASA Astrophysics Data System (ADS)
Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.
2016-03-01
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.
Active and Passive Spatial Learning in Human Navigation: Acquisition of Graph Knowledge
ERIC Educational Resources Information Center
Chrastil, Elizabeth R.; Warren, William H.
2015-01-01
It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge--the "exploration-specific learning hypothesis". Previously, we found that idiothetic…
Incremental passivity and output regulation for switched nonlinear systems
NASA Astrophysics Data System (ADS)
Pang, Hongbo; Zhao, Jun
2017-10-01
This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.
FDTD method and models in optical education
NASA Astrophysics Data System (ADS)
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhu, Hao; Du, Jihe
2017-08-01
In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell's equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.
Comparisons of discrete and integrative sampling accuracy in estimating pulsed aquatic exposures.
Morrison, Shane A; Luttbeg, Barney; Belden, Jason B
2016-11-01
Most current-use pesticides have short half-lives in the water column and thus the most relevant exposure scenarios for many aquatic organisms are pulsed exposures. Quantifying exposure using discrete water samples may not be accurate as few studies are able to sample frequently enough to accurately determine time-weighted average (TWA) concentrations of short aquatic exposures. Integrative sampling methods that continuously sample freely dissolved contaminants over time intervals (such as integrative passive samplers) have been demonstrated to be a promising measurement technique. We conducted several modeling scenarios to test the assumption that integrative methods may require many less samples for accurate estimation of peak 96-h TWA concentrations. We compared the accuracies of discrete point samples and integrative samples while varying sampling frequencies and a range of contaminant water half-lives (t 50 = 0.5, 2, and 8 d). Differences the predictive accuracy of discrete point samples and integrative samples were greatest at low sampling frequencies. For example, when the half-life was 0.5 d, discrete point samples required 7 sampling events to ensure median values > 50% and no sampling events reporting highly inaccurate results (defined as < 10% of the true 96-h TWA). Across all water half-lives investigated, integrative sampling only required two samples to prevent highly inaccurate results and measurements resulting in median values > 50% of the true concentration. Regardless, the need for integrative sampling diminished as water half-life increased. For an 8-d water half-life, two discrete samples produced accurate estimates and median values greater than those obtained for two integrative samples. Overall, integrative methods are the more accurate method for monitoring contaminants with short water half-lives due to reduced frequency of extreme values, especially with uncertainties around the timing of pulsed events. However, the acceptability of discrete sampling methods for providing accurate concentration measurements increases with increasing aquatic half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L
2013-10-01
Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities.
Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation
NASA Technical Reports Server (NTRS)
Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.
1999-01-01
For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook
2014-08-01
A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.
Choi, Hye Jeong; Miller-Day, Michelle; Shin, YoungJu; Hecht, Michael L.; Pettigrew, Jonathan; Krieger, Janice L.; Lee, JeongKyu; Graham, John W.
2017-01-01
This current study identifies distinct parent prevention communication profiles and examines whether youth with different parental communication profiles have varying substance use trajectories over time. Eleven schools in two rural school districts in the Midwestern United States were selected, and 784 students were surveyed at three time points from the beginning of 7th grade to the end of 8th grade. A series of latent profile analyses were performed to identify discrete profiles/subgroups of substance-specific prevention communication (SSPC). The results revealed a 4-profile model of SSPC: Active-Open, Passive-Open, Active-Silent, and Passive-Silent. A growth curve model revealed different rates of lifetime substance use depending on the youth’s SSPC profile. These findings have implications for parenting interventions and tailoring messages for parents to fit specific SSPC profiles. PMID:29056872
ERIC Educational Resources Information Center
Shouse, M. N.; Scordato, J. C.; Farber, P. R.
2004-01-01
Neural generators related to different sleep components have different effects on seizure discharge. These sleep-related systems can provoke seizure discharge propagation during nonrapid eye movement (NREM) sleep and can suppress propagation during REM sleep. Experimental manipulations of discrete physiological components were conducted in feline…
Discrete component bonding and thick film materials study
NASA Technical Reports Server (NTRS)
Kinser, D. L.
1975-01-01
The results are summarized of an investigation of discrete component bonding reliability and a fundamental study of new thick film resistor materials. The component bonding study examined several types of solder bonded components with some processing variable studies to determine their influence upon bonding reliability. The bonding reliability was assessed using the thermal cycle: 15 minutes at room temperature, 15 minutes at +125 C 15 minutes at room temperature, and 15 minutes at -55 C. The thick film resistor materials examined were of the transition metal oxide-phosphate glass family with several elemental metal additions of the same transition metal. These studies were conducted by preparing a paste of the subject composition, printing, drying, and firing using both air and reducing atmospheres. The resulting resistors were examined for adherence, resistance, thermal coefficient of resistance, and voltage coefficient of resistance.
Passive Endwall Treatments for Enhancing Stability
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
2007-01-01
These lecture notes were presented at the von Karman Institutes lecture series on Advances in Axial Compressor Aerodynamics, May 2006. They provide a fairly extensive overview of what's been learned from numerous investigations of various passive casing endwall technologies that have been proposed for alleviating the stall limiting physics associated with the compressor endwall flow field. The lecture notes are organized to give an appreciation for the inventiveness and understanding of the earliest compressor technologists and to provide a coherent thread of understanding that has arisen out of the early investigations. As such the lecture notes begin with a historical overview of casing treatments from their infancy through the earliest proposed concepts involving blowing, suction and flow recirculation. A summary of lessons learned from these early investigations is provided at the end of this section. The lecture notes then provide a somewhat more in-depth overview of recent advancements in the development of passive casing treatments from the late 1990's through 2006, including advancements in understanding the flow mechanism of circumferential groove casing treatments, and the development of discrete tip injection and self-recirculating casing treatments. At the conclusion of the lecture notes a final summary of lessons learned throughout the history of the development of passive casing treatments is provided. Finally, a list of future needs is given. It is hoped that these lecture notes will be a useful reference for future research endeavors to improve our understanding of the fluid physics of passive casing treatments and how they act to enhance compressor stability, and that they will perhaps provide a springboard for future research activities in this area of interest
Gibbsian Stationary Non-equilibrium States
NASA Astrophysics Data System (ADS)
De Carlo, Leonardo; Gabrielli, Davide
2017-09-01
We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows.
Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Luo, Kai Hong; Li, Yingjun
2017-11-01
A discrete Boltzmann model (DBM) is proposed to probe the Rayleigh-Taylor instability (RTI) in two-component compressible flows. Each species has a flexible specific-heat ratio and is described by one discrete Boltzmann equation (DBE). Independent discrete velocities are adopted for the two DBEs. The collision and force terms in the DBE account for the molecular collision and external force, respectively. Two types of force terms are exploited. In addition to recovering the modified Navier-Stokes equations in the hydrodynamic limit, the DBM has the capability of capturing detailed nonequilibrium effects. Furthermore, we use the DBM to investigate the dynamic process of the RTI. The invariants of tensors for nonequilibrium effects are presented and studied. For low Reynolds numbers, both global nonequilibrium manifestations and the growth rate of the entropy of mixing show three stages (i.e., the reducing, increasing, and then decreasing trends) in the evolution of the RTI. On the other hand, the early reducing tendency is suppressed and even eliminated for high Reynolds numbers. Relevant physical mechanisms are analyzed and discussed.
A phase screen model for simulating numerically the propagation of a laser beam in rain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukin, I P; Rychkov, D S; Falits, A V
2009-09-30
The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. Themore » 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)« less
A field study of discrete emotions: athletes' cognitive appraisals during competition.
Martinent, Guillaume; Ferrand, Claude
2015-03-01
Cognitive-motivational-relational theory (CMRT) emphasizes that cognitive appraisal components and core relational themes (in which the 6 separate appraisal judgments are brought together as 1) are the proximal determinants of athletes' emotions. This study aimed to explore appraisals associated with discrete emotions experienced by athletes during competition by adopting a naturalistic, qualitative video-assisted approach. Thirty self-confrontation interviews were conducted with 11 national table-tennis players. Qualitative inductive and deductive content analyses were conducted on the participants' transcripts. Content analyses suggested that primary and secondary appraisal components (goal relevance, goal congruence, ego involvement, blame or credit, coping potential, and future expectations) were associated with a range of positive and negative discrete emotions: self-, other-, and environmental-oriented anger, anxiety, discouragement, disappointment, disgust, joy, serenity, relief, hope, and pride. Hierarchical content analyses also provided some support for the concept of core relational themes. Findings of the present study are consistent with a CMRT approach and highlight that primary and secondary appraisals as well as core relational themes are associated with discrete emotions experienced by athletes while competing. Limitations and practical applications of this study are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Jeremiah J; Kenny, Joseph P.
2015-02-01
Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading frameworkmore » allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.« less
Passive Responses Resembling Action Potentials: A Device for the Classroom
ERIC Educational Resources Information Center
Newman, Ian A.; Pickard, Barbara G.
1975-01-01
Describes the construction and operation of a network of entirely passive electrical components that gives a response to an electrical shock similar to an action potential. The network of resistors, capacitors, and diodes was developed to produce responses that would mimic those observed, for example, when a dark-grown pea epicotyl is shocked…
Hardening of steels and cast irons by passivation of their surface and heat treatment
NASA Astrophysics Data System (ADS)
Kulikov, A. I.
1994-01-01
Examples of the use of a casehardening (CH) method (surface passivation and standard heat treatment) developed to increase hardness and corrosion resistance and to lower the surface roughness of various components and tools — glass molds. piston rings and ball-bearing races — are presented in this paper.
Analysis of windsat 3rd and 4th stokes components over Arct Sea ice
USDA-ARS?s Scientific Manuscript database
WindSat has provided an opportunity to investigate the first spaceborne passive fully polarimetric observations of the Earth’s surface. In the present study, we investigated the Arctic sea ice. The passive polarimetric data is provided in the form of the modified Stokes vector consisting of four par...
Li, Qilu; Yang, Kong; Li, Jun; Zeng, Xiangying; Yu, Zhiqiang; Zhang, Gan
2018-05-01
In this study, we conducted an assessment of polyurethane foam (PUF) passive sampling for metals combining active sampling. Remarkably, we found that the metals collected in the passive samples differed greatly from those collected in active samples. By composition, Cu and Ni accounted for significantly higher proportions in passive samples than in active samples, leading to significantly higher uptake rates of Cu and Ni. In assessing seasonal variation, metals in passive samples had higher concentrations in summer (excluding Heshan), which differed greatly from the pattern of active samples (winter > summer), indicating that the uptake rates of most metals were higher in summer than in winter. Overall, due to the stable passive uptake rates, we considered that PUF passive samplers can be applied to collect atmospheric metals. Additionally, we created a snapshot of the metal pollution in the Pearl River Delta using principal component analysis of PUF samples and their source apportionment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Handbook of experiences in the design and installation of solar heating and cooling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, D.S.; Oberoi, H.S.
1980-07-01
A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)
Mi, Chris; Li, Siqi
2017-01-31
A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.
Liang, Yongchao; Hua, Haixia; Zhu, Yong-Guan; Zhang, Jie; Cheng, Chunmei; Römheld, Volker
2006-01-01
Here, we characterized silicon (Si) uptake and xylem loading in Oryza sativa, Zea mays, Helianthus annuus and Benincase hispida in a series of hydroponic experiments. Both active and passive Si-uptake components co-exist in all the plants tested. The active component is the major mechanism responsible for Si uptake in O. sativa and Z. mays. By contrast, passive uptake prevails in H. annuus and B. hispida at a higher external Si concentration (0.85 mM), while the active component constantly exists and contributes to the total Si uptake, especially at a lower external Si concentration (0.085 mM). Short experiments showed that Si uptake was significantly suppressed in O. sativa and Z. mays by metabolic inhibitors or low temperature, regardless of external Si concentrations. By contrast, Si uptake in H. annuus and B. hispida was inhibited more significantly by metabolic inhibitors or low temperature at lower (for example, 0.085 mM) than at higher (for example, 1.70 mM) external Si concentrations. It can be concluded that both active and passive Si-uptake components co-exist in O. sativa, Z. mays, H. annuus and B. hispida, with their relative contribution being dependent much upon both plant species and external Si concentrations.
Sims, J A; Giorgi, M C; Oliveira, M A; Meneghetti, J C; Gutierrez, M A
2018-04-01
Extract directional information related to left ventricular (LV) rotation and torsion from a 4D PET motion field using the Discrete Helmholtz Hodge Decomposition (DHHD). Synthetic motion fields were created using superposition of rotational and radial field components and cardiac fields produced using optical flow from a control and patient image. These were decomposed into curl-free (CF) and divergence-free (DF) components using the DHHD. Synthetic radial components were present in the CF field and synthetic rotational components in the DF field, with each retaining its center position, direction of motion and diameter after decomposition. Direction of rotation at apex and base for the control field were in opposite directions during systole, reversing during diastole. The patient DF field had little overall rotation with several small rotators. The decomposition of the LV motion field into directional components could assist quantification of LV torsion, but further processing stages seem necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.
Passive cooling system for nuclear reactor containment structure
Gou, Perng-Fei; Wade, Gentry E.
1989-01-01
A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2017-04-01
Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity decreases very steeply with the distance from the core of convection with intensity observed at 1 km (2 km) being 10-40% (1-20%) of the core value. The use of coarser temporal resolutions leads to gaps in the observed rainfall and even relatively high resolutions (5 min) can be affected by the problem. We conclude providing to the final user indications about the effects of the discretization component of estimation uncertainty and suggesting viable ways to decrease them.
Investigations of formation of quasi-static vortex-structures in granular bodies using DEM
NASA Astrophysics Data System (ADS)
Kozicki, Jan; Tejchman, Jacek
2017-06-01
The paper presents some two-dimensional simulation results of vortex-structures in cohesionless initially dense sand during quasi-static passive wall translation. The sand behaviour was simulated using the discrete element method (DEM). Sand grains were modelled by spheres with contact moments to approximately capture the irregular grain shape. In order to detect vortex-structures, the Helmholtz-Hodge decomposition of a flow displacement field from DEM calculations was used. This approach enabled us to distinguish both incompressibility and vorticity in the granular displacement field.
Design of ground test suspension systems for verification of flexible space structures
NASA Technical Reports Server (NTRS)
Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.
1988-01-01
A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.
Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks
2012-09-13
baseband sampling is key to ensure proper correlation with a reference signal. The DFT represents the sam- pled spectrum of a periodic discrete sequence...convenient to sample the baseband time domain segments at a rate of Ts/N . In this way, the segments are easily correlated to the elemental form of the...phase history solution of Gp ,l[k ′ n] = Sp,l,n ϕp,l,ndp,l,nN2 , dp,l,n 6= 0. (5.5.13) The segment need not be limited to N samples . For segments of length
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
A discrete decentralized variable structure robotic controller
NASA Technical Reports Server (NTRS)
Tumeh, Zuheir S.
1989-01-01
A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for.
Emission Mechanisms in X-Ray Faint Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Brown, B. A.; Bregman, J. N.
1999-12-01
To understand the X-ray emission in normal elliptical galaxies, it is important to determine the relative contributions of hot interstellar gas and discrete sources to the observed emission. In X-ray luminous ellipticals, a hot gaseous component dominates the emission from X-ray binaries and other discrete sources. It is expected that, as one looks toward lower X-ray luminous galaxies, that the hot gas will contribute less to the overall X-ray emission and that discrete sources will supply most, if not all of, the observed X-ray emission. Here we examine ROSAT HRI and PSPC data for seventeen optically bright (BT < 11.15) elliptical galaxies with log(LX/L_B) < 29.7 ergs s-1/L⊙ . Radial surface brightness profiles are modeled with a modified King beta model and a de Vaucouleurs r1/4 law (similar to a beta = 0.5 beta model). For galaxy profiles where the two models are easily distinguishable, the models are combined, and fit to the data to determine or set upper limits to the discrete source contribution. The modeled data suggest that X-ray faint elliptical galaxies may still retain a sizable fraction of hot gas, but that emission from discrete sources are a significant component of the total observed X-ray emission. Support for this project has been provided by NASA and the National Academy of Sciences.
NASA Technical Reports Server (NTRS)
Johnson, Dennis A. (Inventor)
1996-01-01
A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.
ERIC Educational Resources Information Center
Thomson, Kendra M.; Martin, Garry L.; Fazzio, Daniela; Salem, Sandra; Young, Kristen; Yu, C. T.
2012-01-01
A widely used method for teaching children with autism is applied behavior analysis (ABA), and a main component of ABA programming is discrete-trials teaching (DTT). Using a modified multiple-baseline design across participants, we assessed the effectiveness of a DTT self-instructional package (Fazzio & Martin, 2007) for teaching four pairs of…
Code of Federal Regulations, 2011 CFR
2011-10-01
... MHz. (3) Exceed an EIRP toward the physical horizon (not to include man-made structures) of 25.5 dBW... active transmission interval, of discrete out-of-band emissions of less than 700 Hz bandwidth from such... EIRP, measured over any two-millisecond active transmission interval, of discrete out-of-band emissions...
Code of Federal Regulations, 2010 CFR
2010-10-01
... MHz. (3) Exceed an EIRP toward the physical horizon (not to include man-made structures) of 25.5 dBW... active transmission interval, of discrete out-of-band emissions of less than 700 Hz bandwidth from such... EIRP, measured over any two-millisecond active transmission interval, of discrete out-of-band emissions...
Code of Federal Regulations, 2012 CFR
2012-10-01
... MHz. (3) Exceed an EIRP toward the physical horizon (not to include man-made structures) of 25.5 dBW... active transmission interval, of discrete out-of-band emissions of less than 700 Hz bandwidth from such... EIRP, measured over any two-millisecond active transmission interval, of discrete out-of-band emissions...
Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity
NASA Technical Reports Server (NTRS)
Frost, S. A.; Balas, M. J.
2010-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.
2013-05-17
This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components thatmore » may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.« less
Miniaturized Ka-Band Dual-Channel Radar
NASA Technical Reports Server (NTRS)
Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian
2011-01-01
Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.
Fiber Ring Optical Gyroscope (FROG)
NASA Technical Reports Server (NTRS)
1979-01-01
The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.
NASA Technical Reports Server (NTRS)
Bayer, Janice I.; Varadan, V. V.; Varadan, V. K.
1991-01-01
This paper describes research into the use of discrete piezoelectric sensors and actuators for active modal control of flexible two-dimensional structures such as might be used as components for spacecraft. A dynamic coupling term is defined between the sensor/actuator and the structure in terms of structural model shapes, location and piezoelectric behavior. The relative size of the coupling term determines sensor/actuator placement. Results are shown for a clamped square plate and for a large antenna. An experiment was performed on a thin foot-square plate clamped on all sides. Sizable vibration control was achieved for first, second/third (degenerate) and fourth modes.
Solving the incompressible surface Navier-Stokes equation by surface finite elements
NASA Astrophysics Data System (ADS)
Reuther, Sebastian; Voigt, Axel
2018-01-01
We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.
Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping
2011-01-01
A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761
van den Noort, J C; Bar-On, L; Aertbeliën, E; Bonikowski, M; Braendvik, S M; Broström, E W; Buizer, A I; Burridge, J H; van Campenhout, A; Dan, B; Fleuren, J F; Grunt, S; Heinen, F; Horemans, H L; Jansen, C; Kranzl, A; Krautwurst, B K; van der Krogt, M; Lerma Lara, S; Lidbeck, C M; Lin, J-P; Martinez, I; Meskers, C; Metaxiotis, D; Molenaers, G; Patikas, D A; Rémy-Néris, O; Roeleveld, K; Shortland, A P; Sikkens, J; Sloot, L; Vermeulen, R J; Wimmer, C; Schröder, A S; Schless, S; Becher, J G; Desloovere, K; Harlaar, J
2017-07-01
To support clinical decision-making in central neurological disorders, a physical examination is used to assess responses to passive muscle stretch. However, what exactly is being assessed is expressed and interpreted in different ways. A clear diagnostic framework is lacking. Therefore, the aim was to arrive at unambiguous terminology about the concepts and measurement around pathophysiological neuromuscular response to passive muscle stretch. During two consensus meetings, 37 experts from 12 European countries filled online questionnaires based on a Delphi approach, followed by plenary discussion after rounds. Consensus was reached for agreement ≥75%. The term hyper-resistance should be used to describe the phenomenon of impaired neuromuscular response during passive stretch, instead of for example 'spasticity' or 'hypertonia'. From there, it is essential to distinguish non-neural (tissue-related) from neural (central nervous system related) contributions to hyper-resistance. Tissue contributions are elasticity, viscosity and muscle shortening. Neural contributions are velocity dependent stretch hyperreflexia and non-velocity dependent involuntary background activation. The term 'spasticity' should only be used next to stretch hyperreflexia, and 'stiffness' next to passive tissue contributions. When joint angle, moment and electromyography are recorded, components of hyper-resistance within the framework can be quantitatively assessed. A conceptual framework of pathophysiological responses to passive muscle stretch is defined. This framework can be used in clinical assessment of hyper-resistance and will improve communication between clinicians. Components within the framework are defined by objective parameters from instrumented assessment. These parameters need experimental validation in order to develop treatment algorithms based on the aetiology of the clinical phenomena. © 2017 EAN.
Natural circulating passive cooling system for nuclear reactor containment structure
Gou, Perng-Fei; Wade, Gentry E.
1990-01-01
A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.
A deflectable guiding catheter for real-time MRI-guided interventions.
Bell, Jamie A; Saikus, Christina E; Ratnayaka, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z; Colyer, Jessica H; Lederman, Robert J; Kocaturk, Ozgur
2012-04-01
To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. Copyright © 2011 Wiley Periodicals, Inc.
Buckee, Caroline O; Recker, Mario; Watkins, Eleanor R; Gupta, Sunetra
2011-09-13
Many highly diverse pathogen populations appear to exist stably as discrete antigenic types despite evidence of genetic exchange. It has been shown that this may arise as a consequence of immune selection on pathogen populations, causing them to segregate permanently into discrete nonoverlapping subsets of antigenic variants to minimize competition for available hosts. However, discrete antigenic strain structure tends to break down under conditions where there are unequal numbers of allelic variants at each locus. Here, we show that the inclusion of stochastic processes can lead to the stable recovery of discrete strain structure through loss of certain alleles. This explains how pathogen populations may continue to behave as independently transmitted strains despite inevitable asymmetries in allelic diversity of major antigens. We present evidence for this type of structuring across global meningococcal isolates in three diverse antigens that are currently being developed as vaccine components.
Stability analysis for acoustic wave propagation in tilted TI media by finite differences
NASA Astrophysics Data System (ADS)
Bakker, Peter M.; Duveneck, Eric
2011-05-01
Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.
Using the lead vehicle as preview sensor in convoy vehicle active suspension control
NASA Astrophysics Data System (ADS)
Rahman, Mustafizur; Rideout, Geoff
2012-12-01
Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.
An Investigation of Similarities in Parent-Child Test Scores for Evidence of Hereditary Components.
ERIC Educational Resources Information Center
Stafford, Richard E.
This study on psychological traits examines three hypotheses: (1) there is a similarity between parents and their children unexplained by a similarity between the parents, (2) this similarity may be explained by hereditary components, and (3) these hereditary components are of the discrete or segregated type of inheritance. There were 104 families…
ERIC Educational Resources Information Center
Loucks, Susan F.; Crandall, David P.
The practice profile is a standardized, systematic, cost-effective tool for summarizing the components and requirements of a program in a manner that permits comparison with other programs or selection of discrete components from various programs. It provides a component checklist, a precise list of implementation requirements, and a system for…
Six-component semi-discrete integrable nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2018-01-01
We suggest the six-component integrable nonlinear system on a quasi-one-dimensional lattice. Due to its symmetrical form, the general system permits a number of reductions; one of which treated as the semi-discrete integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell is considered in considerable details. Besides six truly independent basic field variables, the system is characterized by four concomitant fields whose background values produce three additional types of inter-site resonant interactions between the basic fields. As a result, the system dynamics becomes associated with the highly nonstandard form of Poisson structure. The elementary Poisson brackets between all field variables are calculated and presented explicitly. The richness of system dynamics is demonstrated on the multi-component soliton solution written in terms of properly parameterized soliton characteristics.
NASA Astrophysics Data System (ADS)
Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.
2009-03-01
The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary Kyle; Denman, Matthew R.
It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through themore » analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.« less
Barth, A.P.; Wooden, J.L.
2006-01-01
Initiation of the Cordilleran magmatic arc in the southwestern United States is marked by intrusion of granitic plutons, predominantly composed of alkali-calcic Fe- and Sr-enriched quartz monzodiorite and monzonite, that intruded Paleoproterozoic basement and its Paleozoic cratonal-miogeoclinal cover. Three intrusive suites, recognized on the basis of differences in high field strength element and large ion lithophile element abundances, contain texturally complex but chronologically distinctive zircons. These zircons record heterogeneous but geochemically discrete mafic crustal magma sources, discrete Permo-Triassic intrusion ages, and a prolonged postemplacement thermal history within the long-lived Cordilleran arc, leading to episodic loss of radiogenic Pb. Distinctive lower crustal magma sources reflect lateral heterogeneity within the composite lithosphere of the Proterozoic craton. Limited interaction between derived magmas and middle and upper crustal rocks probably reflects the relatively cool thermal structure of the nascent Cordilleran continental margin magmatic arc. ?? 2006 by The University of Chicago. All rights reserved.
Millimeter wave radiative transfer studies for precipitation measurements
NASA Technical Reports Server (NTRS)
Vivekanandan, J.; Evans, Frank
1989-01-01
Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.
Zhou, Ji; Qiao, Yaojun
2015-09-01
In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).
Computational Analysis of the G-III Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan
2011-01-01
Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.
Broadband superior electromagnetic absorption of a discrete-structure microwave coating
NASA Astrophysics Data System (ADS)
Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin
2016-10-01
A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.
Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer
NASA Astrophysics Data System (ADS)
Sreewirote, Bancha; Ngaopitakkul, Atthapol
2018-03-01
The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.
Impact of Passive Safety on FHR Instrumentation Systems Design and Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David Eugene
2015-01-01
Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less
Justen, Christoph; Herbert, Cornelia
2018-04-19
Numerous studies have investigated the neural underpinnings of passive and active deviance and target detection in the well-known auditory oddball paradigm by means of event-related potentials (ERPs) or functional magnetic resonance imaging (fMRI). The present auditory oddball study investigates the spatio-temporal dynamics of passive versus active deviance and target detection by analyzing amplitude modulations of early and late ERPs while at the same time exploring the neural sources underling this modulation with standardized low-resolution brain electromagnetic tomography (sLORETA) . A 64-channel EEG was recorded from twelve healthy right-handed participants while listening to 'standards' and 'deviants' (500 vs. 1000 Hz pure tones) during a passive (block 1) and an active (block 2) listening condition. During passive listening, participants had to simply listen to the tones. During active listening they had to attend and press a key in response to the deviant tones. Passive and active listening elicited an N1 component, a mismatch negativity (MMN) as difference potential (whose amplitudes were temporally overlapping with the N1) and a P3 component. N1/MMN and P3 amplitudes were significantly more pronounced for deviants as compared to standards during both listening conditions. Active listening augmented P3 modulation to deviants significantly compared to passive listening, whereas deviance detection as indexed by N1/MMN modulation was unaffected by the task. During passive listening, sLORETA contrasts (deviants > standards) revealed significant activations in the right superior temporal gyrus (STG) and the lingual gyri bilaterally (N1/MMN) as well as in the left and right insulae (P3). During active listening, significant activations were found for the N1/MMN in the right inferior parietal lobule (IPL) and for the P3 in multiple cortical regions (e.g., precuneus). The results provide evidence for the hypothesis that passive as well as active deviance and target detection elicit cortical activations in spatially distributed brain regions and neural networks including the ventral attention network (VAN), dorsal attention network (DAN) and salience network (SN). Based on the temporal activation of the neural sources underlying ERP modulations, a neurophysiological model of passive and active deviance and target detection is proposed which can be tested in future studies.
A description of discrete internal representation schemes for visual pattern discrimination.
Foster, D H
1980-01-01
A general description of a class of schemes for pattern vision is outlined in which the visual system is assumed to form a discrete internal representation of the stimulus. These representations are discrete in that they are considered to comprise finite combinations of "components" which are selected from a fixed and finite repertoire, and which designate certain simple pattern properties or features. In the proposed description it is supposed that the construction of an internal representation is a probabilistic process. A relationship is then formulated associating the probability density functions governing this construction and performance in visually discriminating patterns when differences in pattern shape are small. Some questions related to the application of this relationship to the experimental investigation of discrete internal representations are briefly discussed.
Johansen, Kristoffer; Song, Jae Hee; Prentice, Paul
2018-05-01
We describe the design, construction and characterisation of a broadband passive cavitation detector, with the specific aim of detecting low frequency components of periodic shock waves, with high sensitivity. A finite element model is used to guide selection of matching and backing layers for the shock wave passive cavitation detector (swPCD), and the performance is evaluated against a commercially available device. Validation of the model, and characterisation of the swPCD is achieved through experimental detection of laser-plasma bubble collapse shock waves. The final swPCD design is 20 dB more sensitive to the subharmonic component, from acoustic cavitation driven at 220 kHz, than the comparable commercial device. This work may be significant for monitoring cavitation in medical applications, where sensitive detection is critical, and higher frequencies are more readily absorbed by tissue. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Numerical modeling of fold-and-thrust belts: Applications to Kuqa foreland fold belt, China
NASA Astrophysics Data System (ADS)
Yin, H.; Morgan, J. K.; Zhang, J.; Wang, Z.
2009-12-01
We constructed discrete element models to simulate the evolution of fold-and-thrust belts. The impact of rock competence and decollement strength on the geometric pattern and deformation mechanics of fold-and-thrust belts has been investigated. The models reproduced some characteristic features of fold-and-thrust belts, such as faulted detachment folds, pop-ups, far-traveled thrust sheets, passive-roof duplexes, and back thrusts. In general, deformation propagates farther above a weak decollement than above a strong decollement. Our model results confirm that fold-and-thrust belts with strong frictional decollements develop relatively steep and narrow wedges formed by closely spaced imbricate thrust slices, whereas fold belts with weak decollements form wide low-taper wedges composed of faulted detachment folds, pop-ups, and back thrusts. Far-traveled thrust sheets and passive-roof duplexes are observed in the model with a strong lower decollement and a weak upper detachment. Model results also indicate that the thickness of the weak layer is critical. If it is thick enough, it acts as a ductile layer that is able to flow under differential stress, which helps to partition deformation above and below it. The discrete element modeling results were used to interpret the evolution of Kuqa Cenozoic fold-and-thrust belt along northern Tarim basin, China. Seismic and well data show that the widely distributed Paleogene rock salt has a significant impact on the deformation in this area. Structures beneath salt are closely spaced imbricate thrust and passive-roof duplex systems. Deformation above salt propagates much farther than below the salt. Faults above salt are relatively wide spaced. A huge controversy over the Kuqa fold-and-thrust belt is whether it is thin-skinned or thick-skinned. With the insights from DEM results, we suggest that Kuqa structures are mostly thin-skinned with Paleogene salt as decollement, except for the rear part near the backstop, where the faults below the salt are thick-skinned and involve the Paleozoic basement. We think that most basement-involved sub-salt faults, if not all, formed later than the above salt-detached thin-skinned structures.
Dismantling the Active Ingredients of an Intervention for Children with Autism.
Pellecchia, Melanie; Connell, James E; Beidas, Rinad S; Xie, Ming; Marcus, Steven C; Mandell, David S
2015-09-01
This study evaluated the association of fidelity to each of the components of the Strategies for Teaching based on Autism Research (STAR) program, a comprehensive treatment package for children with autism that includes discrete trial training, pivotal response training, and teaching in functional routines, on outcomes for 191 students ages 5-8 years in a large public school district. Fidelity to all components was relatively low, despite considerable training and support, suggesting the need to develop new implementation strategies. Fidelity to pivotal response training, but not discrete trial training or functional routines, was positively associated with gains in cognitive ability despite low levels of fidelity, and may be an effective intervention choice in under-resourced settings.
Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver
NASA Technical Reports Server (NTRS)
Glasby, Ryan S.; Erwin, J. Taylor; Stefanski, Douglas L.; Allmaras, Steven R.; Galbraith, Marshall C.; Anderson, W. Kyle; Nichols, Robert H.
2016-01-01
HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented.
Kenny, Sarah J; Palacios-Derflingher, Luz; Owoeye, Oluwatoyosi B A; Whittaker, Jackie L; Emery, Carolyn A
2018-03-15
Critical appraisal of research investigating risk factors for musculoskeletal injury in dancers suggests high quality reliability studies are lacking. The purpose of this study was to determine between-day reliability of pre-participation screening (PPS) components in pre-professional ballet and contemporary dancers. Thirty-eight dancers (35 female, 3 male; median age; 18 years; range: 11 to 30 years) participated. Screening components (Athletic Coping Skills Inventory-28, body mass index, percent total body fat, total bone mineral density, Foot Posture Index-6, hip and ankle range of motion, three lumbopelvic control tasks, unipedal dynamic balance, and the Y-Balance Test) were conducted one week apart. Intra-class correlation coefficients (ICCs: 95% confidence intervals), standard error of measurement, minimal detectable change (MDC), Bland-Altman methods of agreement [95% limits of agreement (LOA)], Cohen's kappa coefficients, standard error, and percent agreements were calculated. Depending on the screening component, ICC estimates ranged from 0.51 to 0.98, kappa coefficients varied between -0.09 and 0.47, and percent agreement spanned 71% to 95%. Wide 95% LOA were demonstrated by Foot Posture Index-6 (right: -6.06, 7.31), passive hip external rotation (right: -9.89, 16.54), and passive supine turnout (left: -15.36, 17.58). The PPS components examined demonstrated moderate to excellent relative reliability with mean between-day differences less than MDC, or sufficient percent agreement, across all assessments. However, due to wide 95% limits of agreement, the Foot Posture Index-6 and passive hip range of motion are not recommended for screening injury risk in pre-professional dancers.
Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module
NASA Astrophysics Data System (ADS)
Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua
2017-11-01
A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.
The LBM program at the EPFL/LOTUS Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
File, J.; Jassby, D.L.; Tsang, F.Y.
1986-11-01
An experimental program of neutron transport studies of the Lithium Blanket Module (LBM) is being carried out with the LOTUS point-neutron source facility at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. Preliminary experiments use passive neutron dosimetry within the fuel rods in the LBM central zone, as well as, both thermal extraction and dissolution methods to assay tritium bred in Li/sub 2/O diagnostic wafers and LBM pellets. These measurements are being compared and reconciled with each other and with the predictions of two-dimensional discrete-ordinates and continuous-energy Monte-Carlo analyses of the Lotus/LBM system.
A perspective on unstructured grid flow solvers
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.
1995-01-01
This survey paper assesses the status of compressible Euler and Navier-Stokes solvers on unstructured grids. Different spatial and temporal discretization options for steady and unsteady flows are discussed. The integration of these components into an overall framework to solve practical problems is addressed. Issues such as grid adaptation, higher order methods, hybrid discretizations and parallel computing are briefly discussed. Finally, some outstanding issues and future research directions are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.
This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen
2016-01-01
Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
Subnanosecond Scintillation Detector
NASA Technical Reports Server (NTRS)
Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)
2017-01-01
A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.
Xu, Shaofang; Chai, Hao; Hu, Jing; Xu, You; Chen, Wanzhen; Wang, Wei
2014-10-01
Treatment-resistant depression is comorbid with personality or anxiety disorder; how passive attention functions in these disorders remains unknown. A single tone-elicited event-related potential P3 component (passive P3) might help to characterize the passive attention in these disorders. The passive P3 test was applied to 32 patients with treatment-resistant depression, 35 with generalized anxiety disorder, and 21 with borderline personality disorder, as well as to 31 healthy volunteers. The Zung Self-rating Depression and Anxiety Scales were used to measure the respective depression and anxiety levels in these participants. All patients scored significantly higher on depression and anxiety than the healthy participants did. P3 amplitude was significantly reduced in groups with treatment-resistant depression and generalized anxiety disorder but not in the group with borderline personality disorder or healthy controls. Anxiety level was negatively correlated with P3 amplitude in healthy controls rather than in other groups. This study did not discriminate treatment-resistant depression and generalized anxiety disorder regarding the passive P3 but suggested that there was a generalized impairment of passive attention in these disorders.
Study of bidirectional broadband passive optical network (BPON) using EDFA
NASA Astrophysics Data System (ADS)
Almalaq, Yasser
Optical line terminals (OLTs) and number of optical network units (ONUs) are two main parts of passive optical network (PON). OLT is placed at the central office of the service providers, the ONUs are located near to the end subscribers. When compared with point-to-point design, a PON decreases the number of fiber used and central office components required. Broadband PON (BPON), which is one type of PON, can support high-speed voice, data and video services to subscribers' residential homes and small businesses. In this research, by using erbium doped fiber amplifier (EDFA), the performance of bi-directional BPON is experimented and tested for both downstream and upstream traffic directions. Ethernet PON (E-PON) and gigabit PON (G-PON) are the two other kinds of passive optical network besides BPON. The most beneficial factor of using BPON is it's reduced cost. The cost of the maintenance between the central office and the users' side is suitable because of the use of passive components, such as a splitter in the BPON architecture. In this work, a bidirectional BPON has been analyzed for both downstream and upstream cases by using bit error rate analyzer (BER). BER analyzers test three factors that are the maximum Q factor, minimum bit error rate, and eye height. In other words, parameters such as maximum Q factor, minimum bit error rate, and eye height can be analyzed utilized a BER tester. Passive optical components such as a splitter, optical circulator, and filters have been used in modeling and simulations. A 12th edition Optiwave simulator has been used in order to analyze the bidirectional BPON system. The system has been tested under several conditions such as changing the fiber length, extinction ratio, dispersion, and coding technique. When a long optical fiber above 40km was used, an EDFA was used in order to improve the quality of the signal.
Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors
Govardovskii, Victor I.
2017-01-01
The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse. PMID:28611079
Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components
NASA Technical Reports Server (NTRS)
Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai
2009-01-01
This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.
A Martin-Puplett cartridge FIR interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Roger J.; Penniman, Edwin E.; Jarboe, Thomas R.
2004-10-01
A compact prealigned Martin-Puplett interferometer (MPI) cartridge for plasma interferometry is described. The MPI cartridge groups all components of a MP interferometer, with the exception of the end mirror for the scene beam, on a stand-alone rigid platform. The interferometer system is completed by positioning a cartridge anywhere along and coaxial with the scene beam, considerably reducing the amount of effort in alignment over a discrete component layout. This allows the interferometer to be expanded to any number of interferometry chords consistent with optical access, limited only by the laser power. The cartridge interferometer has been successfully incorporated as amore » second chord on the Helicity Injected Torus II (HIT-II) far infrared interferometer system and a comparison with the discrete component system is presented. Given the utility and compactness of the cartridge, a possible design for a five-chord interferometer arrangement on the HIT-II device is described.« less
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.
Munitions Detection Using Unmanned Underwater Vehicles Equipped with Advanced Sensors
2012-06-29
buried target. The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal magnetic-field vector components at 3...surveys. Figure 6 shows the RTG magnetic sensor in both an open (showing the fluxgate magnetometers ) and enclosed state (mode for integration onto...7.6 Real-time Tracking Gradiometer (RTG) System The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal
Use of Suction Piles for Mooring of Mobile Offshore Bases.
1998-06-11
This procedure did not, however, take into account the passive suction developed by the pile. Investigation of soil interaction with suction piles...resulting o’^ distribution, which accounts for friction, is also shown in Fig. 5. The effective vertical stress profile within the clay just before the... accounting for active/passive soil pressures and skirt friction components. The principles used by Bye and his colleagues in the stability calculation
The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology
2015-09-30
localization that will be available in a number of configurations for deep and shallow water environments alike. OBJECTIVES The project has two...through two test series, first targeting the GPS synchronized shallow water and then the self-synchronized deep water configurations. The project will...main objectives: 1. Development of all the components of a compact passive acoustic monitoring system suitable both for shallow water moored
Guide for Visual Inspection of Structural Concrete Building Components.
1991-07-01
Formalin Aqueous solution of formaldehyde disintegrates concrete Fruit juices Most fruit juices have little, if any, effect as tartaric acid and citric ...corrected. Cracks in concrete can be either passive or active. Passive cracks can be caused by construction ei-ors, material shrinkage, variations in...commonly in heavily trafficked areas. Too much water in the mix causes excessive bleeding, which brings fines and cements to the surface, weakening the
NASA Technical Reports Server (NTRS)
Allton, J. H.; Gonzalez, C. P.; Allums, K. K.
2016-01-01
The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.
Bumblebees minimize control challenges by combining active and passive modes in unsteady winds
NASA Astrophysics Data System (ADS)
Ravi, Sridhar; Kolomenskiy, Dmitry; Engels, Thomas; Schneider, Kai; Wang, Chun; Sesterhenn, Jörn; Liu, Hao
2016-10-01
The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows.
A deflectable guiding catheter for real-time MRI-guided interventions
Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur
2011-01-01
Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071
Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA
NASA Technical Reports Server (NTRS)
Schrage, Dean S.
1993-01-01
The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph
2014-01-01
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph
2015-01-01
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal. PMID:25620928
Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement
Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung
2017-01-01
This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219
Assembly & Metrology of First Wall Components of SST-1
NASA Astrophysics Data System (ADS)
Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal; Patel, Hiteshkumar; Paravastu, Yuvakiran; Jaiswal, Snehal; Chauhan, Pradeep; Babu, Gattu Ramesh; A, Arun Prakash; Bhavsar, Dhaval; Raval, Dilip C.; Khan, Ziauddin; Pradhan, Subrata
2017-04-01
First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects & procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel.
Components for IFOG based inertial measurement units using active and passive polymer materials
NASA Astrophysics Data System (ADS)
Ashley, Paul R.; Temmen, Mark G.; Diffey, William M.; Sanghadasa, Mohan; Bramson, Michael D.; Lindsay, Geoffrey A.; Guenthner, Andrew J.
2006-08-01
Highly accurate, compact, and low cost inertial measurement units (IMUs) are needed for precision guidance in navigation systems. Active and passive polymer materials have been successfully used in fabricating two of the key guided-wave components, the phase modulator and the optical transceiver, for IMUs based on the interferometric fiber optic gyroscope (IFOG) technology. Advanced hybrid waveguide fabrication processes and novel optical integration techniques have been introduced. Backscatter compensated low loss phase modulators with low half-wave drive voltage (V π) have been fabricated with CLD- and FTC- type high performance electro-optic chromophores. A silicon-bench architecture has been used in fabricating high gain low noise transceivers with high optical power while maintaining the spectral quality and long lifetime. Gyro bias stability of less than 0.02 deg/hr has been demonstrated with these components. A review of the novel concepts introduced, fabrication and integration techniques developed and performance achieved are presented.
Noise characteristics of passive components for phased array applications
NASA Technical Reports Server (NTRS)
Sonmez, M. Kemal; Trew, Robert J.
1991-01-01
The results of a comparative study on noise characteristics of basic power combining/dividing and phase shifting schemes are presented. The theoretical basics of thermal noise in a passive linear multiport are discussed. A new formalism is presented to describe the noise behavior of the passive circuits, and it is shown that the fundamental results are conveniently achieved using this description. The results of analyses concerning the noise behavior of basic power combining/dividing structures (the Wilkinson combiner, 90 deg hybrid coupler, hybrid ring coupler, and the Lange coupler) are presented. Three types of PIN-diode switch phase shifters are analyzed in terms of noise performance.
Inherently safe passive gas monitoring system
Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.
2016-09-06
Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.
A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2013-02-01
Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Marinelli, Dimitri; Marzuoli, Annalisa
2013-05-01
The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.
GY SAMPLING THEORY AND GEOSTATISTICS: ALTERNATE MODELS OF VARIABILITY IN CONTINUOUS MEDIA
In the sampling theory developed by Pierre Gy, sample variability is modeled as the sum of a set of seven discrete error components. The variogram used in geostatisties provides an alternate model in which several of Gy's error components are combined in a continuous mode...
Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles
NASA Astrophysics Data System (ADS)
Adams, I. S.; Munchak, S. J.; Pelissier, C.; Kuo, K. S.; Heymsfield, G. M.
2017-12-01
To support the observation of clouds and precipitation using combinations of radars and radiometers, a forward model capable of representing diverse sensing geometries for active and passive instruments is necessary for correctly interpreting and consistently combining multi-sensor measurements from ground-based, airborne, and spaceborne platforms. As such, the Atmospheric Radiative Transfer Simulator (ARTS) uses Monte Carlo integration to produce radar reflectivities and radiometric brightness temperatures for three-dimensional cloud and precipitation input fields. This radiative transfer framework is capable of efficiently sampling Gaussian antenna beams and fully accounting for multiple scattering. By relying on common ray-tracing tools, gaseous absorption models, and scattering properties, the model reproduces accurate and consistent radar and radiometer observables. While such a framework is an important component for simulating remote sensing observables, the key driver for self-consistent radiative transfer calculations of clouds and precipitation is scattering data. Research over the past decade has demonstrated that spheroidal models of frozen hydrometeors cannot accurately reproduce all necessary scattering properties at all desired frequencies. The discrete dipole approximation offers flexibility in calculating scattering for arbitrary particle geometries, but at great computational expense. When considering scattering for certain pristine ice particles, the Extended Boundary Condition Method, or T-Matrix, is much more computationally efficient; however, convergence for T-Matrix calculations fails at large size parameters and high aspect ratios. To address these deficiencies, we implemented the Invariant Imbedding T-Matrix Method (IITM). A brief overview of ARTS and IITM will be given, including details for handling preferentially-aligned hydrometeors. Examples highlighting the performance of the model for simulating space-based and airborne measurements will be offered, and some case studies showing the response to particle type and orientation will be presented. Simulations of polarized radar (Z, LDR, ZDR) and radiometer (Stokes I and Q) quantities will be used to demonstrate the capabilities of the model.
On ERPs detection in disorders of consciousness rehabilitation
Risetti, Monica; Formisano, Rita; Toppi, Jlenia; Quitadamo, Lucia R.; Bianchi, Luigi; Astolfi, Laura; Cincotti, Febo; Mattia, Donatella
2013-01-01
Disorders of Consciousness (DOC) like Vegetative State (VS), and Minimally Conscious State (MCS) are clinical conditions characterized by the absence or intermittent behavioral responsiveness. A neurophysiological monitoring of parameters like Event-Related Potentials (ERPs) could be a first step to follow-up the clinical evolution of these patients during their rehabilitation phase. Eleven patients diagnosed as VS (n = 8) and MCS (n = 3) by means of the JFK Coma Recovery Scale Revised (CRS-R) underwent scalp EEG recordings during the delivery of a 3-stimuli auditory oddball paradigm, which included standard, deviant tones and the subject own name (SON) presented as a novel stimulus, administered under passive and active conditions. Four patients who showed a change in their clinical status as detected by means of the CRS-R (i.e., moved from VS to MCS), were subjected to a second EEG recording session. All patients, but one (anoxic etiology), showed ERP components such as mismatch negativity (MMN) and novelty P300 (nP3) under passive condition. When patients were asked to count the novel stimuli (active condition), the nP3 component displayed a significant increase in amplitude (p = 0.009) and a wider topographical distribution with respect to the passive listening, only in MCS. In 2 out of the 4 patients who underwent a second recording session consistently with their transition from VS to MCS, the nP3 component elicited by passive listening of SON stimuli revealed a significant amplitude increment (p < 0.05). Most relevant, the amplitude of the nP3 component in the active condition, acquired in each patient and in all recording sessions, displayed a significant positive correlation with the total scores (p = 0.004) and with the auditory sub-scores (p < 0.00001) of the CRS-R administered before each EEG recording. As such, the present findings corroborate the value of ERPs monitoring in DOC patients to investigate residual unconscious and conscious cognitive function. PMID:24312041
On ERPs detection in disorders of consciousness rehabilitation.
Risetti, Monica; Formisano, Rita; Toppi, Jlenia; Quitadamo, Lucia R; Bianchi, Luigi; Astolfi, Laura; Cincotti, Febo; Mattia, Donatella
2013-01-01
Disorders of Consciousness (DOC) like Vegetative State (VS), and Minimally Conscious State (MCS) are clinical conditions characterized by the absence or intermittent behavioral responsiveness. A neurophysiological monitoring of parameters like Event-Related Potentials (ERPs) could be a first step to follow-up the clinical evolution of these patients during their rehabilitation phase. Eleven patients diagnosed as VS (n = 8) and MCS (n = 3) by means of the JFK Coma Recovery Scale Revised (CRS-R) underwent scalp EEG recordings during the delivery of a 3-stimuli auditory oddball paradigm, which included standard, deviant tones and the subject own name (SON) presented as a novel stimulus, administered under passive and active conditions. Four patients who showed a change in their clinical status as detected by means of the CRS-R (i.e., moved from VS to MCS), were subjected to a second EEG recording session. All patients, but one (anoxic etiology), showed ERP components such as mismatch negativity (MMN) and novelty P300 (nP3) under passive condition. When patients were asked to count the novel stimuli (active condition), the nP3 component displayed a significant increase in amplitude (p = 0.009) and a wider topographical distribution with respect to the passive listening, only in MCS. In 2 out of the 4 patients who underwent a second recording session consistently with their transition from VS to MCS, the nP3 component elicited by passive listening of SON stimuli revealed a significant amplitude increment (p < 0.05). Most relevant, the amplitude of the nP3 component in the active condition, acquired in each patient and in all recording sessions, displayed a significant positive correlation with the total scores (p = 0.004) and with the auditory sub-scores (p < 0.00001) of the CRS-R administered before each EEG recording. As such, the present findings corroborate the value of ERPs monitoring in DOC patients to investigate residual unconscious and conscious cognitive function.
The FIA Panel Design and Compatible Estimators for the Components of Change
Francis A. Roesch
2006-01-01
The FIA annual panel design and its relation to compatible estimation systems for the components of change are discussed. Estimation for the traditional components of growth, as presented by Meyer (1953, Forest Mensuration) is bypassed in favor of a focus on estimation for the discrete analogs to Erikssonâs (1995, For. Sci. 41(4):796- 822) time invariant redefinitions...
Passive smoking: directions for health education among Malaysian college students.
Kurtz, M E; Johnson, S M; Ross-Lee, B
1992-01-01
This study investigated knowledge, attitudes, and preventive efforts of Malaysian college students regarding health risks associated with passive smoking, as well as possible directions for intervention and health education programs. Students responded anonymously to a structured written questionnaire. Statistical analyses were conducted to examine (1) differences in knowledge, attitudes, and preventive efforts between smokers and nonsmokers and between men and women; (2) the relationship between smoking by parents, siblings, and friends, and students' knowledge, attitudes, and preventive efforts; and (3) relationships between knowledge, attitudes, and preventive efforts. Peer groups and siblings had a substantial influence on students' attitudes toward passive smoking and their preventive efforts when exposed to passive smoke. A regression analysis revealed a statistically significant linear dependence of preventive efforts on knowledge and attitudes, with the attitude component playing the dominant role. This research suggests that educational efforts on passive smoking, directed toward young college students in developing countries such as Malaysia, should concentrate heavily on changing attitudes and reducing the effects of peer group and sibling influences.
Passive fire building protection system evaluation (case study: millennium ict centre)
NASA Astrophysics Data System (ADS)
Rahman, Vinky; Stephanie
2018-03-01
Passive fire protection system is a system that refers to the building design, both regarding of architecture and structure. This system usually consists of structural protection that protects the structure of the building and prevents the spread of fire and facilitate the evacuation process in case of fire. Millennium ICT Center is the largest electronic shopping center in Medan, Indonesia. As a public building that accommodates the crowd, this building needs a fire protection system by the standards. Therefore, the purpose of this study is to evaluate passive fire protection system of Millennium ICT Center building. The study was conducted to describe the facts of the building as well as direct observation to the research location. The collected data is then processed using the AHP (Analytical Hierarchy Process) method in its weighting process to obtain the reliability value of passive fire protection fire system. The results showed that there are some components of passive fire protection system in the building, but some are still unqualified. The first section in your paper
The Information Content of Discrete Functions and Their Application in Genetic Data Analysis.
Sakhanenko, Nikita A; Kunert-Graf, James; Galas, David J
2017-12-01
The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. We present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discrete variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis-that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. We illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.
Error analysis and correction of discrete solutions from finite element codes
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.
1984-01-01
Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Basham, Bryan D.
1989-01-01
CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.
Research on Fault Rate Prediction Method of T/R Component
NASA Astrophysics Data System (ADS)
Hou, Xiaodong; Yang, Jiangping; Bi, Zengjun; Zhang, Yu
2017-07-01
T/R component is an important part of the large phased array radar antenna array, because of its large numbers, high fault rate, it has important significance for fault prediction. Aiming at the problems of traditional grey model GM(1,1) in practical operation, the discrete grey model is established based on the original model in this paper, and the optimization factor is introduced to optimize the background value, and the linear form of the prediction model is added, the improved discrete grey model of linear regression is proposed, finally, an example is simulated and compared with other models. The results show that the method proposed in this paper has higher accuracy and the solution is simple and the application scope is more extensive.
Turbulent transport of a passive-scalar field by using a renormalization-group method
NASA Technical Reports Server (NTRS)
Hossain, Murshed
1992-01-01
A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In the absence of any correlation between the passive-scalar fluctuations and any component of the fluid velocity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the turbulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a dependence of the turbulent decay of the passive scalar on the turbulent Prandtl number.
NASA Astrophysics Data System (ADS)
Lugauer, F. P.; Stiehl, T. H.; Zaeh, M. F.
Modern laser systems are widely used in industry due to their excellent flexibility and high beam intensities. This leads to an increased hazard potential, because conventional laser safety barriers only offer a short protection time when illuminated with high laser powers. For that reason active systems are used more and more to prevent accidents with laser machines. These systems must fulfil the requirements of functional safety, e.g. according to IEC 61508, which causes high costs. The safety provided by common passive barriers is usually unconsidered in this context. In the presented approach, active and passive systems are evaluated from a holistic perspective. To assess the functional safety of hybrid safety systems, the failure probability of passive barriers is analysed and added to the failure probability of the active system.
Wakamiya, Eiji; Okumura, Tomohito; Nakanishi, Makoto; Takeshita, Takashi; Mizuta, Mekumi; Kurimoto, Naoko; Tamai, Hiroshi
2011-06-01
To clarify whether rapid naming ability itself is a main underpinning factor of rapid automatized naming tests (RAN) and how deep an influence the discrete decoding process has on reading, we performed discrete naming tasks and discrete hiragana reading tasks as well as sequential naming tasks and sequential hiragana reading tasks with 38 Japanese schoolchildren with reading difficulty. There were high correlations between both discrete and sequential hiragana reading and sentence reading, suggesting that some mechanism which automatizes hiragana reading makes sentence reading fluent. In object and color tasks, there were moderate correlations between sentence reading and sequential naming, and between sequential naming and discrete naming. But no correlation was found between reading tasks and discrete naming tasks. The influence of rapid naming ability of objects and colors upon reading seemed relatively small, and multi-item processing may work in relation to these. In contrast, in the digit naming task there was moderate correlation between sentence reading and discrete naming, while no correlation was seen between sequential naming and discrete naming. There was moderate correlation between reading tasks and sequential digit naming tasks. Digit rapid naming ability has more direct effect on reading while its effect on RAN is relatively limited. The ratio of how rapid naming ability influences RAN and reading seems to vary according to kind of the stimuli used. An assumption about components in RAN which influence reading is discussed in the context of both sequential processing and discrete naming speed. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer
NASA Technical Reports Server (NTRS)
Ford, Virginia; Parks, Rick; Coleman, Michelle
2004-01-01
The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.
Spacecraft Heat Rejection Methods: Active and Passive Heat Transfer for Electronic Systems.
1986-08-29
Storage in avionics, spacecraft and electronics ,;"ters. Microencapsulated phase change materials (PCMs) in a two-component water SlUrrv- were useo with...capsules was observed in the pumping process. Inaddition, both microencapsulated and pure PCM were used to passively reduce tile tempera- tuo .tremes of...conducted as a Phase I Small Business Innovation Research (SBIR) program to explore the feasibility of using microencapsulated phase change materials (PCM) in
Foch, Eric; Milner, Clare E
2014-01-03
Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.
Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma
NASA Astrophysics Data System (ADS)
Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.
2017-12-01
Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.
NASA Astrophysics Data System (ADS)
Lee, Joong Gwang; Nietch, Christopher T.; Panguluri, Srinivas
2018-05-01
Urban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial elements. For green infrastructure modeling, we suggest a discretization method that distinguishes directly connected impervious area (DCIA) from the total impervious area (TIA). Pervious buffers, which receive runoff from upgradient impervious areas should also be identified as a separate subset of the entire pervious area (PA). This separation provides an improved model representation of the runoff process. With these criteria in mind, an approach to spatial discretization for projects using the US Environmental Protection Agency's Storm Water Management Model (SWMM) is demonstrated for the Shayler Crossing watershed (SHC), a well-monitored, residential suburban area occupying 100 ha, east of Cincinnati, Ohio. The model relies on a highly resolved spatial database of urban land cover, stormwater drainage features, and topography. To verify the spatial discretization approach, a hypothetical analysis was conducted. Six different representations of a common urbanscape that discharges runoff to a single storm inlet were evaluated with eight 24 h synthetic storms. This analysis allowed us to select a discretization scheme that balances complexity in model setup with presumed accuracy of the output with respect to the most complex discretization option considered. The balanced approach delineates directly and indirectly connected impervious areas (ICIA), buffering pervious area (BPA) receiving impervious runoff, and the other pervious area within a SWMM subcatchment. It performed well at the watershed scale with minimal calibration effort (Nash-Sutcliffe coefficient = 0.852; R2 = 0.871). The approach accommodates the distribution of runoff contributions from different spatial components and flow pathways that would impact green infrastructure performance. A developed SWMM model using the discretization approach is calibrated by adjusting parameters per land cover component, instead of per subcatchment and, therefore, can be applied to relatively large watersheds if the land cover components are relatively homogeneous and/or categorized appropriately in the GIS that supports the model parameterization. Finally, with a few model adjustments, we show how the simulated stream hydrograph can be separated into the relative contributions from different land cover types and subsurface sources, adding insight to the potential effectiveness of planned green infrastructure scenarios at the watershed scale.
Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L
2007-01-01
We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)
Chalcogenide nanocrystal assembly: Controlling heterogeneity and modulating heterointerfaces
NASA Astrophysics Data System (ADS)
Davis, Jessica
This dissertation work is focused on developing methods to facilitate charge transport in heterostructured materials that comprise a nanoscale component. Multicomponent semiconductor materials were prepared by (1) spin coating of discrete nanomaterials onto porous silicon (pSi) or (2) self-assembly. Spin-coating of colloidal quantum dot (QD) PbS solutions was employed to create prototype PbS QD based radiation detection devices using porous silicon (pSi) as an n-type support and charge transport material. These devices were initially tested as a photodetector to ascertain the possibility of their use in high energy radiation detection. Short chain thiolate ligands (4-fluorothiophenolate) and anion passivation at the particle interface were evaluated to augment interparticle transport. However, the samples showed minimum interaction with the light source possibly due to poor infiltration into the pSi. The second project was also driven by the potential synergistic properties that can be achieved in multicomponent metal chalcogenide nanostructures, potentially useful in optoelectronic devices. Working with well-established methods for single component metal chalcogenide (MQ) particle gels this dissertation research sought to develop practical methods for co-gelation of different component particles with complimentary functionalities. By monitoring the kinetics of aggregation using time resolved dynamic light scattering and NMR spectroscopy the kinetics of aggregation of the two most common crystal structures for CdQ nanocrystals was studied and it was determined that the hexagonal (wurtzite) crystal structure aggregated faster than the cubic (zinc blende) crystal structure. For gel coupling of nanoparticles with differing Q (Q=S, Se and Te), once we accounted for the crystal structure effects, it was determined that the relative redox characteristics of Q govern the reaction rate. The oxidative sol-gel assembly routes were also employed to fabricate metal chalcogenide NC gels with different NC components with control over the degree of mixing. In order to control the degree of mixing, the factors that underscore sol-gel oxidative assembly were elucidated and the aggregation and gelation kinetics of metal chalcogenide QDs were monitored through time-resolved dynamic light scattering (TR-DLS), and nuclear magnetic resonance spectroscopy (NMR). Through these kinetic studies of the surface speciation of metal chalcogenides, control over heterogeneity in dual component CdSe-ZnS system, was achieved through adjustment of the capping ligand, the native crystal structure and the chalcogenide, thereby changing the relative rates of assembly for each component independently.
NASA Astrophysics Data System (ADS)
Chen, Li
1999-09-01
According to a general definition of discrete curves, surfaces, and manifolds (Li Chen, 'Generalized discrete object tracking algorithms and implementations, ' In Melter, Wu, and Latecki ed, Vision Geometry VI, SPIE Vol. 3168, pp 184 - 195, 1997.). This paper focuses on the Jordan curve theorem in 2D discrete spaces. The Jordan curve theorem says that a (simply) closed curve separates a simply connected surface into two components. Based on the definition of discrete surfaces, we give three reasonable definitions of simply connected spaces. Theoretically, these three definition shall be equivalent. We have proved the Jordan curve theorem under the third definition of simply connected spaces. The Jordan theorem shows the relationship among an object, its boundary, and its outside area. In continuous space, the boundary of an mD manifold is an (m - 1)D manifold. The similar result does apply to regular discrete manifolds. The concept of a new regular nD-cell is developed based on the regular surface point in 2D, and well-composed objects in 2D and 3D given by Latecki (L. Latecki, '3D well-composed pictures,' In Melter, Wu, and Latecki ed, Vision Geometry IV, SPIE Vol 2573, pp 196 - 203, 1995.).
Direct discretization of planar div-curl problems
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.
1989-01-01
A control volume method is proposed for planar div-curl systems. The method is independent of potential and least squares formulations, and works directly with the div-curl system. The novelty of the technique lies in its use of a single local vector field component and two control volumes rather than the other way around. A discrete vector field theory comes quite naturally from this idea and is developed. Error estimates are proved for the method, and other ramifications investigated.
A Short-Segment Fourier Transform Methodology
2009-03-01
defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.
Jepsen, H; Gaehtgens, P
1993-09-01
Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.
A combinatorial morphospace for angiosperm pollen
NASA Astrophysics Data System (ADS)
Mander, Luke
2016-04-01
The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.
Hybrid discrete/continuum algorithms for stochastic reaction networks
Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...
2014-10-22
Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
Jit, Mark; Stagg, Helen R; Aldridge, Robert W; White, Peter J
2011-01-01
Objective To assess the cost effectiveness of the Find and Treat service for diagnosing and managing hard to reach individuals with active tuberculosis. Design Economic evaluation using a discrete, multiple age cohort, compartmental model of treated and untreated cases of active tuberculosis. Setting London, United Kingdom. Population Hard to reach individuals with active pulmonary tuberculosis screened or managed by the Find and Treat service (48 mobile screening unit cases, 188 cases referred for case management support, and 180 cases referred for loss to follow-up), and 252 passively presenting controls from London’s enhanced tuberculosis surveillance system. Main outcome measures Incremental costs, quality adjusted life years (QALYs), and cost effectiveness ratios for the Find and Treat service. Results The model estimated that, on average, the Find and Treat service identifies 16 and manages 123 active cases of tuberculosis each year in hard to reach groups in London. The service has a net cost of £1.4 million/year and, under conservative assumptions, gains 220 QALYs. The incremental cost effectiveness ratio was £6400-£10 000/QALY gained (about €7300-€11 000 or $10 000-$16 000 in September 2011). The two Find and Treat components were also cost effective, even in unfavourable scenarios (mobile screening unit (for undiagnosed cases), £18 000-£26 000/QALY gained; case management support team, £4100-£6800/QALY gained). Conclusions Both the screening and case management components of the Find and Treat service are likely to be cost effective in London. The cost effectiveness of the mobile screening unit in particular could be even greater than estimated, in view of the secondary effects of infection transmission and development of antibiotic resistance. PMID:22067473
Jit, Mark; Stagg, Helen R; Aldridge, Robert W; White, Peter J; Abubakar, Ibrahim
2011-09-14
To assess the cost effectiveness of the Find and Treat service for diagnosing and managing hard to reach individuals with active tuberculosis. Economic evaluation using a discrete, multiple age cohort, compartmental model of treated and untreated cases of active tuberculosis. London, United Kingdom. Population Hard to reach individuals with active pulmonary tuberculosis screened or managed by the Find and Treat service (48 mobile screening unit cases, 188 cases referred for case management support, and 180 cases referred for loss to follow-up), and 252 passively presenting controls from London's enhanced tuberculosis surveillance system. Incremental costs, quality adjusted life years (QALYs), and cost effectiveness ratios for the Find and Treat service. The model estimated that, on average, the Find and Treat service identifies 16 and manages 123 active cases of tuberculosis each year in hard to reach groups in London. The service has a net cost of £1.4 million/year and, under conservative assumptions, gains 220 QALYs. The incremental cost effectiveness ratio was £6400-£10,000/QALY gained (about €7300-€11,000 or $10,000-$16 000 in September 2011). The two Find and Treat components were also cost effective, even in unfavourable scenarios (mobile screening unit (for undiagnosed cases), £18,000-£26,000/QALY gained; case management support team, £4100-£6800/QALY gained). Both the screening and case management components of the Find and Treat service are likely to be cost effective in London. The cost effectiveness of the mobile screening unit in particular could be even greater than estimated, in view of the secondary effects of infection transmission and development of antibiotic resistance.
NASA Technical Reports Server (NTRS)
Fisher, Brad; Wolff, David B.
2010-01-01
Passive and active microwave rain sensors onboard earth-orbiting satellites estimate monthly rainfall from the instantaneous rain statistics collected during satellite overpasses. It is well known that climate-scale rain estimates from meteorological satellites incur sampling errors resulting from the process of discrete temporal sampling and statistical averaging. Sampling and retrieval errors ultimately become entangled in the estimation of the mean monthly rain rate. The sampling component of the error budget effectively introduces statistical noise into climate-scale rain estimates that obscure the error component associated with the instantaneous rain retrieval. Estimating the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of the total error budget into sampling and retrieval error quantities. This paper presents results from a statistical evaluation of the sampling and retrieval errors for five different space-borne rain sensors on board nine orbiting satellites. Using an error decomposition methodology developed by one of the authors, sampling and retrieval errors were estimated at 0.25 resolution within 150 km of ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, Florida. Error and bias statistics were calculated according to the land, ocean and coast classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) rain algorithm. Variations in the comparative error statistics are attributed to various factors related to differences in the swath geometry of each rain sensor, the orbital and instrument characteristics of the satellite and the regional climatology. The most significant result from this study found that each of the satellites incurred negative longterm oceanic retrieval biases of 10 to 30%.
Laser heterodyne detection techniques. [for atmospheric monitoring applications
NASA Technical Reports Server (NTRS)
Menzies, R. T.
1976-01-01
The principles of heterodyne radiometry are examined, taking into account thermal radiation, the Dicke microwave radiometer, photomixing in the infrared, and signal-to-noise considerations. The passive heterodyne radiometer is considered and a description is presented of heterodyne techniques in active monitoring systems. Attention is given to gas emissivities in the infrared, component requirements, experimental heterodyne detection of gases, a comparison of the passive heterodyne radiometer with the Michelson interferometer-spectrometer, airborne monitoring applications, turbulence effects on passive heterodyne radiometry, sensitivity improvements with heterodyning, atmosphere-induced degradation of bistatic system performance, pollutant detection experiments with a bistatic system, and the airborne laser absorption spectrometer. Future improvements in spectral flexibility are also discussed.
Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.
Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K
2002-11-15
Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... passive and electro- mechanical component parts. Knickerbocker Machine Shop, Inc. dba 611 Union Boulevard... manufactures Memphis, TX 79245. components of cast steel products. Pequea Machine, Inc 200 Jalyn Drive, P.O..., Warren, PA 16365. manufacturer of solid polyurethane and rubber industrial wear products. Any party...
Mobile site safety review for the transuranic (TRU) waste characterization program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1996-11-01
This Safety Review Document (SRD) applies to the Active/Passive Neutron Examination and Assay (APNEA) system installed on a Lockheed Martin Specialty Components, Inc., (Specialty Components) trailer. The APNEA is designed to perform nuclear waste drum assay. The purpose of this document is to describe the safety features of the APNEA system.
High-Power, High-Temperature Superconductor Technology Development
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.
2005-01-01
Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.
Increased oxidative stress in infants exposed to passive smoking.
Aycicek, Ali; Erel, Ozcan; Kocyigit, Abdurrahim
2005-12-01
The purpose of this study was to assess the effect of passive cigarette smoking on the oxidative and anti-oxidative status of plasma in infants. Eighty-four infants aged 6-28 weeks were divided into two groups: the study group included infants who had been exposed to passive smoking via at least five cigarettes per day for at least the past 6 weeks at home, while the control group included infants who had never been exposed to passive smoking. The antioxidative status of plasma was assessed by the measurement of individual antioxidant components: vitamin C, albumin, bilirubin, uric acid, thiol contents and total antioxidant capacity (TAC 1 and TAC 2). Oxidative status was assessed by the determination of total peroxide levels and the oxidative stress index (OSI 1 and OSI 2). Plasma vitamin C, thiol concentration and TAC 1 and TAC 2 levels were significantly lower, whereas plasma total peroxide levels and OSI 1 and OSI 2 were significantly higher, in passive smoking infants than in the controls (P<0.01). We conclude that passive smoking has a negative impact on numerous parts of the antioxidant defence system in infants, and exposes them to potent oxidative stress.
Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin
Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk
2017-01-01
Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.
Weak-microcavity organic light-emitting diodes with improved light out-coupling.
Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee
2008-08-18
We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.
Passive control of discrete-frequency tones generated by coupled detuned cascades
NASA Astrophysics Data System (ADS)
Sawyer, S.; Fleeter, S.
2003-07-01
Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.
Discrete choice experiment of smoking cessation behaviour in Japan.
Goto, Rei; Nishimura, Shuzo; Ida, Takanori
2007-10-01
In spite of gradual increases in tobacco price and the introduction of laws supporting various anti-tobacco measures, the proportion of smokers in Japan's population is still higher than in other developed nations. To understand what information and individual characteristics drive smokers to attempt to quit smoking. These determinants will help to realise effective tobacco control policy as a base for understanding of cessation behaviour. Discrete choice experiments on a total of 616 respondents registered at a consumer monitoring investigative company. The effect of price is greater on smokers with lower nicotine dependence. For smokers of moderate and low dependency, short term health risks and health risks caused by passive smoking have a strong impact, though the existence of penalties and long term health risks have little influence on smokers' decisions to quit. For highly dependent smokers, non-price attributes have little impact. Furthermore, the effects of age, sex and knowledge are also not uniform in accounting for smoking cessation. Determinants of smoking cessation vary among levels of nicotine dependency. Therefore, how and what information is provided needs to be carefully considered when counselling smokers to help them to quit.
A passive and active microwave-vector radiative transfer (PAM-VRT) model
NASA Astrophysics Data System (ADS)
Yang, Jun; Min, Qilong
2015-11-01
A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors.
Defense Strategies for Asymmetric Networked Systems with Discrete Components.
Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun
2018-05-03
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.
Defense Strategies for Asymmetric Networked Systems with Discrete Components
Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.
2018-01-01
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity (“residence times”) of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales. PMID:26261985
Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents.
Cumin, R; Bandle, E F; Gamzu, E; Haefely, W E
1982-01-01
The effect of aniracetam (Ro 13-5057, 1-anisoyl-2-pyrrolidinone) was studied on various forms of experimentally impaired cognitive functions (learning and memory) in rodents and produced the following effects: (1) almost complete prevention of the incapacity to learn a discrete escape response in rats exposed to sublethal hypercapnia immediately before the acquisition session; (2) partial (rats) or complete (mice) prevention of the scopolamine-induced short-term amnesia for a passive avoidance task; (3) complete protection against amnesia for a passive avoidance task in rats submitted to electroconvulsive shock immediately after avoidance acquisition; (4) prevention of the long-term retention- or retrieval-deficit for a passive avoidance task induced in rats and mice by chloramphenicol or cycloheximide administered immediately after acquisition; (5) reversal, when administered as late as 1 h before the retention test, of the deficit in retention or retrieval of a passive avoidance task induced by cycloheximide injected 2 days previously; (6) prevention of the deficit in the retrieval of an active avoidance task induced in mice by subconvulsant electroshock or hypercapnia applied immediately before retrieval testing (24 h after acquisition). These improvements or normalizations of impaired cognitive functions were seen at oral aniracetam doses of 10-100 mg/kg. Generally, the dose-response curves were bell-shaped. The mechanisms underlying the activity of aniracetam and its 'therapeutic window' are unknown. Piracetam, another pyrrolidinone derivative was used for comparison. It was active only in six of nine tests and had about one-tenth the potency of aniracetam. The results indicate that aniracetam improves cognitive functions which are impaired by different procedure and in different phases of the learning and memory process.
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity ("residence times") of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales.
NASA Astrophysics Data System (ADS)
Yang, Shiliang; Sun, Yuhao; Zhao, Ya; Chew, Jia Wei
2018-05-01
Granular materials are mostly polydisperse, which gives rise to phenomena such as segregation that has no monodisperse counterpart. The discrete element method is applied to simulate lognormal particle size distributions (PSDs) with the same arithmetic mean particle diameter but different PSD widths in a three-dimensional rotating drum operating in the rolling regime. Despite having the same mean particle diameter, as the PSD width of the lognormal PSDs increases, (i) the steady-state mixing index, the total kinetic energy, the ratio of the active region depth to the total bed depth, the mass fraction in the active region, the steady-state active-passive mass-based exchanging rate, and the mean solid residence time (SRT) of the particles in the active region increase, while (ii) the steady-state gyration radius, the streamwise velocity, and the SRT in the passive region decrease. Collectively, these highlight the need for more understanding of the effect of PSD width on the granular flow behavior in the rotating drum operating in the rolling flow regime.
Lench, Heather C; Flores, Sarah A; Bench, Shane W
2011-09-01
Our purpose in the present meta-analysis was to examine the extent to which discrete emotions elicit changes in cognition, judgment, experience, behavior, and physiology; whether these changes are correlated as would be expected if emotions organize responses across these systems; and which factors moderate the magnitude of these effects. Studies (687; 4,946 effects, 49,473 participants) were included that elicited the discrete emotions of happiness, sadness, anger, and anxiety as independent variables with adults. Consistent with discrete emotion theory, there were (a) moderate differences among discrete emotions; (b) differences among discrete negative emotions; and (c) correlated changes in behavior, experience, and physiology (cognition and judgment were mostly not correlated with other changes). Valence, valence-arousal, and approach-avoidance models of emotion were not as clearly supported. There was evidence that these factors are likely important components of emotion but that they could not fully account for the pattern of results. Most emotion elicitations were effective, although the efficacy varied with the emotions being compared. Picture presentations were overall the most effective elicitor of discrete emotions. Stronger effects of emotion elicitations were associated with happiness versus negative emotions, self-reported experience, a greater proportion of women (for elicitations of happiness and sadness), omission of a cover story, and participants alone versus in groups. Conclusions are limited by the inclusion of only some discrete emotions, exclusion of studies that did not elicit discrete emotions, few available effect sizes for some contrasts and moderators, and the methodological rigor of included studies. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Narang, Yashraj S; Murthy Arelekatti, V N; Winter, Amos G
2016-12-01
Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R2=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg.
Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.
2013-01-01
A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance) were detected in more than half of the extracts from passive samplers, but they were not detected in any discrete water sample. The Yeast Estrogen Screen assay identified measurable estrogenicity in one passive sampler extract from the most downstream wetland site in both the April and November–December 2011 deployments and in passive sampler extracts from one residential and one upstream site in the November–December 2011 deployment only. Surface-water levels in the restored wetland cells were monitored continuously using submersible pressure transducers in hand-driven well points screened in the surface water. Surface-water levels in the wetland cells responded quickly to precipitation and substantially receded within 2 days following the largest rainfall events. Seasonal patterns in water levels generally showed higher and more variable surface-water levels in the wetland cells during spring and early summer. Water levels in the wetland cells fell below the elevation of the control structures and ceased to flow over the spillways during extended dry periods (primarily late summer and early fall). Daily loads of seven organic wastewater compounds, as indicators of septic system effluent, were estimated for samples collected at wetland outlet spillways when flow measurements could be made. Median daily loads of the indicator organic wastewater compounds increased in downstream order, and the largest median loads were measured at the most downstream site. Median daily loads were higher for samples collected in spring and summer than those collected in fall, as the higher seasonal water levels increased streamflow at the wetland outlet spillways. Wetland sediment samples were analyzed for 84 organic wastewater compounds, polycyclic aromatic hydrocarbons, and semivolatile organic compounds to investigate the fate of contaminants in Great Marsh. The top five detected compounds by total mass in wetland sediment samples were beta-sitosterol, beta-stigmastanol, cholesterol, bis(2-ethylhexyl) phthalate, and phenol. Polycyclic aromatic hydrocarbons also were frequently detected in wetland sediment samples. Source apportionment of polycyclic aromatic hydrocarbon detections indicated atmospheric sources of pyrogenic compounds, rather than residential sources. Comparisons of polycyclic aromatic hydrocarbon concentrations in wetland sediment samples to sediment quality target guidelines indicated the potential for harmful effects on sediment-dwelling organisms at several sites. Biodegradation of select endocrine-disrupting compounds (17α-ethinylestradiol, 4-nonylphenol, triclocarban, and bisphenol A) in shallow wetland sediments was evaluated in laboratory experiments by using carbon-14 radiolabeled model contaminants. Substantial biodegradation of certain organic wastewater compounds were demonstrated, primarily in oxic (oxygen containing) environments. One of four modeled compounds, bisphenol A, was biodegraded in anoxic (oxygen free) environments. Only sediments collected nearest residential areas exhibited degradation of the synthetic birth control pharmaceutical, 17α-ethinylestradiol, possibly owing to adaptation and acclimation of the indigenous microbial community to septic discharge and the resultant selection of a microbial capability for biodegradation of 17α-ethinylestradiol.
Yang, Dan-Dan; Li, Wei; Xiong, Wei-Wei; Li, Jian-Rong; Huang, Xiao-Ying
2018-05-01
The preparation of crystalline molecularly supertetrahedral Tn clusters with variable sizes and components is of vital importance for the fundamental study of their physicochemical properties. However, setting up an efficient method to stabilize large discrete Tn clusters is a challenge due to their high negative charges and polymerization nature. In this work, we report on the ionothermal synthesis of three discrete T4 cluster compounds, namely [Bmmim]5[(CH3)2NH2]4[NH4][M4In16S31(SH)4]·6H2O (M = Mn (1), Zn (2), Cd (3), Bmmim = 1-buty-2,3-dimethyl-imidazolium), and four discrete T5 cluster compounds, namely [Bmmim]10[NH4]3[Cu5Ga30-xInxS52(SH)4] (x = 6.6 (5), 14.5 (6), 23.8 (7), and 30 (8)). The compound [Bmmim]10[NH4]3[Cu5Ga30S52(SH)4] (4) previously reported by us features a discrete T5 cluster. The steep UV-Vis absorption edges indicate band gaps of 2.20 eV for 1, 2.64 eV for 2, 2.69 eV for 3, 3.04 eV for 4, 2.65 eV for 5, 2.48 eV for 6, 2.32 eV for 7, and 2.30 eV for 8. The compositions of T5 clusters could be varied with the ratios of Ga : In in the starting reagents, providing an opportunity to systematically control the band gaps and fluorescence performances of T5 cluster-based compounds. This research might advance the understanding of the ionothermal preparation and functionality tuning of crystalline chalcogenides.
Coastal modification of a scene employing multispectral images and vector operators.
Lira, Jorge
2017-05-01
Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.
The components of change for an annual forest inventory design
Francis A. Roesch
2007-01-01
The sample design of the USDA Forest Service's Forest Inventory and Analysis Program (FIA) with respect to a three-dimensional population (forest area X time) of tree attributes is formally defined and evaluated. The definitions for both the traditional components of growth, as presented by Meyer (1953, Forest Mensuration), and a discrete analog to the time...
Generation of programmable temporal pulse shape and applications in micromachining
NASA Astrophysics Data System (ADS)
Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.
2009-02-01
In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.
Passive band-gap reconfiguration born from bifurcation asymmetry.
Bernard, Brian P; Mann, Brian P
2013-11-01
Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.
Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature.
Sayed, Farheen N; Rodrigues, Marco-Tulio F; Kalaga, Kaushik; Gullapalli, Hemtej; Ajayan, P M
2017-12-20
In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals.
Multisource Data Classification Using A Hybrid Semi-supervised Learning Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L; Shekhar, Shashi
2009-01-01
In many practical situations thematic classes can not be discriminated by spectral measurements alone. Often one needs additional features such as population density, road density, wetlands, elevation, soil types, etc. which are discrete attributes. On the other hand remote sensing image features are continuous attributes. Finding a suitable statistical model and estimation of parameters is a challenging task in multisource (e.g., discrete and continuous attributes) data classification. In this paper we present a semi-supervised learning method by assuming that the samples were generated by a mixture model, where each component could be either a continuous or discrete distribution. Overall classificationmore » accuracy of the proposed method is improved by 12% in our initial experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldemir, Tunc; Denning, Richard; Catalyurek, Umit
Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, suchmore » as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.« less
Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components
Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits
NASA Astrophysics Data System (ADS)
Sharapova, P. R.; Luo, K. H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C.
2017-12-01
We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified mach-Zehnder structure for observing Hong-Ou-Mandel interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.
Activity of upper limb muscles during human walking.
Kuhtz-Buschbeck, Johann P; Jing, Bo
2012-04-01
The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelsen, Nicholas H.; Kolb, James D.; Kulkarni, Akshay G.
Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms thatmore » activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum« less
Gas-cell measurements for evaluating longwave-infrared passive-sensor performance
NASA Astrophysics Data System (ADS)
Cummings, Alan S.; Combs, Roger J.; Thomas, Mark J.; Curry, Timothy; Kroutil, Robert T.
2006-10-01
A longwave-infrared (LWIR) passive-spectrometer performance was evaluated with a short-pathlength gas cell. This cell was accurately positioned between the sensor and a NIST-traceable blackbody radiance source. Cell contents were varied over the Beer's Law absorbance range from the limit of detection to saturation for the gas analytes of sulfur hexafluoride and hexafluoroethane. The spectral impact of saturation on infrared absorbance was demonstrated for the passive sensor configuration. The gas-cell contents for all concentration-pathlength products was monitored with an active traditional-laboratory Fourier Transform Infrared (FTIR) spectrometer and was verified by comparison with the established PNNL/DOE vapor-phase infrared (IR) spectral database. For the passive FTIR measurements, the blackbody source employed a range of background temperatures from 5 °C to 50 °C. The passive measurements without the presence of a gas cell permitted a determination of the noise equivalent spectral noise (NESR) for each set of passive gas-cell measurements. In addition, the no-cell condition allowed the evaluation of the effect of gas cell window materials of low density poly(ethylene), potassium chloride, potassium bromide, and zinc selenide. The components of gas cell, different window materials, temperature differentials, and absorbances of target-analyte gases supplied the means of evaluating the LWIR performance of a passive FTIR spectrometer. The various LWIR-passive measurements were found to simulate those often encountered in open-air scenarios important to both industrial and environmental monitoring applications.
Development of a passive sampler for gaseous mercury
NASA Astrophysics Data System (ADS)
Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.
2011-10-01
Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.
Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium
NASA Astrophysics Data System (ADS)
Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin
2018-01-01
The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.
1990-09-01
simplest form the modulators are systems. 1) The inter -band absorption edges at operated as non-resonant (single-pass) which the electro-absorption...transitions in -0111- 1,’. three different wavelength bands indicated. It is the NIR inter -band transition which is of interest in this E’l Iwork. 0...quartz crystal resonator is a vector quantity. 12 random vibration at 100 Hz away from the Therefore, the frequency during acceleration carrier. Of
Diode-Pumped, 2-Micron, Q-Switched Thulium: Y3Al5O12 (Tm:Yag) Microchip Laser
2011-05-01
switch with a chromium -doped zinc selenide crystal acting as a saturable absorber passive Q-switch. Finally, we will propose possible future...literature by Heine and Huber [4] and others, while passive Q-switching of 2 μm lasers by a chromium -doped zinc selenide has been demonstrated by Tsai and...these objectives for each component of the laser system. In Chapter 4 a design is presented for replacing our acousto-optic Q-switch with a chromium
SiGe/Si Monolithically Integrated Amplifier Circuits
NASA Technical Reports Server (NTRS)
Katehi, Linda P. B.; Bhattacharya, Pallab
1998-01-01
With recent advance in the epitaxial growth of silicon-germanium heterojunction, Si/SiGe HBTs with high f(sub max) and f(sub T) have received great attention in MMIC applications. In the past year, technologies for mesa-type Si/SiGe HBTs and other lumped passive components with high resonant frequencies have been developed and well characterized for circuit applications. By integrating the micromachined lumped passive elements into HBT fabrication, multi-stage amplifiers operating at 20 GHz have been designed and fabricated.
An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis
NASA Technical Reports Server (NTRS)
Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon
2017-01-01
Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.
Design and fabrication of a hybrid maglev model employing PML and SML
NASA Astrophysics Data System (ADS)
Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.
2017-10-01
A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, F
Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jammore » than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.« less
Design of short-range terahertz wave passive detecting system
NASA Astrophysics Data System (ADS)
Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting
2016-09-01
Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto
2018-04-01
Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.
NASA Technical Reports Server (NTRS)
Hudson, Nicolas; Lin, Ying; Barengoltz, Jack
2010-01-01
A method for evaluating the probability of a Viable Earth Microorganism (VEM) contaminating a sample during the sample acquisition and handling (SAH) process of a potential future Mars Sample Return mission is developed. A scenario where multiple core samples would be acquired using a rotary percussive coring tool, deployed from an arm on a MER class rover is analyzed. The analysis is conducted in a structured way by decomposing sample acquisition and handling process into a series of discrete time steps, and breaking the physical system into a set of relevant components. At each discrete time step, two key functions are defined: The probability of a VEM being released from each component, and the transport matrix, which represents the probability of VEM transport from one component to another. By defining the expected the number of VEMs on each component at the start of the sampling process, these decompositions allow the expected number of VEMs on each component at each sampling step to be represented as a Markov chain. This formalism provides a rigorous mathematical framework in which to analyze the probability of a VEM entering the sample chain, as well as making the analysis tractable by breaking the process down into small analyzable steps.
Muscle blood flow at onset of dynamic exercise in humans.
Rådegran, G; Saltin, B
1998-01-01
To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P < 0.006) with the first relaxation of passive and voluntary exercise, whereas the arterial-venous pressure difference was unaltered [P = not significant (NS)]. During steady-state exercise, and with arterial pressure as a superimposed influence, blood velocity was affected by the muscle pump, peaking (P < 0.001) at approximately 2.5 +/- 0.3 m/s as the relaxation coincided with peak systolic arterial blood pressure; blood velocity decreased (P < 0.001) to 44.2 +/- 8.6 and 28.5 +/- 5.5% of peak velocity at the second dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P < 0.001) during the contraction phase at blood pressures less than or equal to that at the second dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.
Discrete event simulation tool for analysis of qualitative models of continuous processing systems
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)
1990-01-01
An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.
Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.
2015-01-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an ‘agent’, meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory. PMID:26452000
Gardiner, Bruce S; Wong, Kelvin K L; Joldes, Grand R; Rich, Addison J; Tan, Chin Wee; Burgess, Antony W; Smith, David W
2015-10-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Office of Educational Evaluation.
The Title I Umbrella Program provided compensatory instruction in reading, mathematics, and writing to 24,000 mildly or moderately handicapped students in New York City. The program was comprised of seven discrete components for the remediation of reading and writing skills, five after-school models, and two components for the remediation of math…
Perception of binary acoustic events associated with the first heart sound
NASA Technical Reports Server (NTRS)
Spodick, D. H.
1977-01-01
The resolving power of the auditory apparatus permits discrete vibrations associated with cardiac activity to be perceived as one or more events. Irrespective of the vibratory combinations recorded by conventional phonocardiography, in normal adults and in most adult patients auscultators tend to discriminate only two discrete events associated with the first heart sound S1. It is stressed that the heart sound S4 may be present when a binary acoustic event associated with S1 occurs in the sequence 'low pitched sound preceding high pitched sound', i.e., its components are perceived by auscultation as 'dull-sharp'. The question of S4 audibility arises in those individuals, normal and diseased, in whom the major components of S1 ought to be, at least clinically, at their customary high pitch and indeed on the PCG appear as high frequency oscillations. It is revealed that the apparent audibility of recorded S4 is not related to P-R interval, P-S4 interval, or relative amplitude of S4. The significant S4-LFC (low frequency component of S1) differences can be related to acoustic modification of the early component of S1.
Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2018-05-01
Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.
NASA Astrophysics Data System (ADS)
Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.
2017-08-01
The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.
Advanced radiometric and interferometric milimeter-wave scene simulations
NASA Technical Reports Server (NTRS)
Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.
1993-01-01
Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.
Passive millimeter-wave imaging polarimeter system
NASA Astrophysics Data System (ADS)
Persons, Christopher M.; Martin, Christopher A.; Jones, Michael W.; Kolinko, Vladimir; Lovberg, John A.
2009-05-01
The Army has identified a need to rapidly identify, map, and classify natural and manmade features to aid situational awareness as well as mission and tactical planning. To address these needs, Digital Fusion and Trex Enterprises have designed a full Stokes, passive MMW imaging polarimeter that is capable of being deployed on an unmanned aerial vehicle. Results of a detailed trade study are presented, where an architecture, waveband and target platform are selected. The selected architecture is a pushbroom phased-array system, which allows the system to collect a wide fieldof- view image with minimal components and weight. W band is chosen as a trade-off between spatial resolution, weather penetration, and component availability. The trade study considers several unmanned aerial system (UAS) platforms that are capable of low-level flight and that can support the MMW antenna. The utility of the passive Stokes imager is demonstrated through W band phenomenology data collections at horizontal and vertical polarization using a variety of natural and manmade materials. The concept design is detailed, along with hardware and procedures for both radiometric and polarimetric calibration. Finally, a scaled version of the concept design is presented, which is being fabricated for an upcoming demonstration on a small, manned aircraft.
2010-08-09
44 9 A photograph of a goniophotometer used by Bell and a schematic of a goniophotometer used by Mian et al...plane is called the parallel field component because it lies parallel to the specular plane. The incident electric field vector component which...resides in the plane or- thogonal to the specular plane is called the perpendicular field component because it lies perpendicular to the specular plane. If
An advanced environment for hybrid modeling of biological systems based on modelica.
Pross, Sabrina; Bachmann, Bernhard
2011-01-20
Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process. The Modelica-models can be connected to Simulink-models for parameter optimization, sensitivity analysis and stochastic simulation in Matlab. The present paper illustrates the implementation of the Petri Net component models, their usage within the modeling process and the coupling between the Modelica-tool Dymola and Matlab/Simulink. The application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.
Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick
2018-01-01
In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.
Brehm, Laurel; Goldrick, Matthew
2017-10-01
The current work uses memory errors to examine the mental representation of verb-particle constructions (VPCs; e.g., make up the story, cut up the meat). Some evidence suggests that VPCs are represented by a cline in which the relationship between the VPC and its component elements ranges from highly transparent (cut up) to highly idiosyncratic (make up). Other evidence supports a multiple class representation, characterizing VPCs as belonging to discretely separated classes differing in semantic and syntactic structure. We outline a novel paradigm to investigate the representation of VPCs in which we elicit illusory conjunctions, or memory errors sensitive to syntactic structure. We then use a novel application of piecewise regression to demonstrate that the resulting error pattern follows a cline rather than discrete classes. A preregistered replication verifies these findings, and a final preregistered study verifies that these errors reflect syntactic structure. This provides evidence for gradient rather than discrete representations across levels of representation in language processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, A. K. H.; Ng, P. L.; Lam, J. Y. K.
2010-05-21
Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete. In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip behaviour. However, there is very limited research on how to simulate the dowel action of discrete reinforcing bars. Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in concrete is developed. The model features the derivation of dowel stiffness matrix based on beam-on-elastic-foundation theory and the direct assemblage ofmore » dowel stiffness into the concrete element stiffness matrices. The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness formulation. Deep beams tested in the literature are analysed and it is found that the incorporation of dowel action model improves the accuracy of analysis.« less
Technical - Economic Research for Passive Buildings
NASA Astrophysics Data System (ADS)
Miniotaite, Ruta
2017-10-01
A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.
Buzayan, Muaiyed Mahmoud; Yunus, Norsiah Binti
2014-03-01
One of the considerable challenges for screw-retained multi-unit implant prosthesis is achieving a passive fit of the prosthesis' superstructure to the implants. This passive fit is supposed to be one of the most vital requirements for the maintenance of the osseointegration. On the other hand, the misfit of the implant supported superstructure may lead to unfavourable complications, which can be mechanical or biological in nature. The manifestations of these complications may range from fracture of various components in the implant system, pain, marginal bone loss, and even loss of osseointegration. Thus, minimizing the misfit and optimizing the passive fit should be a prerequisite for implant survival and success. The purpose of this article is to present and summarize some aspects of the passive fit achieving and improving methods. The literature review was performed through Science Direct, Pubmed, and Google database. They were searched in English using the following combinations of keywords: passive fit, implant misfit and framework misfit. Articles were selected on the basis of whether they had sufficient information related to framework misfit's related factors, passive fit and its achievement techniques, marginal bone changes relation with the misfit, implant impression techniques and splinting concept. The related references were selected in order to emphasize the importance of the passive fit achievement and the misfit minimizing. Despite the fact that the literature presents considerable information regarding the framework's misfit, there was not consistency in literature on a specified number or even a range to be the acceptable level of misfit. On the other hand, a review of the literature revealed that the complete passive fit still remains a tricky goal to be achieved by the prosthodontist.
Receiver System Analysis and Optimization
2013-01-01
designers to make best use of advanced silicon processes (scale, fast devices) while minimizing the disadvantages (low-Q passives, low transimpedance ). A...components such as amplifiers , filters, mixers, oscillators, etc. Specifications for the components are then passed on to design teams. The digital and...cascade connection of an LNA, Mixer, Voltage Controlled Oscillator [VCO], Amplifier and Analog to Digital Converter [ADC] as well as appropriate
Zoccolotti, Pierluigi; De Luca, Maria; Marinelli, Chiara V.; Spinelli, Donatella
2014-01-01
This study was aimed at predicting individual differences in text reading fluency. The basic proposal included two factors, i.e., the ability to decode letter strings (measured by discrete pseudo-word reading) and integration of the various sub-components involved in reading (measured by Rapid Automatized Naming, RAN). Subsequently, a third factor was added to the model, i.e., naming of discrete digits. In order to use homogeneous measures, all contributing variables considered the entire processing of the item, including pronunciation time. The model, which was based on commonality analysis, was applied to data from a group of 43 typically developing readers (11- to 13-year-olds) and a group of 25 chronologically matched dyslexic children. In typically developing readers, both orthographic decoding and integration of reading sub-components contributed significantly to the overall prediction of text reading fluency. The model prediction was higher (from ca. 37 to 52% of the explained variance) when we included the naming of discrete digits variable, which had a suppressive effect on pseudo-word reading. In the dyslexic readers, the variance explained by the two-factor model was high (69%) and did not change when the third factor was added. The lack of a suppression effect was likely due to the prominent individual differences in poor orthographic decoding of the dyslexic children. Analyses on data from both groups of children were replicated by using patches of colors as stimuli (both in the RAN task and in the discrete naming task) obtaining similar results. We conclude that it is possible to predict much of the variance in text-reading fluency using basic processes, such as orthographic decoding and integration of reading sub-components, even without taking into consideration higher-order linguistic factors such as lexical, semantic and contextual abilities. The approach validity of using proximal vs. distal causes to predict reading fluency is discussed. PMID:25477856
Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.
DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William
2015-11-01
Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.
Active and passive spatial learning in human navigation: acquisition of survey knowledge.
Chrastil, Elizabeth R; Warren, William H
2013-09-01
It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to metric survey knowledge: visual, vestibular, and podokinetic information and cognitive decision making. In the learning phase, 6 groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking, (b) being pushed in a wheelchair, or (c) watching a video, crossed with (1) making decisions about their path or (2) being guided through the maze. In the test phase, survey knowledge was assessed by having participants walk a novel shortcut from a starting object to the remembered location of a test object, with the maze removed. Performance was slightly better than chance in the passive video condition. The addition of vestibular information did not improve performance in the wheelchair condition, but the addition of podokinetic information significantly improved angular accuracy in the walking condition. In contrast, there was no effect of decision making in any condition. The results indicate that visual and podokinetic information significantly contribute to survey knowledge, whereas vestibular information and decision making do not. We conclude that podokinetic information is the primary component of active learning for the acquisition of metric survey knowledge. PsycINFO Database Record (c) 2013 APA, all rights reserved.
MIT-Skywalker: Evaluating comfort of bicycle/saddle seat.
Goncalves, Rogerio S; Hamilton, Taya; Daher, Ali R; Hirai, Hiroaki; Krebs, Hermano I
2017-07-01
The MIT-Skywalker is a robotic device developed for the rehabilitation of gait and balance after a neurological injury. This device has been designed based on the concept of a passive walker and provides three distinct training modes: discrete movement, rhythmic movement, and balance training. In this paper, we present our efforts to evaluate the comfort of a bicycle/saddle seat design for the system's novel actuated body weight support device. We employed different bicycle and saddle seats and evaluated comfort using objective and subjective measures. Here we will summarize the results obtained from a study of fifteen healthy subjects and one stroke patient that led to the selection of a saddle seat design for the MIT-Skywalker.
Radiograph and passive data analysis using mixed variable optimization
Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.
2015-06-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.
Jin, Si Hyung; Jeong, Heon-Ho; Lee, Byungjin; Lee, Sung Sik; Lee, Chang-Soo
2015-01-01
We present a programmable microfluidic static droplet array (SDA) device that can perform user-defined multistep combinatorial protocols. It combines the passive storage of aqueous droplets without any external control with integrated microvalves for discrete sample dispensing and dispersion-free unit operation. The addressable picoliter-volume reaction is systematically achieved by consecutively merging programmable sequences of reagent droplets. The SDA device is remarkably reusable and able to perform identical enzyme kinetic experiments at least 30 times via automated cross-contamination-free removal of droplets from individual hydrodynamic traps. Taking all these features together, this programmable and reusable universal SDA device will be a general microfluidic platform that can be reprogrammed for multiple applications.
LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation
NASA Technical Reports Server (NTRS)
delRosario, R. C. H.; Smith, R. C.
1997-01-01
A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.
Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices
NASA Astrophysics Data System (ADS)
Polstyanko, Sergey V.; Lee, Jin-Fa
1998-03-01
In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.
Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field
Ashtiani, Payam; Denison, Adelaide
2015-01-01
Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097
Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
Wali, Kameshwar; Viet, Nguyen Ali
2017-01-01
A unified theory of the non-Abelian gauge interactions with gravity in the framework of a discretized Kaluza-Klein theory is constructed with a modified Dirac operator and wedge product. All the couplings of chiral spinors to the non-Abelian gauge fields emerge naturally as components of the coupling of the chiral spinors in the generalized gravity together with some new interactions. In particular, the currently prevailing gravity-QCD quark and gravity-electroweak-quark and lepton models are shown to follow as special cases of the general framework.
Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan
2013-01-01
Background Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.) Methods Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80–100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. Results ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13–30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Conclusions Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed. PMID:23991030
Bowers, Andrew; Saltuklaroglu, Tim; Harkrider, Ashley; Cuellar, Megan
2013-01-01
Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor μ rhythm) to accurate speech and non-speech discrimination performance (i.e., correct trials.). Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels. The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80-100%) and low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB. ICA revealed left and right sensorimotor µ components for 14/16 and 13/16 participants respectively that were identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-frequency analysis of left and right lateralized µ component clusters revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13-30 Hz) prior to, during, and following syllable discrimination trials. No significant differences from baseline were found for passive tasks. Tone conditions produced right µ beta suppression following stimulus onset only. For the left µ, significant differences in the magnitude of beta suppression were found for correct speech discrimination trials relative to chance trials following stimulus offset. Findings are consistent with constructivist, internal model theories proposing that early forward motor models generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as opposed to passive processing. Future directions and possible translational value for clinical populations in which sensorimotor integration may play a functional role are discussed.
Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack
2016-01-01
For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to 'internal photons' inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350-700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.
Actuator with built-in viscous damping for isolation and structural control
NASA Astrophysics Data System (ADS)
Hyde, T. Tupper; Anderson, Eric H.
1994-05-01
This paper describes the development and experimental application of an actuator with built-in viscous damping. An existing passive damper was modified for use as a novel actuation device for isolation and structural control. The device functions by using the same fluid for viscous damping and as a hydraulic lever for a voice coil actuator. Applications for such an actuator include structural control and active isolation. Lumped parameter models capturing structural and fluid effects are presented. Component tests of free stroke, blocked force, and passive complex stiffness are used to update the assumed model parameters. The structural damping effectiveness of the new actuator is shown to be that of a regular D-strut passively and that of a piezoelectric strut with load cell feedback actively in a complex testbed structure. Open and closed loop results are presented for a force isolation application showing an 8 dB passive and 20 dB active improvement over an undamped mount. An optimized design for a future experimental testbed is developed.
Columbia County Habitat for Humanity Passive Townhomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi
2016-03-18
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-04-01
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
Semi-active control of helicopter vibration using controllable stiffness and damping devices
NASA Astrophysics Data System (ADS)
Anusonti-Inthra, Phuriwat
Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor, represented by a lumped mass under harmonic force excitation, is supported by a spring and a parallel damper on the fuselage (assumed to have infinite mass). Properties of the spring or damper can then be controlled to reduce transmission of the force into the fuselage or the support structure. This semi-active isolation concept can produce additional 30% vibration reduction beyond the level achieved by a passive isolator. Different control schemes (i.e. open-loop, closed-loop, and closed-loop adaptive schemes) are developed and evaluated to control transmission of vibratory loads to the support structure (fuselage), and it is seen that a closed-loop adaptive controller is required to retain vibration reduction effectiveness when there is a change in operating condition. (Abstract shortened by UMI.)
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Systems approach to walk-off problems for dish-type solar thermal power systems
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Levin, R. R.; Moynihan, P. I.; Nesmith, B. J.; Owen, W. A.; Roschke, E. J.; Starkey, D. J.; Thostesen, T. O.
1983-01-01
'Walk-off' in a dish-type solar thermal power system is a failure situation in which the concentrator remains fixed while the spot of concentrated sunlight slowly moves across the face of the receiver. The intense local heating may damage the receiver and nearby equipment. Passive protection has advantages in minimizing damage, but in a fully passive design the receiver must be able to withstand full solar input with no forced fluid circulation during the walk-off. An active walk-off emergency subsystem may include an emergency detrack or defocus mechanism or sun-blocking device, emergency power, sensors and logic to detect the emergency and initiate protective action, and cooling or passive protection of emergency and non-emergency components. Each of these elements is discussed and evaluated in the paper.
A hybrid active/passive exhaust noise control system for locomotives.
Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig
2005-01-01
A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.
NASA Technical Reports Server (NTRS)
Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.
2012-01-01
The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized forest AGB sampling errors by 15 - 38%. Furthermore, spaceborne global scale accuracy requirements were achieved. At least 80% of the grid cells at 100m, 250m, 500m, and 1km grid levels met AGB density accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500m and 250m grid level, respectively.
Longoni, Salvatore; Sartori, Matteo; Davide, Roberto
2004-06-01
An important aim of implant-supported prostheses is to achieve a passive fit of the framework with the abutments to limit the amount of stress transfer to the bone-implant interface. An efficient and standardized technique is proposed. A definitive screw-retained, implant-supported complete denture was fabricated for an immediately loaded provisional screw-retained implant-supported complete denture. Precise fit was achieved by the use of industrial titanium components and the passivity, by an intraoral luting sequence and laser welding.
Coherent energy exchange between components of a vector soliton in fiber lasers.
Zhang, H; Tang, D Y; Zhao, L M; Xiang, N
2008-08-18
We report on the experimental evidence of four wave mixing (FWM) between the two polarization components of a vector soliton formed in a passively mode-locked fiber laser. Extra spectral sidebands with out-of-phase intensity variation between the polarization resolved soliton spectra was firstly observed, which was identified to be caused by the energy exchange between the two soliton polarization components. Other features of the FWM spectral sidebands and the soliton internal FWM were also experimentally investigated and numerically confirmed.
Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components
NASA Technical Reports Server (NTRS)
Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)
2016-01-01
A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
Input Power Characteristics of a Three-Phase Thyristor Converter
DOT National Transportation Integrated Search
1973-10-01
A phase delay rectifier operating into a passive resistive load was instrumented in the laboratory. Techniques for accurate measurement of power, displacement reactive power, harmonic components, and distortion reactive power are presented. The chara...
Development of Passive Fuel Cell Thermal Management Heat Exchanger
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.
2010-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.
Bacoside A: Role in Cigarette Smoking Induced Changes in Brain
Vani, G.; Anbarasi, K.; Shyamaladevi, C. S.
2015-01-01
Cigarette smoking (CS) is a major health hazard that exerts diverse physiologic and biochemical effects mediated by the components present and generated during smoking. Recent experimental studies have shown predisposition to several biological consequences from both active and passive cigarette smoke exposure. In particular, passive smoking is linked to a number of adverse health effects which are equally harmful as active smoking. A pragmatic approach should be considered for designing a pharmacological intervention to combat the adverse effects of passive smoking. This review describes the results from a controlled experimental condition, testing the effect of bacoside A (BA) on the causal role of passive/secondhand smoke exposure that caused pathological and neurological changes in rat brain. Chronic exposure to cigarette smoke induced significant changes in rat brain histologically and at the neurotransmitter level, lipid peroxidation states, mitochondrial functions, membrane alterations, and apoptotic damage in rat brain. Bacoside A is a neuroactive agent isolated from Bacopa monnieri. As a neuroactive agent, BA was effective in combating these changes. Future research should examine the effects of BA at molecular level and assess its functional effects on neurobiological and behavioral processes associated with passive smoke. PMID:26413118
Bacoside A: Role in Cigarette Smoking Induced Changes in Brain.
Vani, G; Anbarasi, K; Shyamaladevi, C S
2015-01-01
Cigarette smoking (CS) is a major health hazard that exerts diverse physiologic and biochemical effects mediated by the components present and generated during smoking. Recent experimental studies have shown predisposition to several biological consequences from both active and passive cigarette smoke exposure. In particular, passive smoking is linked to a number of adverse health effects which are equally harmful as active smoking. A pragmatic approach should be considered for designing a pharmacological intervention to combat the adverse effects of passive smoking. This review describes the results from a controlled experimental condition, testing the effect of bacoside A (BA) on the causal role of passive/secondhand smoke exposure that caused pathological and neurological changes in rat brain. Chronic exposure to cigarette smoke induced significant changes in rat brain histologically and at the neurotransmitter level, lipid peroxidation states, mitochondrial functions, membrane alterations, and apoptotic damage in rat brain. Bacoside A is a neuroactive agent isolated from Bacopa monnieri. As a neuroactive agent, BA was effective in combating these changes. Future research should examine the effects of BA at molecular level and assess its functional effects on neurobiological and behavioral processes associated with passive smoke.
Development of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony
2011-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.
Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo
2017-05-01
The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.
Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-13
... implemented using a variable voltage source'' is an appropriate modifier of the corresponding structure for... the Nokia-Qualcomm agreement. The parties have been invited to brief only the discrete issues...
Coding for Single-Line Transmission
NASA Technical Reports Server (NTRS)
Madison, L. G.
1983-01-01
Digital transmission code combines data and clock signals into single waveform. MADCODE needs four standard integrated circuits in generator and converter plus five small discrete components. MADCODE allows simple coding and decoding for transmission of digital signals over single line.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the defense agencies. Electronic part means an integrated circuit, a discrete electronic component... electronic part means an unlawful or unauthorized reproduction, substitution, or alteration that has been knowingly mismarked, misidentified, or otherwise misrepresented to be an authentic, unmodified electronic...
The behavior of quantization spectra as a function of signal-to-noise ratio
NASA Technical Reports Server (NTRS)
Flanagan, M. J.
1991-01-01
An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Zilberstei, Vladimir; Lawson, Ablode; Kinchen, David; Arbegast, William
2000-01-01
Al 2195-T8 plate specimens containing Friction Stir Welds (FSW), provided by Lockheed Martin, were inspected using directional conductivity measurements with the MWM sensor. Sensitivity to lack-of-penetration (LOP) defect size has been demonstrated. The feature used to determine defect size was the normalized longitudinal component of the MWM conductivity measurements. This directional conductivity component was insensitive to the presence of a discrete crack. This permitted correlation of MWM conductivity measurements with the LOP defect size as changes in conductivity were apparently associated with metallurgical features within the first 0.020 in. of the LOP defect zone. Transverse directional conductivity measurements also provided an indication of the presence of discrete cracks. Continued efforts are focussed on inspection of a larger set of welded panels and further refinement of LOP characterization tools.
Discrete choice experiment of smoking cessation behaviour in Japan
Goto, Rei; Nishimura, Shuzo; Ida, Takanori
2007-01-01
Background In spite of gradual increases in tobacco price and the introduction of laws supporting various anti‐tobacco measures, the proportion of smokers in Japan's population is still higher than in other developed nations. Objective To understand what information and individual characteristics drive smokers to attempt to quit smoking. These determinants will help to realise effective tobacco control policy as a base for understanding of cessation behaviour. Method Discrete choice experiments on a total of 616 respondents registered at a consumer monitoring investigative company. Results The effect of price is greater on smokers with lower nicotine dependence. For smokers of moderate and low dependency, short term health risks and health risks caused by passive smoking have a strong impact, though the existence of penalties and long term health risks have little influence on smokers' decisions to quit. For highly dependent smokers, non‐price attributes have little impact. Furthermore, the effects of age, sex and knowledge are also not uniform in accounting for smoking cessation. Conclusion Determinants of smoking cessation vary among levels of nicotine dependency. Therefore, how and what information is provided needs to be carefully considered when counselling smokers to help them to quit. PMID:17897993
Philopatry and migration of Pacific white sharks
Jorgensen, Salvador J.; Reeb, Carol A.; Chapple, Taylor K.; Anderson, Scot; Perle, Christopher; Van Sommeran, Sean R.; Fritz-Cope, Callaghan; Brown, Adam C.; Klimley, A. Peter; Block, Barbara A.
2010-01-01
Advances in electronic tagging and genetic research are making it possible to discern population structure for pelagic marine predators once thought to be panmictic. However, reconciling migration patterns and gene flow to define the resolution of discrete population management units remains a major challenge, and a vital conservation priority for threatened species such as oceanic sharks. Many such species have been flagged for international protection, yet effective population assessments and management actions are hindered by lack of knowledge about the geographical extent and size of distinct populations. Combining satellite tagging, passive acoustic monitoring and genetics, we reveal how eastern Pacific white sharks (Carcharodon carcharias) adhere to a highly predictable migratory cycle. Individuals persistently return to the same network of coastal hotspots following distant oceanic migrations and comprise a population genetically distinct from previously identified phylogenetic clades. We hypothesize that this strong homing behaviour has maintained the separation of a northeastern Pacific population following a historical introduction from Australia/New Zealand migrants during the Late Pleistocene. Concordance between contemporary movement and genetic divergence based on mitochondrial DNA demonstrates a demographically independent management unit not previously recognized. This population's fidelity to discrete and predictable locations offers clear population assessment, monitoring and management options. PMID:19889703
Target-type probability combining algorithms for multisensor tracking
NASA Astrophysics Data System (ADS)
Wigren, Torbjorn
2001-08-01
Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.
Hybrid stochastic simplifications for multiscale gene networks.
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-09-07
Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.
The Information Content of Discrete Functions and Their Application in Genetic Data Analysis
Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.
2017-10-13
The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less
The Information Content of Discrete Functions and Their Application in Genetic Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.
The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less
Predicting the quality of powders for inhalation from surface energy and area.
Cline, David; Dalby, Richard
2002-09-01
To correlate the surface energy of active and carrier components in an aerosol powder to in vitro performance of a passive dry powder inhaler. Inverse gas chromatography (IGC) was used to assess the surface energy of active (albuterol and ipratropium bromide) and carrier (lactose monohydrate, trehalose dihydrate and mannitol) components of a dry powder inhaler formulation. Blends (1%w/w) of drug and carrier were prepared and evaluated for dry powder inhaler performance by cascade impaction. The formulations were tested with either of two passive dry powder inhalers, Rotahaler (GlaxoSmithKline) or Handihaler (Boehringer Ingelheim). In vitro performance of the powder blends was strongly correlated to surface energy interaction between active and carrier components. Plotting fine particle fraction vs. surface energy interaction yielded an R2 value of 0.9283. Increasing surface energy interaction between drug and carrier resulted in greater fine particle fraction of drug. A convincing relationship, potentially useful for rapid formulation design and screening, was found between the surface energy and area parameters derived from IGC and dry powder inhaler performance.
MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
Susko, Tyler; Swaminathan, Krithika; Krebs, Hermano Igo
2016-10-01
The MIT-Skywalker is a novel robotic device developed for the rehabilitation or habilitation of gait and balance after a neurological injury. It represents an embodiment of the concept exhibited by passive walkers for rehabilitation training. Its novelty extends beyond the passive walker quintessence to the unparalleled versatility among lower extremity devices. For example, it affords the potential to implement a novel training approach built upon our working model of movement primitives based on submovements, oscillations, and mechanical impedances. This translates into three distinct training modes: discrete, rhythmic, and balance. The system offers freedom of motion that forces self-directed movement for each of the three modes. This paper will present the technical details of the robotic system as well as a feasibility study done with one adult with stroke and two adults with cerebral palsy. Results of the one-month feasibility study demonstrated that the device is safe and suggested the potential advantages of the three modular training modes that can be added or subtracted to tailor therapy to a particular patient's need. Each participant demonstrated improvement in common clinical and kinematic measurements that must be confirmed in larger randomized control clinical trials.
Scaling in two-fluid pinch-off
NASA Astrophysics Data System (ADS)
Pommer, Chris; Suryo, Ronald; Subramani, Hariprasad; Harris, Michael; Basaran, Osman
2009-11-01
Two-fluid pinch-off is encountered when drops or bubbles of one fluid are ejected from a nozzle into another fluid or when a compound jet breaks. While the breakup of a drop in a passive environment and that of a passive bubble in a liquid are well understood, the physics of pinch-off when both the inner and outer fluids are dynamically active is inadequately understood. In this talk, the breakup of a compound jet whose core and shell are both incompressible Newtonian fluids is analyzed computationally by a method of lines ALE algorithm which uses finite elements with elliptic mesh generation for spatial discretization and adaptive finite differences for time integration. Pinch-off dynamics are investigated well beyond the limit of experiments set by the wavelength of visible light and that of various algorithms used in the literature. Simulations show that the minimum neck radius r initially scales with time τ before breakup as &αcirc; where α varies over a certain range. However, depending on the values of the governing dimensionless groups, this initial scaling regime may be transitory and, closer to pinch-off, the dynamics may transition to a final asymptotic regime for which r ˜&βcirc;, where β!=α.
MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy
Susko, Tyler; Swaminathan, Krithika; Krebs, Hermano Igo
2017-01-01
The MIT-Skywalker is a novel robotic device developed for the rehabilitation or habilitation of gait and balance after a neurological injury. It represents an embodiment of the concept exhibited by passive walkers for rehabilitation training. Its novelty extends beyond the passive walker quintessence to the unparalleled versatility among lower extremity devices. For example, it affords the potential to implement a novel training approach built upon our working model of movement primitives based on submovements, oscillations, and mechanical impedances. This translates into three distinct training modes: discrete, rhythmic, and balance. The system offers freedom of motion that forces self-directed movement for each of the three modes. This paper will present the technical details of the robotic system as well as a feasibility study done with one adult with stroke and two adults with cerebral palsy. Results of the one-month feasibility study demonstrated that the device is safe and suggested the potential advantages of the three modular training modes that can be added or subtracted to tailor therapy to a particular patient's need. Each participant demonstrated improvement in common clinical and kinematic measurements that must be confirmed in larger randomized control clinical trials. PMID:26929056
Combination probes for stagnation pressure and temperature measurements in gas turbine engines
NASA Astrophysics Data System (ADS)
Bonham, C.; Thorpe, S. J.; Erlund, M. N.; Stevenson, R. J.
2018-01-01
During gas turbine engine testing, steady-state gas-path stagnation pressures and temperatures are measured in order to calculate the efficiencies of the main components of turbomachinery. These measurements are acquired using fixed intrusive probes, which are installed at the inlet and outlet of each component at discrete point locations across the gas-path. The overall uncertainty in calculated component efficiency is sensitive to the accuracy of discrete point pressures and temperatures, as well as the spatial sampling across the gas-path. Both of these aspects of the measurement system must be considered if more accurate component efficiencies are to be determined. High accuracy has become increasingly important as engine manufacturers have begun to pursue small gains in component performance, which require efficiencies to be resolved to within less than ± 1% . This article reports on three new probe designs that have been developed in a response to this demand. The probes adopt a compact combination arrangement that facilitates up to twice the spatial coverage compared to individual stagnation pressure and temperature probes. The probes also utilise novel temperature sensors and high recovery factor shield designs that facilitate improvements in point measurement accuracy compared to standard Kiel probes used in engine testing. These changes allow efficiencies to be resolved within ± 1% over a wider range of conditions than is currently achievable with Kiel probes.
Electronic switching circuit uses complementary non-linear components
NASA Technical Reports Server (NTRS)
Zucker, O. S.
1972-01-01
Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.
Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, D.; Brunett, A.; Passerini, S.
Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less
Micro-satellites thermal control—concepts and components
NASA Astrophysics Data System (ADS)
Baturkin, Volodymyr
2005-01-01
The main idea of this paper is to present the survey of current tendencies in micro-satellites thermal control concepts that can be rational and useful for posterior missions due to intensive expansion of satellites of such type. For this purpose, the available references and lessons learned by the National Technical University of Ukraine during the elaboration of thermal control hardware for micro-satellites Magion 4, 5, BIRD and autonomous thermal control systems for interplanetary missions VEGA, PHOBOS have been used. The main parameters taken into consideration for analysis are the satellite sizes, mass, power consumption, orbit parameters, altitude control peculiarities and thermal control description. It was defined that passive thermal control concepts are widely used, excepting autonomous temperature regulation for sensitive components such as batteries, high-precision optics, and some types of sensors. The practical means for realization of passive thermal control design as multi-layer insulation, optical coatings, heat conductive elements, gaskets are briefly described.
Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models.
Franke, John E; Yakubu, Abdul-Aziz
2008-12-01
The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark-Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.
Engine structures modeling software system: Computer code. User's manual
NASA Technical Reports Server (NTRS)
1992-01-01
ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.
Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng
2017-10-01
This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Di Matteo, Simone; Villante, Umberto
2016-04-01
The possible occurrence of oscillations at discrete frequencies in the solar wind and their possible correspondence with magnetospheric field oscillations represent an interesting aspect of the solar wind/magnetopheric research. We analyze a large set of high velocity streams following interplanetary shocks in order to ascertain the possible occurrence of preferential sets of discrete frequencies in the oscillations of the solar wind pressure in such structures. We evaluate, for each event, the power spectrum of the dynamic pressure by means of two methods (Welch and multitaper windowing) and accept the common spectral peaks that also pass a harmonic F-test at the 95% confidence level. We compare these frequencies with those detected at geosynchronous orbit in the magnetospheric field components soon after the manifestation of the corresponding Sudden Impulses.
NASA Astrophysics Data System (ADS)
Xuan, C.; Channell, J. E.
2009-12-01
With the increasing efficiency of acquiring paleomagnetic data from u-channel or discrete samples, large volumes of data can be accumulated within a short time period. It is often critical to visualize and process these data in “real time” as measurements proceed, so that the measurement plan can be dictated accordingly. New MATLABTM software, UPmag and DPmag, are introduced for easy and rapid analysis of natural remanent magnetization (NRM) and laboratory-induced remanent magnetization data for u-channel and discrete samples, respectively. UPmag comprises three MATLABTM graphic user interfaces: UVIEW, UDIR, and UINT. UVIEW allows users to open and check through measurement data from the magnetometer as well as to correct detected flux-jumps in the data, and to export files for further treatment. UDIR reads the *.dir file generated by UVIEW, automatically calculates component directions using selectable demagnetization range(s) with anchored or free origin, and displays orthogonal projections and stepwise intensity plots for any position along the u-channel sample. UDIR can also display data on equal area stereographic projections and draw virtual geomagnetic poles (VGP) on various map projections. UINT provides a convenient platform to evaluate relative paleointensity estimates using the *.int files that can be exported from UVIEW. DPmag comprises two MATLABTM graphic user interfaces: DDIR and DFISHER. DDIR reads output files from the discrete sample magnetometer measurement system. DDIR allows users to calculate component directions for each discrete sample, to plot the demagnetization data on orthogonal projections and equal area projections, as well as to show the stepwise intensity data. DFISHER reads the *.pca file exported from DDIR, calculates VGP and Fisher statistics for data from selected groups of samples, and plots the results on equal area projections and as VGPs on a range of map projections. Data and plots from UPmag and DPmag can be exported to various file formats.
Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components
NASA Technical Reports Server (NTRS)
Kousen, Kenneth A.
1999-01-01
This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.
An algorithm for extraction of periodic signals from sparse, irregularly sampled data
NASA Technical Reports Server (NTRS)
Wilcox, J. Z.
1994-01-01
Temporal gaps in discrete sampling sequences produce spurious Fourier components at the intermodulation frequencies of an oscillatory signal and the temporal gaps, thus significantly complicating spectral analysis of such sparsely sampled data. A new fast Fourier transform (FFT)-based algorithm has been developed, suitable for spectral analysis of sparsely sampled data with a relatively small number of oscillatory components buried in background noise. The algorithm's principal idea has its origin in the so-called 'clean' algorithm used to sharpen images of scenes corrupted by atmospheric and sensor aperture effects. It identifies as the signal's 'true' frequency that oscillatory component which, when passed through the same sampling sequence as the original data, produces a Fourier image that is the best match to the original Fourier space. The algorithm has generally met with succession trials with simulated data with a low signal-to-noise ratio, including those of a type similar to hourly residuals for Earth orientation parameters extracted from VLBI data. For eight oscillatory components in the diurnal and semidiurnal bands, all components with an amplitude-noise ratio greater than 0.2 were successfully extracted for all sequences and duty cycles (greater than 0.1) tested; the amplitude-noise ratios of the extracted signals were as low as 0.05 for high duty cycles and long sampling sequences. When, in addition to these high frequencies, strong low-frequency components are present in the data, the low-frequency components are generally eliminated first, by employing a version of the algorithm that searches for non-integer multiples of the discrete FET minimum frequency.
Toward precision smoking cessation treatment I: Moderator results from a factorial experiment.
Piper, Megan E; Schlam, Tanya R; Cook, Jessica W; Smith, Stevens S; Bolt, Daniel M; Loh, Wei-Yin; Mermelstein, Robin; Collins, Linda M; Fiore, Michael C; Baker, Timothy B
2017-02-01
The development of tobacco use treatments that are effective for all smokers is critical to improving clinical and public health. The Multiphase Optimization Strategy (MOST) uses highly efficient factorial experiments to evaluate multiple intervention components for possible inclusion in an optimized tobacco use treatment. Factorial experiments permit analyses of the influence of patient characteristics on main and interaction effects of multiple, relatively discrete, intervention components. This study examined whether person-factor and smoking characteristics moderated the main or interactive effects of intervention components on 26-week self-reported abstinence rates. This fractional factorial experiment evaluated six smoking cessation intervention components among primary care patients (N=637): Prequit Nicotine Patch vs. None, Prequit Nicotine Gum vs. None, Preparation Counseling vs. None, Intensive Cessation In-Person Counseling vs. Minimal, Intensive Cessation Telephone Counseling vs. Minimal, and 16 vs. 8 Weeks of Combination Nicotine Replacement Therapy (NRT; nicotine patch+nicotine gum). Both psychiatric history and smoking heaviness moderated intervention component effects. In comparison with participants with no self-reported history of a psychiatric disorder, those with a positive history showed better response to 16- vs. 8-weeks of combination NRT, but a poorer response to counseling interventions. Also, in contrast to light smokers, heavier smokers showed a poorer response to counseling interventions. Heavy smokers and those with psychiatric histories demonstrated a differential response to intervention components. This research illustrates the use of factorial designs to examine the interactions between person characteristics and relatively discrete intervention components. Future research is needed to replicate these findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lovely, Peter; Chauvin, Benjamin; Brennan, Patrick; Laroche, Matt
2015-04-01
Understanding paleobathymetry is important to hydrocarbon explorationists, as it impacts depositional environments, reservoir quality, source rock preservation, hydrocarbon migration pathways, and paleo-stress. At long wavelengths (basin scale), bathymetry is controlled predominantly by isostatic compensation of vertical loads, which include sediment, water and spatial and temporal variations in the thickness and temperature of the crust and lithospheric mantle. Roberts, et al. (2003) present a workflow to account for these loads and derive paleobathymetry by 3-D flexural backstripping. However, to our knowledge, commercially packaged software for flexural backstripping is limited to two dimensions, and 3-D software is limited to Airy isostasy, which does not account for the elastic stiffness of the earth's crust and may, as a result, produce local error of 1km or more. We have developed a 3-D backstripping application that incorporates flexural isostasy, and is implemented in a workflow modeled after Roberts, et al. (2003). The application restores the isostatic components of basin geometry and bathymetry, and may account for the effects of sediment loading (isostasy & compaction), and rift-related subsidence (post- and syn-rift effects of homogeneous or depth-dependent pure-shear stretching models. Effects of dynamic topography, if quantifiable, may be prescribed as a bulk shift after backstripping. Implemented as a plug-in to Gocad, the application is accessible to a broad audience of geoscientists. The flexural isostasy implementation accounts for basin geometry and spatially heterogeneous layer thickness by discretizing each layer as a series of cylindrical loads of varying density and thickness at the nodes of a square grid. The isostatic effect of a single cylindrical load is provided by Brotchie & Silvester (1969) and the effect of multiple loads may be summed linearly. An iterative approach for calculating local water depth accounts for variations in eustatic sea level, allows for emergent topography, and overcomes potential pitfalls associated with the analytical solution for a "filled" basin. We review the numerical implementation of flexural backstripping, and discuss implications, as well as limitations, of paleobathymetric maps for source rock preservation and reservoir presence in two diverse passive margin settings: offshore Liberia and the Northwest Shelf of Australia.
NASA Technical Reports Server (NTRS)
Hickey, John R.
1991-01-01
The Passive Exposure of Earth Radiation Budget Experiment Components (PEERBEC) experiment of the Long Duration Exposure Facility (LDEF) mission was composed of sensors and components associated with the measurement of the earth radiation budget (ERB) from satellites. These components included the flight spare sensors from the ERB experiment which operated on Nimbus 6 and 7 satellites. The experiment components and materials as well as the pertinent background and ancillary information necessary for the understanding of the intended mission and the results are described. The extent and timing of the LDEF mission brought the exposure from solar minimum between cycles 21 and 22 through the solar maximum of cycle 22. The orbital decay, coupled with the events of solar maximum, caused the LDEF to be exposed to a broader range of space environmental effects than were anticipated. The mission spanned almost six years concurrent with the 12 year (to date) Nimbus 7 operations. Preliminary information is presented on the following: (1) the changes in transmittance experienced by the interference filters; (2) the results of retesting of the thermopile sensors, which appear to be relatively unaffected by the exposure; and (3) the results of the recalibration of the APEX cavity radiometer. The degradation and recovery of the filters of the Nimbus 7 ERB are also discussed relative to the apparent atomic oxygen cleaning which also applies to the LDEF.
PUZZLE - A program for computer-aided design of printed circuit artwork
NASA Technical Reports Server (NTRS)
Harrell, D. A. W.; Zane, R.
1971-01-01
Program assists in solving spacing problems encountered in printed circuit /PC/ design. It is intended to have maximum use for two-sided PC boards carrying integrated circuits, and also aids design of discrete component circuits.
26 CFR 1.263(a)-3 - Amounts paid to improve tangible property.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... In addition, the turbine contains a series of blades that cause the turbine to rotate when affected... turbine blades, as separate units of property because each of these components does not perform a discrete...
NASA Astrophysics Data System (ADS)
Barraza Bernadas, V.; Grings, F.; Ferrazzoli, P.; Carbajo, A.; Fernandez, R.; Karszenbaum, H.
2012-12-01
Evapotranspiration (ET) is a key component of water cycle, which is strongly linked with environmental condition and vegetation functioning. Since it is very difficult to robustly estimate it from remote sensing data at regional scale it is usually inferred from other proxies using water balance. This work describes a procedure to estimate ET in a dry forest by monitoring diurnal variation of leaf water content (LWC), using multitemporal passive microwave remote sensing observations. Hourly observations provide the opportunity to monitor repetitive diurnal variations of passive microwave observations, which can only be accounted by changes in LWC (which is itself related to water vapor that enters to the atmosphere from land surface). To this end, we calculated the vegetation frequency index (FI) as FI= 2*(TBKa-TBX)/ ((TBKa +TBX)), where TBKa and TBX indicate brightness temperatures at 37 and 10.6 GHz respectively. There is both theoretical and experimental evidence that link this index to microwave to LWC. The index was computed for vertical polarization, because it presents higher correlation with vegetation state. At diurnal temporal scale, changes in LWC are commonly very small. Nevertheless, it was previously shown that passive remote sensing data (FI computed using Ku and Ka bands) acquired at different hours can be used to estimate the seasonal changes in ET. In this work, we present a procedure based on the hourly changes of FI, which are interpreted as changes in LWC. In order to present a quantitative estimation, the discrete forest model described in (Ferrazzoli and Guerriero, 1996) has been used to simulate the variations of FI with LWC. To illustrate the procedure, AMSR-E and WINDSAT data from 2007-2009 at X and Ka bands were used, and up to four observations per day at four different local times (2.30 am, 7.00 am, 2.30 pm and 7.00 pm) were analyzed. The region addressed is the area of the Dry Chaco forest located in Bermejo River Basin in Argentina (22-27°S, and 58-66°W).This area is characterized for being an open dry forest (20% of tree crown cover), with mean annual temperatures between 20 and 22 °C, mean summer temperatures between 24 and 27 °C and minimal annual rainfall (500 mm). The annual behavior of diurnal LWC shows a range increase in summer and a decrease in winter, being correlated with vegetation annual growing season (foliation/defoliation). For summertime, our results show a decrease of FI values from 7.00 am to 2.30 pm and an increase between 2.30 pm to 7.00 pm. According to the interaction model, these observed changes of FI corresponded to an increase in LWC from ~0.4 g/g to 0.5 g/g in six hours (7.00 am - 2.30 pm) and then a similar decrease for the 2.30 pm to 7.00 pm period. We hypothesize that this daily variations (an increase of LWC during the sunny hours) could be related to more water being available at the leaves, to cope with evaporation needs in order to achieve positive diurnal water balance during the hot diurnal hours. This could be a specific adaptation to high temperature and drought environmental conditions, like the ones present in Chaco. Ferrazzoli P., Guerriero L.,(1996)"Passive microwave remote sensing of forests: a model investigation", IEEE Transactions on Geoscience and Remote Sensing, vol.34, n. 2, pp.433-443.
Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.
Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi
2012-04-09
We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.
Microfluidic mixing using orbiting magnetic microbeads
NASA Astrophysics Data System (ADS)
Ballard, Matthew; Owen, Drew; Mao, Wenbin; Hesketh, Peter; Alexeev, Alexander
2013-11-01
Using three-dimensional simulations and experiments, we examine mixing in a microfluidic channel that incorporates a hybrid passive-active micromixer. The passive part of the mixer consists of a series of angled parallel ridges lining the top microchannel wall. The active component of the mixer is made up of microbeads rotating around small pillars on the bottom of the microchannel. In our simulations, we use a binary fluid lattice Boltzmann model to simulate the system and characterize the microfluidic mixing in the system. We consider the passive and active micromixers separately and evaluate their combined effect on the mixing of binary fluids. We compare our simulations with the experimental results obtained in a microchannel with magnetically actuated microbeads. Our findings guide the design of an efficient micromixer to be used in sampling in complex fluids. Financial support from NSF (CBET-1159726) is gratefully acknowledged.
Increased integrity of white matter pathways after dual n-back training.
Salminen, Tiina; Mårtensson, Johan; Schubert, Torsten; Kühn, Simone
2016-06-01
Dual n-back WM training has been shown to produce broad transfer effects to different untrained cognitive functions. The task is demanding to the cognitive system because it includes a bi-modal (auditory and visual) dual-task component. A previous WM training study showed increased white matter integrity in the parietal lobe as well as the anterior part of the corpus callosum after visual n-back training. We investigated dual n-back training-related changes in white matter pathways. We anticipated dual n-back training to increase white matter integrity in pathways that connect brain regions related to WM processes. Additionally, we hypothesized that dual n-back training would produce more brain-wide white matter changes than single n-back training because of the involvement of two modalities and the additional dual-task coordination component of the task. The dual n-back training group showed increased white matter integrity (reflected as increased fractional anisotropy, FA) after training. The effects were mostly left lateralized as compared with changes from pretest to posttest in the passive and active control groups. Additionally, significant effects were observed in the anterior part of the corpus callosum, when the training group was compared with the passive control group. There were no changes in pretest to posttest FA changes between the passive and active control groups. The results therefore show that dual n-back training produces increased integrity in white matter pathways connecting different brain regions. The results are discussed in reference to the bi-modal dual-task component of the training task. Copyright © 2016 Elsevier Inc. All rights reserved.
A modular microfluidic architecture for integrated biochemical analysis.
Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang
2005-07-12
Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.
Estimating basin thickness using a high-density passive-source geophone array
NASA Astrophysics Data System (ADS)
O'Rourke, C. T.; Sheehan, A. F.; Erslev, E. A.; Miller, K. C.
2014-09-01
In 2010 an array of 834 single-component geophones was deployed across the Bighorn Mountain Range in northern Wyoming as part of the Bighorn Arch Seismic Experiment (BASE). The goal of this deployment was to test the capabilities of these instruments as recorders of passive-source observations in addition to active-source observations for which they are typically used. The results are quite promising, having recorded 47 regional and teleseismic earthquakes over a two-week deployment. These events ranged from magnitude 4.1 to 7.0 (mb) and occurred at distances up to 10°. Because these instruments were deployed at ca. 1000 m spacing we were able to resolve the geometries of two major basins from the residuals of several well-recorded teleseisms. The residuals of these arrivals, converted to basinal thickness, show a distinct westward thickening in the Bighorn Basin that agrees with industry-derived basement depth information. Our estimates of thickness in the Powder River Basin do not match industry estimates in certain areas, likely due to localized high-velocity features that are not included in our models. Thus, with a few cautions, it is clear that high-density single-component passive arrays can provide valuable constraints on basinal geometries, and could be especially useful where basinal geometry is poorly known.
Kolpin, Dana W.; Blazer, Vicki; Gray, James L.; Focazio, Michael J.; Young, John A.; Alvarez, David A.; Iwanowicz, Luke R.; Foreman, William T.; Furlong, Edward T.; Speiran, Gary K.; Zaugg, Steven D.; Hubbard, Laura E.; Meyer, Michael T.; Sandstrom, Mark W.; Barber, Larry B.
2013-01-01
The Potomac River basin is an area where a high prevalence of abnormalities such as testicular oocytes (TO), skin lesions, and mortality has been observed in smallmouth bass (SMB, Micropterus dolomieu). Previous research documented a variety of chemicals in regional streams, implicating chemical exposure as one plausible explanation for these biological effects. Six stream sites in the Potomac basin (and one out-of-basin reference site) were sampled to provide an assessment of chemicals in these streams. Potential early life-stage exposure to chemicals detected was assessed by collecting samples in and around SMB nesting areas. Target chemicals included those known to be associated with important agricultural and municipal wastewater sources in the Potomac basin. The prevalence and severity of TO in SMB were also measured to determine potential relations between chemistry and biological effects. A total of 39 chemicals were detected at least once in the discrete-water samples, with atrazine, caffeine, deethylatrazine, simazine, and iso-chlorotetracycline being most frequently detected. Of the most frequently detected chemicals, only caffeine was detected in water from the reference site. No biogenic hormones/sterols were detected in the discrete-water samples. In contrast, 100 chemicals (including six biogenic hormones/sterols) were found in a least one passive-water sample, with 25 being detected at all such samples. In addition, 46 chemicals (including seven biogenic hormones/sterols) were found in the bed-sediment samples, with caffeine, cholesterol, indole, para-cresol, and sitosterol detected in all such samples. The number of herbicides detected in discrete-water samples per site had a significant positive relation to TOrank (a nonparametric indicator of TO), with significant positive relations between TOrank and atrazine concentrations in discrete-water samples and to total hormone/sterol concentration in bed-sediment samples. Such significant correlations do not necessarily imply causation, as these chemical compositions and concentrations likely do not adequately reflect total SMB exposure history, particularly during critical life stages.
Techniques for forced response involving discrete nonlinearities. I - Theory. II - Applications
NASA Astrophysics Data System (ADS)
Avitabile, Peter; Callahan, John O.
Several new techniques developed for the forced response analysis of systems containing discrete nonlinear connection elements are presented and compared to the traditional methods. In particular, the techniques examined are the Equivalent Reduced Model Technique (ERMT), Modal Modification Response Technique (MMRT), and Component Element Method (CEM). The general theory of the techniques is presented, and applications are discussed with particular reference to the beam nonlinear system model using ERMT, MMRT, and CEM; frame nonlinear response using the three techniques; and comparison of the results obtained by using the ERMT, MMRT, and CEM models.
Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables.
Heck, Daniel W; Erdfelder, Edgar; Kieslich, Pascal J
2018-05-24
Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.
Discrete X-Ray Source Populations and Star Formation History in Nearby Galaxies
NASA Technical Reports Server (NTRS)
Zezas, Andreas; Hasan, Hashima (Technical Monitor)
2005-01-01
This program aims in understanding the connection between the discrete X-ray source populations observed in nearby galaxies and the history of star-formation in these galaxies. The ultimate goal is to use this knowledge in order to constrain X-ray binary evolution channels. For this reason although the program is primarily observational it has a significant modeling component. During the second year of this study we focused on detailed studies of the Antennae galaxies and the Small Magellanic Cloud (SMC). We also performed the initial analysis of the 5 galaxies forming a starburst-age sequence.
NASA Astrophysics Data System (ADS)
Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng
2016-03-01
Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.
Integrated smart panel and support structure response
NASA Astrophysics Data System (ADS)
DeGiorgi, Virginia G.
1998-06-01
The performance of smart structures is a complex interaction between active and passive components. Active components, even when non-activated, can have an impact on structural performance and, conversely, structural characteristics of passive components can have a measurable impact on active component performance. The present work is an evaluation of the structural characteristics of an active panel designed for acoustic quieting. The support structure is included in the panel design as evaluated. Finite element methods are used to determine the active panel-support structure response. Two conditions are considered; a hollow unfilled support structure and the same structure filled with a polymer compound. Finite element models were defined so that stiffness values corresponding to the center of individual pistons could be determined. Superelement techniques were used to define mass and stiffness values representative of the combined active and support structure at the center of each piston. Results of interest obtained from the analysis include mode shapes, natural frequencies, and equivalent spring stuffiness for use in structural response models to represent the support structure. The effects on plate motion on piston performance cannot be obtained from this analysis, however mass and stiffness matrices for use in an integrated system model to determine piston head velocities can be obtained from this work.
NASA Astrophysics Data System (ADS)
Masey, Nicola; Gillespie, Jonathan; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.
2017-07-01
We assessed the precision and accuracy of nitrogen dioxide (NO2) concentrations over 2-day, 3-day and 7-day exposure periods measured with the following types of passive diffusion samplers: standard (open) Palmes tubes; standard Ogawa samplers with commercially-prepared Ogawa absorbent pads (Ogawa[S]); and modified Ogawa samplers with absorbent-impregnated stainless steel meshes normally used in Palmes tubes (Ogawa[P]). We deployed these passive samplers close to the inlet of a chemiluminescence NO2 analyser at an urban background site in Glasgow, UK over 32 discrete measurement periods. Duplicate relative standard deviation was <7% for all passive samplers. The Ogawa[P], Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of temporal variation in analyser concentrations respectively. Uptake rates for Palmes and Ogawa[S] samplers were positively and linearly associated with wind-speed (P < 0.01 and P < 0.05 respectively). Computation of adjusted uptake rates using average wind-speed observed during each sampling period increased the variation in analyser concentrations explained by Palmes and Ogawa[S] estimates to 90% and 92% respectively, suggesting that measurements can be corrected for shortening of diffusion path lengths due to wind-speed to improve the accuracy of estimates of short-term NO2 exposure. Monitoring situations where it is difficult to reliably estimate wind-speed variations, e.g. across multiple sites with different unknown exposures to local winds, and personal exposure monitoring, are likely to benefit from protection of these sampling devices from the effects of wind, for example by use of a mesh or membrane across the open end. The uptake rate of Ogawa[P] samplers was not associated with wind-speed resulting in a high correlation between estimated concentrations and observed analyser concentrations. The use of Palmes meshes in Ogawa[P] samplers reduced the cost of sampler preparation and removed uncertainty associated with the unknown manufacturing process for the commercially-prepared collection pads.
Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation
NASA Astrophysics Data System (ADS)
Litaker, Eric T.
1994-12-01
The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.
Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack
2016-01-01
For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation. PMID:26950936
Toide, K
1989-01-01
Using rats in one-trial passive avoidance tests, the anti-amnesic effects of the nootropic drug aniracetam were investigated; moreover, the action of aniracetam upon the cholinergic system in the brain was studied. In one-trial passive avoidance tests, aniracetam prolonged significantly the retention time for 100 mg/kg, p.o. However, the retention-prolonging effect was diminished when the dose was increased to 300 mg/kg p.o. Investigation of the action of the drug upon the cholinergic system revealed that ACh and choline content in the corpus striatum was not increased by any doses of aniracetam. ACh content in the hippocampus was increased by doses of 100-300 mg/kg, p.o., but choline was not significantly increased by any doses, while in the cerebral cortex ACh content was significantly increased by a dose of 300 mg/kg, p.o. In addition, the decrease in hippocampal ACh and choline content following an injection of scopolamine was lessened by aniracetam 100 mg/kg, p.o. and 100-300 mg/kg, respectively. In order to elucidate the mechanism of these actions of aniracetam, the ACh-releasing action and changes in choline content of the extracellular spaces in the hippocampus were investigated, but no effects were observed. The results obtained indicate that aniracetam has an inhibitory effect upon scopolamine-induced amnesia. The mechanism of this effect may be an action upon the cholinergic system; therefore, some action with respect to the impairment of cholinergic neurotransmission in the hippocampus induced by scopolamine appears to be of particular importance.
McCarthy, Kathleen A.; Alvarez, David A.
2014-01-01
The Eugene Water & Electric Board (EWEB) supplies drinking water to approximately 200,000 people in Eugene, Oregon. The sole source of this water is the McKenzie River, which has consistently excellent water quality relative to established drinking-water standards. To ensure that this quality is maintained as land use in the source basin changes and water demands increase, EWEB has developed a proactive management strategy that includes a combination of conventional point-in-time discrete water sampling and time‑integrated passive sampling with a combination of chemical analyses and bioassays to explore water quality and identify where vulnerabilities may lie. In this report, we present the results from six passive‑sampling deployments at six sites in the basin, including the intake and outflow from the EWEB drinking‑water treatment plant (DWTP). This is the first known use of passive samplers to investigate both the source and finished water of a municipal DWTP. Results indicate that low concentrations of several polycyclic aromatic hydrocarbons and organohalogen compounds are consistently present in source waters, and that many of these compounds are also present in finished drinking water. The nature and patterns of compounds detected suggest that land-surface runoff and atmospheric deposition act as ongoing sources of polycyclic aromatic hydrocarbons, some currently used pesticides, and several legacy organochlorine pesticides. Comparison of results from point-in-time and time-integrated sampling indicate that these two methods are complementary and, when used together, provide a clearer understanding of contaminant sources than either method alone.
The Mechanization of Design and Manufacturing.
ERIC Educational Resources Information Center
Gunn, Thomas G.
1982-01-01
Describes changes in the design of products and in planning, managing, and coordinating their manufacture. Focuses on discrete-products manufacturing industries, encompassing the fabrication and assembly of automobiles, aircraft, computers and microelectric components of computers, furniture, appliances, foods, clothing, building materials, and…
32 CFR 32.21 - Standards for financial management systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and... repayment of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate..., “Surety Companies Doing Business with the United States.” ...
32 CFR 32.21 - Standards for financial management systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and... repayment of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate..., “Surety Companies Doing Business with the United States.” ...
32 CFR 32.21 - Standards for financial management systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and... repayment of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate..., “Surety Companies Doing Business with the United States.” ...
A WDM/Optical-CDMA (WDM/O-CDMA) Concept for Avionics Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez, A J; Hernandez, V J; Gagliardi, R M
2005-06-02
We describe a concept where WDM and O-CDMA share a set of discrete wavelengths and components while using similar modulation formats. O-CDMA acts as a channel multiplier. Experiments show the feasibility of >2X channel multiplication.
Maxent Harmonic Grammars and Phonetic Duration
ERIC Educational Resources Information Center
Lefkowitz, Lee Michael
2017-01-01
Research in phonetics has established the grammatical status of gradient phonetic patterns in language, suggesting that there is a component of the grammar that governs systematic relationships between discrete phonological representations and gradiently continuous acoustic or articulatory phonetic representations. This dissertation joins several…
Microfluidic Systems for Biosensing
Liu, Kuo-Kang; Wu, Ren-Guei; Chuang, Yun-Ju; Khoo, Hwa Seng; Huang, Shih-Hao; Tseng, Fan-Gang
2010-01-01
In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected. PMID:22163570
An examination of natural convection between two horizontal walls
NASA Astrophysics Data System (ADS)
Martine, J.-P.
Measurements were made of the turbulence magnitudes and characteristics of natural convective air flow between plates. The thermal and kinematic properties of the flows were determined for comparison with theoretical predictions. Three horizontal layers were identified, as were the principle parameters for a law of variations. A viscous film with heat transferred mainly by conduction, a thermal boundary layer where strong convective changes occurred, and a central isothermal mean layer where the temperature was convected as a passive scalar were characterized. The velocity structures, both horizontal and vertical, were defined in each region. The thermal gradients were strongest near the wall, to the extent that new thermometric instruments are necessary for direct instantaneous measurement of the discrete layers that might form in that region.
NASA Astrophysics Data System (ADS)
Chen, Z.; Harris, V. G.
2012-10-01
It is widely recognized that as electronic systems' operating frequency shifts to microwave and millimeter wave bands, the integration of ferrite passive devices with semiconductor solid state active devices holds significant advantages in improved miniaturization, bandwidth, speed, power and production costs, among others. Traditionally, ferrites have been employed in discrete bulk form, despite attempts to integrate ferrite as films within microwave integrated circuits. Technical barriers remain centric to the incompatibility between ferrite and semiconductor materials and their processing protocols. In this review, we present past and present efforts at ferrite integration with semiconductor platforms with the aim to identify the most promising paths to realizing the complete integration of on-chip ferrite and semiconductor devices, assemblies and systems.
IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook
2016-12-01
Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.
The IASI cold box subsystem (CBS) a passive cryocooler for cryogenic detectors and optics
NASA Astrophysics Data System (ADS)
Bailly, B.; Courteau, P.; Maciaszek, T.
2017-11-01
In space, cooling down Infra Red detectors and optics to cryogenic temperature raises always the same issue : what is the best way to manage simultaneously thermal cooling, stability, mechanical discoupling and accurate focal plane components location, in a lightweight and compact solution? The passive cryocooler developed by Alcatel SPace Industries under CNES contract in the frame of the IASI instrument (Infrared Atmospheric Sounding Interferometer), offers an efficient solution for 90K to 100K temperature levels. We intend you to present the architecture and performance validation plan of the CBS.
A passive autofocus system by using standard deviation of the image on a liquid lens
NASA Astrophysics Data System (ADS)
Rasti, Pejman; Kesküla, Arko; Haus, Henry; Schlaak, Helmut F.; Anbarjafari, Gholamreza; Aabloo, Alvo; Kiefer, Rudolf
2015-04-01
Today most of applications have a small camera such as cell phones, tablets and medical devices. A micro lens is required in order to reduce the size of the devices. In this paper an auto focus system is used in order to find the best position of a liquid lens without any active components such as ultrasonic or infrared. In fact a passive auto focus system by using standard deviation of the images on a liquid lens which consist of a Dielectric Elastomer Actuator (DEA) membrane between oil and water is proposed.
NASA Technical Reports Server (NTRS)
Hang, Richard
2015-01-01
The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.
Passive Thermal Control Challenges for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Rickman, Steven L.
2004-01-01
This slide presentation reviews the importance of developing passive thermal control for the future exploration missions envisioned in President Bush's call for human exploration of the Moon and Mars. Included in the presentation is a review of the conditions that make the thermal control very challenging on the Moon and Mars. With the future miniaturization of electronics components, power density and the associated challenges of electronics heat dissipation will provide new challenges. There is a challenge for improvement in modeling and analysis of thermal control systems, and for improved facilities to support testing of thermal-vacuum systems.
Electromigration-induced plastic deformation in passivated metal lines
NASA Astrophysics Data System (ADS)
Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.
2002-11-01
We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Kim, D; Burge, J; Lane, T; Pearlson, G D; Kiehl, K A; Calhoun, V D
2008-10-01
We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge, J., Lane, T., Link, H., Qiu, S., Clark, V.P., 2007. Discrete dynamic Bayesian network analysis of fMRI data. Hum Brain Mapp.) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge, J., Lane, T., 2005. Learning Class-Discriminative Dynamic Bayesian Networks. Proceedings of the International Conference on Machine Learning, Bonn, Germany, pp. 97-104.). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, A., 1991. Probability, random variables, and stochastic processes. McGraw-Hill, New York.). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions, including bilateral temporal, frontal, and cerebellar regions during an auditory paradigm.
Utilization of Historic Information in an Optimisation Task
NASA Technical Reports Server (NTRS)
Boesser, T.
1984-01-01
One of the basic components of a discrete model of motor behavior and decision making, which describes tracking and supervisory control in unitary terms, is assumed to be a filtering mechanism which is tied to the representational principles of human memory for time-series information. In a series of experiments subjects used the time-series information with certain significant limitations: there is a range-effect; asymmetric distributions seem to be recognized, but it does not seem to be possible to optimize performance based on skewed distributions. Thus there is a transformation of the displayed data between the perceptual system and representation in memory involving a loss of information. This rules out a number of representational principles for time-series information in memory and fits very well into the framework of a comprehensive discrete model for control of complex systems, modelling continuous control (tracking), discrete responses, supervisory behavior and learning.
Hybrid stochastic simplifications for multiscale gene networks
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-01-01
Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554
Method for vacuum pressing electrochemical cell components
NASA Technical Reports Server (NTRS)
Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)
2004-01-01
Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.
Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.
Li, D G; Wang, J D; Chen, D R; Liang, P
2015-09-01
The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.
Peters, Thomas M; Sawvel, Eric J; Willis, Robert; West, Roger R; Casuccio, Gary S
2016-07-19
We report on the precision and accuracy of measuring PM10-2.5 and its components with particles collected by passive aerosol samplers and analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy. Passive samplers were deployed for week-long intervals in triplicate and colocated with a federal reference method sampler at three sites and for 5 weeks in summer 2009 and 5 weeks in winter 2010 in Cleveland, OH. The limit of detection of the passive method for PM10-2.5 determined from blank analysis was 2.8 μg m(-3). Overall precision expressed as root-mean-square coefficient of variation (CVRMS) improved with increasing concentrations (37% for all samples, n = 30; 19% for PM10-2.5 > 10 μg m(-3), n = 9; and 10% for PM10-2.5 > 15 μg m(-3), n = 4). The linear regression of PM10-2.5 measured passively on that measured with the reference sampler exhibited an intercept not statistically different than zero (p = 0.46) and a slope not statistically different from unity (p = 0.92). Triplicates with high CVs (CV > 40%, n = 5) were attributed to low particle counts (and mass concentrations), spurious counts attributed to salt particles, and Al-rich particles. This work provides important quantitative observations that can help guide future development and use of passive samplers for measuring atmospheric particulate matter.
Band-Pass Amplifier Without Discrete Reactance Elements
NASA Technical Reports Server (NTRS)
Kleinberg, L.
1984-01-01
Inherent or "natural" device capacitance exploited. Band-Pass Circuit has input impedance of equivalent circuit at frequencies much greater than operational-amplifier rolloff frequency. Apparent inductance and capacitance arise from combined effects of feedback and reactive component of amplifier gain in frequency range.
Using Work Breakdown Structure Models to Develop Unit Treatment Costs
This article presents a new cost modeling approach called work breakdown structure (WBS), designed to develop unit costs for drinking water technologies. WBS involves breaking the technology into its discrete components for the purposes of estimating unit costs. The article dem...
Fluid coupling in a discrete model of cochlear mechanics.
Elliott, Stephen J; Lineton, Ben; Ni, Guangjian
2011-09-01
A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. © 2011 Acoustical Society of America
Circuit-based versus full-wave modelling of active microwave circuits
NASA Astrophysics Data System (ADS)
Bukvić, Branko; Ilić, Andjelija Ž.; Ilić, Milan M.
2018-03-01
Modern full-wave computational tools enable rigorous simulations of linear parts of complex microwave circuits within minutes, taking into account all physical electromagnetic (EM) phenomena. Non-linear components and other discrete elements of the hybrid microwave circuit are then easily added within the circuit simulator. This combined full-wave and circuit-based analysis is a must in the final stages of the circuit design, although initial designs and optimisations are still faster and more comfortably done completely in the circuit-based environment, which offers real-time solutions at the expense of accuracy. However, due to insufficient information and general lack of specific case studies, practitioners still struggle when choosing an appropriate analysis method, or a component model, because different choices lead to different solutions, often with uncertain accuracy and unexplained discrepancies arising between the simulations and measurements. We here design a reconfigurable power amplifier, as a case study, using both circuit-based solver and a full-wave EM solver. We compare numerical simulations with measurements on the manufactured prototypes, discussing the obtained differences, pointing out the importance of measured parameters de-embedding, appropriate modelling of discrete components and giving specific recipes for good modelling practices.
NASA Astrophysics Data System (ADS)
Avitabile, Peter; O'Callahan, John
2009-01-01
Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
NASA Technical Reports Server (NTRS)
Gasiewski, A. J.; Skofronick, G. M.
1992-01-01
Progress by investigators at Georgia Tech in defining the requirements for large space antennas for passive microwave Earth imaging systems is reviewed. In order to determine antenna constraints (e.g., the aperture size, illumination taper, and gain uncertainty limits) necessary for the retrieval of geophysical parameters (e.g., rain rate) with adequate spatial resolution and accuracy, a numerical simulation of the passive microwave observation and retrieval process is being developed. Due to the small spatial scale of precipitation and the nonlinear relationships between precipitation parameters (e.g., rain rate, water density profile) and observed brightness temperatures, the retrieval of precipitation parameters are of primary interest in the simulation studies. Major components of the simulation are described as well as progress and plans for completion. The overall goal of providing quantitative assessments of the accuracy of candidate geosynchronous and low-Earth orbiting imaging systems will continue under a separate grant.
Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi
2012-10-18
A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.
NASA Astrophysics Data System (ADS)
Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul
2018-07-01
We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.
Engineering multiphoton states for linear optics computation
NASA Astrophysics Data System (ADS)
Aniello, P.; Lupo, C.; Napolitano, M.; Paris, M. G. A.
2007-03-01
Transformations achievable by linear optical components allow to generate the whole unitary group only when restricted to the one-photon subspace of a multimode Fock space. In this paper, we address the more general problem of encoding quantum information by multiphoton states, and elaborating it via ancillary extensions, linear optical passive devices and photodetection. Our scheme stems in a natural way from the mathematical structures underlying the physics of linear optical passive devices. In particular, we analyze an economical procedure for mapping a fiducial 2-photon 2-mode state into an arbitrary 2-photon 2-mode state using ancillary resources and linear optical passive N-ports assisted by post-selection. We found that adding a single ancilla mode is enough to generate any desired target state. The effect of imperfect photodetection in post-selection is considered and a simple trade-off between success probability and fidelity is derived.
Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces
NASA Technical Reports Server (NTRS)
Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.
1978-01-01
Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.
Design and analysis of a high Q MEMS passive RF filter
NASA Astrophysics Data System (ADS)
Rathee, Vishal; Pande, Rajesh
2016-04-01
Over the past few years, significant growth has been observed in using MEMS based passive components in the RF microelectronics domain, especially in transceiver system. This is due to some excellent properties of the MEMS devices like low loss, low cost and excellent isolation. This paper presents a design of high performance MEMS passive band pass filter, consisting of L and C with improved quality factor and insertion loss less than the reported filters. In this paper we have presented a design of 2nd order band pass filter with 2.4GHz centre frequency and 83MHz bandwidth for Bluetooth application. The simulation results showed improved Q-factor of 34 and Insertion loss of 1.7dB to 1.9dB. The simulation results needs to be validated by fabricating the device, fabrication flow of which is also presented in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less
Preliminary results of the Source China Sea passive source OBS array experiment
NASA Astrophysics Data System (ADS)
Yang, T.; Liu, C.; Pei, Y.; Xia, S.
2013-12-01
The Scarborough, or Huangyan, Seamount chain in South China Sea (SCS) represents an extreme case of the global mid-ocean ridge system where the magmatism continues for many million years after the cessation of spreading. To understand this unique process, the South China Sea Deep (SCSD) program funded an experiment deploying a passive source OBS array to image the lithospheric structure beneath the extinct ridge. In April 2012, 18 passive source OBSs, including 15 Guralp CMG-40T OBS and 3 I-4C OBS, were deployed around the Huangyan Island for one year. 11 OBSs were successfully recovered this April, and their data are being processed. Here we present some preliminary results from analyses of this dataset, including the general quality of three-component seismograms, characteristics of seafloor ambient noise spectra, determining the OBS orientation from the Rayleigh wave polarization, and the dispersion analysis of Rayleigh waves. We found that, for most stations, seismograms from teleseismic, regional and local events are generally good with the horizontal records being comparable with vertical component. The noise levels in these seafloor stations are much higher than land-based stations, especially in shorter periods, likely suggesting the direct and stronger impact from the tempestuous SCS. Applications of more sophisticated seismic techniques such as surface wave tomography, seismic anisotropy, receiver function and ambient noise cross-correlation are underway. In addition to the low recovery rate, there are other lessons learned from this experiment. For example, at least two stations have detectable timing problems; Airgun shots should have been used to constrain the timings and orientations in both deployment and recovery. It is still challenging and costly to carry out long-term passive source seismic observations in deep sea.
Training and Validation of the Fast PCRTM_Solar Model
NASA Astrophysics Data System (ADS)
Yang, Q.; Liu, X.; Wu, W.; Yang, P.; Wang, C.
2015-12-01
Fast and accurate radiative transfer model is the key for satellite data assimilation for remote sensing application. The simulation of the satellite remote sensing radiances is very complicated since many physical processes, such as absorption, emission, and scattering, are involved due to the interactions between electromagnetic radiation and earth surface, water vapor, clouds, aerosols, and gas molecules in the sky. The principal component-based radiative transfer model (PCRTM) has been developed for various passive IR and MW instruments. In this work, we extended PCRTM to including the contribution from solar radiation. The cloud/aerosol bidirectional reflectances have been carefully calculated using the well-known Discrete-Ordinate-Method Radiative Transfer (DISORT) model under over 10 millions of diverse conditions with varying cloud particle size, wavelength, satellite viewing direction, and solar angles. The obtained results were compressed significantly using principal component analysis and used in the mono domain radiance calculation. We used 1352 different atmosphere profiles, each of them has different surface skin temperatures and surface pressures in our training. Different surface emissivity spectra were derived from ASTER database and emissivity models. Some artificially generated emissivity spectra were also used to account for diverse surface types of the earth. Concentrations of sixteen trace gases were varied systematically in the training and the remaining trace gas contributions were accounted for as a fixed gas. Training was done in both clear and cloudy skies conditions. Finally the nonlocal thermal equilibrium (NLTE) induced radiance change was included for daytime conditions. We have updated the PCRTM model for instruments such as IASI, NASTI, CrIS, AIRS, and SHIS. The training results show that the PCRTM model can calculate thousands of channel radiances by computing only a few hundreds of mono radiances. This greatly increased the computation efficiency since we do not need to calculate the millions of mono radiances and do the convolution process. The results from fast PCRTM_Solar simulation were compared to the instrument observed data. The simulated results were excellently agreed with the observations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
... process. Key components of the antitheft device will include a passive immobilizer, a warning message... feature as standard equipment. When the system is activated, the alarm will trigger if one of the doors...
Design, Analysis and R&D of the EAST In-Vessel Components
NASA Astrophysics Data System (ADS)
Yao, Damao; Bao, Liman; Li, Jiangang; Song, Yuntao; Chen, Wenge; Du, Shijun; Hu, Qingsheng; Wei, Jing; Xie, Han; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Chen, Junling; Mao, Xinqiao; Wang, Shengming; Zhu, Ning; Weng, Peide; Wan, Yuanxi
2008-06-01
In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m3/s pumping rate at a pressure of 10-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 °C. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.
An ERP study of passive creative conceptual expansion using a modified alternate uses task.
Kröger, Sören; Rutter, Barbara; Hill, Holger; Windmann, Sabine; Hermann, Christiane; Abraham, Anna
2013-08-21
A novel ERP paradigm was employed to investigate conceptual expansion, a central component of creative thinking. Participants were presented with word pairs, consisting of everyday objects and uses for these objects, which had to be judged based on the two defining criteria of creative products: unusualness and appropriateness. Three subject-determined trial types resulted from this judgement: high unusual and low appropriate (nonsensical uses), low unusual and high appropriate (common uses), and high unusual and high appropriate (creative uses). Word pairs of the creative uses type are held to passively induce conceptual expansion. The N400 component was not specifically modulated by conceptual expansion but was, instead, generally responsive as a function of unusualness or novelty of the stimuli (nonsense=creative>common). Explorative analyses in a later time window (500-900 ms) revealed that ERP activity in this phase indexes appropriateness (nonsense>creative=common). In the discussion of these findings with reference to the literature on semantic cognition, both components are proposed as indexing processes relevant to conceptual expansion as they are selectively involved in the encoding and integration of a newly established semantic connection between two previously unrelated concepts. Copyright © 2013 Elsevier B.V. All rights reserved.
Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang
2017-05-01
Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.
New opportunities for quality enhancing of images captured by passive THz camera
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.
2014-10-01
As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.
Discrete elements for 3D microfluidics.
Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah
2014-10-21
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
NASA Astrophysics Data System (ADS)
Darma Tarigan, Suria
2016-01-01
Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.
Active uptake of sodium in the gills of the hyperregulating shore crab Carcinus maenas
NASA Astrophysics Data System (ADS)
Siebers, D.; Lucu, Č.; Winkler, A.; Dalla Venezia, L.; Wille, H.
1986-03-01
Isolated posterior gills of shore crabs, Carcinus maenas, previously acclimated for at least 1 month to brackish water of 10 ‰ S, were connected with an artificial hemolymph circulation by means of thin polyethylene tubings. Gills were symmetrically perfused and bathed with 50 % sea water. Transepithelial potential differences (PDs) and fluxes of sodium between medium and blood were measured under control conditions and following reductions of PDs by means of 5 mM internal (blood side) ouabain, 0.5 mM internal and external (bathing medium) NaCN or by exhaustion of energy reserves along with a prolonged perfusion period of more than 9 h. In these experiments22Na was used as tracer. Each of the three modes of reducing transepithelial potential differences resulted in a decrease in sodium influxes from 500 1000 µmoles g-1 h-1 to 250 400 µmoles g-1 h-1. The findings suggest that sodium influx, which normally greatly exceeds efflux, was diminished by its active component. The remaining non-inhibitable influx equals efflux values. Our findings thus indicate that efflux is completely passive, while influx has — beside a passive component of efflux magnitudes — an additional active portion which is much larger than the passive component. Since ouabain is a specific inhibitor of the Na-K-ATPase, our results confirm previous findings (Siebers et al., 1985) that the basolaterally located Na-K-ATPase generates the transepithelial potential difference in the gills, which is inside negative by about 6 12 mV. Inhibition of the active portion of sodium influx by internal ouabain along with reduced PDs suggests that transepithelial PDs generated by the branchial sodium pump are the driving force for active sodium uptake in hyperregulating brackish water crabs.
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni
2011-01-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2011-02-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
Systematic analysis of CMOS-micromachined inductors with application to mixer matching circuits
NASA Astrophysics Data System (ADS)
Wu, Jerry Chun-Li
The growing demand for consumer voice and data communication systems and military communication applications has created a need for low-power, low-cost, high-performance radio-frequency (RF) front-end. To achieve this goal, bringing passive components, especially inductors, to silicon is imperative. On-chip passive components such as inductors and capacitors generally enhance the reliability and efficiency of silicon-integrated RF cells. They can provide circuit solutions with superior performance and contribute to a higher level of integration. With passive components on chip, there is a great opportunity to have transformers, filters, and matching networks on chip. However, inductors on silicon have a low quality factor (Q) due to both substrate and metal loss. This dissertation demonstrates the systematic analysis of inductors fabricated using standard complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical (MEMS) system technologies. We report system-on-chip inductor modeling, simulation, and measurements of effective inductance and quality factors. In this analysis methodology, a number of systematic simulations are performed on regular and micromachined inductors with different parameters such as spiral topology, number of turns, outer diameter, thickness, and percentage of substrate removed by using micromachining technologies. Three different novel support structures of the micromachined spiral inductor are proposed, analyzed, and implemented for larger size suspended inductors. The sensitivity of the structure support and different degree of substrate etching by post-processing is illustrated. The results provide guidelines for the selection of inductor parameters, post-processing methodologies, and its spiral supports to meet the RF design specifications and the stability requirements for mobile communication. The proposed CMOS-micromachined inductor is used in a low cost-effective double-balanced Gilbert mixer with on-chip matching network. The integrated mixer inductor was implemented and tested to prove the concept.
A Study of 4-level DC-DC Boost Inverter with Passive Component Reduction Consideration
NASA Astrophysics Data System (ADS)
Kasiran, A. N.; Ponniran, A.; Harimon, M. A.; Hamzah, H. H.
2018-04-01
This study is to analyze design principles of boost inductor and capacitor used in the 4-level DC-DC boost converter to realize size reduction of passive component referring to their attributes. The important feature of this circuit is that most of the boost-up energy is transferred from the capacitor-clamped to the output side which the small inductance can be used at the input side. The inductance of the boost inductor is designed by referring the inductor current ripple. On the other hand, the capacitance of the capacitor-clamped is designed by considering voltage stress on semiconductor devices and also the used switching frequency. Besides that, according to the design specifications, the required inductance in 4-level DC-DC boost converter is decreased compared to a conventional conventional DC-DC boost converter. Meanwhile, voltage stress on semiconductor device is depending on the maximum voltage ripple of the capacitor-clamped. A 50 W 4-level DC-DC boost converter prototype has been constructed. The results show that the inductor current ripple was 1.15 A when the inductors, 1 mH and 0.11 mH were used in the conventional and 4-level DC-DC boost converters, respectively. Thus, based on the experimental results, it shows that the reduction of passive components by referring to their attributes in 4-level DC-DC boost converter is achieved. Moreover, the decreasing of voltage stress on the semiconductor devices is an advantage for the selection of low ON-resistance of the devices which will contribute to the reduction of the semiconductor conduction loss. The integration result of boost converter and H-bridge inverter is also shown.
Krzyścin, Mariola; Dera-Szymanowska, Anna; Napierała, Marta; Chuchracki, Marek; Markwitz, Wiesław; Breborowicz, Grzegorz H; Florek, Ewa
2015-01-01
In prenatal life the fetus can be exposed to more incentires which affect the mother. In case of both active and passive smoking by pregnant women many pernicious substances contained in tobacco smoke can influence the foetus. The components of tobacco smoke can contribute to various antenatal complications. The aim of present work was to assess if the data given by the patient in anonymous questionnaire go along with the real exposure to components of smoke assessed on the basis of concentration of nicotine metabolite- cotinine in mother's serum and next to assess the risk of development of gestational hypertension and hypotrophy. The biological material was extracted with means of liquid-liquid technique and next we performed laboratory determinations with means of liquid chro- matography with sectrophotometric detection, in which norephedrine is used as inner sample. The study was carried out on 106 women in perinatal period who give birth from single, full term pregnancy. On the basis of questionnaire data considering the concentration of cotinine, the patients were divided into three groups: I group--active smokers (n = 27), II group--passive smokers (n = 32), III group--not exposed to tobacco smoke (n = 41). The average concentration of cotinine in blood serum in the first group was 129.6 ng/ml, second group--5.1 ng/ ml, but in all patients from the control group the concentration of cotinine was below the detection level. Gestational hypertension was diagnosed in 17 women (16%) and hypotrophy of the foetus was diagnosed in 15 patients (14%). Tobacco smoking didn't influence the development of gestational hypertension and hypotrophy showered it is more often observed in women exposed to components of tobacco smoke during pregnancy.
Discrete Wavelet Transform for Fault Locations in Underground Distribution System
NASA Astrophysics Data System (ADS)
Apisit, C.; Ngaopitakkul, A.
2010-10-01
In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.
1983-01-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.
1983-09-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
Gaussian-modulated coherent-state measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei
2014-04-01
Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.
Metallo-supramolecular modules as a paradigm for materials science
Kurth, Dirk G.
2008-01-01
Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science. PMID:27877929
Fabry-Perot confocal resonator optical associative memory
NASA Astrophysics Data System (ADS)
Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.
1993-03-01
A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.
32 CFR 34.11 - Standards for financial management systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...
32 CFR 34.11 - Standards for financial management systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...
32 CFR 34.11 - Standards for financial management systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...
32 CFR 34.11 - Standards for financial management systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...
75 FR 62436 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... Power Plants,'' includes in its scope safety- related structures, systems, and components (SSCs) that... monitor the effectiveness of maintenance for protective coatings within its scope (as discrete systems or... and Management System (ADAMS) under Accession No. ML102230359. Electronic copies of Regulatory Guide 1...
Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints
NASA Astrophysics Data System (ADS)
Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.
2012-03-01
Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.
NASA Astrophysics Data System (ADS)
Sinha, Pampa; Nath, Sudipta
2010-10-01
The main aspects of power system delivery are reliability and quality. If all the customers of a power system get uninterrupted power through the year then the system is considered to be reliable. The term power quality may be referred to as maintaining near sinusoidal voltage at rated frequency at the consumers end. The power component definitions are defined according to the IEEE Standard 1459-2000 both for single phase and three phase unbalanced systems based on Fourier Transform (FFT). In the presence of nonstationary power quality (PQ) disturbances results in accurate values due to its sensitivity to the spectral leakage problem. To overcome these limitations the power quality components are calculated using Discrete Wavelet Transform (DWT). In order to handle the uncertainties associated with electric power systems operations fuzzy logic has been incorporated in this paper. A new power quality index has been introduced here which can assess the power quality under nonstationary disturbances.
Discrete-vortex simulation of pulsating flow on a turbulent leading-edge separation bubble
NASA Technical Reports Server (NTRS)
Sung, Hyung Jin; Rhim, Jae Wook; Kiya, Masaru
1992-01-01
Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream with a pulsating component. The discrete-vortex method is applied to simulate this flow situation because this approach is effective for representing the unsteady motions of the turbulent shear layer and the effect of viscosity near the solid surface. The numerical simulation provides reasonable predictions when compared with the experimental results. A particular frequency with a minimum reattachment is related to the drag reduction. The most effective frequency is dependent on the amplified shedding frequency. The turbulent flow structure is scrutinized. This includes the time-mean and fluctuations of the velocity and the surface pressure, together with correlations between the fluctuating components. A comparison between the pulsating flow and the non-pulsating flow at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale vortical structure is associated with the shedding frequency and the flow instabilities.
Osche, G R
2000-08-20
Single- and multiple-pulse detection statistics are presented for aperture-averaged direct detection optical receivers operating against partially developed speckle fields. A partially developed speckle field arises when the probability density function of the received intensity does not follow negative exponential statistics. The case of interest here is the target surface that exhibits diffuse as well as specular components in the scattered radiation. An approximate expression is derived for the integrated intensity at the aperture, which leads to single- and multiple-pulse discrete probability density functions for the case of a Poisson signal in Poisson noise with an additive coherent component. In the absence of noise, the single-pulse discrete density function is shown to reduce to a generalized negative binomial distribution. The radar concept of integration loss is discussed in the context of direct detection optical systems where it is shown that, given an appropriate set of system parameters, multiple-pulse processing can be more efficient than single-pulse processing over a finite range of the integration parameter n.
2007-12-01
model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality. 15. NUMBER OF...and a Behavioral model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality...prototypes an architectural design which is generalizable, reusable, and extensible. We have created an initial set of model elements that demonstrate
Discrete Event Simulation Modeling and Analysis of Key Leader Engagements
2012-06-01
to offer. GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK , which give probabilities for being corrupt, having key leader...HandleMessageRequest component. The same parameter constraints apply to these four parameters. The parameter pRK is the same parameter from the CreatePlayers component...whether the local Green player has resource critical knowledge by using the parameter pRK . It schedules an EndResourceKnowledgeRequest event, passing
Shin, Won-Ho; Yang, Se-Hoon; Kwon, Do-Hoon; Han, Sang-Kook
2016-10-31
We propose a self-reverse-biased solar panel optical receiver for energy harvesting and visible light communication. Since the solar panel converts an optical component into an electrical component, it provides both energy harvesting and communication. The signal component can be separated from the direct current component, and these components are used for communication and energy harvesting. We employed a self-reverse-biased receiver circuit to improve the communication and energy harvesting performance. The reverse bias on the solar panel improves the responsivity and response time. The proposed system achieved 17.05 mbps discrete multitone transmission with a bit error rate of 1.1 x 10-3 and enhanced solar energy conversion efficiency.
Monolithic FET structures for high-power control component applications
NASA Astrophysics Data System (ADS)
Shifrin, Mitchell B.; Katzin, Peter J.; Ayasli, Yalcin
1989-12-01
A monolithic FET switch is described that can be integrated with other monolithic functions or used as a discrete component in a microwave integrated circuit structure. This device increases the power-handling capability of the conventional single FET switch by an order of magnitude. It does this by overcoming the breakdown voltage limitation of the FET device. The design, fabrication, and performance of two high-power control components using these circuits are described as examples of the implementation of this technology. They are an L-band terminated single-pole, single-throw (SPST) switch and an L-band limiter).
Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn
We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.
NASA Astrophysics Data System (ADS)
Liu, Mengqi; Liu, Haijun; Wang, Zhikai
2017-01-01
Traditional LCL grid-tied converters haven't the ability to limit the short-circuit fault current and only remove grid-connected converter using the breaker. However, the VSC converters become uncontrollable after the short circuit fault cutting off and the power switches may be damaged if the circuit breaker removes slowly. Compared to the filter function of the LCL passive components in traditional VSC converters, the novel LCL-VSC converter has the ability of limiting the short circuit fault current using the reasonable designed LCL parameters. In this paper the mathematical model of the LCL converter is established and the characteristics of the short circuit fault current generated by the ac side and dc side are analyzed. Thus one design and optimization scheme of the reasonable LCL passive parameter is proposed for the LCL-VSC converter having short circuit fault current limiting ability. In addition to ensuring the LCL passive components filtering the high-frequency harmonic, this scheme also considers the impedance characteristics to limit the fault current of AC and DC short circuit fault respectively flowing through the power switch no more than the maximum allowable operating current, in order to make the LCL converter working continuously. Finally, the 200kW simulation system is set up to prove the validity and feasibility of the theoretical analysis using the proposed design and optimization scheme.
Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.
Diomidis, N; Mischler, S; More, N S; Roy, Manish
2012-02-01
Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Schrader, Lukas; Helanterä, Heikki; Oettler, Jan
2017-03-01
Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior-a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Imitating expressions: emotion-specific neural substrates in facial mimicry.
Lee, Tien-Wen; Josephs, Oliver; Dolan, Raymond J; Critchley, Hugo D
2006-09-01
Intentionally adopting a discrete emotional facial expression can modulate the subjective feelings corresponding to that emotion; however, the underlying neural mechanism is poorly understood. We therefore used functional brain imaging (functional magnetic resonance imaging) to examine brain activity during intentional mimicry of emotional and non-emotional facial expressions and relate regional responses to the magnitude of expression-induced facial movement. Eighteen healthy subjects were scanned while imitating video clips depicting three emotional (sad, angry, happy), and two 'ingestive' (chewing and licking) facial expressions. Simultaneously, facial movement was monitored from displacement of fiducial markers (highly reflective dots) on each subject's face. Imitating emotional expressions enhanced activity within right inferior prefrontal cortex. This pattern was absent during passive viewing conditions. Moreover, the magnitude of facial movement during emotion-imitation predicted responses within right insula and motor/premotor cortices. Enhanced activity in ventromedial prefrontal cortex and frontal pole was observed during imitation of anger, in ventromedial prefrontal and rostral anterior cingulate during imitation of sadness and in striatal, amygdala and occipitotemporal during imitation of happiness. Our findings suggest a central role for right inferior frontal gyrus in the intentional imitation of emotional expressions. Further, by entering metrics for facial muscular change into analysis of brain imaging data, we highlight shared and discrete neural substrates supporting affective, action and social consequences of somatomotor emotional expression.
Monitoring Organic Contaminant Fluxes Following Dam Removal Utilizing Passive Sampler Technology
Restoration of riverine habitats and their associated ecosystems is a growing priority for government agencies (e.g., USEPA, NOAA, USDA), as well as non-profit conservation organizations (e.g., American Rivers). Dam removal is a major component of many restoration projects credi...
Thermal control on the lunar surface
NASA Technical Reports Server (NTRS)
Walker, Sherry T.; Alexander, Reginald A.; Tucker, Stephen P.
1995-01-01
For a mission to the Moon which lasts more than a few days, thermal control is a challenging problem because of the Moon's wide temperature swings and long day and night periods. During the lunar day it is difficult to reject heat temperatures low enough to be comfortable for either humans or electronic components, while excessive heat loss can damage unprotected equipment at night. Fluid systems can readily be designed to operate at either the hot or cold temperature extreme but it is more difficult to accomodate both extermes within the same system. Special consideration should be given to sensitive systems, such as optics and humans, and systems that generate large amounts of waste heat, such as lunar bases or manufacturing facilities. Passive thermal control systems such as covers, shades and optical coatings can be used to mitigate the temperature swings experienced by components. For more precise thermal control active systems such as heaters or heat pumps are required although they require more power than passive systems.
Effects of musical training on sound pattern processing in high-school students.
Wang, Wenjung; Staffaroni, Laura; Reid, Errold; Steinschneider, Mitchell; Sussman, Elyse
2009-05-01
Recognizing melody in music involves detection of both the pitch intervals and the silence between sequentially presented sounds. This study tested the hypothesis that active musical training in adolescents facilitates the ability to passively detect sequential sound patterns compared to musically non-trained age-matched peers. Twenty adolescents, aged 15-18 years, were divided into groups according to their musical training and current experience. A fixed order tone pattern was presented at various stimulus rates while electroencephalogram was recorded. The influence of musical training on passive auditory processing of the sound patterns was assessed using components of event-related brain potentials (ERPs). The mismatch negativity (MMN) ERP component was elicited in different stimulus onset asynchrony (SOA) conditions in non-musicians than musicians, indicating that musically active adolescents were able to detect sound patterns across longer time intervals than age-matched peers. Musical training facilitates detection of auditory patterns, allowing the ability to automatically recognize sequential sound patterns over longer time periods than non-musical counterparts.
Quality control of FWC during assembly and commissioning in SST-1 Tokamak
NASA Astrophysics Data System (ADS)
Patel, Hitesh; Santra, Prosenjit; Parekh, Tejas; Biswas, Prabal; Jayswal, Snehal; Chauhan, Pradeep; Paravastu, Yuvakiran; George, Siju; Semwal, Pratibha; Thankey, Prashant; Ramesh, Gattu; Prakash, Arun; Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Pradhan, Subrata
2017-04-01
First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma, comprises of limiters, divertors, baffles, passive stabilizers designed to operate long duration (∼1000 s) discharges of elongated plasma. All FWC consist of copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at inter-connected ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a rigorous quality control and checks at every stage of the assembly process. This paper will present the quality control aspects and checks of FWC from commencement of assembly procedure, namely material test reports, leak testing of high temperature baked components, assembled dimensional tolerances, leak testing of all welded joints, graphite tile tightening torques, electrical continuity and electrical isolation of passive stabilizers from vacuum vessel, baking and cooling hydraulic connections inside vacuum vessel.
Design and Analysis of a Micromachined LC Low Pass Filter For 2.4GHz Application
NASA Astrophysics Data System (ADS)
Saroj, Samruddhi R.; Rathee, Vishal R.; Pande, Rajesh S.
2018-02-01
This paper reports design and analysis of a passive low pass filter with cut-off frequency of 2.4 GHz using MEMS (Micro Electro-Mechanical Systems) technology. The passive components such as suspended spiral inductors and metal-insulator-metal (MIM) capacitor are arranged in T network form to implement LC low pass filter design. This design employs a simple approach of suspension thereby reducing parasitic losses to eliminate the performance degrading effects caused by integrating an off-chip inductor in the filter circuit proposed to be developed on a low cost silicon substrate using RF-MEMS components. The filter occupies only 2.1 mm x 0.66 mm die area and is designed using micro-strip transmission line placed on a silicon substrate. The design is implemented in High Frequency Structural Simulator (HFSS) software and fabrication flow is proposed for its implementation. The simulated results show that the design has an insertion loss of -4.98 dB and return loss of -2.60dB.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Lawrence, Charles; Lin, Yueh-Jaw
1994-01-01
This paper presents the development of a general-purpose fuzzy logic (FL) control methodology for isolating the external vibratory disturbances of space-based devices. According to the desired performance specifications, a full investigation regarding the development of an FL controller was done using different scenarios, such as variances of passive reaction-compensating components and external disturbance load. It was shown that the proposed FL controller is robust in that the FL-controlled system closely follows the prespecified ideal reference model. The comparative study also reveals that the FL-controlled system achieves significant improvement in reducing vibrations over passive systems.
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Moore, R. K.; Fung, A. K.
1981-01-01
The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.
Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.
Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki
2016-09-01
To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.
A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members
Ozbey, Burak; Erturk, Vakur B.; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur
2016-01-01
In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615