Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong
2018-07-01
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrennikov, Andrei; Volovich, Yaroslav
We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (butmore » discrete time{exclamation_point}) dynamics is compatible with discrete energy levels.« less
Fermion systems in discrete space-time
NASA Astrophysics Data System (ADS)
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Codimension-Two Bifurcation, Chaos and Control in a Discrete-Time Information Diffusion Model
NASA Astrophysics Data System (ADS)
Ren, Jingli; Yu, Liping
2016-12-01
In this paper, we present a discrete model to illustrate how two pieces of information interact with online social networks and investigate the dynamics of discrete-time information diffusion model in three types: reverse type, intervention type and mutualistic type. It is found that the model has orbits with period 2, 4, 6, 8, 12, 16, 20, 30, quasiperiodic orbit, and undergoes heteroclinic bifurcation near 1:2 point, a homoclinic structure near 1:3 resonance point and an invariant cycle bifurcated by period 4 orbit near 1:4 resonance point. Moreover, in order to regulate information diffusion process and information security, we give two control strategies, the hybrid control method and the feedback controller of polynomial functions, to control chaos, flip bifurcation, 1:2, 1:3 and 1:4 resonances, respectively, in the two-dimensional discrete system.
Fast maximum likelihood estimation using continuous-time neural point process models.
Lepage, Kyle Q; MacDonald, Christopher J
2015-06-01
A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.
Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure
NASA Astrophysics Data System (ADS)
Diethert, A.; Finster, F.; Schiefeneder, D.
As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.
A Brownian Bridge Movement Model to Track Mobile Targets
2016-09-01
breakout of Chinese forces in the South China Sea. Probability heat maps, depicting the probability of a target location at discrete times, are...achieve a higher probability of detection, it is more effective to have sensors cover a wider area at fewer discrete points in time than to have a...greater number of discrete looks using sensors covering smaller areas. 14. SUBJECT TERMS Brownian bridge movement models, unmanned sensors
Discretization and control of an SEIR epidemic model under equilibrium Wiener noise disturbances
NASA Astrophysics Data System (ADS)
Alonso, Santiago; De la Sen, Manuel; Nistal, Raul; Ibeas, Asier
2017-11-01
A discretized SEIR epidemic model, subject to Wiener noise disturbances of the equilibrium points, is studied. The discrete-time model is got from a general discretization technique applied to its continuous-time counterpart so that its behaviour be close to its continuous-time counterpart irrespective of the size of the discretization period. The positivity and stability of a normalized version of such a discrete-time model are emphasized. The paper also proposes the design of a periodic impulsive vaccination which is periodically injected to the susceptible subpopulation in order to eradicate the propagation of the disease or, at least, to reduce its unsuitable infective effects within the potentially susceptible subpopulation. The existence and asymptotic stability of a disease-free periodic solution are proved. In particular, both the exposed and infectious subpopulations converge asymptotically to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization oscillate.
Robust inference in discrete hazard models for randomized clinical trials.
Nguyen, Vinh Q; Gillen, Daniel L
2012-10-01
Time-to-event data in which failures are only assessed at discrete time points are common in many clinical trials. Examples include oncology studies where events are observed through periodic screenings such as radiographic scans. When the survival endpoint is acknowledged to be discrete, common methods for the analysis of observed failure times include the discrete hazard models (e.g., the discrete-time proportional hazards and the continuation ratio model) and the proportional odds model. In this manuscript, we consider estimation of a marginal treatment effect in discrete hazard models where the constant treatment effect assumption is violated. We demonstrate that the estimator resulting from these discrete hazard models is consistent for a parameter that depends on the underlying censoring distribution. An estimator that removes the dependence on the censoring mechanism is proposed and its asymptotic distribution is derived. Basing inference on the proposed estimator allows for statistical inference that is scientifically meaningful and reproducible. Simulation is used to assess the performance of the presented methodology in finite samples.
Scalar discrete nonlinear multipoint boundary value problems
NASA Astrophysics Data System (ADS)
Rodriguez, Jesus; Taylor, Padraic
2007-06-01
In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].
Discrete-time bidirectional associative memory neural networks with variable delays
NASA Astrophysics Data System (ADS)
Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.
2005-02-01
Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.
Simultaneous optical flow and source estimation: Space–time discretization and preconditioning
Andreev, R.; Scherzer, O.; Zulehner, W.
2015-01-01
We consider the simultaneous estimation of an optical flow field and an illumination source term in a movie sequence. The particular optical flow equation is obtained by assuming that the image intensity is a conserved quantity up to possible sources and sinks which represent varying illumination. We formulate this problem as an energy minimization problem and propose a space–time simultaneous discretization for the optimality system in saddle-point form. We investigate a preconditioning strategy that renders the discrete system well-conditioned uniformly in the discretization resolution. Numerical experiments complement the theory. PMID:26435561
On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination
NASA Astrophysics Data System (ADS)
Alonso-Quesada, S.; De la Sen, M.; Ibeas, A.
2017-01-01
This paper deals with the discretization and control of an SEIR epidemic model. Such a model describes the transmission of an infectious disease among a time-varying host population. The model assumes mortality from causes related to the disease. Our study proposes a discretization method including a free-design parameter to be adjusted for guaranteeing the positivity of the resulting discrete-time model. Such a method provides a discrete-time model close to the continuous-time one without the need for the sampling period to be as small as other commonly used discretization methods require. This fact makes possible the design of impulsive vaccination control strategies with less burden of measurements and related computations if one uses the proposed instead of other discretization methods. The proposed discretization method and the impulsive vaccination strategy designed on the resulting discretized model are the main novelties of the paper. The paper includes (i) the analysis of the positivity of the obtained discrete-time SEIR model, (ii) the study of stability of the disease-free equilibrium point of a normalized version of such a discrete-time model and (iii) the existence and the attractivity of a globally asymptotically stable disease-free periodic solution under a periodic impulsive vaccination. Concretely, the exposed and infectious subpopulations asymptotically converge to zero as time tends to infinity while the normalized subpopulations of susceptible and recovered by immunization individuals oscillate in the context of such a solution. Finally, a numerical example illustrates the theoretic results.
Convergence of discrete Aubry–Mather model in the continuous limit
NASA Astrophysics Data System (ADS)
Su, Xifeng; Thieullen, Philippe
2018-05-01
We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry–Mather–Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax–Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29–55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions.
Contact-aware simulations of particulate Stokesian suspensions
NASA Astrophysics Data System (ADS)
Lu, Libin; Rahimian, Abtin; Zorin, Denis
2017-10-01
We present an efficient, accurate, and robust method for simulation of dense suspensions of deformable and rigid particles immersed in Stokesian fluid in two dimensions. We use a well-established boundary integral formulation for the problem as the foundation of our approach. This type of formulation, with a high-order spatial discretization and an implicit and adaptive time discretization, have been shown to be able to handle complex interactions between particles with high accuracy. Yet, for dense suspensions, very small time-steps or expensive implicit solves as well as a large number of discretization points are required to avoid non-physical contact and intersections between particles, leading to infinite forces and numerical instability. Our method maintains the accuracy of previous methods at a significantly lower cost for dense suspensions. The key idea is to ensure interference-free configuration by introducing explicit contact constraints into the system. While such constraints are unnecessary in the formulation, in the discrete form of the problem, they make it possible to eliminate catastrophic loss of accuracy by preventing contact explicitly. Introducing contact constraints results in a significant increase in stable time-step size for explicit time-stepping, and a reduction in the number of points adequate for stability.
Comparisons of discrete and integrative sampling accuracy in estimating pulsed aquatic exposures.
Morrison, Shane A; Luttbeg, Barney; Belden, Jason B
2016-11-01
Most current-use pesticides have short half-lives in the water column and thus the most relevant exposure scenarios for many aquatic organisms are pulsed exposures. Quantifying exposure using discrete water samples may not be accurate as few studies are able to sample frequently enough to accurately determine time-weighted average (TWA) concentrations of short aquatic exposures. Integrative sampling methods that continuously sample freely dissolved contaminants over time intervals (such as integrative passive samplers) have been demonstrated to be a promising measurement technique. We conducted several modeling scenarios to test the assumption that integrative methods may require many less samples for accurate estimation of peak 96-h TWA concentrations. We compared the accuracies of discrete point samples and integrative samples while varying sampling frequencies and a range of contaminant water half-lives (t 50 = 0.5, 2, and 8 d). Differences the predictive accuracy of discrete point samples and integrative samples were greatest at low sampling frequencies. For example, when the half-life was 0.5 d, discrete point samples required 7 sampling events to ensure median values > 50% and no sampling events reporting highly inaccurate results (defined as < 10% of the true 96-h TWA). Across all water half-lives investigated, integrative sampling only required two samples to prevent highly inaccurate results and measurements resulting in median values > 50% of the true concentration. Regardless, the need for integrative sampling diminished as water half-life increased. For an 8-d water half-life, two discrete samples produced accurate estimates and median values greater than those obtained for two integrative samples. Overall, integrative methods are the more accurate method for monitoring contaminants with short water half-lives due to reduced frequency of extreme values, especially with uncertainties around the timing of pulsed events. However, the acceptability of discrete sampling methods for providing accurate concentration measurements increases with increasing aquatic half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Northoff, Georg
2016-05-01
William James postulated a "stream of consciousness" that presupposes temporal continuity. The neuronal mechanisms underlying the construction of such temporal continuity remain unclear, however, in my contribution, I propose a neuro-phenomenal hypothesis that is based on slow cortical potentials and their extension of the present moment as described in the phenomenal term of "width of present". More specifically, I focus on the way the brain's neural activity needs to be encoded in order to make possible the "stream of consciousness." This leads us again to the low-frequency fluctuations of the brain's neural activity and more specifically to slow cortical potentials (SCPs). Due to their long phase duration as low-frequency fluctuations, SCPs can integrate different stimuli and their associated neural activity from different regions in one converging region. Such integration may be central for consciousness to occur, as it was recently postulated by He and Raichle. They leave open, however, the question of the exact neuronal mechanisms, like the encoding strategy, that make possible the association of the otherwise purely neuronal SCP with consciousness and its phenomenal features. I hypothesize that SCPs allow for linking and connecting different discrete points in physical time by encoding their statistically based temporal differences rather than the single discrete time points by themselves. This presupposes difference-based coding rather than stimulus-based coding. The encoding of such statistically based temporal differences makes it possible to "go beyond" the merely physical features of the stimuli; that is, their single discrete time points and their conduction delays (as related to their neural processing in the brain). This, in turn, makes possible the constitution of "local temporal continuity" of neural activity in one particular region. The concept of "local temporal continuity" signifies the linkage and integration of different discrete time points into one neural activity in a particular region. How does such local temporal continuity predispose the experience of time in consciousness? For that, I turn to phenomenological philosopher Edmund Husserl and his description of what he calls "inner time consciousness" (Husserl and Brough, 1990). One hallmark of humans' "inner time consciousness" is that we experience events and objects in succession and duration in our consciousness; according to Husserl, this amounts to what he calls the "width of [the] present." The concept of the width of present describes the extension of the present beyond the single discrete time point, such as, for instance, when we perceive different tones as a melody. I now hypothesize the degree of the width of present to be directly dependent upon and thus predisposed by the degree of the temporal differences between two (or more) discrete time points as they are encoded into neural activity. I therefore conclude that the SCPs and their encoding of neural activity in terms of temporal differences must be regarded a neural predisposition of consciousness (NPC) as distinguished from a neural correlate of consciousness (NCC). Copyright © 2015 Elsevier B.V. All rights reserved.
Time-domain damping models in structural acoustics using digital filtering
NASA Astrophysics Data System (ADS)
Parret-Fréaud, Augustin; Cotté, Benjamin; Chaigne, Antoine
2016-02-01
This paper describes a new approach in order to formulate well-posed time-domain damping models able to represent various frequency domain profiles of damping properties. The novelty of this approach is to represent the behavior law of a given material directly in a discrete-time framework as a digital filter, which is synthesized for each material from a discrete set of frequency-domain data such as complex modulus through an optimization process. A key point is the addition of specific constraints to this process in order to guarantee stability, causality and verification of thermodynamics second law when transposing the resulting discrete-time behavior law into the time domain. Thus, this method offers a framework which is particularly suitable for time-domain simulations in structural dynamics and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control and even reduce the distortion effects induced by time-discretization schemes on the frequency response of continuous-time behavior laws.
A High-Resolution Capability for Large-Eddy Simulation of Jet Flows
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2011-01-01
A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.
NASA Astrophysics Data System (ADS)
Alpers, Andreas; Gritzmann, Peter
2018-03-01
We consider the problem of reconstructing the paths of a set of points over time, where, at each of a finite set of moments in time the current positions of points in space are only accessible through some small number of their x-rays. This particular particle tracking problem, with applications, e.g. in plasma physics, is the basic problem in dynamic discrete tomography. We introduce and analyze various different algorithmic models. In particular, we determine the computational complexity of the problem (and various of its relatives) and derive algorithms that can be used in practice. As a byproduct we provide new results on constrained variants of min-cost flow and matching problems.
Distinct timing mechanisms produce discrete and continuous movements.
Huys, Raoul; Studenka, Breanna E; Rheaume, Nicole L; Zelaznik, Howard N; Jirsa, Viktor K
2008-04-25
The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems) to accomplish varying behavioral functions such as speed constraints.
Transitions between discrete and rhythmic primitives in a unimanual task
Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville
2013-01-01
Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139
Stability of Dynamical Systems with Discontinuous Motions:
NASA Astrophysics Data System (ADS)
Michel, Anthony N.; Hou, Ling
In this paper we present a stability theory for discontinuous dynamical systems (DDS): continuous-time systems whose motions are not necessarily continuous with respect to time. We show that this theory is not only applicable in the analysis of DDS, but also in the analysis of continuous dynamical systems (continuous-time systems whose motions are continuous with respect to time), discrete-time dynamical systems (systems whose motions are defined at discrete points in time) and hybrid dynamical systems (HDS) (systems whose descriptions involve simultaneously continuous-time and discrete-time). We show that the stability results for DDS are in general less conservative than the corresponding well-known classical Lyapunov results for continuous dynamical systems and discrete-time dynamical systems. Although the DDS stability results are applicable to general dynamical systems defined on metric spaces (divorced from any kind of description by differential equations, or any other kinds of equations), we confine ourselves to finite-dimensional dynamical systems defined by ordinary differential equations and difference equations, to make this paper as widely accessible as possible. We present only sample results, namely, results for uniform asymptotic stability in the large.
Haslinger, Robert; Pipa, Gordon; Brown, Emery
2010-01-01
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time rescaling theorem provides a goodness of fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model’s spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies upon assumptions of continuously defined time and instantaneous events. However spikes have finite width and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time rescaling theorem which analytically corrects for the effects of finite resolution. This allows us to define a rescaled time which is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting Generalized Linear Models (GLMs) to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false positive rate of the KS test and greatly increasing the reliability of model evaluation based upon the time rescaling theorem. PMID:20608868
Haslinger, Robert; Pipa, Gordon; Brown, Emery
2010-10-01
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.; ...
2016-10-19
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Mutual information in the evolution of trajectories in discrete aiming movements.
Lai, Shih-Chiung; Mayer-Kress, Gottfried; Newell, Karl M
2008-07-01
This study investigated the mutual information in the trajectories of discrete aiming movements on a computer controlled graphics tablet where movement time ( 300 - 2050 ms) was manipulated in a given distance (100 mm) and movement distance (15-240 mm) in 2 given movement times (300 ms and 800 ms ). For the distance-fixed conditions, there was higher mutual information in the slower movements in the 0 vs. 80-100% trajectory point comparisons, whereas the mutual information was higher for the faster movements when comparing within the 80 and 100% points of the movement trajectory. For the time-fixed conditions, the spatial constraints led to a decreasing pattern of the mutual information throughout the points of the trajectory, with the highest mutual information found in the 80 vs. 100% comparison. Overall, the pattern of mutual information reveals systematic modulation of the trajectories between the attractive fixed point of the target as a function of movement condition. These mutual information patterns are postulated to be the consequence of the different relative contributions of feedforward and feedback control processes in trajectory formation as a function of task constraints.
Graph transformation method for calculating waiting times in Markov chains.
Trygubenko, Semen A; Wales, David J
2006-06-21
We describe an exact approach for calculating transition probabilities and waiting times in finite-state discrete-time Markov processes. All the states and the rules for transitions between them must be known in advance. We can then calculate averages over a given ensemble of paths for both additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we can calculate the mean first-passage time between arbitrary groups of stationary points for discrete path sampling databases, and hence extract phenomenological rate constants. We present a number of examples to demonstrate the efficiency and robustness of this approach.
Inhomogeneous point-process entropy: An instantaneous measure of complexity in discrete systems
NASA Astrophysics Data System (ADS)
Valenza, Gaetano; Citi, Luca; Scilingo, Enzo Pasquale; Barbieri, Riccardo
2014-05-01
Measures of entropy have been widely used to characterize complexity, particularly in physiological dynamical systems modeled in discrete time. Current approaches associate these measures to finite single values within an observation window, thus not being able to characterize the system evolution at each moment in time. Here, we propose a new definition of approximate and sample entropy based on the inhomogeneous point-process theory. The discrete time series is modeled through probability density functions, which characterize and predict the time until the next event occurs as a function of the past history. Laguerre expansions of the Wiener-Volterra autoregressive terms account for the long-term nonlinear information. As the proposed measures of entropy are instantaneously defined through probability functions, the novel indices are able to provide instantaneous tracking of the system complexity. The new measures are tested on synthetic data, as well as on real data gathered from heartbeat dynamics of healthy subjects and patients with cardiac heart failure and gait recordings from short walks of young and elderly subjects. Results show that instantaneous complexity is able to effectively track the system dynamics and is not affected by statistical noise properties.
Zhao, Kaihong
2018-12-01
In this paper, we study the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. The existence of positive periodic solution is proved by employing the fixed point theorem on cones. By constructing appropriate Lyapunov functional, we also obtain the global exponential stability of the positive periodic solution of this system. As an application, an interesting example is provided to illustrate the validity of our main results.
The Selection of Computed Tomography Scanning Schemes for Lengthy Symmetric Objects
NASA Astrophysics Data System (ADS)
Trinh, V. B.; Zhong, Y.; Osipov, S. P.
2017-04-01
. The article describes the basic computed tomography scan schemes for lengthy symmetric objects: continuous (discrete) rotation with a discrete linear movement; continuous (discrete) rotation with discrete linear movement to acquire 2D projection; continuous (discrete) linear movement with discrete rotation to acquire one-dimensional projection and continuous (discrete) rotation to acquire of 2D projection. The general method to calculate the scanning time is discussed in detail. It should be extracted the comparison principle to select a scanning scheme. This is because data are the same for all scanning schemes: the maximum energy of the X-ray radiation; the power of X-ray radiation source; the angle of the X-ray cone beam; the transverse dimension of a single detector; specified resolution and the maximum time, which is need to form one point of the original image and complies the number of registered photons). It demonstrates the possibilities of the above proposed method to compare the scanning schemes. Scanning object was a cylindrical object with the mass thickness is 4 g/cm2, the effective atomic number is 15 and length is 1300 mm. It analyzes data of scanning time and concludes about the efficiency of scanning schemes. It examines the productivity of all schemes and selects the effective one.
Chaos control in delayed phase space constructed by the Takens embedding theory
NASA Astrophysics Data System (ADS)
Hajiloo, R.; Salarieh, H.; Alasty, A.
2018-01-01
In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.
Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil
2006-06-01
In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.
The objective of this work is to elucidate biological networks underlying cellular tipping points using time-course data. We discretized the high-content imaging (HCI) data and inferred Boolean networks (BNs) that could accurately predict dynamic cellular trajectories. We found t...
Local and global dynamics of Ramsey model: From continuous to discrete time.
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
Local and global dynamics of Ramsey model: From continuous to discrete time
NASA Astrophysics Data System (ADS)
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
On discrete control of nonlinear systems with applications to robotics
NASA Technical Reports Server (NTRS)
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
2011-01-01
Background Rapid discrete goal-directed movements are characterized by a well known coordination pattern between the gaze and the hand displacements. The gaze always starts prior to the hand movement and reaches the target before hand velocity peak. Surprisingly, the effect of the target size on the temporal gaze-hand coordination has not been directly investigated. Moreover, goal-directed movements are often produced in a reciprocal rather than in a discrete manner. The objectives of this work were to assess the effect of the target size on temporal gaze-hand coordination during fast 1) discrete and 2) reciprocal pointings. Methods Subjects performed fast discrete (experiment 1) and reciprocal (experiment 2) pointings with an amplitude of 50 cm and four target diameters (7.6, 3.8, 1.9 and 0.95 cm) leading to indexes of difficulty (ID = log2[2A/D]) of 3.7, 4.7, 5.7 and 6.7 bits. Gaze and hand displacements were synchronously recorded. Temporal gaze-hand coordination parameters were compared between experiments (discrete and reciprocal pointings) and IDs using analyses of variance (ANOVAs). Results Data showed that the magnitude of the gaze-hand lead pattern was much higher for discrete than for reciprocal pointings. Moreover, while it was constant for discrete pointings, it decreased systematically with an increasing ID for reciprocal pointings because of the longer duration of gaze anchoring on target. Conclusion Overall, the temporal gaze-hand coordination analysis revealed that even for high IDs, fast reciprocal pointings could not be considered as a concatenation of discrete units. Moreover, our data clearly illustrate the smooth adaptation of temporal gaze-hand coordination to terminal accuracy requirements during fast reciprocal pointings. It will be interesting for further researches to investigate if the methodology used in the experiment 2 allows assessing the effect of sensori-motor deficits on gaze-hand coordination. PMID:21320315
A space-time discretization procedure for wave propagation problems
NASA Technical Reports Server (NTRS)
Davis, Sanford
1989-01-01
Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.
Discrete Structure-Point Testing: Problems and Alternatives. TESL Reporter, Vol. 9, No. 4.
ERIC Educational Resources Information Center
Aitken, Kenneth G.
This paper presents some reasons for reconsidering the use of discrete structure-point tests of language proficiency, and suggests an alternative basis for designing proficiency tests. Discrete point tests are one of the primary tools of the audio-lingual method of teaching a foreign language and are based on certain assumptions, including the…
Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation
NASA Astrophysics Data System (ADS)
Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.
2012-09-01
The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.
Exact Asymptotics of the Freezing Transition of a Logarithmically Correlated Random Energy Model
NASA Astrophysics Data System (ADS)
Webb, Christian
2011-12-01
We consider a logarithmically correlated random energy model, namely a model for directed polymers on a Cayley tree, which was introduced by Derrida and Spohn. We prove asymptotic properties of a generating function of the partition function of the model by studying a discrete time analogy of the KPP-equation—thus translating Bramson's work on the KPP-equation into a discrete time case. We also discuss connections to extreme value statistics of a branching random walk and a rescaled multiplicative cascade measure beyond the critical point.
Convergence Time towards Periodic Orbits in Discrete Dynamical Systems
San Martín, Jesús; Porter, Mason A.
2014-01-01
We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice. PMID:24736594
Implementing system simulation of C3 systems using autonomous objects
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1987-01-01
The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.
An Optimal Parameter Discretization Strategy for Multiple Model Adaptive Estimation and Control
1989-12-01
Zicker . MMAE-Based Control with Space- Time Point Process Observations. IEEE Transactions on Aerospace and Elec- tronic Systems, AES-21 (3):292-300, 1985...Transactions of the Conference of Army Math- ematicians, Bethesda MD, 1982. (AD-POO1 033). 65. William L. Zicker . Pointing and Tracking of Particle
Wang, Tao; Huang, Jiang-hua; Lin, Lin; Zhan, Chang'an A
2013-01-01
To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.
NASA Astrophysics Data System (ADS)
Muhiddin, F. A.; Sulaiman, J.
2017-09-01
The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.
Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.
Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo
2018-04-01
In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.
NASA Astrophysics Data System (ADS)
Ward, A. J.; Pendry, J. B.
2000-06-01
In this paper we present an updated version of our ONYX program for calculating photonic band structures using a non-orthogonal finite difference time domain method. This new version employs the same transparent formalism as the first version with the same capabilities for calculating photonic band structures or causal Green's functions but also includes extra subroutines for the calculation of transmission and reflection coefficients. Both the electric and magnetic fields are placed onto a discrete lattice by approximating the spacial and temporal derivatives with finite differences. This results in discrete versions of Maxwell's equations which can be used to integrate the fields forwards in time. The time required for a calculation using this method scales linearly with the number of real space points used in the discretization so the technique is ideally suited to handling systems with large and complicated unit cells.
Explore Stochastic Instabilities of Periodic Points by Transition Path Theory
NASA Astrophysics Data System (ADS)
Cao, Yu; Lin, Ling; Zhou, Xiang
2016-06-01
We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.
The detection and analysis of point processes in biological signals
NASA Technical Reports Server (NTRS)
Anderson, D. J.; Correia, M. J.
1977-01-01
A pragmatic approach to the detection and analysis of discrete events in biomedical signals is taken. Examples from both clinical and basic research are provided. Introductory sections discuss not only discrete events which are easily extracted from recordings by conventional threshold detectors but also events embedded in other information carrying signals. The primary considerations are factors governing event-time resolution and the effects limits to this resolution have on the subsequent analysis of the underlying process. The analysis portion describes tests for qualifying the records as stationary point processes and procedures for providing meaningful information about the biological signals under investigation. All of these procedures are designed to be implemented on laboratory computers of modest computational capacity.
Variationally consistent discretization schemes and numerical algorithms for contact problems
NASA Astrophysics Data System (ADS)
Wohlmuth, Barbara
We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of possible applications and show the performance of the space discretization scheme, non-linear solver, adaptive refinement process and time integration.
Moving Average Models with Bivariate Exponential and Geometric Distributions.
1985-03-01
ordinary time series and of point processes. Developments in Statistics, Vol. 1, P.R. Krishnaiah , ed. Academic Press, New York. [9] Esary, J.D. and...valued and discrete - valued time series with ARMA correlation structure. Multivariate Analysis V, P.R. Krishnaiah , ed. North-Holland. 151-166. [28
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept. /Boston U.; Dymarsky, Anatoly
2012-06-06
We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber.more » We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.« less
Recurrence plots of discrete-time Gaussian stochastic processes
NASA Astrophysics Data System (ADS)
Ramdani, Sofiane; Bouchara, Frédéric; Lagarde, Julien; Lesne, Annick
2016-09-01
We investigate the statistical properties of recurrence plots (RPs) of data generated by discrete-time stationary Gaussian random processes. We analytically derive the theoretical values of the probabilities of occurrence of recurrence points and consecutive recurrence points forming diagonals in the RP, with an embedding dimension equal to 1. These results allow us to obtain theoretical values of three measures: (i) the recurrence rate (REC) (ii) the percent determinism (DET) and (iii) RP-based estimation of the ε-entropy κ(ε) in the sense of correlation entropy. We apply these results to two Gaussian processes, namely first order autoregressive processes and fractional Gaussian noise. For these processes, we simulate a number of realizations and compare the RP-based estimations of the three selected measures to their theoretical values. These comparisons provide useful information on the quality of the estimations, such as the minimum required data length and threshold radius used to construct the RP.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
Loop transfer recovery for general nonminimum phase discrete time systems. I - Analysis
NASA Technical Reports Server (NTRS)
Chen, Ben M.; Saberi, Ali; Sannuti, Peddapullaiah; Shamash, Yacov
1992-01-01
A complete analysis of loop transfer recovery (LTR) for general nonstrictly proper, not necessarily minimum phase discrete time systems is presented. Three different observer-based controllers, namely, `prediction estimator' and full or reduced-order type `current estimator' based controllers, are used. The analysis corresponding to all these three controllers is unified into a single mathematical framework. The LTR analysis given here focuses on three fundamental issues: (1) the recoverability of a target loop when it is arbitrarily given, (2) the recoverability of a target loop while taking into account its specific characteristics, and (3) the establishment of necessary and sufficient conditions on the given system so that it has at least one recoverable target loop transfer function or sensitivity function. Various differences that arise in LTR analysis of continuous and discrete systems are pointed out.
Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models.
Franke, John E; Yakubu, Abdul-Aziz
2008-12-01
The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark-Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.
Detecting multiple moving objects in crowded environments with coherent motion regions
Cheriyadat, Anil M.; Radke, Richard J.
2013-06-11
Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.
SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.
Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P
2013-12-01
Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.
Real-time measurement of quality during the compaction of subgrade soils.
DOT National Transportation Integrated Search
2012-12-01
Conventional quality control of subgrade soils during their compaction is usually performed by monitoring moisture content and dry density at a few discrete locations. However, randomly selected points do not adequately represent the entire compacted...
A pseudospectral Legendre method for hyperbolic equations with an improved stability condition
NASA Technical Reports Server (NTRS)
Tal-Ezer, Hillel
1986-01-01
A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid points are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.
Discretized energy minimization in a wave guide with point sources
NASA Technical Reports Server (NTRS)
Propst, G.
1994-01-01
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.
Stability of discrete time recurrent neural networks and nonlinear optimization problems.
Singh, Jayant; Barabanov, Nikita
2016-02-01
We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of these essentially nonlinear systems produce rather weak results. The method mentioned above is proved to be more powerful. It involves a multi-step procedure with maximization of special nonconvex functions over polytopes on every step. We derive conditions which guarantee an existence of at most one point of local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of neuron transfer functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Classical integrable defects as quasi Bäcklund transformations
NASA Astrophysics Data System (ADS)
Doikou, Anastasia
2016-10-01
We consider the algebraic setting of classical defects in discrete and continuous integrable theories. We derive the ;equations of motion; on the defect point via the space-like and time-like description. We then exploit the structural similarity of these equations with the discrete and continuous Bäcklund transformations. And although these equations are similar they are not exactly the same to the Bäcklund transformations. We also consider specific examples of integrable models to demonstrate our construction, i.e. the Toda chain and the sine-Gordon model. The equations of the time (space) evolution of the defect (discontinuity) degrees of freedom for these models are explicitly derived.
Li, Hui
2009-11-14
Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.
Sampled control stability of the ESA instrument pointing system
NASA Astrophysics Data System (ADS)
Thieme, G.; Rogers, P.; Sciacovelli, D.
Stability analysis and simulation results are presented for the ESA Instrument Pointing System (IPS) that is to be used in Spacelab's second launch. Of the two IPS plant dynamic models used in the ESA and NASA activities, one is based on six interconnected rigid bodies that represent the IPS and plant dynamic models used in the ESA and NASA activities, one is based on six interconnected rigid bodies that represent the IPS and its payload, while the other follows the NASA practice of defining an IPS-Spacelab 2 plant configuration through a structural finite element model, which is then used to generate modal data for various pointing directions. In both cases, the IPS dynamic plant model is truncated, then discretized at the sampling frequency and interfaces to a PID-based control law. A stability analysis has been carried out in discrete domain for various instrument pointing directions, taking into account suitable parameter variation ranges. A number of time simulations are presented.
USDA-ARS?s Scientific Manuscript database
Methods to monitor microbial contamination typically involve collecting discrete samples at specific time-points and analyzing for a single contaminant. While informative, many of these methods suffer from poor recovery rates and only provide a snapshot of the microbial load at the time of collectio...
Long-range correlations in time series generated by time-fractional diffusion: A numerical study
NASA Astrophysics Data System (ADS)
Barbieri, Davide; Vivoli, Alessandro
2005-09-01
Time series models showing power law tails in autocorrelation functions are common in econometrics. A special non-Markovian model for such kind of time series is provided by the random walk introduced by Gorenflo et al. as a discretization of time fractional diffusion. The time series so obtained are analyzed here from a numerical point of view in terms of autocorrelations and covariance matrices.
A new PIC noise reduction technique
NASA Astrophysics Data System (ADS)
Barnes, D. C.
2014-10-01
Numerical solution of the Vlasov equation is considered in a general situation in which there is an underlying static solution (equilibrium). There are no further assumptions about dimensionality, smallenss of orbits, or disparate time scales. The semi-characteristic (SC) method for Vlasov solution is described. The usual characteristics of the equation, which are the single particle orbits, are modified in such a way that the equilibrium phase-space flow is removed. In this way, the shot noise introduced by the usual discrete particle representation of the equilibrium is static in time and can be removed completely by subtraction. An almost exact algorithm for this is based on the observation that a (infinitesimal or) discrete time step of any equilibrium MC realization is again a realization of the equilibrium, building up strings of associated simulation particles. In this way, the only added discretization error arises from the need to extrapolate backward in time the chain end points one dt using a canonical transformation. Previously developed energy-conserving time-implicit methods are applied without modification. 1D ES examples of Landau damping and velocity-space instability are given to illustrate the method.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph
2014-01-01
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph
2015-01-01
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal. PMID:25620928
The short time Fourier transform and local signals
NASA Astrophysics Data System (ADS)
Okumura, Shuhei
In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.
Time as a dimension of the sample design in national-scale forest inventories
Francis Roesch; Paul Van Deusen
2013-01-01
Historically, the goal of forest inventories has been to determine the extent of the timber resource. Predictions of how the resource was changing were made by comparing differences between successive inventories. The general view of the associated sample design was with selection probabilities based on land area observed at a discrete point in time. Time was not...
Quasipolynomial generalization of Lotka-Volterra mappings
NASA Astrophysics Data System (ADS)
Hernández-Bermejo, Benito; Brenig, Léon
2002-07-01
In recent years, it has been shown that Lotka-Volterra mappings constitute a valuable tool from both the theoretical and the applied points of view, with developments in very diverse fields such as physics, population dynamics, chemistry and economy. The purpose of this work is to demonstrate that many of the most important ideas and algebraic methods that constitute the basis of the quasipolynomial formalism (originally conceived for the analysis of ordinary differential equations) can be extended into the mapping domain. The extension of the formalism into the discrete-time context is remarkable as far as the quasipolynomial methodology had never been shown to be applicable beyond the differential case. It will be demonstrated that Lotka-Volterra mappings play a central role in the quasipolynomial formalism for the discrete-time case. Moreover, the extension of the formalism into the discrete-time domain allows a significant generalization of Lotka-Volterra mappings as well as a whole transfer of algebraic methods into the discrete-time context. The result is a novel and more general conceptual framework for the understanding of Lotka-Volterra mappings as well as a new range of possibilities that become open not only for the theoretical analysis of Lotka-Volterra mappings and their generalizations, but also for the development of new applications.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
An Improved Method for Real-Time 3D Construction of DTM
NASA Astrophysics Data System (ADS)
Wei, Yi
This paper discusses the real-time optimal construction of DTM by two measures. One is to improve coordinate transformation of discrete points acquired from lidar, after processing a total number of 10000 data points, the formula calculation for transformation costs 0.810s, while the table look-up method for transformation costs 0.188s, indicating that the latter is superior to the former. The other one is to adjust the density of the point cloud acquired from lidar, the certain amount of the data points are used for 3D construction in proper proportion in order to meet different needs for 3D imaging, and ultimately increase efficiency of DTM construction while saving system resources.
New fast DCT algorithms based on Loeffler's factorization
NASA Astrophysics Data System (ADS)
Hong, Yoon Mi; Kim, Il-Koo; Lee, Tammy; Cheon, Min-Su; Alshina, Elena; Han, Woo-Jin; Park, Jeong-Hoon
2012-10-01
This paper proposes a new 32-point fast discrete cosine transform (DCT) algorithm based on the Loeffler's 16-point transform. Fast integer realizations of 16-point and 32-point transforms are also provided based on the proposed transform. For the recent development of High Efficiency Video Coding (HEVC), simplified quanti-zation and de-quantization process are proposed. Three different forms of implementation with the essentially same performance, namely matrix multiplication, partial butterfly, and full factorization can be chosen accord-ing to the given platform. In terms of the number of multiplications required for the realization, our proposed full-factorization is 3~4 times faster than a partial butterfly, and about 10 times faster than direct matrix multiplication.
Mathematical construction and perturbation analysis of Zernike discrete orthogonal points.
Shi, Zhenguang; Sui, Yongxin; Liu, Zhenyu; Peng, Ji; Yang, Huaijiang
2012-06-20
Zernike functions are orthogonal within the unit circle, but they are not over the discrete points such as CCD arrays or finite element grids. This will result in reconstruction errors for loss of orthogonality. By using roots of Legendre polynomials, a set of points within the unit circle can be constructed so that Zernike functions over the set are discretely orthogonal. Besides that, the location tolerances of the points are studied by perturbation analysis, and the requirements of the positioning precision are not very strict. Computer simulations show that this approach provides a very accurate wavefront reconstruction with the proposed sampling set.
Krüger, Melanie; Straube, Andreas; Eggert, Thomas
2017-01-01
In recent years, theory-building in motor neuroscience and our understanding of the synergistic control of the redundant human motor system has significantly profited from the emergence of a range of different mathematical approaches to analyze the structure of movement variability. Approaches such as the Uncontrolled Manifold method or the Noise-Tolerance-Covariance decomposition method allow to detect and interpret changes in movement coordination due to e.g., learning, external task constraints or disease, by analyzing the structure of within-subject, inter-trial movement variability. Whereas, for cyclical movements (e.g., locomotion), mathematical approaches exist to investigate the propagation of movement variability in time (e.g., time series analysis), similar approaches are missing for discrete, goal-directed movements, such as reaching. Here, we propose canonical correlation analysis as a suitable method to analyze the propagation of within-subject variability across different time points during the execution of discrete movements. While similar analyses have already been applied for discrete movements with only one degree of freedom (DoF; e.g., Pearson's product-moment correlation), canonical correlation analysis allows to evaluate the coupling of inter-trial variability across different time points along the movement trajectory for multiple DoF-effector systems, such as the arm. The theoretical analysis is illustrated by empirical data from a study on reaching movements under normal and disturbed proprioception. The results show increased movement duration, decreased movement amplitude, as well as altered movement coordination under ischemia, which results in a reduced complexity of movement control. Movement endpoint variability is not increased under ischemia. This suggests that healthy adults are able to immediately and efficiently adjust the control of complex reaching movements to compensate for the loss of proprioceptive information. Further, it is shown that, by using canonical correlation analysis, alterations in movement coordination that indicate changes in the control strategy concerning the use of motor redundancy can be detected, which represents an important methodical advance in the context of neuromechanics.
Francis A. Roesch
2012-01-01
In the past, the goal of forest inventory was to determine the extent of the timber resource. Predictions of how the resource was changing were made by comparing differences between successive inventories. The general view of the associated sample design included selection probabilities based on land area observed at a discrete point in time. That is, time was not...
Who Stays and for How Long: Examining Attrition in Canadian Graduate Programs
ERIC Educational Resources Information Center
DeClou, Lindsay
2016-01-01
Attrition from Canadian graduate programs is a point of concern on a societal, institutional, and individual level. To improve retention in graduate school, a better understanding of what leads to withdrawal needs to be reached. This paper uses logistic regression and discrete-time survival analysis with time-varying covariates to analyze data…
Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav
2016-01-01
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds
Radecký, Michal; Snášel, Václav
2016-01-01
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884
Discrete element method for emergency flow of pedestrian in S-type corridor.
Song, Gyeongwon; Park, Junyoung
2014-10-01
Pedestrian flow in curved corridor should be modeled before design because this type of corridor can be most dangerous part during emergency evacuation. In this study, this flow is analyzed by Discrete Element Method with psychological effects. As the turning slope of corridor increases, the evacuation time is linearly increases. However, in the view of crashed death accident, the case with 90 degree turning slope can be dangerous because there are 3 dangerous points. To solve this matter, the pedestrian gathering together in curved part should be dispersed.
A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory
NASA Astrophysics Data System (ADS)
Stolk, Christiaan C.
2016-06-01
We develop a new dispersion minimizing compact finite difference scheme for the Helmholtz equation in 2 and 3 dimensions. The scheme is based on a newly developed ray theory for difference equations. A discrete Helmholtz operator and a discrete operator to be applied to the source and the wavefields are constructed. Their coefficients are piecewise polynomial functions of hk, chosen such that phase and amplitude errors are minimal. The phase errors of the scheme are very small, approximately as small as those of the 2-D quasi-stabilized FEM method and substantially smaller than those of alternatives in 3-D, assuming the same number of gridpoints per wavelength is used. In numerical experiments, accurate solutions are obtained in constant and smoothly varying media using meshes with only five to six points per wavelength and wave propagation over hundreds of wavelengths. When used as a coarse level discretization in a multigrid method the scheme can even be used with down to three points per wavelength. Tests on 3-D examples with up to 108 degrees of freedom show that with a recently developed hybrid solver, the use of coarser meshes can lead to corresponding savings in computation time, resulting in good simulation times compared to the literature.
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
Getting better with age: The relationship between age, acceptance, and negative affect
Shallcross, Amanda J.; Ford, Brett Q.; Floerke, Victoria A.; Mauss, Iris B.
2013-01-01
Although aging involves cognitive and physical declines, it is also associated with improved emotional well-being, particularly lower negative affect. However, the relationship between age and global negative affect, versus discrete negative emotions, and the pathways that link age to lower negative affect are not well understood. We hypothesize that one important link between age and lower negative affect may be acceptance of negative emotional experiences. The present study examined this hypothesis in a community sample of 21–73 year olds (N = 340) by measuring acceptance and multiple indices of negative affect: trait negative affect; negative experiential and physiological reactivity to a laboratory stress induction; daily experience of negative affect; and trait negative affect six months after the initial assessment. Negative affect was measured using a discrete emotions approach whereby anger, anxiety, and sadness were assessed at each time point. Age was associated with increased acceptance as well as lower anger and anxiety (but not sadness) across measurement modalities and time points. Further, acceptance statistically mediated the relationship between age and anger and anxiety. These results are consistent with the idea that acceptance may be an important pathway in the link between age and lower negative affect. Implications of these results for understanding the nature of age-related decreases in discrete negative emotions are discussed. PMID:23276266
Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation
NASA Astrophysics Data System (ADS)
Jamelot, Erell; Ciarlet, Patrick
2013-05-01
Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart-Thomas-Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration. Computations are carried out with the MINOS solver of the APOLLO3® neutronics code. APOLLO3 is a registered trademark in France.
Dynamic generation of light states with discrete symmetries
NASA Astrophysics Data System (ADS)
Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.
2018-01-01
A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .
Discrete cosine and sine transforms generalized to honeycomb lattice
NASA Astrophysics Data System (ADS)
Hrivnák, Jiří; Motlochová, Lenka
2018-06-01
The discrete cosine and sine transforms are generalized to a triangular fragment of the honeycomb lattice. The honeycomb point sets are constructed by subtracting the root lattice from the weight lattice points of the crystallographic root system A2. The two-variable orbit functions of the Weyl group of A2, discretized simultaneously on the weight and root lattices, induce a novel parametric family of extended Weyl orbit functions. The periodicity and von Neumann and Dirichlet boundary properties of the extended Weyl orbit functions are detailed. Three types of discrete complex Fourier-Weyl transforms and real-valued Hartley-Weyl transforms are described. Unitary transform matrices and interpolating behavior of the discrete transforms are exemplified. Consequences of the developed discrete transforms for transversal eigenvibrations of the mechanical graphene model are discussed.
On E-discretization of tori of compact simple Lie groups. II
NASA Astrophysics Data System (ADS)
Hrivnák, Jiří; Juránek, Michal
2017-10-01
Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.
Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.
Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria
2015-10-15
Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.
NASA Astrophysics Data System (ADS)
Yu, Jieqing; Wu, Lixin; Hu, Qingsong; Yan, Zhigang; Zhang, Shaoliang
2017-12-01
Visibility computation is of great interest to location optimization, environmental planning, ecology, and tourism. Many algorithms have been developed for visibility computation. In this paper, we propose a novel method of visibility computation, called synthetic visual plane (SVP), to achieve better performance with respect to efficiency, accuracy, or both. The method uses a global horizon, which is a synthesis of line-of-sight information of all nearer points, to determine the visibility of a point, which makes it an accurate visibility method. We used discretization of horizon to gain a good performance in efficiency. After discretization, the accuracy and efficiency of SVP depends on the scale of discretization (i.e., zone width). The method is more accurate at smaller zone widths, but this requires a longer operating time. Users must strike a balance between accuracy and efficiency at their discretion. According to our experiments, SVP is less accurate but more efficient than R2 if the zone width is set to one grid. However, SVP becomes more accurate than R2 when the zone width is set to 1/24 grid, while it continues to perform as fast or faster than R2. Although SVP performs worse than reference plane and depth map with respect to efficiency, it is superior in accuracy to these other two algorithms.
Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation
NASA Astrophysics Data System (ADS)
Litaker, Eric T.
1994-12-01
The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.
NASA Astrophysics Data System (ADS)
Ward-Garrison, C.; May, R.; Davis, E.; Arms, S. C.
2016-12-01
NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. The Climate and Forecasting (CF) metadata conventions for netCDF foster the ability to work with netCDF files in general and useful ways. These conventions include metadata attributes for physical units, standard names, and spatial coordinate systems. While these conventions have been successful in easing the use of working with netCDF-formatted output from climate and forecast models, their use for point-based observation data has been less so. Unidata has prototyped using the discrete sampling geometry (DSG) CF conventions to serve, using the THREDDS Data Server, the real-time point observation data flowing across the Internet Data Distribution (IDD). These data originate in text format reports for individual stations (e.g. METAR surface data or TEMP upper air data) and are converted and stored in netCDF files in real-time. This work discusses the experiences and challenges of using the current CF DSG conventions for storing such real-time data. We also test how parts of netCDF's extended data model can address these challenges, in order to inform decisions for a future version of CF (CF 2.0) that would take advantage of features of the netCDF enhanced data model.
Interconnection of bundled solid oxide fuel cells
Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S
2014-01-14
A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.
Closure measures for coarse-graining of the tent map.
Pfante, Oliver; Olbrich, Eckehard; Bertschinger, Nils; Ay, Nihat; Jost, Jürgen
2014-03-01
We quantify the relationship between the dynamics of a time-discrete dynamical system, the tent map T and its iterations T(m), and the induced dynamics at a symbolical level in information theoretical terms. The symbol dynamics, given by a binary string s of length m, is obtained by choosing a partition point [Formula: see text] and lumping together the points [Formula: see text] s.t. T(i)(x) concurs with the i - 1th digit of s-i.e., we apply a so called threshold crossing technique. Interpreting the original dynamics and the symbolic one as different levels, this allows us to quantitatively evaluate and compare various closure measures that have been proposed for identifying emergent macro-levels of a dynamical system. In particular, we can see how these measures depend on the choice of the partition point α. As main benefit of this new information theoretical approach, we get all Markov partitions with full support of the time-discrete dynamical system induced by the tent map. Furthermore, we could derive an example of a Markovian symbol dynamics whose underlying partition is not Markovian at all, and even a whole hierarchy of Markovian symbol dynamics.
Monte Carlo algorithms for Brownian phylogenetic models.
Horvilleur, Benjamin; Lartillot, Nicolas
2014-11-01
Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. The program is freely available at www.phylobayes.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Massie, Crystal L; Malcolm, Matthew P; Greene, David P; Browning, Raymond C
2014-01-01
Stroke rehabilitation interventions and assessments incorporate discrete and/or cyclic reaching tasks, yet no biomechanical comparison exists between these 2 movements in survivors of stroke. To characterize the differences between discrete (movements bounded by stationary periods) and cyclic (continuous repetitive movements) reaching in survivors of stroke. Seventeen survivors of stroke underwent kinematic motion analysis of discrete and cyclic reaching movements. Outcomes collected for each side included shoulder, elbow, and trunk range of motion (ROM); peak velocity; movement time; and spatial variability at target contact. Participants used significantly less shoulder and elbow ROM and significantly more trunk flexion ROM when reaching with the stroke-affected side compared with the less-affected side (P < .001). Participants used significantly more trunk rotation during cyclic reaching than discrete reaching with the stroke-affected side (P = .01). No post hoc differences were observed between tasks within the stroke-affected side for elbow, shoulder, and trunk flexion ROM. Peak velocity, movement time, and spatial variability were not different between discrete and cyclic reaching in the stroke-affected side. Survivors of stroke reached with altered kinematics when the stroke-affected side was compared with the less-affected side, yet there were few differences between discrete and cyclic reaching within the stroke-affected side. The greater trunk rotation during cyclic reaching represents a unique segmental strategy when using the stroke-affected side without consequences to end-point kinematics. These findings suggest that clinicians should consider the type of reaching required in therapeutic activities because of the continuous movement demands required with cyclic reaching.
Marshall, Brendan; Franklyn-Miller, Andrew; Moran, Kieran; King, Enda; Richter, Chris; Gore, Shane; Strike, Siobhán; Falvey, Éanna
2015-01-01
While measures of asymmetry may provide a means of identifying individuals predisposed to injury, normative asymmetry values for challenging sport specific movements in elite athletes are currently lacking in the literature. In addition, previous studies have typically investigated symmetry using discrete point analyses alone. This study examined biomechanical symmetry in elite rugby union players using both discrete point and continuous data analysis techniques. Twenty elite injury free international rugby union players (mean ± SD: age 20.4 ± 1.0 years; height 1.86 ± 0.08 m; mass 98.4 ± 9.9 kg) underwent biomechanical assessment. A single leg drop landing, a single leg hurdle hop, and a running cut were analysed. Peak joint angles and moments were examined in the discrete point analysis while analysis of characterising phases (ACP) techniques were used to examine the continuous data. Dominant side was compared to non-dominant side using dependent t-tests for normally distributed data or Wilcoxon signed-rank test for non-normally distributed data. The significance level was set at α = 0.05. The majority of variables were found to be symmetrical with a total of 57/60 variables displaying symmetry in the discrete point analysis and 55/60 in the ACP. The five variables that were found to be asymmetrical were hip abductor moment in the drop landing (p = 0.02), pelvis lift/drop in the drop landing (p = 0.04) and hurdle hop (p = 0.02), ankle internal rotation moment in the cut (p = 0.04) and ankle dorsiflexion angle also in the cut (p = 0.01). The ACP identified two additional asymmetries not identified in the discrete point analysis. Elite injury free rugby union players tended to exhibit bi-lateral symmetry across a range of biomechanical variables in a drop landing, hurdle hop and cut. This study provides useful normative values for inter-limb symmetry in these movement tests. When examining symmetry it is recommended to incorporate continuous data analysis techniques rather than a discrete point analysis alone; a discrete point analysis was unable to detect two of the five asymmetries identified.
Liu, Meiqin; Zhang, Senlin
2008-10-01
A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.
Application of modified Martinez-Silva algorithm in determination of net cover
NASA Astrophysics Data System (ADS)
Stefanowicz, Łukasz; Grobelna, Iwona
2016-12-01
In the article we present the idea of modifications of Martinez-Silva algorithm, which allows for determination of place invariants (p-invariants) of Petri net. Their generation time is important in the parallel decomposition of discrete systems described by Petri nets. Decomposition process is essential from the point of view of discrete system design, as it allows for separation of smaller sequential parts. The proposed modifications of Martinez-Silva method concern the net cover by p-invariants and are focused on two important issues: cyclic reduction of invariant matrix and cyclic checking of net cover.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Discretizing singular point sources in hyperbolic wave propagation problems
Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...
2016-06-01
Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less
Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing
NASA Technical Reports Server (NTRS)
Batina, John T.
1991-01-01
Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.
Integrable structure in discrete shell membrane theory
Schief, W. K.
2014-01-01
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755
Integrable structure in discrete shell membrane theory.
Schief, W K
2014-05-08
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.
Dynamic measurements of CO diffusing capacity using discrete samples of alveolar gas.
Graham, B L; Mink, J T; Cotton, D J
1983-01-01
It has been shown that measurements of the diffusing capacity of the lung for CO made during a slow exhalation [DLCO(exhaled)] yield information about the distribution of the diffusing capacity in the lung that is not available from the commonly measured single-breath diffusing capacity [DLCO(SB)]. Current techniques of measuring DLCO(exhaled) require the use of a rapid-responding (less than 240 ms, 10-90%) CO meter to measure the CO concentration in the exhaled gas continuously during exhalation. DLCO(exhaled) is then calculated using two sample points in the CO signal. Because DLCO(exhaled) calculations are highly affected by small amounts of noise in the CO signal, filtering techniques have been used to reduce noise. However, these techniques reduce the response time of the system and may introduce other errors into the signal. We have developed an alternate technique in which DLCO(exhaled) can be calculated using the concentration of CO in large discrete samples of the exhaled gas, thus eliminating the requirement of a rapid response time in the CO analyzer. We show theoretically that this method is as accurate as other DLCO(exhaled) methods but is less affected by noise. These findings are verified in comparisons of the discrete-sample method of calculating DLCO(exhaled) to point-sample methods in normal subjects, patients with emphysema, and patients with asthma.
Performance bounds on parallel self-initiating discrete-event
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.
Multi-beam and single-chip LIDAR with discrete beam steering by digital micromirror device
NASA Astrophysics Data System (ADS)
Rodriguez, Joshua; Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru
2018-02-01
A novel Digital Micromirror Device (DMD) based beam steering enables a single chip Light Detection and Ranging (LIDAR) system for discrete scanning points. We present increasing number of scanning point by using multiple laser diodes for Multi-beam and Single-chip DMD-based LIDAR.
A pseudospectral Legendre method for hyperbolic equations with an improved stability condition
NASA Technical Reports Server (NTRS)
Tal-Ezer, H.
1984-01-01
A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.
Computing the Feasible Spaces of Optimal Power Flow Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molzahn, Daniel K.
The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less
Computing the Feasible Spaces of Optimal Power Flow Problems
Molzahn, Daniel K.
2017-03-15
The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less
Rapid update of discrete Fourier transform for real-time signal processing
NASA Astrophysics Data System (ADS)
Sherlock, Barry G.; Kakad, Yogendra P.
2001-10-01
In many identification and target recognition applications, the incoming signal will have properties that render it amenable to analysis or processing in the Fourier domain. In such applications, however, it is usually essential that the identification or target recognition be performed in real time. An important constraint upon real-time processing in the Fourier domain is the time taken to perform the Discrete Fourier Transform (DFT). Ideally, a new Fourier transform should be obtained after the arrival of every new data point. However, the Fast Fourier Transform (FFT) algorithm requires on the order of N log2 N operations, where N is the length of the transform, and this usually makes calculation of the transform for every new data point computationally prohibitive. In this paper, we develop an algorithm to update the existing DFT to represent the new data series that results when a new signal point is received. Updating the DFT in this way uses less computational order by a factor of log2 N. The algorithm can be modified to work in the presence of data window functions. This is a considerable advantage, because windowing is often necessary to reduce edge effects that occur because the implicit periodicity of the Fourier transform is not exhibited by the real-world signal. Versions are developed in this paper for use with the boxcar window, the split triangular, Hanning, Hamming, and Blackman windows. Generalization of these results to 2D is also presented.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Liao, Bolin; Zhang, Yunong; Jin, Long
2016-02-01
In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.
Nishiura, Hiroshi
2011-02-16
Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance.
Material point method modeling in oil and gas reservoirs
Vanderheyden, William Brian; Zhang, Duan
2016-06-28
A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
NASA Astrophysics Data System (ADS)
Zhao, G.; Liu, J.; Chen, B.; Guo, R.; Chen, L.
2017-12-01
Forward modeling of gravitational fields at large-scale requires to consider the curvature of the Earth and to evaluate the Newton's volume integral in spherical coordinates. To acquire fast and accurate gravitational effects for subsurface structures, subsurface mass distribution is usually discretized into small spherical prisms (called tesseroids). The gravity fields of tesseroids are generally calculated numerically. One of the commonly used numerical methods is the 3D Gauss-Legendre quadrature (GLQ). However, the traditional GLQ integration suffers from low computational efficiency and relatively poor accuracy when the observation surface is close to the source region. We developed a fast and high accuracy 3D GLQ integration based on the equivalence of kernel matrix, adaptive discretization and parallelization using OpenMP. The equivalence of kernel matrix strategy increases efficiency and reduces memory consumption by calculating and storing the same matrix elements in each kernel matrix just one time. In this method, the adaptive discretization strategy is used to improve the accuracy. The numerical investigations show that the executing time of the proposed method is reduced by two orders of magnitude compared with the traditional method that without these optimized strategies. High accuracy results can also be guaranteed no matter how close the computation points to the source region. In addition, the algorithm dramatically reduces the memory requirement by N times compared with the traditional method, where N is the number of discretization of the source region in the longitudinal direction. It makes the large-scale gravity forward modeling and inversion with a fine discretization possible.
Techniques for improving transients in learning control systems
NASA Technical Reports Server (NTRS)
Chang, C.-K.; Longman, Richard W.; Phan, Minh
1992-01-01
A discrete modern control formulation is used to study the nature of the transient behavior of the learning process during repetitions. Several alternative learning control schemes are developed to improve the transient performance. These include a new method using an alternating sign on the learning gain, which is very effective in limiting peak transients and also very useful in multiple-input, multiple-output systems. Other methods include learning at an increasing number of points progressing with time, or an increasing number of points of increasing density.
Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model
NASA Astrophysics Data System (ADS)
Wang, Fengjuan; Cao, Hongjun
2018-03-01
The two-dimensional parameter spaces of a discrete-time Chialvo neuron model are investigated. Our studies demonstrate that for all our choice of two parameters (i) the fixed point is destabilized via Neimark-Sacker bifurcation; (ii) there exist mode locking structures like Arnold tongues and shrimps, with periods organized in a Farey tree sequence, embedded in quasiperiodic/chaotic region. We determine analytically the location of the parameter sets where Neimark-Sacker bifurcation occurs, and the location on this curve where Arnold tongues of arbitrary period are born. Properties of the transition that follows the so-called two-torus from quasiperiodicity to chaos are presented clearly and proved strictly by using numerical simulations such as bifurcation diagrams, the largest Lyapunov exponent diagram on MATLAB and C++.
Comparison of two Galerkin quadrature methods
Morel, Jim E.; Warsa, James; Franke, Brian C.; ...
2017-02-21
Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less
Comparison of two Galerkin quadrature methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morel, Jim E.; Warsa, James; Franke, Brian C.
Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less
A fast discrete S-transform for biomedical signal processing.
Brown, Robert A; Frayne, Richard
2008-01-01
Determining the frequency content of a signal is a basic operation in signal and image processing. The S-transform provides both the true frequency and globally referenced phase measurements characteristic of the Fourier transform and also generates local spectra, as does the wavelet transform. Due to this combination, the S-transform has been successfully demonstrated in a variety of biomedical signal and image processing tasks. However, the computational demands of the S-transform have limited its application in medicine to this point in time. This abstract introduces the fast S-transform, a more efficient discrete implementation of the classic S-transform with dramatically reduced computational requirements.
On the Motion of Agents across Terrain with Obstacles
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.
2018-01-01
The paper is devoted to finding the time optimal route of an agent travelling across a region from a given source point to a given target point. At each point of this region, a maximum allowed speed is specified. This speed limit may vary in time. The continuous statement of this problem and the case when the agent travels on a grid with square cells are considered. In the latter case, the time is also discrete, and the number of admissible directions of motion at each point in time is eight. The existence of an optimal solution of this problem is proved, and estimates of the approximate solution obtained on the grid are obtained. It is found that decreasing the size of cells below a certain limit does not further improve the approximation. These results can be used to estimate the quasi-optimal trajectory of the agent motion across the rugged terrain produced by an algorithm based on a cellular automaton that was earlier developed by the author.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
NASA Astrophysics Data System (ADS)
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
NASA Technical Reports Server (NTRS)
Batina, John T.
1990-01-01
Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.
NASA Technical Reports Server (NTRS)
Batina, John T.
1990-01-01
Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofschen, S.; Wolff, I.
1996-08-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are comparedmore » with measurements and show good agreement.« less
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.
1986-01-01
Ultrasonic test system input-output characteristics were investigated by directly coupling the transmitting and receiving transducers face to face without a test specimen. Some of the fundamentals of digital signal processing were summarized. Input and output signals were digitized by using a digital oscilloscope, and the digitized data were processed in a microcomputer by using digital signal-processing techniques. The continuous-time test system was modeled as a discrete-time, linear, shift-invariant system. In estimating the unit-sample response and frequency response of the discrete-time system, it was necessary to use digital filtering to remove low-amplitude noise, which interfered with deconvolution calculations. A digital bandpass filter constructed with the assistance of a Blackman window and a rectangular time window were used. Approximations of the impulse response and the frequency response of the continuous-time test system were obtained by linearly interpolating the defining points of the unit-sample response and the frequency response of the discrete-time system. The test system behaved as a linear-phase bandpass filter in the frequency range 0.6 to 2.3 MHz. These frequencies were selected in accordance with the criterion that they were 6 dB below the maximum peak of the amplitude of the frequency response. The output of the system to various inputs was predicted and the results were compared with the corresponding measurements on the system.
NASA Technical Reports Server (NTRS)
Maskew, B.
1976-01-01
A discrete singularity method has been developed for calculating the potential flow around two-dimensional airfoils. The objective was to calculate velocities at any arbitrary point in the flow field, including points that approach the airfoil surface. That objective was achieved and is demonstrated here on a Joukowski airfoil. The method used combined vortices and sources ''submerged'' a small distance below the airfoil surface and incorporated a near-field subvortex technique developed earlier. When a velocity calculation point approached the airfoil surface, the number of discrete singularities effectively increased (but only locally) to keep the point just outside the error region of the submerged singularity discretization. The method could be extended to three dimensions, and should improve nonlinear methods, which calculate interference effects between multiple wings, and which include the effects of force-free trailing vortex sheets. The capability demonstrated here would extend the scope of such calculations to allow the close approach of wings and vortex sheets (or vortices).
Current Density and Continuity in Discretized Models
ERIC Educational Resources Information Center
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
It is estimated that protozoan parasites still account for greater than one third of waterborne disease outbreaks reported. Methods used to monitor microbial contamination typically involve collecting discrete samples at specific time-points and analyzing for a single contaminan...
Robert G. Haight; J. Douglas Brodie; Darius M. Adams
1985-01-01
The determination of an optimal sequence of diameter distributions and selection harvests for uneven-aged stand management is formulated as a discrete-time optimal-control problem with bounded control variables and free-terminal point. An efficient programming technique utilizing gradients provides solutions that are stable and interpretable on the basis of economic...
Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters
NASA Astrophysics Data System (ADS)
Bischi, G. I.; Tramontana, F.
2010-10-01
We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.
Analytical approximation of a distorted reflector surface defined by a discrete set of points
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Zaman, Afroz A.
1988-01-01
Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.
2011-01-01
Background Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. Methods A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. Results The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Conclusions Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance. PMID:21324153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.
Cone penetrometer testing (CPT), combined with discrete-depth ground water sampling methods, can significantly reduce the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can then be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs). To expedite characterization, a five-week field screening program was implemented that consisted of a shallow ground water survey, CPT soundings and pore-pressure measurements, and discrete-depth ground water sampling. Based on continuous lithologic informationmore » provided by the CPT soundings, four predominantly coarse-grained, water yielding stratigraphic packages were identified. Seventy-nine discrete-depth ground water samples were collected using either shallow ground water survey techniques, the BAT Enviroprobe, or the QED HydroPunch I, depending on subsurface conditions. Using results from these efforts, a 20-well monitoring network was designed and installed to monitor critical points within each stratigraphic package. Good correlation was found for hydraulic head and chemical results between discrete-depth screening data and monitoring well data. Understanding the vertical VOC distribution and concentrations produced substantial time and cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings that had to be installed. Additionally, significant long-term cost savings will result from reduced sampling costs, because fewer wells comprise the monitoring network. The authors estimate these savings to be 50% for site characterization costs, 65% for site characterization time, and 60% for long-term monitoring costs.« less
Data approximation using a blending type spline construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalmo, Rune; Bratlie, Jostein
2014-11-18
Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which aremore » necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.« less
The value of continuity: Refined isogeometric analysis and fast direct solvers
Garcia, Daniel; Pardo, David; Dalcin, Lisandro; ...
2016-08-24
Here, we propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing themore » Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between p 2 and p 3, with pp being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to p 2. In a 2D mesh with four million elements and p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with one million elements and p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.« less
75 FR 48338 - Intel Corporation; Analysis of Proposed Consent Order to Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... integrated into chipsets as well as discrete graphics cards. NVIDIA has been at the forefront of developing... to connect peripheral products such as discrete GPUs to the CPU. A bus is a connection point between... platform. Intel's commitment to maintain an open PCIe bus will provide discrete graphics manufacturers...
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B
2014-02-08
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z -invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d -dimensional pluri-Lagrangian problem can be described as follows: given a d -form [Formula: see text] on an m -dimensional space (called multi-time, m > d ), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals [Formula: see text] for any d -dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler-Lagrange equations for a discrete pluri-Lagrangian problem with d =2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations.
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B.
2014-01-01
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form on an m-dimensional space (called multi-time, m>d), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals for any d-dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler–Lagrange equations for a discrete pluri-Lagrangian problem with d=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations. PMID:24511254
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
Real-time beam monitoring in scanned proton therapy
NASA Astrophysics Data System (ADS)
Klimpki, G.; Eichin, M.; Bula, C.; Rechsteiner, U.; Psoroulas, S.; Weber, D. C.; Lomax, A.; Meer, D.
2018-05-01
When treating cancerous tissues with protons beams, many centers make use of a step-and-shoot irradiation technique, in which the beam is steered to discrete grid points in the tumor volume. For safety reasons, the irradiation is supervised by an independent monitoring system validating cyclically that the correct amount of protons has been delivered to the correct position in the patient. Whenever unacceptable inaccuracies are detected, the irradiation can be interrupted to reinforce a high degree of radiation protection. At the Paul Scherrer Institute, we plan to irradiate tumors continuously. By giving up the idea of discrete grid points, we aim to be faster and more flexible in the irradiation. But the increase in speed and dynamics necessitates a highly responsive monitoring system to guarantee the same level of patient safety as for conventional step-and-shoot irradiations. Hence, we developed and implemented real-time monitoring of the proton beam current and position. As such, we read out diagnostic devices with 100 kHz and compare their signals against safety tolerances in an FPGA. In this paper, we report on necessary software and firmware enhancements of our control system and test their functionality based on three exemplary error scenarios. We demonstrate successful implementation of real-time beam monitoring and, consequently, compliance with international patient safety regulations.
Entropy of Movement Outcome in Space-Time.
Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M
2015-07-01
Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.
Quantization improves stabilization of dynamical systems with delayed feedback
NASA Astrophysics Data System (ADS)
Stepan, Gabor; Milton, John G.; Insperger, Tamas
2017-11-01
We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
NASA Astrophysics Data System (ADS)
Zhang, Shuangxi; Jia, Yuesong; Sun, Qizhi
2015-02-01
Webb [1] proposed a method to get symplectic integrators of magnetic systems by Taylor expanding the discrete Euler-Lagrangian equations (DEL) which resulted from variational symplectic method by making the variation of the discrete action [2], and approximating the results to the order of O (h2), where h is the time step. And in that paper, Webb thought that the integrators obtained by that method are symplectic ones, especially, he treated Boris integrator (BI) as the symplectic one. However, we have questions about Webb's results. Theoretically the transformation of phase-space coordinates between two adjacent points induced by symplectic algorithm should conserve a symplectic 2-form [2-5]. As proved in Refs. [2,3], the transformations induced by the standard symplectic integrator derived from Hamilton and the variational symplectic integrator (VSI) [2,6] from Lagrangian should conserve a symplectic 2-forms. But the approximation of VSI to O (h2) obtained by that paper is hard to conserve a symplectic 2-form, contrary to the claim of [1]. In the next section, we will use BI as an example to support our point and will prove BI not to be a symplectic one but an integrator conserving discrete phase-space volume.
Applications of Generalized Derivatives to Viscoelasticity.
1979-11-01
Integration Used to Evaluate the Inverse Transform 78 B-i Schematic of the Half-Space of Newtonian Fluid Bounded by a "Wetted" Surface 96 C-I The...of the response at discrete frequencies. The inverse transform of the response is evaluated numerically to produce the time history. The major drawback...of this method is the arduous task of calculating the inverse transform for every point in time at which the value of the response is required. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency formore » all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.« less
Zhang, Y; Huang, S L; Wang, S; Zhao, W
2016-05-01
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas
2004-08-01
Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.
NASA Astrophysics Data System (ADS)
Chen, Xudong
2010-07-01
This paper proposes a version of the subspace-based optimization method to solve the inverse scattering problem with an inhomogeneous background medium where the known inhomogeneities are bounded in a finite domain. Although the background Green's function at each discrete point in the computational domain is not directly available in an inhomogeneous background scenario, the paper uses the finite element method to simultaneously obtain the Green's function at all discrete points. The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization, whereas the orthogonally complementary part is determined by solving a lower dimension optimization problem. This feature significantly speeds up the convergence of the algorithm and at the same time makes it robust against noise. Numerical simulations illustrate the efficacy of the proposed algorithm. The algorithm presented in this paper finds wide applications in nondestructive evaluation, such as through-wall imaging.
NASA Astrophysics Data System (ADS)
Leijenaar, Ralph T. H.; Nalbantov, Georgi; Carvalho, Sara; van Elmpt, Wouter J. C.; Troost, Esther G. C.; Boellaard, Ronald; Aerts, Hugo J. W. L.; Gillies, Robert J.; Lambin, Philippe
2015-08-01
FDG-PET-derived textural features describing intra-tumor heterogeneity are increasingly investigated as imaging biomarkers. As part of the process of quantifying heterogeneity, image intensities (SUVs) are typically resampled into a reduced number of discrete bins. We focused on the implications of the manner in which this discretization is implemented. Two methods were evaluated: (1) RD, dividing the SUV range into D equally spaced bins, where the intensity resolution (i.e. bin size) varies per image; and (2) RB, maintaining a constant intensity resolution B. Clinical feasibility was assessed on 35 lung cancer patients, imaged before and in the second week of radiotherapy. Forty-four textural features were determined for different D and B for both imaging time points. Feature values depended on the intensity resolution and out of both assessed methods, RB was shown to allow for a meaningful inter- and intra-patient comparison of feature values. Overall, patients ranked differently according to feature values-which was used as a surrogate for textural feature interpretation-between both discretization methods. Our study shows that the manner of SUV discretization has a crucial effect on the resulting textural features and the interpretation thereof, emphasizing the importance of standardized methodology in tumor texture analysis.
Yang, L M; Shu, C; Wang, Y
2016-03-01
In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
Trivial dynamics in discrete-time systems: carrying simplex and translation arcs
NASA Astrophysics Data System (ADS)
Niu, Lei; Ruiz-Herrera, Alfonso
2018-06-01
In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by the number of fixed points on the boundary and the local behavior around them. Roughly speaking, T has trivial dynamics (i.e. the omega limit set of any orbit is a connected set contained in the set of fixed points) provided T has exactly four hyperbolic nontrivial fixed points in with local attractors on the carrying simplex and local repellers on the carrying simplex; and there exists a unique hyperbolic fixed point in Int. Our results are applied to some classical models including the Leslie–Gower models, Atkinson-Allen systems and Ricker maps.
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.
2015-09-01
In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
Calculation of power spectrums from digital time series with missing data points
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.
1980-01-01
Two algorithms are developed for calculating power spectrums from the autocorrelation function when there are missing data points in the time series. Both methods use an average sampling interval to compute lagged products. One method, the correlation function power spectrum, takes the discrete Fourier transform of the lagged products directly to obtain the spectrum, while the other, the modified Blackman-Tukey power spectrum, takes the Fourier transform of the mean lagged products. Both techniques require fewer calculations than other procedures since only 50% to 80% of the maximum lags need be calculated. The algorithms are compared with the Fourier transform power spectrum and two least squares procedures (all for an arbitrary data spacing). Examples are given showing recovery of frequency components from simulated periodic data where portions of the time series are missing and random noise has been added to both the time points and to values of the function. In addition the methods are compared using real data. All procedures performed equally well in detecting periodicities in the data.
Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.
Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L
2013-12-01
In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.
Precise and fast spatial-frequency analysis using the iterative local Fourier transform.
Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook
2016-09-19
The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.
An integral equation formulation for rigid bodies in Stokes flow in three dimensions
NASA Astrophysics Data System (ADS)
Corona, Eduardo; Greengard, Leslie; Rachh, Manas; Veerapaneni, Shravan
2017-03-01
We present a new derivation of a boundary integral equation (BIE) for simulating the three-dimensional dynamics of arbitrarily-shaped rigid particles of genus zero immersed in a Stokes fluid, on which are prescribed forces and torques. Our method is based on a single-layer representation and leads to a simple second-kind integral equation. It avoids the use of auxiliary sources within each particle that play a role in some classical formulations. We use a spectrally accurate quadrature scheme to evaluate the corresponding layer potentials, so that only a small number of spatial discretization points per particle are required. The resulting discrete sums are computed in O (n) time, where n denotes the number of particles, using the fast multipole method (FMM). The particle positions and orientations are updated by a high-order time-stepping scheme. We illustrate the accuracy, conditioning and scaling of our solvers with several numerical examples.
Chen, Haoxing; Roys, Steven; Zhuo, Jiachen; Varshney, Amitabh; Gullapalli, Rao P.
2015-01-01
Abstract The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS−]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125–0.250 Hz, SF2: 0.060–0.125 Hz, SF3: 0.030–0.060 Hz, SF4: 0.015–0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS−), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS− patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS− group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities. PMID:25808612
Sours, Chandler; Chen, Haoxing; Roys, Steven; Zhuo, Jiachen; Varshney, Amitabh; Gullapalli, Rao P
2015-09-01
The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS-]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125-0.250 Hz, SF2: 0.060-0.125 Hz, SF3: 0.030-0.060 Hz, SF4: 0.015-0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS-), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS- patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS- group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities.
NASA Astrophysics Data System (ADS)
Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan
2015-09-01
This work develops new minimization and saddle point principles for the coupled problem of Darcy-Biot-type fluid transport in porous media at fracture. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media is related to a minimization principle for the evolution problem. This two-field principle determines the rate of deformation and the fluid mass flux vector. It provides a canonically compact model structure, where the stress equilibrium and the inverse Darcy's law appear as the Euler equations of a variational statement. A Legendre transformation of the dissipation potential relates the minimization principle to a characteristic three field saddle point principle, whose Euler equations determine the evolutions of deformation and fluid content as well as Darcy's law. A further geometric assumption results in modified variational principles for a simplified theory, where the fluid content is linked to the volumetric deformation. The existence of these variational principles underlines inherent symmetries of Darcy-Biot theories of porous media. This can be exploited in the numerical implementation by the construction of time- and space-discrete variational principles, which fully determine the update problems of typical time stepping schemes. Here, the proposed minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while space discretizations of the saddle point principles are constrained by the LBB condition. The variational principles developed provide the most fundamental approach to the discretization of nonlinear fluid-structure interactions, showing symmetric systems in algebraic update procedures. They also provide an excellent starting point for extensions towards more complex problems. This is demonstrated by developing a minimization principle for a phase field description of fracture in fluid-saturated porous media. It is designed for an incorporation of alternative crack driving forces, such as a convenient criterion in terms of the effective stress. The proposed setting provides a modeling framework for the analysis of complex problems such as hydraulic fracture. This is demonstrated by a spectrum of model simulations.
Senan, Sibel; Arik, Sabri
2007-10-01
This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.
Chen, Rui; Hyrien, Ollivier
2011-01-01
This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356
Wang, Dongshu; Huang, Lihong
2014-03-01
In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The stochastic, infinite time, discrete output feedback problem for time invariant linear systems is examined. Two sets of sufficient conditions for the existence of a stable, globally optimal solution are presented. An expression for the total change in the cost function due to a change in the feedback gain is obtained. This expression is used to show that a sequence of gains can be obtained by an algorithm, so that the corresponding cost sequence is monotonically decreasing and the corresponding sequence of the cost gradient converges to zero. The algorithm is guaranteed to obtain a critical point of the cost function. The computational steps necessary to implement the algorithm on a computer are presented. The results are applied to a digital outer loop flight control problem. The numerical results for this 13th order problem indicate a rate of convergence considerably faster than two other algorithms used for comparison.
TongueToSpeech (TTS): Wearable wireless assistive device for augmented speech.
Marjanovic, Nicholas; Piccinini, Giacomo; Kerr, Kevin; Esmailbeigi, Hananeh
2017-07-01
Speech is an important aspect of human communication; individuals with speech impairment are unable to communicate vocally in real time. Our team has developed the TongueToSpeech (TTS) device with the goal of augmenting speech communication for the vocally impaired. The proposed device is a wearable wireless assistive device that incorporates a capacitive touch keyboard interface embedded inside a discrete retainer. This device connects to a computer, tablet or a smartphone via Bluetooth connection. The developed TTS application converts text typed by the tongue into audible speech. Our studies have concluded that an 8-contact point configuration between the tongue and the TTS device would yield the best user precision and speed performance. On average using the TTS device inside the oral cavity takes 2.5 times longer than the pointer finger using a T9 (Text on 9 keys) keyboard configuration to type the same phrase. In conclusion, we have developed a discrete noninvasive wearable device that allows the vocally impaired individuals to communicate in real time.
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Karaguelle, H.; Lee, S. S.; Williams, J., Jr.
1984-01-01
The input/output characteristics of an ultrasonic testing system used for stress wave factor measurements were studied. The fundamentals of digital signal processing are summarized. The inputs and outputs are digitized and processed in a microcomputer using digital signal processing techniques. The entire ultrasonic test system, including transducers and all electronic components, is modeled as a discrete-time linear shift-invariant system. Then the impulse response and frequency response of the continuous time ultrasonic test system are estimated by interpolating the defining points in the unit sample response and frequency response of the discrete time system. It is found that the ultrasonic test system behaves as a linear phase bandpass filter. Good results were obtained for rectangular pulse inputs of various amplitudes and durations and for tone burst inputs whose center frequencies are within the passband of the test system and for single cycle inputs of various amplitudes. The input/output limits on the linearity of the system are determined.
Non-Lipschitz Dynamics Approach to Discrete Event Systems
NASA Technical Reports Server (NTRS)
Zak, M.; Meyers, R.
1995-01-01
This paper presents and discusses a mathematical formalism for simulation of discrete event dynamics (DED) - a special type of 'man- made' system designed to aid specific areas of information processing. A main objective is to demonstrate that the mathematical formalism for DED can be based upon the terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.
A Simulation of Alternatives for Wholesale Inventory Replenishment
2016-03-01
algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item
Efficient genetic algorithms using discretization scheduling.
McLay, Laura A; Goldberg, David E
2005-01-01
In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling.
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
NASA Astrophysics Data System (ADS)
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
On the Importance of Both Dimensional and Discrete Models of Emotion.
Harmon-Jones, Eddie; Harmon-Jones, Cindy; Summerell, Elizabeth
2017-09-29
We review research on the structure and functions of emotions that has benefitted from a serious consideration of both discrete and dimensional perspectives on emotion. To illustrate this point, we review research that demonstrates: (1) how affective valence within discrete emotions differs as a function of individuals and situations, and how these differences relate to various functions; (2) that anger (and other emotional states) should be considered as a discrete emotion but there are dimensions around and within anger; (3) that similarities exist between approach-related positive and negative discrete emotions and they have unique motivational functions; (4) that discrete emotions and broad dimensions of emotions both have unique functions; and (5) evidence that a "new" discrete emotion with discrete functions exists within a broader emotion family. We hope that this consideration of both discrete and dimensional perspectives on emotion will assist in understanding the functions of emotions.
On the Importance of Both Dimensional and Discrete Models of Emotion
Harmon-Jones, Eddie
2017-01-01
We review research on the structure and functions of emotions that has benefitted from a serious consideration of both discrete and dimensional perspectives on emotion. To illustrate this point, we review research that demonstrates: (1) how affective valence within discrete emotions differs as a function of individuals and situations, and how these differences relate to various functions; (2) that anger (and other emotional states) should be considered as a discrete emotion but there are dimensions around and within anger; (3) that similarities exist between approach-related positive and negative discrete emotions and they have unique motivational functions; (4) that discrete emotions and broad dimensions of emotions both have unique functions; and (5) evidence that a “new” discrete emotion with discrete functions exists within a broader emotion family. We hope that this consideration of both discrete and dimensional perspectives on emotion will assist in understanding the functions of emotions. PMID:28961185
Comparison of Several Dissipation Algorithms for Central Difference Schemes
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Radespiel, R.; Turkel, E.
1997-01-01
Several algorithms for introducing artificial dissipation into a central difference approximation to the Euler and Navier Stokes equations are considered. The focus of the paper is on the convective upwind and split pressure (CUSP) scheme, which is designed to support single interior point discrete shock waves. This scheme is analyzed and compared in detail with scalar and matrix dissipation (MATD) schemes. Resolution capability is determined by solving subsonic, transonic, and hypersonic flow problems. A finite-volume discretization and a multistage time-stepping scheme with multigrid are used to compute solutions to the flow equations. Numerical results are also compared with either theoretical solutions or experimental data. For transonic airfoil flows the best accuracy on coarse meshes for aerodynamic coefficients is obtained with a simple MATD scheme.
Single chip lidar with discrete beam steering by digital micromirror device.
Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru
2017-06-26
A novel method of beam steering enables a large field of view and reliable single chip light detection and ranging (lidar) by utilizing a mass-produced digital micromirror device (DMD). Using a short pulsed laser, the micromirrors' rotation is frozen in mid-transition, which forms a programmable blazed grating. The blazed grating efficiently redistributes the light to a single diffraction order, among several. We demonstrated time of flight measurements for five discrete angles using this beam steering method with a nano second 905nm laser and Si avalanche diode. A distance accuracy of < 1 cm over a 1 m distance range, a 48° full field of view, and a measurement rate of 3.34k points/s is demonstrated.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
NASA Astrophysics Data System (ADS)
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
Terminal Dynamics Approach to Discrete Event Systems
NASA Technical Reports Server (NTRS)
Zak, Michail; Meyers, Ronald
1995-01-01
This paper presents and discusses a mathematical formalism for simulation of discrete event dynamic (DED)-a special type of 'man-made' systems to serve specific purposes of information processing. The main objective of this work is to demonstrate that the mathematical formalism for DED can be based upon a terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.!.
Completing the land resource hierarchy
USDA-ARS?s Scientific Manuscript database
The Land Resource Hierarchy of the NRCS is a hierarchal landscape classification consisting of resource areas which represent both conceptual and spatially discrete landscape units stratifying agency programs and practices. The Land Resource Hierarchy (LRH) scales from discrete points (soil pedon an...
Mapping of uncertainty relations between continuous and discrete time
NASA Astrophysics Data System (ADS)
Chiuchiú, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
Mapping of uncertainty relations between continuous and discrete time.
Chiuchiù, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
Invariants, Attractors and Bifurcation in Two Dimensional Maps with Polynomial Interaction
NASA Astrophysics Data System (ADS)
Hacinliyan, Avadis Simon; Aybar, Orhan Ozgur; Aybar, Ilknur Kusbeyzi
This work will present an extended discrete-time analysis on maps and their generalizations including iteration in order to better understand the resulting enrichment of the bifurcation properties. The standard concepts of stability analysis and bifurcation theory for maps will be used. Both iterated maps and flows are used as models for chaotic behavior. It is well known that when flows are converted to maps by discretization, the equilibrium points remain the same but a richer bifurcation scheme is observed. For example, the logistic map has a very simple behavior as a differential equation but as a map fold and period doubling bifurcations are observed. A way to gain information about the global structure of the state space of a dynamical system is investigating invariant manifolds of saddle equilibrium points. Studying the intersections of the stable and unstable manifolds are essential for understanding the structure of a dynamical system. It has been known that the Lotka-Volterra map and systems that can be reduced to it or its generalizations in special cases involving local and polynomial interactions admit invariant manifolds. Bifurcation analysis of this map and its higher iterates can be done to understand the global structure of the system and the artifacts of the discretization by comparing with the corresponding results from the differential equation on which they are based.
Choi, Hyun Duck; Ahn, Choon Ki; Karimi, Hamid Reza; Lim, Myo Taeg
2017-10-01
This paper studies delay-dependent exponential dissipative and l 2 - l ∞ filtering problems for discrete-time switched neural networks (DSNNs) including time-delayed states. By introducing a novel discrete-time inequality, which is a discrete-time version of the continuous-time Wirtinger-type inequality, we establish new sets of linear matrix inequality (LMI) criteria such that discrete-time filtering error systems are exponentially stable with guaranteed performances in the exponential dissipative and l 2 - l ∞ senses. The design of the desired exponential dissipative and l 2 - l ∞ filters for DSNNs can be achieved by solving the proposed sets of LMI conditions. Via numerical simulation results, we show the validity of the desired discrete-time filter design approach.
LORETA EEG phase reset of the default mode network.
Thatcher, Robert W; North, Duane M; Biver, Carl J
2014-01-01
The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300-350 ms and (2) 350-450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a "shutter" that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations.
Automated Mounting Bias Calibration for Airborne LIDAR System
NASA Astrophysics Data System (ADS)
Zhang, J.; Jiang, W.; Jiang, S.
2012-07-01
Mounting bias is the major error source of Airborne LIDAR system. In this paper, an automated calibration method for estimating LIDAR system mounting parameters is introduced. LIDAR direct geo-referencing model is used to calculate systematic errors. Due to LIDAR footprints discretely sampled, the real corresponding laser points are hardly existence among different strips. The traditional corresponding point methodology does not seem to apply to LIDAR strip registration. We proposed a Virtual Corresponding Point Model to resolve the corresponding problem among discrete laser points. Each VCPM contains a corresponding point and three real laser footprints. Two rules are defined to calculate tie point coordinate from real laser footprints. The Scale Invariant Feature Transform (SIFT) is used to extract corresponding points in LIDAR strips, and the automatic flow of LIDAR system calibration based on VCPM is detailed described. The practical examples illustrate the feasibility and effectiveness of the proposed calibration method.
Perfect discretization of path integrals
NASA Astrophysics Data System (ADS)
Steinhaus, Sebastian
2012-05-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Zakary, Omar; Rachik, Mostafa; Elmouki, Ilias
2017-08-01
First, we devise in this paper, a multi-regions discrete-time model which describes the spatial-temporal spread of an epidemic which starts from one region and enters to regions which are connected with their neighbors by any kind of anthropological movement. We suppose homogeneous Susceptible-Infected-Removed (SIR) populations, and we consider in our simulations, a grid of colored cells, which represents the whole domain affected by the epidemic while each cell can represent a sub-domain or region. Second, in order to minimize the number of infected individuals in one region, we propose an optimal control approach based on a travel-blocking vicinity strategy which aims to control only one cell by restricting movements of infected people coming from all neighboring cells. Thus, we show the influence of the optimal control approach on the controlled cell. We should also note that the cellular modeling approach we propose here, can also describes infection dynamics of regions which are not necessarily attached one to an other, even if no empty space can be viewed between cells. The theoretical method we follow for the characterization of the travel-locking optimal controls, is based on a discrete version of Pontryagin's maximum principle while the numerical approach applied to the multi-points boundary value problems we obtain here, is based on discrete progressive-regressive iterative schemes. We illustrate our modeling and control approaches by giving an example of 100 regions.
Fast underdetermined BSS architecture design methodology for real time applications.
Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R
2015-01-01
In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture.
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... steel products such as coiled wire, rods, and tubes in discrete batches or bundles. (b) The term continuous means those alkaline cleaning operations which process steel products other than in discrete... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420...
40 CFR 401.11 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Environmental Protection Agency. (d) The term point source means any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure... which pollutants are or may be discharged. (e) The term new source means any building, structure...
NASA Technical Reports Server (NTRS)
Draine, B. T.; Goodman, Jeremy
1993-01-01
We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.
Truccolo, Wilson
2017-01-01
This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics (“order parameters”) inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. PMID:28336305
Truccolo, Wilson
2016-11-01
This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Sevink, G. J. A.
2015-05-01
We have rigorously analyzed the stability of the efficient cell dynamics simulations (CDS) method by making use of the special properties of the local averaging operator <<*>>-* in matrix form. Besides resolving a theoretical issue that has puzzled many over the past three decades, this analysis has considerable practical value: It relates CDS directly to finite-difference approximations of the Cahn-Hilliard-Cook equations and provides a straightforward recipe for replacing the original two- or three-dimensional (2D or 3D) averaging operators in CDS by an equivalent (in terms of stability) discrete Laplacian with superior isotropy and scaling behavior. As such, we open up a route to suppress the unphysical reflection of the computational grid in CDS results (grid artifacts). We found that proper rescaling of discrete Laplacians, needed to employ them in CDS, is equivalent to introducing a well-chosen time step in CDS. In turn, our analysis provides stability conditions for phase-field simulations based on the Cahn-Hilliard-Cook equations. Subsequently, we have quantitatively compared the isotropy and scaling behavior of several discrete 2D or 3D Laplacians, thereby extending the significance of this work to general field-based methodology. We found that all considered discrete Laplacians have equivalent scaling behavior along the Cartesian directions. In addition, and somewhat surprisingly, known "isotropic" discrete Laplacians, i.e., isotropic up to fourth order in |k | , become quite anisotropic for larger wave vectors, whereas "less isotropic" discrete Laplacians (second order) are only slightly anisotropic on the whole |k | range. We identified a hard limit to the accuracy with which the discrete Laplacian can emulate the two important properties of the optimal (continuum) Laplacian, as an improvement of the isotropy, by introducing additional points to the stencil, will negatively affect the scaling behavior. Within this limitation, the discrete compact Laplacians in the D n Q m class known from lattice hydrodynamics, D 2 Q 9 in 2D and D 3 Q 19 in 3D, are found to be optimal in terms of isotropy. However, by being only slightly anisotropic on the whole range and enabling larger time steps, the discrete Laplacians that relate to the local averaging operator of Oono and Puri (2D) and Shinozaki and Oono (3D) as well as the less familiar 3D discrete B v V Laplacian developed for dynamic density functional theory are valid alternatives.
Bayesian functional integral method for inferring continuous data from discrete measurements.
Heuett, William J; Miller, Bernard V; Racette, Susan B; Holloszy, John O; Chow, Carson C; Periwal, Vipul
2012-02-08
Inference of the insulin secretion rate (ISR) from C-peptide measurements as a quantification of pancreatic β-cell function is clinically important in diseases related to reduced insulin sensitivity and insulin action. ISR derived from C-peptide concentration is an example of nonparametric Bayesian model selection where a proposed ISR time-course is considered to be a "model". An inferred value of inaccessible continuous variables from discrete observable data is often problematic in biology and medicine, because it is a priori unclear how robust the inference is to the deletion of data points, and a closely related question, how much smoothness or continuity the data actually support. Predictions weighted by the posterior distribution can be cast as functional integrals as used in statistical field theory. Functional integrals are generally difficult to evaluate, especially for nonanalytic constraints such as positivity of the estimated parameters. We propose a computationally tractable method that uses the exact solution of an associated likelihood function as a prior probability distribution for a Markov-chain Monte Carlo evaluation of the posterior for the full model. As a concrete application of our method, we calculate the ISR from actual clinical C-peptide measurements in human subjects with varying degrees of insulin sensitivity. Our method demonstrates the feasibility of functional integral Bayesian model selection as a practical method for such data-driven inference, allowing the data to determine the smoothing timescale and the width of the prior probability distribution on the space of models. In particular, our model comparison method determines the discrete time-step for interpolation of the unobservable continuous variable that is supported by the data. Attempts to go to finer discrete time-steps lead to less likely models. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Nonperturbative β function of eight-flavor SU(3) gauge theory
NASA Astrophysics Data System (ADS)
Hasenfratz, Anna; Schaich, David; Veernala, Aarti
2015-06-01
We present a new lattice study of the discrete β function for SU(3) gauge theory with N f = 8 massless flavors of fermions in the fundamental representation. Using the gradient flow running coupling, and comparing two different nHYP-smeared staggered lattice actions, we calculate the 8-flavor step-scaling function at significantly stronger couplings than were previously accessible. Our continuum-extrapolated results for the discrete β function show no sign of an IR fixed point up to couplings of g 2 ≈ 14. At the same time, we find that the gradient flow coupling runs much more slowly than predicted by two-loop perturbation theory, reinforcing previous indications that the 8-flavor system possesses nontrivial strongly coupled IR dynamics with relevance to BSM phenomenology.
NASA Astrophysics Data System (ADS)
Tavelli, Maurizio; Dumbser, Michael
2017-07-01
We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In addition, all the volume and surface integrals needed by the scheme depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessing stage. This leads to significant savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The viscous terms and the heat flux are also discretized making use of the staggered grid by defining the viscous stress tensor and the heat flux vector on the dual grid, which corresponds to the use of a lifting operator, but on the dual grid. The time step of our new numerical method is limited by a CFL condition based only on the fluid velocity and not on the sound speed. This makes the method particularly interesting for low Mach number flows. Finally, a very simple combination of artificial viscosity and the a posteriori MOOD technique allows to deal with shock waves and thus permits also to simulate high Mach number flows. We show computational results for a large set of two and three-dimensional benchmark problems, including both low and high Mach number flows and using polynomial approximation degrees up to p = 4.
Conception of discrete systems decomposition algorithm using p-invariants and hypergraphs
NASA Astrophysics Data System (ADS)
Stefanowicz, Ł.
2016-09-01
In the article author presents an idea of decomposition algorithm of discrete systems described by Petri Nets using pinvariants. Decomposition process is significant from the point of view of discrete systems design, because it allows separation of the smaller sequential parts. Proposed algorithm uses modified Martinez-Silva method as well as author's selection algorithm. The developed method is a good complement of classical decomposition algorithms using graphs and hypergraphs.
Interpreting Significant Discrete-Time Periods in Survival Analysis.
ERIC Educational Resources Information Center
Schumacker, Randall E.; Denson, Kathleen B.
Discrete-time survival analysis is a new method for educational researchers to employ when looking at the timing of certain educational events. Previous continuous-time methods do not allow for the flexibility inherent in a discrete-time method. Because both time-invariant and time-varying predictor variables can now be used, the interaction of…
NASA Astrophysics Data System (ADS)
Curtright, Thomas
2011-04-01
Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V. Typically, V has no lower bound and can exhibit switchbacks wherein V changes form when turning points are encountered by the particle. The Beverton-Holt and Skellam models of population dynamics, and particular cases of the logistic map are used to illustrate these features.
Women's HIV Disclosure to Family and Friends
Craft, Shonda M.; Reed, Sandra J.
2012-01-01
Abstract Previous researchers have documented rates of HIV disclosure to family at discrete time periods, yet none have taken a dynamic approach to this phenomenon. The purpose of this study is to take the next step and provide a retrospective comparison of rates of women's HIV disclosure to family and friends over a 15-year time span. Of particular interest are the possible influences of social network and relationship characteristics on the time-to-disclosure of serostatus. Time-to-disclosure was analyzed from data provided by 125 HIV-positive women. Participants were primarily married or dating (42%), unemployed (79.2%), African American (68%) women with a high school diploma or less (54.4%). Length of time since diagnosis ranged from 1 month to over 19 years (M=7.1 years). Results pointed to statistically significant differences in time-to-disclosure between family, friends, and sexual partners. Additionally, females and persons with whom the participant had more frequent contact were more likely to be disclosed to, regardless of the type of relationship. The results of this study underscore possible challenges with existing studies which have employed point prevalence designs, and point to new methods which could be helpful in family research. PMID:22313348
Space-Time Discrete KPZ Equation
NASA Astrophysics Data System (ADS)
Cannizzaro, G.; Matetski, K.
2018-03-01
We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, M.; Jayko, K.; Bowles, A.
1986-10-01
A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration diving-surfacing models, and an oil-spill-trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The distribution of animals is represented in space and time by discrete points, each of which may represent one or more whales. The movement of a whale point is governed by a random-walk algorithm which stochastically follows a migratory pathway.
A Computational Model of Human Table Tennis for Robot Application
NASA Astrophysics Data System (ADS)
Mülling, Katharina; Peters, Jan
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a Barrett WAM.
Arrieta-Camacho, Juan José; Biegler, Lorenz T
2005-12-01
Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit.
Nonlinear Maps for Design of Discrete Time Models of Neuronal Network Dynamics
2016-02-29
Performance/Technic~ 02-01-2016- 02-29-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nonlinear Maps for Design of Discrete -Time Models of Neuronal...neuronal model in the form of difference equations that generates neuronal states in discrete moments of time. In this approach, time step can be made...propose to use modern DSP ideas to develop new efficient approaches to the design of such discrete -time models for studies of large-scale neuronal
Numerical simulation of rarefied gas flow through a slit
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong
1990-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.
FDDO and DSMC analyses of rarefied gas flow through 2D nozzles
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.
Lectures on algebraic system theory: Linear systems over rings
NASA Technical Reports Server (NTRS)
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
Efficient Algorithms for Segmentation of Item-Set Time Series
NASA Astrophysics Data System (ADS)
Chundi, Parvathi; Rosenkrantz, Daniel J.
We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.
A design study for the addition of higher order parametric discrete elements to NASTRAN
NASA Technical Reports Server (NTRS)
Stanton, E. L.
1972-01-01
The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F
2015-10-01
Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.
Discrete-time Quantum Walks via Interchange Framework and Memory in Quantum Evolution
NASA Astrophysics Data System (ADS)
Dimcovic, Zlatko
One of the newer and rapidly developing approaches in quantum computing is based on "quantum walks," which are quantum processes on discrete space that evolve in either discrete or continuous time and are characterized by mixing of components at each step. The idea emerged in analogy with the classical random walks and stochastic techniques, but these unitary processes are very different even as they have intriguing similarities. This thesis is concerned with study of discrete-time quantum walks. The original motivation from classical Markov chains required for discrete-time quantum walks that one adds an auxiliary Hilbert space, unrelated to the one in which the system evolves, in order to be able to mix components in that space and then take the evolution steps accordingly (based on the state in that space). This additional, "coin," space is very often an internal degree of freedom like spin. We have introduced a general framework for construction of discrete-time quantum walks in a close analogy with the classical random walks with memory that is rather different from the standard "coin" approach. In this method there is no need to bring in a different degree of freedom, while the full state of the system is still described in the direct product of spaces (of states). The state can be thought of as an arrow pointing from the previous to the current site in the evolution, representing the one-step memory. The next step is then controlled by a single local operator assigned to each site in the space, acting quite like a scattering operator. This allows us to probe and solve some problems of interest that have not had successful approaches with "coined" walks. We construct and solve a walk on the binary tree, a structure of great interest but until our result without an explicit discrete time quantum walk, due to difficulties in managing coin spaces necessary in the standard approach. Beyond algorithmic interests, the model based on memory allows one to explore effects of history on the quantum evolution and the subtle emergence of classical features as "memory" is explicitly kept for additional steps. We construct and solve a walk with an additional correlation step, finding interesting new features. On the other hand, the fact that the evolution is driven entirely by a local operator, not involving additional spaces, enables us to choose the Fourier transform as an operator completely controlling the evolution. This in turn allows us to combine the quantum walk approach with Fourier transform based techniques, something decidedly not possible in classical computational physics. We are developing a formalism for building networks manageable by walks constructed with this framework, based on the surprising efficiency of our framework in discovering internals of a simple network that we so far solved. Finally, in line with our expectation that the field of quantum walks can take cues from the rich history of development of the classical stochastic techniques, we establish starting points for the work on non-Abelian quantum walks, with a particular quantum-walk analog of the classical "card shuffling," the walk on the permutation group. In summary, this thesis presents a new framework for construction of discrete time quantum walks, employing and exploring memoried nature of unitary evolution. It is applied to fully solving the problems of: A walk on the binary tree and exploration of the quantum-to-classical transition with increased correlation length (history). It is then used for simple network discovery, and to lay the groundwork for analysis of complex networks, based on combined power of efficient exploration of the Hilbert space (as a walk mixing components) and Fourier transformation (since we can choose this for the evolution operator). We hope to establish this as a general technique as its power would be unmatched by any approaches available in the classical computing. We also looked at the promising and challenging prospect of walks on non-Abelian structures by setting up the problem of "quantum card shuffling," a quantum walk on the permutation group. Relation to other work is thoroughly discussed throughout, along with examination of the context of our work and overviews of our current and future work.
A Neural Dynamic Model Generates Descriptions of Object-Oriented Actions.
Richter, Mathis; Lins, Jonas; Schöner, Gregor
2017-01-01
Describing actions entails that relations between objects are discovered. A pervasively neural account of this process requires that fundamental problems are solved: the neural pointer problem, the binding problem, and the problem of generating discrete processing steps from time-continuous neural processes. We present a prototypical solution to these problems in a neural dynamic model that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well as dynamic neural nodes holding discrete, language-like representations. Making the connection between these two types of representations enables the model to describe actions as well as to perceptually ground movement phrases-all based on real visual input. We demonstrate how the dynamic neural processes autonomously generate the processing steps required to describe or ground object-oriented actions. By solving the fundamental problems of neural pointing, binding, and emergent discrete processing, the model may be a first but critical step toward a systematic neural processing account of higher cognition. Copyright © 2017 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
LORETA EEG phase reset of the default mode network
Thatcher, Robert W.; North, Duane M.; Biver, Carl J.
2014-01-01
Objectives: The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). Methods: The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Results: Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300–350 ms and (2) 350–450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. Conclusions: The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a “shutter” that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations. PMID:25100976
Homoclinic snaking in the discrete Swift-Hohenberg equation
NASA Astrophysics Data System (ADS)
Kusdiantara, R.; Susanto, H.
2017-12-01
We consider the discrete Swift-Hohenberg equation with cubic and quintic nonlinearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg equation using central finite differences. We investigate the discretization effect on the bifurcation behavior, where we identify three regions of the coupling parameter, i.e., strong, weak, and intermediate coupling. Within the regions, the discrete Swift-Hohenberg equation behaves either similarly or differently from the continuum limit. In the intermediate coupling region, multiple Maxwell points can occur for the periodic solutions and may cause irregular snaking and isolas. Numerical continuation is used to obtain and analyze localized and periodic solutions for each case. Theoretical analysis for the snaking and stability of the corresponding solutions is provided in the weak coupling region.
Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel
2007-06-21
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong
2015-07-01
This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.
Real-Time Control of an Ensemble of Heterogeneous Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Bouman, Niek J.; Le Boudec, Jean-Yves
This paper focuses on the problem of controlling an ensemble of heterogeneous resources connected to an electrical grid at the same point of common coupling (PCC). The controller receives an aggregate power setpoint for the ensemble in real time and tracks this setpoint by issuing individual optimal setpoints to the resources. The resources can have continuous or discrete nature (e.g., heating systems consisting of a finite number of heaters that each can be either switched on or off) and/or can be highly uncertain (e.g., photovoltaic (PV) systems or residential loads). A naive approach would lead to a stochastic mixed-integer optimizationmore » problem to be solved at the controller at each time step, which might be infeasible in real time. Instead, we allow the controller to solve a continuous convex optimization problem and compensate for the errors at the resource level by using a variant of the well-known error diffusion algorithm. We give conditions guaranteeing that our algorithm tracks the power setpoint at the PCC on average while issuing optimal setpoints to individual resources. We illustrate the approach numerically by controlling a collection of batteries, PV systems, and discrete loads.« less
Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Brown, Jeremy R.; Madhavan, Poomima
2011-01-01
The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.
Wavelet-based analysis of circadian behavioral rhythms.
Leise, Tanya L
2015-01-01
The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hare, Danielle K.; Briggs, Martin A.; Rosenberry, Donald O.; Boutt, David F.; Lane, John W.
2015-11-01
Groundwater has a predictable thermal signature that can be used to locate discrete zones of discharge to surface water. As climate warms, surface water with strong groundwater influence will provide habitat stability and refuge for thermally stressed aquatic species, and is therefore critical to locate and protect. Alternatively, these discrete seepage locations may serve as potential point sources of contaminants from polluted aquifers. This study compares two increasingly common heat tracing methods to locate discrete groundwater discharge: direct-contact measurements made with fiber-optic distributed temperature sensing (FO-DTS) and remote sensing measurements collected with thermal infrared (TIR) cameras. FO-DTS is used to make high spatial resolution (typically m) thermal measurements through time within the water column using temperature-sensitive cables. The spatial-temporal data can be analyzed with statistical measures to reveal zones of groundwater influence, however, the personnel requirements, time to install, and time to georeference the cables can be burdensome, and the control units need constant calibration. In contrast, TIR data collection, either from handheld, airborne, or satellite platforms, can quickly capture point-in-time evaluations of groundwater seepage zones across large scales. However the remote nature of TIR measurements means they can be adversely influenced by a number of environmental and physical factors, and the measurements are limited to the surface ;skin; temperature of water features. We present case studies from a range of lentic to lotic aquatic systems to identify capabilities and limitations of both technologies and highlight situations in which one or the other might be a better instrument choice for locating groundwater discharge. FO-DTS performs well in all systems across seasons, but data collection was limited spatially by practical considerations of cable installation. TIR is found to consistently locate groundwater seepage zones above and along the streambank, but submerged seepage zones are only well identified in shallow systems (e.g. <0.5 m depth) with moderate flow. Winter data collection, when groundwater is relatively warm and buoyant, increases the water surface expression of discharge zones in shallow systems.
Influence of hydrodynamic thrust bearings on the nonlinear oscillations of high-speed rotors
NASA Astrophysics Data System (ADS)
Chatzisavvas, Ioannis; Boyaci, Aydin; Koutsovasilis, Panagiotis; Schweizer, Bernhard
2016-10-01
This paper investigates the effect of hydrodynamic thrust bearings on the nonlinear vibrations and the bifurcations occurring in rotor/bearing systems. In order to examine the influence of thrust bearings, run-up simulations may be carried out. To be able to perform such run-up calculations, a computationally efficient thrust bearing model is mandatory. Direct discretization of the Reynolds equation for thrust bearings by means of a Finite Element or Finite Difference approach entails rather large simulation times, since in every time-integration step a discretized model of the Reynolds equation has to be solved simultaneously with the rotor model. Implementation of such a coupled rotor/bearing model may be accomplished by a co-simulation approach. Such an approach prevents, however, a thorough analysis of the rotor/bearing system based on extensive parameter studies. A major point of this work is the derivation of a very time-efficient but rather precise model for transient simulations of rotors with hydrodynamic thrust bearings. The presented model makes use of a global Galerkin approach, where the pressure field is approximated by global trial functions. For the considered problem, an analytical evaluation of the relevant integrals is possible. As a consequence, the system of equations of the discretized bearing model is obtained symbolically. In combination with a proper decomposition of the governing system matrix, a numerically efficient implementation can be achieved. Using run-up simulations with the proposed model, the effect of thrust bearings on the bifurcations points as well as on the amplitudes and frequencies of the subsynchronous rotor oscillations is investigated. Especially, the influence of the magnitude of the axial force, the geometry of the thrust bearing and the oil parameters is examined. It is shown that the thrust bearing exerts a large influence on the nonlinear rotor oscillations, especially to those related with the conical mode of the rotor. A comparison between a full co-simulation approach and a reduced Galerkin implementation is carried out. It is shown that a speed-up of 10-15 times may be obtained with the Galerkin model compared to the co-simulation model under the same accuracy.
A high-order spatial filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-04-01
A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.
Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data
NASA Astrophysics Data System (ADS)
Deng, Xinyi
2016-08-01
A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in population spiking data. Lastly, we proposed a general three-step paradigm that allows us to relate behavioral outcomes of various tasks to simultaneously recorded neural activity across multiple brain areas, which is a step towards closed-loop therapies for psychological diseases using real-time neural stimulation. These methods are suitable for real-time implementation for content-based feedback experiments.
NASA Technical Reports Server (NTRS)
Chen, C. C.; Franklin, C. F.
1980-01-01
The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.
Nonlinear Maps for Design of Discrete-Time Models of Neuronal Network Dynamics
2016-03-31
2016 Performance/Technic~ 03-01-2016- 03-31-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nonlinear Maps for Design of Discrete -Time Models of...simulations is to design a neuronal model in the form of difference equations that generates neuronal states in discrete moments of time. In this...responsive tiring patterns. We propose to use modern DSP ideas to develop new efficient approaches to the design of such discrete -time models for
Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra
NASA Astrophysics Data System (ADS)
Rezakhah, Saeid; Maleki, Yasaman
2016-07-01
Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.
A priori discretization quality metrics for distributed hydrologic modeling applications
NASA Astrophysics Data System (ADS)
Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita
2016-04-01
In distributed hydrologic modelling, a watershed is treated as a set of small homogeneous units that address the spatial heterogeneity of the watershed being simulated. The ability of models to reproduce observed spatial patterns firstly depends on the spatial discretization, which is the process of defining homogeneous units in the form of grid cells, subwatersheds, or hydrologic response units etc. It is common for hydrologic modelling studies to simply adopt a nominal or default discretization strategy without formally assessing alternative discretization levels. This approach lacks formal justifications and is thus problematic. More formalized discretization strategies are either a priori or a posteriori with respect to building and running a hydrologic simulation model. A posteriori approaches tend to be ad-hoc and compare model calibration and/or validation performance under various watershed discretizations. The construction and calibration of multiple versions of a distributed model can become a seriously limiting computational burden. Current a priori approaches are more formalized and compare overall heterogeneity statistics of dominant variables between candidate discretization schemes and input data or reference zones. While a priori approaches are efficient and do not require running a hydrologic model, they do not fully investigate the internal spatial pattern changes of variables of interest. Furthermore, the existing a priori approaches focus on landscape and soil data and do not assess impacts of discretization on stream channel definition even though its significance has been noted by numerous studies. The primary goals of this study are to (1) introduce new a priori discretization quality metrics considering the spatial pattern changes of model input data; (2) introduce a two-step discretization decision-making approach to compress extreme errors and meet user-specified discretization expectations through non-uniform discretization threshold modification. The metrics for the first time provides quantification of the routing relevant information loss due to discretization according to the relationship between in-channel routing length and flow velocity. Moreover, it identifies and counts the spatial pattern changes of dominant hydrological variables by overlaying candidate discretization schemes upon input data and accumulating variable changes in area-weighted way. The metrics are straightforward and applicable to any semi-distributed or fully distributed hydrological model with grid scales are greater than input data resolutions. The discretization metrics and decision-making approach are applied to the Grand River watershed located in southwestern Ontario, Canada where discretization decisions are required for a semi-distributed modelling application. Results show that discretization induced information loss monotonically increases as discretization gets rougher. With regards to routing information loss in subbasin discretization, multiple interesting points rather than just the watershed outlet should be considered. Moreover, subbasin and HRU discretization decisions should not be considered independently since subbasin input significantly influences the complexity of HRU discretization result. Finally, results show that the common and convenient approach of making uniform discretization decisions across the watershed domain performs worse compared to a metric informed non-uniform discretization approach as the later since is able to conserve more watershed heterogeneity under the same model complexity (number of computational units).
Discrete Fourier transforms of nonuniformly spaced data
NASA Technical Reports Server (NTRS)
Swan, P. R.
1982-01-01
Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.
Full-Envelope Launch Abort System Performance Analysis Methodology
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.
2014-01-01
The implementation of a new dispersion methodology is described, which dis-perses abort initiation altitude or time along with all other Launch Abort System (LAS) parameters during Monte Carlo simulations. In contrast, the standard methodology assumes that an abort initiation condition is held constant (e.g., aborts initiated at altitude for Mach 1, altitude for maximum dynamic pressure, etc.) while dispersing other LAS parameters. The standard method results in large gaps in performance information due to the discrete nature of initiation conditions, while the full-envelope dispersion method provides a significantly more comprehensive assessment of LAS abort performance for the full launch vehicle ascent flight envelope and identifies performance "pinch-points" that may occur at flight conditions outside of those contained in the discrete set. The new method has significantly increased the fidelity of LAS abort simulations and confidence in the results.
On the origins of approximations for stochastic chemical kinetics.
Haseltine, Eric L; Rawlings, James B
2005-10-22
This paper considers the derivation of approximations for stochastic chemical kinetics governed by the discrete master equation. Here, the concepts of (1) partitioning on the basis of fast and slow reactions as opposed to fast and slow species and (2) conditional probability densities are used to derive approximate, partitioned master equations, which are Markovian in nature, from the original master equation. Under different conditions dictated by relaxation time arguments, such approximations give rise to both the equilibrium and hybrid (deterministic or Langevin equations coupled with discrete stochastic simulation) approximations previously reported. In addition, the derivation points out several weaknesses in previous justifications of both the hybrid and equilibrium systems and demonstrates the connection between the original and approximate master equations. Two simple examples illustrate situations in which these two approximate methods are applicable and demonstrate the two methods' efficiencies.
NASA Astrophysics Data System (ADS)
Hoffman, Kenneth J.; Keithley, Hudson
1994-12-01
There are few systems which aggregate standardized pertinent clinical observations of discrete patient problems and resolutions. The systematic information supplied by clinicians is generally provided to justify reimbursement from insurers. Insurers, by their nature, and expert in modeling health care costs by diagnosis, procedures, and population risk groups. Medically, they rely on clinician generated diagnostic and coded procedure information. Clinicians will document a patient's status at a discrete point in time through narrative. Clinical notes do not support aggregate and systematic analysis of outcome. A methodology exists and has been used by the US Army Drug and Alcohol Program to model the clinical activities, associated costs, and data requirements of an outpatient clinic. This has broad applicability for a comprehensive health care system to which patient costs and data requirements can be established.
Hsu, Sze-Bi; Yang, Ya-Tang
2016-04-01
We present the theory of a microfluidic bioreactor with a two-compartment growth chamber and periodic serial dilution. In the model, coexisting planktonic and biofilm populations exchange by adsorption and detachment. The criteria for coexistence and global extinction are determined by stability analysis of the global extinction state. Stability analysis yields the operating diagram in terms of the dilution and removal ratios, constrained by the plumbing action of the bioreactor. The special case of equal uptake function and logistic growth is analytically solved and explicit growth curves are plotted. The presented theory is applicable to generic microfluidic bioreactors with discrete growth chambers and periodic dilution at discrete time points. Therefore, the theory is expected to assist the design of microfluidic devices for investigating microbial competition and microbial biofilm growth under serial dilution conditions.
The inverse of winnowing: a FORTRAN subroutine and discussion of unwinnowing discrete data
Bracken, Robert E.
2004-01-01
This report describes an unwinnowing algorithm that utilizes a discrete Fourier transform, and a resulting Fortran subroutine that winnows or unwinnows a 1-dimensional stream of discrete data; the source code is included. The unwinnowing algorithm effectively increases (by integral factors) the number of available data points while maintaining the original frequency spectrum of a data stream. This has utility when an increased data density is required together with an availability of higher order derivatives that honor the original data.
Computation of Symmetric Discrete Cosine Transform Using Bakhvalov's Algorithm
NASA Technical Reports Server (NTRS)
Aburdene, Maurice F.; Strojny, Brian C.; Dorband, John E.
2005-01-01
A number of algorithms for recursive computation of the discrete cosine transform (DCT) have been developed recently. This paper presents a new method for computing the discrete cosine transform and its inverse using Bakhvalov's algorithm, a method developed for evaluation of a polynomial at a point. In this paper, we will focus on both the application of the algorithm to the computation of the DCT-I and its complexity. In addition, Bakhvalov s algorithm is compared with Clenshaw s algorithm for the computation of the DCT.
Indirect iterative learning control for a discrete visual servo without a camera-robot model.
Jiang, Ping; Bamforth, Leon C A; Feng, Zuren; Baruch, John E F; Chen, YangQuan
2007-08-01
This paper presents a discrete learning controller for vision-guided robot trajectory imitation with no prior knowledge of the camera-robot model. A teacher demonstrates a desired movement in front of a camera, and then, the robot is tasked to replay it by repetitive tracking. The imitation procedure is considered as a discrete tracking control problem in the image plane, with an unknown and time-varying image Jacobian matrix. Instead of updating the control signal directly, as is usually done in iterative learning control (ILC), a series of neural networks are used to approximate the unknown Jacobian matrix around every sample point in the demonstrated trajectory, and the time-varying weights of local neural networks are identified through repetitive tracking, i.e., indirect ILC. This makes repetitive segmented training possible, and a segmented training strategy is presented to retain the training trajectories solely within the effective region for neural network approximation. However, a singularity problem may occur if an unmodified neural-network-based Jacobian estimation is used to calculate the robot end-effector velocity. A new weight modification algorithm is proposed which ensures invertibility of the estimation, thus circumventing the problem. Stability is further discussed, and the relationship between the approximation capability of the neural network and the tracking accuracy is obtained. Simulations and experiments are carried out to illustrate the validity of the proposed controller for trajectory imitation of robot manipulators with unknown time-varying Jacobian matrices.
Mroz, T A
1999-10-01
This paper contains a Monte Carlo evaluation of estimators used to control for endogeneity of dummy explanatory variables in continuous outcome regression models. When the true model has bivariate normal disturbances, estimators using discrete factor approximations compare favorably to efficient estimators in terms of precision and bias; these approximation estimators dominate all the other estimators examined when the disturbances are non-normal. The experiments also indicate that one should liberally add points of support to the discrete factor distribution. The paper concludes with an application of the discrete factor approximation to the estimation of the impact of marriage on wages.
Data-Dependent Fingerprints for Wireless Device Authentication
2014-05-20
enhanced when using a modulation based on orthogonal frequency division multiplexing ( OFDM ) that has a large range of signal levels. However, in...at 70 MHz. The radios use OFDM with 64-point FFT block sizes for transmission so that the bandwidth is divided into Nd = 64 data and Nc = 5 cyclic...τℓTs) (1) where Ts is the OFDM symbol period (and therefore discrete-time sampling period) and L is the number of multipaths in the channel with
Generating chaos for discrete time-delayed systems via impulsive control.
Guan, Zhi-Hong; Liu, Na
2010-03-01
Generating chaos for a class of discrete time-delayed systems via impulsive control is investigated in this paper. With the augmented matrix method, the time-delay impulsive systems can be transformed into a new class of linear discrete impulsive systems. Based on the largest Lyapunov exponent and the boundedness of the systems, some theoretical results about the chaotification for the discrete impulsive systems with time delay are derived and an example is given to visualize the satisfactory control performance.
Flight Deck Surface Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.
2017-01-01
Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.
Downdating a time-varying square root information filter
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.
1990-01-01
A new method to efficiently downdate an estimate and covariance generated by a discrete time Square Root Information Filter (SRIF) is presented. The method combines the QR factor downdating algorithm of Gill and the decentralized SRIF algorithm of Bierman. Efficient removal of either measurements or a priori information is possible without loss of numerical integrity. Moreover, the method includes features for detecting potential numerical degradation. Performance on a 300 parameter system with 5800 data points shows that the method can be used in real time and hence is a promising tool for interactive data analysis. Additionally, updating a time-varying SRIF filter with either additional measurements or a priori information proceeds analogously.
Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A
2008-08-01
A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.
Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains
NASA Astrophysics Data System (ADS)
Adler, V. E.
2018-04-01
We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.
On pseudo-spectral time discretizations in summation-by-parts form
NASA Astrophysics Data System (ADS)
Ruggiu, Andrea A.; Nordström, Jan
2018-05-01
Fully-implicit discrete formulations in summation-by-parts form for initial-boundary value problems must be invertible in order to provide well functioning procedures. We prove that, under mild assumptions, pseudo-spectral collocation methods for the time derivative lead to invertible discrete systems when energy-stable spatial discretizations are used.
Critical Slowing Down in Time-to-Extinction: An Example of Critical Phenomena in Ecology
NASA Technical Reports Server (NTRS)
Gandhi, Amar; Levin, Simon; Orszag, Steven
1998-01-01
We study a model for two competing species that explicitly accounts for effects due to discreteness, stochasticity and spatial extension of populations. The two species are equally preferred by the environment and do better when surrounded by others of the same species. We observe that the final outcome depends on the initial densities (uniformly distributed in space) of the two species. The observed phase transition is a continuous one and key macroscopic quantities like the correlation length of clusters and the time-to-extinction diverge at a critical point. Away from the critical point, the dynamics can be described by a mean-field approximation. Close to the critical point, however, there is a crossover to power-law behavior because of the gross mismatch between the largest and smallest scales in the system. We have developed a theory based on surface effects, which is in good agreement with the observed behavior. The course-grained reaction-diffusion system obtained from the mean-field dynamics agrees well with the particle system.
Controllability of discrete bilinear systems with bounded control.
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Elliott, D. L.; Goka, T.
1973-01-01
The subject of this paper is the controllability of time-invariant discrete-time bilinear systems. Bilinear systems are classified into two categories; homogeneous and inhomogeneous. Sufficient conditions which ensure the global controllability of discrete-time bilinear systems are obtained by localized analysis in control variables.
The Spectrum of Mathematical Models.
ERIC Educational Resources Information Center
Karplus, Walter J.
1983-01-01
Mathematical modeling problems encountered in many disciplines are discussed in terms of the modeling process and applications of models. The models are classified according to three types of abstraction: continuous-space-continuous-time, discrete-space-continuous-time, and discrete-space-discrete-time. Limitations in different kinds of modeling…
Dynamical quantum phase transitions in discrete time crystals
NASA Astrophysics Data System (ADS)
Kosior, Arkadiusz; Sacha, Krzysztof
2018-05-01
Discrete time crystals are related to nonequilibrium dynamics of periodically driven quantum many-body systems where the discrete time-translation symmetry of the Hamiltonian is spontaneously broken into another discrete symmetry. Recently, the concept of phase transitions has been extended to nonequilibrium dynamics of time-independent systems induced by a quantum quench, i.e., a sudden change of some parameter of the Hamiltonian. There, the return probability of a system to the ground state reveals singularities in time which are dubbed dynamical quantum phase transitions. We show that the quantum quench in a discrete time crystal leads to dynamical quantum phase transitions where the return probability of a periodically driven system to a Floquet eigenstate before the quench reveals singularities in time. It indicates that dynamical quantum phase transitions are not restricted to time-independent systems and can be also observed in systems that are periodically driven. We discuss how the phenomenon can be observed in ultracold atomic gases.
Warrick, P A; Precup, D; Hamilton, E F; Kearney, R E
2007-01-01
To develop a singular-spectrum analysis (SSA) based change-point detection algorithm applicable to fetal heart rate (FHR) monitoring to improve the detection of deceleration events. We present a method for decomposing a signal into near-orthogonal components via the discrete cosine transform (DCT) and apply this in a novel online manner to change-point detection based on SSA. The SSA technique forms models of the underlying signal that can be compared over time; models that are sufficiently different indicate signal change points. To adapt the algorithm to deceleration detection where many successive similar change events can occur, we modify the standard SSA algorithm to hold the reference model constant under such conditions, an approach that we term "base-hold SSA". The algorithm is applied to a database of 15 FHR tracings that have been preprocessed to locate candidate decelerations and is compared to the markings of an expert obstetrician. Of the 528 true and 1285 false decelerations presented to the algorithm, the base-hold approach improved on standard SSA, reducing the number of missed decelerations from 64 to 49 (21.9%) while maintaining the same reduction in false-positives (278). The standard SSA assumption that changes are infrequent does not apply to FHR analysis where decelerations can occur successively and in close proximity; our base-hold SSA modification improves detection of these types of event series.
Improved Results for Route Planning in Stochastic Transportation Networks
NASA Technical Reports Server (NTRS)
Boyan, Justin; Mitzenmacher, Michael
2000-01-01
In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.
From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives
NASA Astrophysics Data System (ADS)
Finster, Felix
This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.
Sanchis-Cano, Angel; Romero, Julián; Sacoto-Cabrera, Erwin J; Guijarro, Luis
2017-11-25
We analyze the feasibility of providing Wireless Sensor Network-data-based services in an Internet of Things scenario from an economical point of view. The scenario has two competing service providers with their own private sensor networks, a network operator and final users. The scenario is analyzed as two games using game theory. In the first game, sensors decide to subscribe or not to the network operator to upload the collected sensing-data, based on a utility function related to the mean service time and the price charged by the operator. In the second game, users decide to subscribe or not to the sensor-data-based service of the service providers based on a Logit discrete choice model related to the quality of the data collected and the subscription price. The sinks and users subscription stages are analyzed using population games and discrete choice models, while network operator and service providers pricing stages are analyzed using optimization and Nash equilibrium concepts respectively. The model is shown feasible from an economic point of view for all the actors if there are enough interested final users and opens the possibility of developing more efficient models with different types of services.
The stochastic system approach for estimating dynamic treatments effect.
Commenges, Daniel; Gégout-Petit, Anne
2015-10-01
The problem of assessing the effect of a treatment on a marker in observational studies raises the difficulty that attribution of the treatment may depend on the observed marker values. As an example, we focus on the analysis of the effect of a HAART on CD4 counts, where attribution of the treatment may depend on the observed marker values. This problem has been treated using marginal structural models relying on the counterfactual/potential response formalism. Another approach to causality is based on dynamical models, and causal influence has been formalized in the framework of the Doob-Meyer decomposition of stochastic processes. Causal inference however needs assumptions that we detail in this paper and we call this approach to causality the "stochastic system" approach. First we treat this problem in discrete time, then in continuous time. This approach allows incorporating biological knowledge naturally. When working in continuous time, the mechanistic approach involves distinguishing the model for the system and the model for the observations. Indeed, biological systems live in continuous time, and mechanisms can be expressed in the form of a system of differential equations, while observations are taken at discrete times. Inference in mechanistic models is challenging, particularly from a numerical point of view, but these models can yield much richer and reliable results.
Wavelet transforms with discrete-time continuous-dilation wavelets
NASA Astrophysics Data System (ADS)
Zhao, Wei; Rao, Raghuveer M.
1999-03-01
Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.
Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong
2015-07-01
The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang
2015-07-15
The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedbackmore » control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.« less
Discrete Time-Crystalline Order in Cavity and Circuit QED Systems
NASA Astrophysics Data System (ADS)
Gong, Zongping; Hamazaki, Ryusuke; Ueda, Masahito
2018-01-01
Discrete time crystals are a recently proposed and experimentally observed out-of-equilibrium dynamical phase of Floquet systems, where the stroboscopic dynamics of a local observable repeats itself at an integer multiple of the driving period. We address this issue in a driven-dissipative setup, focusing on the modulated open Dicke model, which can be implemented by cavity or circuit QED systems. In the thermodynamic limit, we employ semiclassical approaches and find rich dynamical phases on top of the discrete time-crystalline order. In a deep quantum regime with few qubits, we find clear signatures of a transient discrete time-crystalline behavior, which is absent in the isolated counterpart. We establish a phenomenology of dissipative discrete time crystals by generalizing the Landau theory of phase transitions to Floquet open systems.
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
Exponential convergence through linear finite element discretization of stratified subdomains
NASA Astrophysics Data System (ADS)
Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali
2016-10-01
Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
1998-02-01
Using classic results of algebraic geometry for birational plane mappings in plane CP 2 we present a general approach to algebraic integrability of autonomous dynamical systems in C 2 with discrete time and systems of two autonomous functional equations for meromorphic functions in one complex variable defined by birational maps in C 2. General theorems defining the invariant curves, the dynamics of a birational mapping and a general theorem about necessary and sufficient conditions for integrability of birational plane mappings are proved on the basis of a new idea — a decomposition of the orbit set of indeterminacy points of direct maps relative to the action of the inverse mappings. A general method of generating integrable mappings and their rational integrals (invariants) I is proposed. Numerical characteristics Nk of intersections of the orbits Φn- kOi of fundamental or indeterminacy points Oi ɛ O ∩ S, of mapping Φn, where O = { O i} is the set of indeterminacy points of Φn and S is a similar set for invariant I, with the corresponding set O' ∩ S, where O' = { O' i} is the set of indeterminacy points of inverse mapping Φn-1, are introduced. Using the method proposed we obtain all nine integrable multiparameter quadratic birational reversible mappings with the zero fixed point and linear projective symmetry S = CΛC-1, Λ = diag(±1), with rational invariants generated by invariant straight lines and conics. The relations of numbers Nk with such numerical characteristics of discrete dynamical systems as the Arnold complexity and their integrability are established for the integrable mappings obtained. The Arnold complexities of integrable mappings obtained are determined. The main results are presented in Theorems 2-5, in Tables 1 and 2, and in Appendix A.
NASA Astrophysics Data System (ADS)
Tawfik, Sherif A.; El-Sheikh, S. M.; Salem, N. M.
2016-09-01
Recently we have become aware that the description of the quantum wave functions in Sec. 2.1 is incorrect. In the published version of the paper, we have stated that the states are expanded in terms of plane waves. However, the correct description of the quantum states in the context of the real space implementation (using the Octopus code) is that states are represented by discrete points in a real space grid.
Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case
Haney, M.M.
2007-01-01
Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.
Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling
NASA Technical Reports Server (NTRS)
Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.
2010-01-01
NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand DES capabilities to address KSC's planning needs.
Discrete Data Qualification System and Method Comprising Noise Series Fault Detection
NASA Technical Reports Server (NTRS)
Fulton, Christopher; Wong, Edmond; Melcher, Kevin; Bickford, Randall
2013-01-01
A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions.
Financial Distress Prediction Using Discrete-time Hazard Model and Rating Transition Matrix Approach
NASA Astrophysics Data System (ADS)
Tsai, Bi-Huei; Chang, Chih-Huei
2009-08-01
Previous studies used constant cut-off indicator to distinguish distressed firms from non-distressed ones in the one-stage prediction models. However, distressed cut-off indicator must shift according to economic prosperity, rather than remains fixed all the time. This study focuses on Taiwanese listed firms and develops financial distress prediction models based upon the two-stage method. First, this study employs the firm-specific financial ratio and market factors to measure the probability of financial distress based on the discrete-time hazard models. Second, this paper further focuses on macroeconomic factors and applies rating transition matrix approach to determine the distressed cut-off indicator. The prediction models are developed by using the training sample from 1987 to 2004, and their levels of accuracy are compared with the test sample from 2005 to 2007. As for the one-stage prediction model, the model in incorporation with macroeconomic factors does not perform better than that without macroeconomic factors. This suggests that the accuracy is not improved for one-stage models which pool the firm-specific and macroeconomic factors together. In regards to the two stage models, the negative credit cycle index implies the worse economic status during the test period, so the distressed cut-off point is adjusted to increase based on such negative credit cycle index. After the two-stage models employ such adjusted cut-off point to discriminate the distressed firms from non-distressed ones, their error of misclassification becomes lower than that of one-stage ones. The two-stage models presented in this paper have incremental usefulness in predicting financial distress.
Application of change-point problem to the detection of plant patches.
López, I; Gámez, M; Garay, J; Standovár, T; Varga, Z
2010-03-01
In ecology, if the considered area or space is large, the spatial distribution of individuals of a given plant species is never homogeneous; plants form different patches. The homogeneity change in space or in time (in particular, the related change-point problem) is an important research subject in mathematical statistics. In the paper, for a given data system along a straight line, two areas are considered, where the data of each area come from different discrete distributions, with unknown parameters. In the paper a method is presented for the estimation of the distribution change-point between both areas and an estimate is given for the distributions separated by the obtained change-point. The solution of this problem will be based on the maximum likelihood method. Furthermore, based on an adaptation of the well-known bootstrap resampling, a method for the estimation of the so-called change-interval is also given. The latter approach is very general, since it not only applies in the case of the maximum-likelihood estimation of the change-point, but it can be also used starting from any other change-point estimation known in the ecological literature. The proposed model is validated against typical ecological situations, providing at the same time a verification of the applied algorithms.
Kilometric radiation power flux dependence on area of discrete aurora
NASA Technical Reports Server (NTRS)
Saflekos, N. A.; Burch, J. L.; Gurnett, D. A.; Anderson, R. R.; Sheehan, R. E.
1989-01-01
Kilometer wavelength radiation, measured from distant positions over the North Pole and over the Earth's equator, was compared to the area of discrete aurora imaged by several low-altitude spacecraft. Through correlative studies of auroral kilometric radiation (AKR) with about two thousand auroral images, a stereoscopic view of the average auroral acceleration region was obtained. A major result is that the total AKR power increases as the area of the discrete auroral oval increases. The implications are that the regions of parallel potentials or the auroral plasma cavities, in which AKR is generated, must possess the following attributes: (1) they are shallow in altitude and their radial position depends on wavelength, (2) they thread flux tubes of small cross section, (3) the generation mechanism in them reaches a saturation limit rapidly, and (4) their distribution over the discrete auroral oval is nearly uniform. The above statistical results are true for large samples collected over a long period of time (about six months). In the short term, AKR frequently exhibits temporal variations with scales as short as three minutes (the resolution of the averaged data used). These fluctuations are explainable by rapid quenchings as well as fast starts of the electron cyclotron maser mechanism. There were times when AKR was present at substantial power levels while optical emissions were below instrument thresholds. A recent theoretical result may account for this set of observations by predicting that suprathermal electrons, of energies as low as several hundred eV, can generate second harmonic AKR. The indirect observations of second harmonic AKR require that these electrons have mirror points high above the atmosphere so as to minimize auroral light emissions. The results provide evidence supporting the electron cyclotron maser mechanism.
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
NASA Astrophysics Data System (ADS)
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Numerical investigations of low-density nozzle flow by solving the Boltzmann equation
NASA Technical Reports Server (NTRS)
Deng, Zheng-Tao; Liaw, Goang-Shin; Chou, Lynn Chen
1995-01-01
A two-dimensional finite-difference code to solve the BGK-Boltzmann equation has been developed. The solution procedure consists of three steps: (1) transforming the BGK-Boltzmann equation into two simultaneous partial differential equations by taking moments of the distribution function with respect to the molecular velocity u(sub z), with weighting factors 1 and u(sub z)(sup 2); (2) solving the transformed equations in the physical space based on the time-marching technique and the four-stage Runge-Kutta time integration, for a given discrete-ordinate. The Roe's second-order upwind difference scheme is used to discretize the convective terms and the collision terms are treated as source terms; and (3) using the newly calculated distribution functions at each point in the physical space to calculate the macroscopic flow parameters by the modified Gaussian quadrature formula. Repeating steps 2 and 3, the time-marching procedure stops when the convergent criteria is reached. A low-density nozzle flow field has been calculated by this newly developed code. The BGK Boltzmann solution and experimental data show excellent agreement. It demonstrated that numerical solutions of the BGK-Boltzmann equation are ready to be experimentally validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEneaney, William M.
2004-08-15
Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity ofmore » an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.« less
Joint modeling of longitudinal data and discrete-time survival outcome.
Qiu, Feiyou; Stein, Catherine M; Elston, Robert C
2016-08-01
A predictive joint shared parameter model is proposed for discrete time-to-event and longitudinal data. A discrete survival model with frailty and a generalized linear mixed model for the longitudinal data are joined to predict the probability of events. This joint model focuses on predicting discrete time-to-event outcome, taking advantage of repeated measurements. We show that the probability of an event in a time window can be more precisely predicted by incorporating the longitudinal measurements. The model was investigated by comparison with a two-step model and a discrete-time survival model. Results from both a study on the occurrence of tuberculosis and simulated data show that the joint model is superior to the other models in discrimination ability, especially as the latent variables related to both survival times and the longitudinal measurements depart from 0. © The Author(s) 2013.
Viana, Duarte S; Santamaría, Luis; Figuerola, Jordi
2016-02-01
Propagule retention time is a key factor in determining propagule dispersal distance and the shape of "seed shadows". Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals). Fittings to the cumulative distribution performed better for all types of parametric distributions (lognormal, gamma and Weibull distributions) and were more robust to variations in sample size and sampling time-intervals. These estimated distributions had negligible deviations of up to 0.045 in cumulative probability of retention times (according to the Kolmogorov-Smirnov statistic) in relation to original distributions from which propagule retention time was simulated, supporting the overall accuracy of this fitting method. In contrast, fitting the sampling-interval bounds resulted in greater deviations that ranged from 0.058 to 0.273 in cumulative probability of retention times, which may introduce considerable biases in parameter estimates. We recommend the use of cumulative probability to fit parametric probability distributions to propagule retention time, specifically using maximum likelihood for parameter estimation. Furthermore, the experimental design for an optimal characterization of unimodal propagule retention time should contemplate at least 500 recovered propagules and sampling time-intervals not larger than the time peak of propagule retrieval, except in the tail of the distribution where broader sampling time-intervals may also produce accurate fits.
Computer graphic visualization of orbiter lower surface boundary-layer transition
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Hartung, L. C.
1984-01-01
Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.
Acosta-Mesa, Héctor-Gabriel; Rechy-Ramírez, Fernando; Mezura-Montes, Efrén; Cruz-Ramírez, Nicandro; Hernández Jiménez, Rodolfo
2014-06-01
In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation. This discretization approach is evaluated using a time series data based on temporal patterns observed during a classical test used in cervical cancer detection; the classification accuracy reached by our method is compared with the well-known times series discretization algorithm SAX and the dimensionality reduction method PCA. Statistical analysis of the classification accuracy shows that the discrete representation is as efficient as the complete raw representation for the present application, reducing the dimensionality of the time series length by 97%. This representation is also very competitive in terms of classification accuracy when compared with similar approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.
1989-01-01
A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.
Polarisation in spin-echo experiments: Multi-point and lock-in measurements
NASA Astrophysics Data System (ADS)
Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William
2018-02-01
Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.
Role of conviction in nonequilibrium models of opinion formation
NASA Astrophysics Data System (ADS)
Crokidakis, Nuno; Anteneodo, Celia
2012-12-01
We analyze the critical behavior of a class of discrete opinion models in the presence of disorder. Within this class, each agent opinion takes a discrete value (±1 or 0) and its time evolution is ruled by two terms, one representing agent-agent interactions and the other the degree of conviction or persuasion (a self-interaction). The mean-field limit, where each agent can interact evenly with any other, is considered. Disorder is introduced in the strength of both interactions, with either quenched or annealed random variables. With probability p (1-p), a pairwise interaction reflects a negative (positive) coupling, while the degree of conviction also follows a binary probability distribution (two different discrete probability distributions are considered). Numerical simulations show that a nonequilibrium continuous phase transition, from a disordered state to a state with a prevailing opinion, occurs at a critical point pc that depends on the distribution of the convictions, with the transition being spoiled in some cases. We also show how the critical line, for each model, is affected by the update scheme (either parallel or sequential) as well as by the kind of disorder (either quenched or annealed).
Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method
Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...
2016-09-22
Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less
Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalchev, Delyan Z.; Lee, C. S.; Villa, U.
Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less
On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.
Feng, Zhiguang; Zheng, Wei Xing
2015-12-01
In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.
Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; de Los Campos, Gustavo; Alvarado, Gregorio; Suchismita, Mondal; Rutkoski, Jessica; González-Pérez, Lorena; Burgueño, Juan
2017-01-01
Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars. This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT's global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined. We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy.
Time Span of Discretion and Administrative Work in School Systems: Results of a Pilot Study.
ERIC Educational Resources Information Center
Allison, Derek J.; Morfitt, Grace
This paper presents findings of a study that utilized Elliott Jaques' theories of organizational depth structure and time span of discretion in administrative work to examine administrators' responsibilities in two Ontario (Canada) school systems. The theory predicts that the time-span of discretion associated with the administrative tasks will…
Shielding analyses: the rabbit vs the turtle?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broadhead, B.L.
1996-12-31
This paper compares solutions using Monte Carlo and discrete- ordinates methods applied to two actual shielding situations in order to make some general observations concerning the efficiency and advantages/disadvantages of the two approaches. The discrete- ordinates solutions are performed using two-dimensional geometries, while the Monte Carlo approaches utilize three-dimensional geometries with both multigroup and point cross-section data.
Computational domain discretization in numerical analysis of flow within granular materials
NASA Astrophysics Data System (ADS)
Sosnowski, Marcin
2018-06-01
The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
Goodness-of-fit tests for discrete data: a review and an application to a health impairment scale.
Horn, S D
1977-03-01
We review the advantages and disadvantages of several goodness-of-fit tests which may be used with discrete data: the multinomial test, the likelihood ratio test, the X2 test, the two-stage X2 test and the discrete Kolmogorov-Smirnov test. Although the X2 test is the best known and most widely used of these tests, its use with small sample sizes is controversial. If one has data which fall into ordered categories, then the discrete Kolmogorov-Smirnov test is an exact test which uses the information from the ordering and can be used for small sample sizes. We illustrate these points with an example of several analyses of health impairment data.
Cavity master equation for the continuous time dynamics of discrete-spin models.
Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Cavity master equation for the continuous time dynamics of discrete-spin models
NASA Astrophysics Data System (ADS)
Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
NASA Astrophysics Data System (ADS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-09-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Variable selection in discrete survival models including heterogeneity.
Groll, Andreas; Tutz, Gerhard
2017-04-01
Several variable selection procedures are available for continuous time-to-event data. However, if time is measured in a discrete way and therefore many ties occur models for continuous time are inadequate. We propose penalized likelihood methods that perform efficient variable selection in discrete survival modeling with explicit modeling of the heterogeneity in the population. The method is based on a combination of ridge and lasso type penalties that are tailored to the case of discrete survival. The performance is studied in simulation studies and an application to the birth of the first child.
Persistence Probabilities of Two-Sided (Integrated) Sums of Correlated Stationary Gaussian Sequences
NASA Astrophysics Data System (ADS)
Aurzada, Frank; Buck, Micha
2018-02-01
We study the persistence probability for some two-sided, discrete-time Gaussian sequences that are discrete-time analogues of fractional Brownian motion and integrated fractional Brownian motion, respectively. Our results extend the corresponding ones in continuous time in Molchan (Commun Math Phys 205(1):97-111, 1999) and Molchan (J Stat Phys 167(6):1546-1554, 2017) to a wide class of discrete-time processes.
Discrete-time Markovian stochastic Petri nets
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco
1995-01-01
We revisit and extend the original definition of discrete-time stochastic Petri nets, by allowing the firing times to have a 'defective discrete phase distribution'. We show that this formalism still corresponds to an underlying discrete-time Markov chain. The structure of the state for this process describes both the marking of the Petri net and the phase of the firing time for each transition, resulting in a large state space. We then modify the well-known power method to perform a transient analysis even when the state space is infinite, subject to the condition that only a finite number of states can be reached in a finite amount of time. Since the memory requirements might still be excessive, we suggest a bounding technique based on truncation.
Improved robustness and performance of discrete time sliding mode control systems.
Chakrabarty, Sohom; Bartoszewicz, Andrzej
2016-11-01
This paper presents a theoretical analysis along with simulations to show that increased robustness can be achieved for discrete time sliding mode control systems by choosing the sliding variable, or the output, to be of relative degree two instead of relative degree one. In other words it successfully reduces the ultimate bound of the sliding variable compared to the ultimate bound for standard discrete time sliding mode control systems. It is also found out that for such a selection of relative degree two output of the discrete time system, the reduced order system during sliding becomes finite time stable in absence of disturbance. With disturbance, it becomes finite time ultimately bounded. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
3D frequency-domain finite-difference modeling of acoustic wave propagation
NASA Astrophysics Data System (ADS)
Operto, S.; Virieux, J.
2006-12-01
We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed-memory computers. The MUMPS solver is based on a multifrontal method for LU factorization. We used the METIS algorithm to perform re-ordering of the matrix coefficients before factorization. Four grid points per minimum wavelength is used for discretization. We applied our algorithm to the 3D SEG/EAGE synthetic onshore OVERTHRUST model of dimensions 20 x 20 x 4.65 km. The velocities range between 2 and 6 km/s. We performed the simulations using 192 processors with 2 Gbytes of RAM memory per processor. We performed simulations for the 5 Hz, 7 Hz and 10 Hz frequencies in some fractions of the OVERTHRUST model. The grid interval was 100 m, 75 m and 50 m respectively. The grid dimensions were 207x207x53, 275x218x71 and 409x109x102 respectively corresponding to 100, 80 and 25 percents of the model respectively. The time for factorization is 20 mn, 108 mn and 163 mn respectively. The time for resolution was 3.8, 9.3 and 10.3 s per source. The total memory used during factorization is 143, 384 and 449 Gbytes respectively. One can note the huge memory requirement for factorization and the efficiency of the direct method to compute solutions for a large number of sources. This highlights the respective drawback and merit of the frequency-domain approach with respect to the time- domain counterpart. These results show that 3D acoustic frequency-domain wave propagation modeling can be performed at low frequencies using direct solver on large clusters of Pcs. This forward modeling algorithm may be used in the future as a tool to image the first kilometers of the crust by frequency-domain full-waveform inversion. For larger problems, we will use the out-of-core memory during factorization that has been implemented by the authors of MUMPS.
HIV disclosure by men who have sex with men to immediate family over time.
Serovich, Julianne M; Esbensen, Anna J; Mason, Tina L
2005-08-01
Previous researchers have comprehensively documented rates of HIV disclosure to family at discrete time periods yet none have taken a dynamic approach to this phenomenon. The purpose of this study was to address the trajectory of HIV serostatus disclosure to family members. Time to disclosure was analyzed from data provided by 135 HIV-positive men who have sex with men. Results indicated that mothers remain the family member to be told in greatest proportion, yet the proportion of family members told changes over time in a different manner than presented in earlier research. Additionally, the rate at which family members are told at all time points generally does not significantly differ from each other when accounting for characteristics of participants and family members.
HIV Disclosure by Men Who have Sex with Men to Immediate Family over Time
SEROVICH, JULIANNE M.; ESBENSEN, ANNA J.; MASON, TINA L.
2006-01-01
Previous researchers have comprehensively documented rates of HIV disclosure to family at discrete time periods yet none have taken a dynamic approach to this phenomenon. The purpose of this study was to address the trajectory of HIV serostatus disclosure to family members. Time to disclosure was analyzed from data provided by 135 HIV-positive men who have sex with men. Results indicated that mothers remain the family member to be told in greatest proportion, yet the proportion of family members told changes over time in a different manner than presented in earlier research. Additionally, the rate at which family members are told at all time points generally does not significantly differ from each other when accounting for characteristics of participants and family members. PMID:16124845
Stochastic Evolution Equations Driven by Fractional Noises
2016-11-28
rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian
Fractional discrete-time consensus models for single- and double-summator dynamics
NASA Astrophysics Data System (ADS)
Wyrwas, Małgorzata; Mozyrska, Dorota; Girejko, Ewa
2018-04-01
The leader-following consensus problem of fractional-order multi-agent discrete-time systems is considered. In the systems, interactions between opinions are defined like in Krause and Cucker-Smale models but the memory is included by taking the fractional-order discrete-time operator on the left-hand side of the nonlinear systems. In this paper, we investigate fractional-order models of opinions for the single- and double-summator dynamics of discrete-time by analytical methods as well as by computer simulations. The necessary and sufficient conditions for the leader-following consensus are formulated by proposing a consensus control law for tracking the virtual leader.
Space-time adaptive solution of inverse problems with the discrete adjoint method
NASA Astrophysics Data System (ADS)
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
Modeling and analysis of pinhole occulter experiment
NASA Technical Reports Server (NTRS)
Ring, J. R.
1986-01-01
The objectives were to improve pointing control system implementation by converting the dynamic compensator from a continuous domain representation to a discrete one; to determine pointing stability sensitivites to sensor and actuator errors by adding sensor and actuator error models to treetops and by developing an error budget for meeting pointing stability requirements; and to determine pointing performance for alternate mounting bases (space station for example).
Discretization and Numerical Solution of a Plane Problem in the Mechanics of Interfacial Cracks
NASA Astrophysics Data System (ADS)
Khoroshun, L. P.
2017-01-01
The Fourier transform is used to reduce the linear plane problem of the tension of a body with an interfacial crack to a system of dual equations for the transformed stresses and, then, to a system of integro-differential equations for the difference of displacements of the crack faces. After discretization, this latter system transforms into a system of algebraic equations for displacements of the crack faces. The effect of the bielastic constant and the number of discretization points on the half-length of the crack faces and the distribution of stresses at the interface is studied
NASA Astrophysics Data System (ADS)
Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong
2016-08-01
This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.
NASA Astrophysics Data System (ADS)
Sacha, Krzysztof; Zakrzewski, Jakub
2018-01-01
Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals—the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek’s idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
NASA Astrophysics Data System (ADS)
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
SPACEBAR: Kinematic design by computer graphics
NASA Technical Reports Server (NTRS)
Ricci, R. J.
1975-01-01
The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.
Stamatakos, Georgios S; Dionysiou, Dimitra D
2009-10-21
The tremendous rate of accumulation of experimental and clinical knowledge pertaining to cancer dictates the development of a theoretical framework for the meaningful integration of such knowledge at all levels of biocomplexity. In this context our research group has developed and partly validated a number of spatiotemporal simulation models of in vivo tumour growth and in particular tumour response to several therapeutic schemes. Most of the modeling modules have been based on discrete mathematics and therefore have been formulated in terms of rather complex algorithms (e.g. in pseudocode and actual computer code). However, such lengthy algorithmic descriptions, although sufficient from the mathematical point of view, may render it difficult for an interested reader to readily identify the sequence of the very basic simulation operations that lie at the heart of the entire model. In order to both alleviate this problem and at the same time provide a bridge to symbolic mathematics, we propose the introduction of the notion of hypermatrix in conjunction with that of a discrete operator into the already developed models. Using a radiotherapy response simulation example we demonstrate how the entire model can be considered as the sequential application of a number of discrete operators to a hypermatrix corresponding to the dynamics of the anatomic area of interest. Subsequently, we investigate the operators' commutativity and outline the "summarize and jump" strategy aiming at efficiently and realistically address multilevel biological problems such as cancer. In order to clarify the actual effect of the composite discrete operator we present further simulation results which are in agreement with the outcome of the clinical study RTOG 83-02, thus strengthening the reliability of the model developed.
On the lagrangian 1-form structure of the hyperbolic calogero-moser system
NASA Astrophysics Data System (ADS)
Jairuk, Umpon; Tanasittikosol, Monsit; Yoo-Kong, Sikarin
2017-06-01
In this work, we present the Lagrangian 1-form structure of the hyperbolic Calogero-Moser system in both discrete-time level and continuous-time level. The discrete-time hyperbolic Calogero-Moser system is obtained by considering pole reduction of the semi-discrete Kadomtsev-Petviashvili (KP) equation. Furthermore, it is shown that the hyperbolic Calogero-Moser system possesses the key relation, known as the discrete-time closure relation. This relation is a consequence of the compatibility property of the temporal Lax matrices. The continuous-time hierarchy of the hyperbolic Calogero-Moser system is obtained by taking two successive continuum limits, namely, the skewed limit and full limit. With these successive limits, the continuous-time closure relation is also obtained and is shown to hold at the continuous level.
Rigidity, Criticality and Prethermalization of Discrete Time Crystals
NASA Astrophysics Data System (ADS)
Yao, Norman
2017-04-01
Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal (DTC) is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. In this talk, I will describe a simple model for a one dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. I will analyze the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Effects of long-range interactions and pre-thermalization will be considered in the context of recent DTC realizations in trapped ions and solid-state spins.
Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-07-28
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.
Statistics of primordial density perturbations from discrete seed masses
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Bertschinger, Edmund
1991-01-01
The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.
Discrete distributed strain sensing of intelligent structures
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Crawley, Edward F.
1992-01-01
Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.
Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.
Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang
2017-11-01
Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
Romero, Julián; Sacoto-Cabrera, Erwin J.
2017-01-01
We analyze the feasibility of providing Wireless Sensor Network-data-based services in an Internet of Things scenario from an economical point of view. The scenario has two competing service providers with their own private sensor networks, a network operator and final users. The scenario is analyzed as two games using game theory. In the first game, sensors decide to subscribe or not to the network operator to upload the collected sensing-data, based on a utility function related to the mean service time and the price charged by the operator. In the second game, users decide to subscribe or not to the sensor-data-based service of the service providers based on a Logit discrete choice model related to the quality of the data collected and the subscription price. The sinks and users subscription stages are analyzed using population games and discrete choice models, while network operator and service providers pricing stages are analyzed using optimization and Nash equilibrium concepts respectively. The model is shown feasible from an economic point of view for all the actors if there are enough interested final users and opens the possibility of developing more efficient models with different types of services. PMID:29186847
Infant feeding attitudes of women in the United Kingdom during pregnancy and after birth.
Wilkins, Carol; Ryan, Kath; Green, Josephine; Thomas, Peter
2012-11-01
To address the recognized low rates of breastfeeding in the United Kingdom (UK), a change in fundamental attitudes toward infant feeding might be required. This paper reports an exploration of women's attitudes toward breastfeeding at different time points in the perinatal period, undertaken as part of a larger breastfeeding evaluation study. To measure women's infant feeding attitudes at 3 stages during the perinatal period to see whether, on average, they differed over time. Using the 17-item Iowa Infant Feeding Attitudes Scale (IIFAS), this cross-sectional study measured the infant feeding attitudes of 866 UK women at 3 perinatal stages (20 and 35 weeks antenatally and 6 weeks postpartum). Mean IIFAS scores were very similar, which shows that discrete groups of women at different time points in pregnancy and postpartum appear to have the same attitudes toward infant feeding. The predominance of scores lay in the mid-range at each of the time points, which may indicate women's indecision or ambivalent feelings about infant feeding during pregnancy and the postpartum period. Action must be undertaken to target the majority of women with mid-range scores whose ambivalence may respond positively to intervention programs. The challenge is to understand what would be appropriate and acceptable to this vulnerable group of women.
A Scale-Invariant ``Discrete-Time'' Balitsky--Kovchegov Equation
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
2005-06-01
We consider a version of QCD dipole cascading corresponding to a finite number n of discrete Δ Y steps of branching in rapidity. Using the discretization scheme preserving the holomorphic factorizability and scale-invariance in position space of the dipole splitting function, we derive an exact recurrence formula from step to step which plays the rôle of a ``discrete-time'' Balitsky--Kovchegov equation. The BK solutions are recovered in the limit n=∞ and Δ Y=0.
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew
2015-01-01
The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.
Segmented strings coupled to a B-field
NASA Astrophysics Data System (ADS)
Vegh, David
2018-04-01
In this paper we study segmented strings in AdS3 coupled to a background two-form whose field strength is proportional to the volume form. By changing the coupling, the theory interpolates between the Nambu-Goto string and the SL(2, ℝ) Wess-Zumino-Witten model. In terms of the kink momentum vectors, the action is independent of the coupling and the classical theory reduces to a single discrete-time Toda-type theory. The WZW model is a singular point in coupling space where the map into Toda variables degenerates.
Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics
NASA Astrophysics Data System (ADS)
d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.
2018-05-01
Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Dmitriev, S V; Kevrekidis, P G; Yoshikawa, N; Frantzeskakis, D J
2006-10-01
We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived in Spreight [Nonlinearity 12, 1373 (1999)] and Barashenkov [Phys. Rev. E 72, 035602(R) (2005)], such that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the static Klein-Gordon field, as suggested by Dmitriev [J. Phys. A 38, 7617 (2005)]. We then discuss some discrete phi4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static solutions, including those derived recently by Cooper [Phys. Rev. E 72, 036605 (2005)] but not limited to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schrödinger models. We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the continuum phi4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit of the corresponding space of the discrete models.
Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Zeng, Xin
Utilizing the characteristic polynomial of Lax matrix for the Belov-Chaltikian (BC) lattice hierarchy associated with a 3 × 3 discrete matrix spectral problem, we introduce a trigonal curve with three infinite points, from which we establish the associated Dubrovin-type equations. The essential properties of the Baker-Akhiezer function and the meromorphic function are discussed, that include their asymptotic behavior near three infinite points on the trigonal curve and the divisor of the meromorphic function. The Abel map is introduced to straighten out the continuous flow and the discrete flow in the Jacobian variety, from which the quasi-periodic solutions of the entire BC lattice hierarchy are obtained in terms of the Riemann theta function.
Kokeny, Paul; Cheng, Yu-Chung N; Xie, He
2018-05-01
Modeling MRI signal behaviors in the presence of discrete magnetic particles is important, as magnetic particles appear in nanoparticle labeled cells, contrast agents, and other biological forms of iron. Currently, many models that take into account the discrete particle nature in a system have been used to predict magnitude signal decays in the form of R2* or R2' from one single voxel. Little work has been done for predicting phase signals. In addition, most calculations of phase signals rely on the assumption that a system containing discrete particles behaves as a continuous medium. In this work, numerical simulations are used to investigate MRI magnitude and phase signals from discrete particles, without diffusion effects. Factors such as particle size, number density, susceptibility, volume fraction, particle arrangements for their randomness, and field of view have been considered in simulations. The results are compared to either a ground truth model, theoretical work based on continuous mediums, or previous literature. Suitable parameters used to model particles in several voxels that lead to acceptable magnetic field distributions around particle surfaces and accurate MR signals are identified. The phase values as a function of echo time from a central voxel filled by particles can be significantly different from those of a continuous cubic medium. However, a completely random distribution of particles can lead to an R2' value which agrees with the prediction from the static dephasing theory. A sphere with a radius of at least 4 grid points used in simulations is found to be acceptable to generate MR signals equivalent from a larger sphere. Increasing number of particles with a fixed volume fraction in simulations reduces the resulting variance in the phase behavior, and converges to almost the same phase value for different particle numbers at each echo time. The variance of phase values is also reduced when increasing the number of particles in a fixed voxel. These results indicate that MRI signals from voxels containing discrete particles, even with a sufficient number of particles per voxel, cannot be properly modeled by a continuous medium with an equivalent susceptibility value in the voxel. Copyright © 2017 Elsevier Inc. All rights reserved.
Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U
2016-06-01
This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Ecological monitoring in a discrete-time prey-predator model.
Gámez, M; López, I; Rodríguez, C; Varga, Z; Garay, J
2017-09-21
The paper is aimed at the methodological development of ecological monitoring in discrete-time dynamic models. In earlier papers, in the framework of continuous-time models, we have shown how a systems-theoretical methodology can be applied to the monitoring of the state process of a system of interacting populations, also estimating certain abiotic environmental changes such as pollution, climatic or seasonal changes. In practice, however, there may be good reasons to use discrete-time models. (For instance, there may be discrete cycles in the development of the populations, or observations can be made only at discrete time steps.) Therefore the present paper is devoted to the development of the monitoring methodology in the framework of discrete-time models of population ecology. By monitoring we mean that, observing only certain component(s) of the system, we reconstruct the whole state process. This may be necessary, e.g., when in a complex ecosystem the observation of the densities of certain species is impossible, or too expensive. For the first presentation of the offered methodology, we have chosen a discrete-time version of the classical Lotka-Volterra prey-predator model. This is a minimal but not trivial system where the methodology can still be presented. We also show how this methodology can be applied to estimate the effect of an abiotic environmental change, using a component of the population system as an environmental indicator. Although this approach is illustrated in a simplest possible case, it can be easily extended to larger ecosystems with several interacting populations and different types of abiotic environmental effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-star processing and gyro filtering for the video inertial pointing system
NASA Technical Reports Server (NTRS)
Murphy, J. P.
1976-01-01
The video inertial pointing (VIP) system is being developed to satisfy the acquisition and pointing requirements of astronomical telescopes. The VIP system uses a single video sensor to provide star position information that can be used to generate three-axis pointing error signals (multi-star processing) and for input to a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization system (gyro filtering). The CRT display facilitates target acquisition and positioning of the telescope by a remote operator. Linearized small angle equations are used for the multistar processing and a consideration of error performance and singularities lead to star pair location restrictions and equation selection criteria. A discrete steady-state Kalman filter which uses the integration of the gyros is developed and analyzed. The filter includes unit time delays representing asynchronous operations of the VIP microprocessor and video sensor. A digital simulation of a typical gyro stabilized gimbal is developed and used to validate the approach to the gyro filtering.
A validated methodology for determination of laboratory instrument computer interface efficacy
NASA Astrophysics Data System (ADS)
1984-12-01
This report is intended to provide a methodology for determining when, and for which instruments, direct interfacing of laboratory instrument and laboratory computers is beneficial. This methodology has been developed to assist the Tri-Service Medical Information Systems Program Office in making future decisions regarding laboratory instrument interfaces. We have calculated the time savings required to reach a break-even point for a range of instrument interface prices and corresponding average annual costs. The break-even analyses used empirical data to estimate the number of data points run per day that are required to meet the break-even point. The results indicate, for example, that at a purchase price of $3,000, an instrument interface will be cost-effective if the instrument is utilized for at least 154 data points per day if operated in the continuous mode, or 216 points per day if operated in the discrete mode. Although this model can help to ensure that instrument interfaces are cost effective, additional information should be considered in making the interface decisions. A reduction in results transcription errors may be a major benefit of instrument interfacing.
Reference-dependent preferences for maternity wards: an exploration of two reference points.
Neuman, Einat
2014-01-01
It is now well established that a person's valuation of the benefit from an outcome of a decision is determined by the intrinsic "consumption utility" of the outcome itself and also by the relation of the outcome to some reference point. The most notable expression of such reference-dependent preferences is loss aversion. What precisely this reference point is, however, is less clear. This paper claims and provides empirical evidence for the existence of more than one reference point. Using a discrete choice experiment in the Israeli public health-care sector, within a sample of 219 women who had given birth, it is shown that respondents refer to two reference points : (i) a constant scenario that is used in the experiment; and (ii) also the actual state of the quantitative attributes of the service (number of beds in room of hospitalization; and travel time from residence to hospital). In line with the loss aversion theory, it is also shown that losses (vis-à-vis the constant scenario and vis-à-vis the actual state) accumulate and have reinforced effects, while gains do not.
Discretization chaos - Feedback control and transition to chaos
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
Diffraction efficiency of photothermoplastic layers for the recording of discrete holograms
NASA Technical Reports Server (NTRS)
Koreshev, S. N.; Cherkasov, Yu. A.; Kislovskiy, I. L.
1987-01-01
An experimental and theoretical study of the dependence of eta of a digital phase Fourier hologram of a point object on the amount of deformation delta and the discrete-structure parameters representing the hologram is detailed. An expression is given for eta. Experiments were performed on photothermoplastic layers based on polyvinyl carbazole and trinitrofluorenone charge transfer complexes. The maximum eta, 2%, is found at delta = 0.56 micron.
Flows about a rotating circular cylinder by the discrete-vortex method
NASA Astrophysics Data System (ADS)
Kimura, Takeyoshi; Tsutahara, Michihisa
1987-01-01
A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.
Dense image registration through MRFs and efficient linear programming.
Glocker, Ben; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir; Paragios, Nikos
2008-12-01
In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach, the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level, a multi-scale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.
a Structure of Experienced Time
NASA Astrophysics Data System (ADS)
Havel, Ivan M.
2005-10-01
The subjective experience of time will be taken as a primary motivation for an alternative, essentially discontinuous conception of time. Two types of such experience will be discussed, one based on personal episodic memory, the other on the theoretical fine texture of experienced time below the threshold of phenomenal awareness. The former case implies a discrete structure of temporal episodes on a large scale, while the latter case suggests endowing psychological time with a granular structure on a small scale, i.e. interpreting it as a semi-ordered flow of smeared (not point-like) subliminal time grains. Only on an intermediate temporal scale would the subjectively felt continuity and fluency of time emerge. Consequently, there is no locally smooth mapping of phenomenal time onto the real number continuum. Such a model has certain advantages; for instance, it avoids counterintuitive interpretations of some neuropsychological experiments (e.g. Libet's measurement) in which the temporal order of events is crucial.
Prediction of flow dynamics using point processes
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Stemler, Thomas; Eroglu, Deniz; Marwan, Norbert
2018-01-01
Describing a time series parsimoniously is the first step to study the underlying dynamics. For a time-discrete system, a generating partition provides a compact description such that a time series and a symbolic sequence are one-to-one. But, for a time-continuous system, such a compact description does not have a solid basis. Here, we propose to describe a time-continuous time series using a local cross section and the times when the orbit crosses the local cross section. We show that if such a series of crossing times and some past observations are given, we can predict the system's dynamics with fine accuracy. This reconstructability neither depends strongly on the size nor the placement of the local cross section if we have a sufficiently long database. We demonstrate the proposed method using the Lorenz model as well as the actual measurement of wind speed.
Bao, Yan; Yang, Taoxi; Lin, Xiaoxiong; Pöppel, Ernst
2016-09-01
Differences of reaction times to specific stimulus configurations are used as indicators of cognitive processing stages. In this classical experimental paradigm, continuous temporal processing is implicitly assumed. Multimodal response distributions indicate, however, discrete time sampling, which is often masked by experimental conditions. Differences in reaction times reflect discrete temporal mechanisms that are pre-semantically implemented and suggested to be based on entrained neural oscillations. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information
NASA Astrophysics Data System (ADS)
Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.
2017-09-01
Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.
Discrete Time Crystals: Rigidity, Criticality, and Realizations.
Yao, N Y; Potter, A C; Potirniche, I-D; Vishwanath, A
2017-01-20
Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.; Sidilkover, David; Thomas, J. L.
2000-01-01
The second-order factorizable discretization of the compressible Euler equations developed by Sidilkover is extended to conservation form on general curvilinear body-fitted grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Solutions for flow in a channel with Mach numbers ranging from 0.0001 to a supercritical Mach number are shown, demonstrating uniform convergence rates and no loss of accuracy in the incompressible limit. A solution for the flow around the leading edge of a semi-infinite parabolic body demonstrates that the scheme maintains rapid convergence for a flow containing a stagnation point.
Transparent lattices and their solitary waves.
Sadurní, E
2014-09-01
We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.
Three case studies of the GasNet model in discrete domains.
Santos, C L; de Oliveira, P P; Husbands, P; Souza, C R
2001-06-01
A new neural network model - the GasNet - has been recently reported in the literature, which, in addition to the traditional electric type, point-to-point communication between units, also uses communication through a diffilsable chemical modulator. Here we assess the applicability of this model in three different scenarios, the XOR problem, a food gathering task for a simulated robot, and a docking task for a virtual spaceship. All of them represent discrete domains, a contrast with the one where the GasNet was originally introduced, which had an essentially continuous nature. These scenarios are well-known benchmark problems from the literature and, since they exhibit varying degrees of complexity, they impose distinct performance demands on the GasNet. The experiments were primarily intended to better understand the model, by extending the original problem domain where GasNet was introduced. The results reported point at some difficulties with the current GasNet model.
Discrete Variational Approach for Modeling Laser-Plasma Interactions
NASA Astrophysics Data System (ADS)
Reyes, J. Paxon; Shadwick, B. A.
2014-10-01
The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.
Differential porosimetry and permeametry for random porous media.
Hilfer, R; Lemmer, A
2015-07-01
Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.
Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang
2016-01-01
A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799
Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval
NASA Astrophysics Data System (ADS)
Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu
2017-11-01
Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.
Zhao, Hai-Qiong; Yu, Guo-Fu
2017-04-01
In this paper, a spatial discrete complex modified Korteweg-de Vries equation is investigated. The Lax pair, conservation laws, Darboux transformations, and breather and rational wave solutions to the semi-discrete system are presented. The distinguished feature of the model is that the discrete rational solution can possess new W-shape rational periodic-solitary waves that were not reported before. In addition, the first-order rogue waves reach peak amplitudes which are at least three times of the background amplitude, whereas their continuous counterparts are exactly three times the constant background. Finally, the integrability of the discrete system, including Lax pair, conservation laws, Darboux transformations, and explicit solutions, yields the counterparts of the continuous system in the continuum limit.
Stone, Mandy L.; Graham, Jennifer L.
2014-01-01
Johnson County is the fastest growing county in Kansas, with a population of about 560,000 people in 2012. Urban growth and development can have substantial effects on water quality, and streams in Johnson County are affected by nonpoint-source pollutants from stormwater runoff and point-source discharges such as municipal wastewater effluent. Understanding of current (2014) water-quality conditions and the effects of urbanization is critical for the protection and remediation of aquatic resources in Johnson County, Kansas and downstream reaches located elsewhere. The Indian Creek Basin is 194 square kilometers and includes parts of Johnson County, Kansas and Jackson County, Missouri. Approximately 86 percent of the Indian Creek Basin is located in Johnson County, Kansas. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, operated a series of six continuous real-time water-quality monitoring stations in the Indian Creek Basin during June 2011 through May 2013; one of these sites has been operating since February 2004. Five monitoring sites were located on Indian Creek and one site was located on Tomahawk Creek. The purpose of this report is to document regression models that establish relations between continuously measured water-quality properties and discretely collected water-quality constituents. Continuously measured water-quality properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, turbidity, and nitrate. Discrete water-quality samples were collected during June 2011 through May 2013 at five new sites and June 2004 through May 2013 at a long-term site and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models for 28 water-quality constituents were developed and documented. The water-quality information in this report is important to Johnson County Wastewater because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized during conditions and time scales that would not be possible otherwise.
Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components
NASA Technical Reports Server (NTRS)
Kousen, Kenneth A.
1999-01-01
This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.
Network Reconstruction From High-Dimensional Ordinary Differential Equations.
Chen, Shizhe; Shojaie, Ali; Witten, Daniela M
2017-01-01
We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online.
Efficient RPG detection in noisy 3D image data
NASA Astrophysics Data System (ADS)
Pipitone, Frank
2011-06-01
We address the automatic detection of Ambush weapons such as rocket propelled grenades (RPGs) from range data which might be derived from multiple camera stereo with textured illumination or by other means. We describe our initial work in a new project involving the efficient acquisition of 3D scene data as well as discrete point invariant techniques to perform real time search for threats to a convoy. The shapes of the jump boundaries in the scene are exploited in this paper, rather than on-surface points, due to the large error typical of depth measurement at long range and the relatively high resolution obtainable in the transverse direction. We describe examples of the generation of a novel range-scaled chain code for detecting and matching jump boundaries.
The construction of high-accuracy schemes for acoustic equations
NASA Technical Reports Server (NTRS)
Tang, Lei; Baeder, James D.
1995-01-01
An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.
Ordóñez, Celestino; Cabo, Carlos; Sanz-Ablanedo, Enoc
2017-01-01
Mobile laser scanning (MLS) is a modern and powerful technology capable of obtaining massive point clouds of objects in a short period of time. Although this technology is nowadays being widely applied in urban cartography and 3D city modelling, it has some drawbacks that need to be avoided in order to strengthen it. One of the most important shortcomings of MLS data is concerned with the fact that it provides an unstructured dataset whose processing is very time-consuming. Consequently, there is a growing interest in developing algorithms for the automatic extraction of useful information from MLS point clouds. This work is focused on establishing a methodology and developing an algorithm to detect pole-like objects and classify them into several categories using MLS datasets. The developed procedure starts with the discretization of the point cloud by means of a voxelization, in order to simplify and reduce the processing time in the segmentation process. In turn, a heuristic segmentation algorithm was developed to detect pole-like objects in the MLS point cloud. Finally, two supervised classification algorithms, linear discriminant analysis and support vector machines, were used to distinguish between the different types of poles in the point cloud. The predictors are the principal component eigenvalues obtained from the Cartesian coordinates of the laser points, the range of the Z coordinate, and some shape-related indexes. The performance of the method was tested in an urban area with 123 poles of different categories. Very encouraging results were obtained, since the accuracy rate was over 90%. PMID:28640189
Babashov, V; Aivas, I; Begen, M A; Cao, J Q; Rodrigues, G; D'Souza, D; Lock, M; Zaric, G S
2017-06-01
We analysed the radiotherapy planning process at the London Regional Cancer Program to determine the bottlenecks and to quantify the effect of specific resource levels with the goal of reducing waiting times. We developed a discrete-event simulation model of a patient's journey from the point of referral to a radiation oncologist to the start of radiotherapy, considering the sequential steps and resources of the treatment planning process. We measured the effect of several resource changes on the ready-to-treat to treatment (RTTT) waiting time and on the percentage treated within a 14 calendar day target. Increasing the number of dosimetrists by one reduced the mean RTTT by 6.55%, leading to 84.92% of patients being treated within the 14 calendar day target. Adding one more oncologist decreased the mean RTTT from 10.83 to 10.55 days, whereas a 15% increase in arriving patients increased the waiting time by 22.53%. The model was relatively robust to the changes in quantity of other resources. Our model identified sensitive and non-sensitive system parameters. A similar approach could be applied by other cancer programmes, using their respective data and individualised adjustments, which may be beneficial in making the most effective use of limited resources. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks
Rudinger, Kenneth; Gamble, John King; Bach, Eric; ...
2013-07-01
Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erencesmore » in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.« less
Discrete-time stability of continuous-time controller designs for large space structures
NASA Technical Reports Server (NTRS)
Balas, M. J.
1982-01-01
In most of the stable control designs for flexible structures, continuous time is assumed. However, in view of the implementation of the controllers by on-line digital computers, the discrete-time stability of such controllers is an important consideration. In the case of direct-velocity feedback (DVFB), involving negative feedback from collocated force actuators and velocity sensors, it is not immediately apparent how much delay due to digital implementation of DVFB can be tolerated without loss of stability. The present investigation is concerned with such questions. A study is conducted of the discrete-time stability of DVFB, taking into account an employment of Euler's method of approximation of the time derivative. The obtained result gives an indication of the acceptable time-step size for stable digital implementation of DVFB. A result derived in connection with the consideration of the discrete-time stability of stable continuous-time systems provides a general condition under which digital implementation of such a system will remain stable.
Hierarchical spatiotemporal matrix models for characterizing invasions
Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew
2007-01-01
The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.
Hierarchical spatiotemporal matrix models for characterizing invasions
Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew
2007-01-01
The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing. ?? 2006, The International Biometric Society.
Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect
NASA Astrophysics Data System (ADS)
Cheng, Lifang; Cao, Hongjun
2016-09-01
A discrete-time predator-prey model with Allee effect is investigated in this paper. We consider the strong and the weak Allee effect (the population growth rate is negative and positive at low population density, respectively). From the stability analysis and the bifurcation diagrams, we get that the model with Allee effect (strong or weak) growth function and the model with logistic growth function have somewhat similar bifurcation structures. If the predator growth rate is smaller than its death rate, two species cannot coexist due to having no interior fixed points. When the predator growth rate is greater than its death rate and other parameters are fixed, the model can have two interior fixed points. One is always unstable, and the stability of the other is determined by the integral step size, which decides the species coexistence or not in some extent. If we increase the value of the integral step size, then the bifurcated period doubled orbits or invariant circle orbits may arise. So the numbers of the prey and the predator deviate from one stable state and then circulate along the period orbits or quasi-period orbits. When the integral step size is increased to a critical value, chaotic orbits may appear with many uncertain period-windows, which means that the numbers of prey and predator will be chaotic. In terms of bifurcation diagrams and phase portraits, we know that the complexity degree of the model with strong Allee effect decreases, which is related to the fact that the persistence of species can be determined by the initial species densities.
Ciaccio, Edward J; Micheli-Tzanakou, Evangelia
2007-07-01
Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.
Lu, Zhixin; Squires, Shane; Ott, Edward; Girvan, Michelle
2016-12-01
We study the firing dynamics of a discrete-state and discrete-time version of an integrate-and-fire neuronal network model with both excitatory and inhibitory neurons. When the integer-valued state of a neuron exceeds a threshold value, the neuron fires, sends out state-changing signals to its connected neurons, and returns to the resting state. In this model, a continuous phase transition from non-ceaseless firing to ceaseless firing is observed. At criticality, power-law distributions of avalanche size and duration with the previously derived exponents, -3/2 and -2, respectively, are observed. Using a mean-field approach, we show analytically how the critical point depends on model parameters. Our main result is that the combined presence of both inhibitory neurons and integrate-and-fire dynamics greatly enhances the robustness of critical power-law behavior (i.e., there is an increased range of parameters, including both sub- and supercritical values, for which several decades of power-law behavior occurs).
Strongly-correlated crystal-field approach to heavy-fermion compounds and to 3d oxides
NASA Astrophysics Data System (ADS)
Radwanski, Ryszard; Ropka, Zofia
2005-03-01
The description of electronic and magnetic properties of real compounds like LaMnO3, LaCoO3, Na2V3O7, FeO, NdAl2 and ErNi5 as well as heavy-fermion superconductor UPd2Al3 and heavy-fermion metal YbRh2Si2, both zero-temperature ground state properties and thermodynamics, will be presented pointing out the existence of a discrete atomic-like low-energy, in the meV scale, electronic structure. This low-energy many-electron discrete atomic-like electronic structure is governed by very strong electron correlations, predominantly on-site, by the intra-atomic spin-orbit coupling and by details of the local surrounding (crystal-field interactions), but later is modified by inter-site interactions. Our studies indicate that there is the highest time to ``unquench'' the orbital moment in solid state physics in description of 3d-/4f-/5f-atom containing compounds and that heavy-fermion phenomena are of the relativistic origin.
NASA Astrophysics Data System (ADS)
Harikrishnan, K. P.
2018-02-01
We consider the simplest model in the family of discrete predator-prey system and introduce for the first time an environmental factor in the evolution of the system by periodically modulating the natural death rate of the predator. We show that with the introduction of environmental modulation, the bifurcation structure becomes much more complex with bubble structure and inverse period doubling bifurcation. The model also displays the peculiar phenomenon of coexistence of multiple limit cycles in the domain of attraction for a given parameter value that combine and finally gets transformed into a single strange attractor as the control parameter is increased. To identify the chaotic regime in the parameter plane of the model, we apply the recently proposed scheme based on the correlation dimension analysis. We show that the environmental modulation is more favourable for the stable coexistence of the predator and the prey as the regions of fixed point and limit cycle in the parameter plane increase at the expense of chaotic domain.
Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy.
Storath, Martin; Rickert, Dennis; Unser, Michael; Weinmann, Andreas
2017-10-01
We develop a fast algorithm for segmenting 3D images from linear measurements based on the Potts model (or piecewise constant Mumford-Shah model). To that end, we first derive suitable space discretizations of the 3D Potts model, which are capable of dealing with 3D images defined on non-cubic grids. Our discretization allows us to utilize a specific splitting approach, which results in decoupled subproblems of moderate size. The crucial point in the 3D setup is that the number of independent subproblems is so large that we can reasonably exploit the parallel processing capabilities of the graphics processing units (GPUs). Our GPU implementation is up to 18 times faster than the sequential CPU version. This allows to process even large volumes in acceptable runtimes. As a further contribution, we extend the algorithm in order to deal with non-negativity constraints. We demonstrate the efficiency of our method for combined image deconvolution and segmentation on simulated data and on real 3D wide field fluorescence microscopy data.
Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description
NASA Astrophysics Data System (ADS)
Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by the topography of the energy landscape, through the number of metastable regions of the compartments and characteristic height of the energy barriers separating the different basins. Our model opens the door to fully explore the interplay between hysteresis and fluctuations in multiphase displacements in porous media.
Discrete stochastic analogs of Erlang epidemic models.
Getz, Wayne M; Dougherty, Eric R
2018-12-01
Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.
Control of discrete time systems based on recurrent Super-Twisting-like algorithm.
Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L
2016-09-01
Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
2014-04-01
The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...and DG horizontal discretization employs high-order nodal basis functions 29 associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...Inside 235 each element we build ( 1)N + Gauss-Lobatto- Legendre (GLL) quadrature points, where N 236 indicate the polynomial order of the basis
NASA Technical Reports Server (NTRS)
Womble, M. E.; Potter, J. E.
1975-01-01
A prefiltering version of the Kalman filter is derived for both discrete and continuous measurements. The derivation consists of determining a single discrete measurement that is equivalent to either a time segment of continuous measurements or a set of discrete measurements. This prefiltering version of the Kalman filter easily handles numerical problems associated with rapid transients and ill-conditioned Riccati matrices. Therefore, the derived technique for extrapolating the Riccati matrix from one time to the next constitutes a new set of integration formulas which alleviate ill-conditioning problems associated with continuous Riccati equations. Furthermore, since a time segment of continuous measurements is converted into a single discrete measurement, Potter's square root formulas can be used to update the state estimate and its error covariance matrix. Therefore, if having the state estimate and its error covariance matrix at discrete times is acceptable, the prefilter extends square root filtering with all its advantages, to continuous measurement problems.
The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues
NASA Astrophysics Data System (ADS)
Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa
2009-01-01
The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.
The Wronskian solution of the constrained discrete Kadomtsev-Petviashvili hierarchy
NASA Astrophysics Data System (ADS)
Li, Maohua; He, Jingsong
2016-05-01
From the constrained discrete Kadomtsev-Petviashvili (cdKP) hierarchy, the discrete nonlinear Schrödinger (DNLS) equations have been derived. By means of the gauge transformation, the Wronskian solution of DNLS equations have been given. The u1 of the cdKP hierarchy is a Y-type soliton solution for odd times of the gauge transformation, but it becomes a dark-bright soliton solution for even times of the gauge transformation. The role of the discrete variable n in the profile of the u1 is discussed.
Discrete Space-Time: History and Recent Developments
NASA Astrophysics Data System (ADS)
Crouse, David
2017-01-01
Discussed in this work is the long history and debate of whether space and time are discrete or continuous. Starting from Zeno of Elea and progressing to Heisenberg and others, the issues with discrete space are discussed, including: Lorentz contraction (time dilation) of the ostensibly smallest spatial (temporal) interval, maintaining isotropy, violations of causality, and conservation of energy and momentum. It is shown that there are solutions to all these issues, such that discrete space is a viable model, yet the solution require strict non-absolute space (i.e., Mach's principle) and a re-analysis of the concept of measurement and the foundations of special relativity. In developing these solutions, the long forgotten but important debate between Albert Einstein and Henri Bergson concerning time will be discussed. Also discussed is the resolution to the Weyl tile argument against discrete space; however, the solution involves a modified version of the typical distance formula. One example effect of discrete space is then discussed, namely how it necessarily imposes order upon Wheeler's quantum foam, changing the foam into a gravity crystal and yielding crystalline properties of bandgaps, Brilluoin zones and negative inertial mass for astronomical bodies.
The effect of catchment discretization on rainfall-runoff model predictions
NASA Astrophysics Data System (ADS)
Goodrich, D.; Grayson, R.; Willgoose, G.; Palacios-Valez, O.; Bloschl, G.
2003-04-01
Application of distributed hydrologic watershed models fundamentally requires watershed partitioning or discretization. In addition to partitioning the watershed into modelling elements, these elements typically represent a further abstraction of the actual watershed surface and its relevant hydrologic properties. A critical issue that must be addressed by any user of these models prior to their application is definition of an acceptable level and type of watershed discretization or geometric model complexity. A quantitative methodology to define a level of geometric model complexity commensurate with a specified level of model performance is developed for watershed rainfall-runoff modelling. The methodology is tested on four subcatchments which cover a range of watershed scales of over three orders of magnitude in the USDA-ARS Walnut Gulch Experimental Watershed in Southeastern Arizona. It was found that distortion of the hydraulic roughness can compensate for a lower level of discretization (fewer channels) to a point. Beyond this point, hydraulic roughness distortion cannot compensate for the topographic distortion of representing the watershed by fewer elements (e.g. less complex channel network). Similarly, differences in representation of topography by different model or digital elevation model (DEM) types (e.g. Triangular Irregular Elements - TINs; contour lines; and regular grid DEMs) also result in difference in runoff routing responses that can be largely compensated for by a distortion in hydraulic roughness or path length. To put the effect of these discretization models in context it will be shown that relatively small non-compliance with Peclet number restrictions on timestep size can overwhelm the relatively modest differences resulting from the type of representation of topography.
A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
NASA Astrophysics Data System (ADS)
Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.
2014-05-01
The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.
An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation
Nutaro, James
2014-11-03
In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.
Monitoring urban subsidence based on SAR lnterferometric point target analysis
Zhang, Y.; Zhang, Jiahua; Gong, W.; Lu, Z.
2009-01-01
lnterferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derived deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.
Parallelization of PANDA discrete ordinates code using spatial decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbert, P.
2006-07-01
We present the parallel method, based on spatial domain decomposition, implemented in the 2D and 3D versions of the discrete Ordinates code PANDA. The spatial mesh is orthogonal and the spatial domain decomposition is Cartesian. For 3D problems a 3D Cartesian domain topology is created and the parallel method is based on a domain diagonal plane ordered sweep algorithm. The parallel efficiency of the method is improved by directions and octants pipelining. The implementation of the algorithm is straightforward using MPI blocking point to point communications. The efficiency of the method is illustrated by an application to the 3D-Ext C5G7more » benchmark of the OECD/NEA. (authors)« less
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
NASA Astrophysics Data System (ADS)
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
NASA Astrophysics Data System (ADS)
Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi
2018-05-01
A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.
Partition-based discrete-time quantum walks
NASA Astrophysics Data System (ADS)
Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo
2018-04-01
We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
NASA Astrophysics Data System (ADS)
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
When to be discrete: the importance of time formulation in understanding animal movement.
McClintock, Brett T; Johnson, Devin S; Hooten, Mevin B; Ver Hoef, Jay M; Morales, Juan M
2014-01-01
Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal movement have been facilitated by various specifications of contemporary models. These approaches differ, but most share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of implementation and biological interpretation. In general, animal movement occurs in continuous time but we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing, but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space models, we explore the differences and similarities between continuous and discrete versions of mechanistic movement models, establish some common terminology, and indicate under which circumstances one form might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time conceptualizations are merely different means to the same end, we present novel mathematical results revealing hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed and direction of movement are intrinsically linked in current continuous-time random walk formulations, and this can have important implications when interpreting animal behavior. We illustrate these concepts in the context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus ursinus) biotelemetry data.
When to be discrete: The importance of time formulation in understanding animal movement
McClintock, Brett T.; Johnson, Devin S.; Hooten, Mevin B.; Ver Hoef, Jay M.; Morales, Juan M.
2014-01-01
Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal movement have been facilitated by various specifications of contemporary models. These approaches differ, but most share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of implementation and biological interpretation. In general, animal movement occurs in continuous time but we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing, but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space models, we explore the differences and similarities between continuous and discrete versions of mechanistic movement models, establish some common terminology, and indicate under which circumstances one form might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time conceptualizations are merely different means to the same end, we present novel mathematical results revealing hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed and direction of movement are intrinsically linked in current continuous-time random walk formulations, and this can have important implications when interpreting animal behavior. We illustrate these concepts in the context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus ursinus) biotelemetry data.
Discrete fractional solutions of a Legendre equation
NASA Astrophysics Data System (ADS)
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
Tencer, John; Carlberg, Kevin; Larsen, Marvin; ...
2017-06-17
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tencer, John; Carlberg, Kevin; Larsen, Marvin
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
Benioff, Paul
2009-01-01
Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices. he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames. he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less
Miranda, J. Jaime; Diez-Canseco, Francisco; Lema, Claudia; Lescano, Andrés G.; Lagarde, Mylene; Blaauw, Duane; Huicho, Luis
2012-01-01
Background Doctors’ scarcity in rural areas remains a serious problem in Latin America and Peru. Few studies have explored job preferences of doctors working in underserved areas. We aimed to investigate doctors’ stated preferences for rural jobs. Methods and Findings A labelled discrete choice experiment (DCE) was performed in Ayacucho, an underserved department of Peru. Preferences were assessed for three locations: rural community, Ayacucho city (Ayacucho’s capital) and other provincial capital city. Policy simulations were run to assess the effect of job attributes on uptake of a rural post. Multiple conditional logistic regressions were used to assess the relative importance of job attributes and of individual characteristics. A total of 102 doctors participated. They were five times more likely to choose a job post in Ayacucho city over a rural community (OR 4.97, 95%CI 1.2; 20.54). Salary increases and bonus points for specialization acted as incentives to choose a rural area, while increase in the number of years needed to get a permanent post acted as a disincentive. Being male and working in a hospital reduced considerably chances of choosing a rural job, while not living with a partner increased them. Policy simulations showed that a package of 75% salary increase, getting a permanent contract after two years in rural settings, and getting bonus points for further specialisation increased rural job uptake from 21% to 77%. A package of 50% salary increase plus bonus points for further specialisation would also increase the rural uptake from 21% to 52%. Conclusions Doctors are five times more likely to favour a job in urban areas over rural settings. This strong preference needs to be overcome by future policies aimed at improving the scarcity of rural doctors. Some incentives, alone or combined, seem feasible and sustainable, whilst others may pose a high fiscal burden. PMID:23272065
Discrete and continuous dynamics modeling of a mass moving on a flexible structure
NASA Technical Reports Server (NTRS)
Herman, Deborah Ann
1992-01-01
A general discrete methodology for modeling the dynamics of a mass that moves on the surface of a flexible structure is developed. This problem was motivated by the Space Station/Mobile Transporter system. A model reduction approach is developed to make the methodology applicable to large structural systems. To validate the discrete methodology, continuous formulations are also developed. Three different systems are examined: (1) simply-supported beam, (2) free-free beam, and (3) free-free beam with two points of contact between the mass and the flexible beam. In addition to validating the methodology, parametric studies were performed to examine how the system's physical properties affect its dynamics.
Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus
NASA Astrophysics Data System (ADS)
Liu, Jiang; Wang, Deng-Shan; Yin, Yan-Bin
2017-06-01
In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. Supported by National Natural Science Foundation of China under Grant Nos. 11375030, 11472315, and Department of Science and Technology of Henan Province under Grant No. 162300410223 and Beijing Finance Funds of Natural Science Program for Excellent Talents under Grant No. 2014000026833ZK19
Simulation of Non-Abelian Braiding in Majorana Time Crystals
NASA Astrophysics Data System (ADS)
Bomantara, Raditya Weda; Gong, Jiangbin
2018-06-01
Discrete time crystals have attracted considerable theoretical and experimental studies but their potential applications have remained unexplored. A particular type of discrete time crystals, termed "Majorana time crystals," is found to emerge in a periodically driven superconducting wire accommodating two different species of topological edge modes. It is further shown that one can manipulate different Majorana edge modes separated in the time lattice, giving rise to an unforeseen scenario for topologically protected gate operations mimicking braiding. The proposed protocol can also generate a magic state that is important for universal quantum computation. This study thus advances the quantum control in discrete time crystals and reveals their great potential arising from their time-domain properties.
High-Performance High-Order Simulation of Wave and Plasma Phenomena
NASA Astrophysics Data System (ADS)
Klockner, Andreas
This thesis presents results aiming to enhance and broaden the applicability of the discontinuous Galerkin ("DG") method in a variety of ways. DG was chosen as a foundation for this work because it yields high-order finite element discretizations with very favorable numerical properties for the treatment of hyperbolic conservation laws. In a first part, I examine progress that can be made on implementation aspects of DG. In adapting the method to mass-market massively parallel computation hardware in the form of graphics processors ("GPUs"), I obtain an increase in computation performance per unit of cost by more than an order of magnitude over conventional processor architectures. Key to this advance is a recipe that adapts DG to a variety of hardware through automated self-tuning. I discuss new parallel programming tools supporting GPU run-time code generation which are instrumental in the DG self-tuning process and contribute to its reaching application floating point throughput greater than 200 GFlops/s on a single GPU and greater than 3 TFlops/s on a 16-GPU cluster in simulations of electromagnetics problems in three dimensions. I further briefly discuss the solver infrastructure that makes this possible. In the second part of the thesis, I introduce a number of new numerical methods whose motivation is partly rooted in the opportunity created by GPU-DG: First, I construct and examine a novel GPU-capable shock detector, which, when used to control an artificial viscosity, helps stabilize DG computations in gas dynamics and a number of other fields. Second, I describe my pursuit of a method that allows the simulation of rarefied plasmas using a DG discretization of the electromagnetic field. Finally, I introduce new explicit multi-rate time integrators for ordinary differential equations with multiple time scales, with a focus on applicability to DG discretizations of time-dependent problems.
NASA Astrophysics Data System (ADS)
Chen, Li
1999-09-01
According to a general definition of discrete curves, surfaces, and manifolds (Li Chen, 'Generalized discrete object tracking algorithms and implementations, ' In Melter, Wu, and Latecki ed, Vision Geometry VI, SPIE Vol. 3168, pp 184 - 195, 1997.). This paper focuses on the Jordan curve theorem in 2D discrete spaces. The Jordan curve theorem says that a (simply) closed curve separates a simply connected surface into two components. Based on the definition of discrete surfaces, we give three reasonable definitions of simply connected spaces. Theoretically, these three definition shall be equivalent. We have proved the Jordan curve theorem under the third definition of simply connected spaces. The Jordan theorem shows the relationship among an object, its boundary, and its outside area. In continuous space, the boundary of an mD manifold is an (m - 1)D manifold. The similar result does apply to regular discrete manifolds. The concept of a new regular nD-cell is developed based on the regular surface point in 2D, and well-composed objects in 2D and 3D given by Latecki (L. Latecki, '3D well-composed pictures,' In Melter, Wu, and Latecki ed, Vision Geometry IV, SPIE Vol 2573, pp 196 - 203, 1995.).
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Numerical computation of diffusion on a surface.
Schwartz, Peter; Adalsteinsson, David; Colella, Phillip; Arkin, Adam Paul; Onsum, Matthew
2005-08-09
We present a numerical method for computing diffusive transport on a surface derived from image data. Our underlying discretization method uses a Cartesian grid embedded boundary method for computing the volume transport in a region consisting of all points a small distance from the surface. We obtain a representation of this region from image data by using a front propagation computation based on level set methods for solving the Hamilton-Jacobi and eikonal equations. We demonstrate that the method is second-order accurate in space and time and is capable of computing solutions on complex surface geometries obtained from image data of cells.
Stochastic series expansion simulation of the t -V model
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Troyer, Matthias
2016-04-01
We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.
NASA Technical Reports Server (NTRS)
Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.
1976-01-01
Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.
Nonequilibrium Phase Transition in a Periodically Driven XY Spin Chain
NASA Astrophysics Data System (ADS)
Prosen, Tomaž; Ilievski, Enej
2011-08-01
We present a general formulation of Floquet states of periodically time-dependent open Markovian quasifree fermionic many-body systems in terms of a discrete Lyapunov equation. Illustrating the technique, we analyze periodically kicked XY spin-(1)/(2) chain which is coupled to a pair of Lindblad reservoirs at its ends. A complex phase diagram is reported with reentrant phases of long range and exponentially decaying spin-spin correlations as some of the system’s parameters are varied. The structure of phase diagram is reproduced in terms of counting nontrivial stationary points of Floquet quasiparticle dispersion relation.
1987-08-14
way to do this is to replace the continuous domain of the problem by a mesh or lattice of discrete points in phase space. The position coordinates x... lattice -matched GaAs / AlxGal.xAs heterojunction system. The central undoped GaAs quantum well is "sandwiched" between two Al 3Ga 7As barriers and n" GaAs...device defined as a "quantum coupled device" ( QCD ), which employs resonant tunneling between discrete electronic energy levels. Though difficult, creation
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Loubère, Raphaël
2016-08-01
In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.
Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.
Oettinger, D; Mendoza, M; Herrmann, H J
2013-07-01
We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles
2011-01-01
Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarenko, A. V., E-mail: avm.science@mail.ru
A new class of bifurcations is defined in discrete dynamical systems, and methods for their diagnostics and the analysis of their properties are presented. The TQ-bifurcations considered are implemented in discrete mappings and are related to the qualitative rearrangement of the shape of trajectories in an extended space of states. Within the demonstration of the main capabilities of the toolkit, an analysis is carried out of a logistic mapping in a domain to the right of the period-doubling limit point. Five critical values of the parameter are found for which the geometric structure of the trajectories of the mapping experiencesmore » a qualitative rearrangement. In addition, an analysis is carried out of the so-called “trace map,” which arises in the problems of quantum-mechanical description of various properties of discrete crystalline and quasicrystalline lattices.« less
NASA Astrophysics Data System (ADS)
Bonaventura, Luca; Fernández-Nieto, Enrique D.; Garres-Díaz, José; Narbona-Reina, Gladys
2018-07-01
We propose an extension of the discretization approaches for multilayer shallow water models, aimed at making them more flexible and efficient for realistic applications to coastal flows. A novel discretization approach is proposed, in which the number of vertical layers and their distribution are allowed to change in different regions of the computational domain. Furthermore, semi-implicit schemes are employed for the time discretization, leading to a significant efficiency improvement for subcritical regimes. We show that, in the typical regimes in which the application of multilayer shallow water models is justified, the resulting discretization does not introduce any major spurious feature and allows again to reduce substantially the computational cost in areas with complex bathymetry. As an example of the potential of the proposed technique, an application to a sediment transport problem is presented, showing a remarkable improvement with respect to standard discretization approaches.
Foot strike patterns of recreational and sub-elite runners in a long-distance road race.
Larson, Peter; Higgins, Erin; Kaminski, Justin; Decker, Tamara; Preble, Janine; Lyons, Daniela; McIntyre, Kevin; Normile, Adam
2011-12-01
Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.
Inferring Toxicological Responses of HepG2 Cells from ...
Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, M. P.; Centre for Quantum Technologies, National University of Singapore; QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft
2016-02-15
Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.
Fairchild, Amanda J.; Abara, Winston E.; Gottschall, Amanda C.; Tein, Jenn-Yun; Prinz, Ronald J.
2015-01-01
The purpose of this article is to introduce and describe a statistical model that researchers can use to evaluate underlying mechanisms of behavioral onset and other event occurrence outcomes. Specifically, the article develops a framework for estimating mediation effects with outcomes measured in discrete-time epochs by integrating the statistical mediation model with discrete-time survival analysis. The methodology has the potential to help strengthen health research by targeting prevention and intervention work more effectively as well as by improving our understanding of discretized periods of risk. The model is applied to an existing longitudinal data set to demonstrate its use, and programming code is provided to facilitate its implementation. PMID:24296470
Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-01-01
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978
A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena
NASA Technical Reports Server (NTRS)
Zingg, David W.
1996-01-01
This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.
The Investigation of Laparoscopic Instrument Movement Control and Learning Effect
Lin, Chiuhsiang Joe
2013-01-01
Laparoscopic surgery avoids large incisions for intra-abdominal operations as required in conventional open surgery. Whereas the patient benefits from laparoscopic techniques, the surgeon encounters new difficulties that were not present during open surgery procedures. However, limited literature has been published in the essential movement characteristics such as magnification, amplitude, and angle. For this reason, the present study aims to investigate the essential movement characteristics of instrument manipulation via Fitts' task and to develop an instrument movement time predicting model. Ten right-handed subjects made discrete Fitts' pointing tasks using a laparoscopic trainer. The experimental results showed that there were significant differences between the three factors in movement time and in throughput. However, no significant differences were observed in the improvement rate for movement time and throughput between these three factors. As expected, the movement time was rather variable and affected markedly by direction to target. The conventional Fitts' law model was extended by incorporating a directional parameter into the model. The extended model was shown to better fit the data than the conventional model. These findings pointed to a design direction for the laparoscopic surgery training program, and the predictive model can be used to establish standards in the training procedure. PMID:23984348
The large discretization step method for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Haras, Zigo; Taasan, Shlomo
1995-01-01
A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.
Coalbed-methane pilots - timing, design, and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roadifer, R.D.; Moore, T.R.
2009-10-15
Four distinct sequential phases form a recommended process for coalbed-methane (CBM)-prospect assessment: initial screening reconnaissance, pilot testing, and final appraisal. Stepping through these four phases provides a program of progressively ramping work and cost, while creating a series of discrete decision points at which analysis of results and risks can be assessed. While discussing each of these phases in some degree, this paper focuses on the third, the critically important pilot-testing phase. This paper contains roughly 30 specific recommendations and the fundamental rationale behind each recommendation to help ensure that a CBM pilot will fulfill its primary objectives of (1)more » demonstrating whether the subject coal reservoir will desorb and produce consequential gas and (2) gathering the data critical to evaluate and risk the prospect at the next-often most critical-decision point.« less
NASA Astrophysics Data System (ADS)
Rodriguez Lucatero, C.; Schaum, A.; Alarcon Ramos, L.; Bernal-Jaquez, R.
2014-07-01
In this study, the dynamics of decisions in complex networks subject to external fields are studied within a Markov process framework using nonlinear dynamical systems theory. A mathematical discrete-time model is derived using a set of basic assumptions regarding the convincement mechanisms associated with two competing opinions. The model is analyzed with respect to the multiplicity of critical points and the stability of extinction states. Sufficient conditions for extinction are derived in terms of the convincement probabilities and the maximum eigenvalues of the associated connectivity matrices. The influences of exogenous (e.g., mass media-based) effects on decision behavior are analyzed qualitatively. The current analysis predicts: (i) the presence of fixed-point multiplicity (with a maximum number of four different fixed points), multi-stability, and sensitivity with respect to the process parameters; and (ii) the bounded but significant impact of exogenous perturbations on the decision behavior. These predictions were verified using a set of numerical simulations based on a scale-free network topology.
NASA Astrophysics Data System (ADS)
Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.
2017-09-01
In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.
Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert
2009-01-01
The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.
A new delay-independent condition for global robust stability of neural networks with time delays.
Samli, Ruya
2015-06-01
This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling hard clinical end-point data in economic analyses.
Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V
2013-11-01
The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (<7). Models of infrequent events or with numerous health states generally preferred constant event rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are more appropriate to accurately reflect the trial data.
Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing
2014-09-01
In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karimi-Fard, M.; Durlofsky, L. J.
2016-10-01
A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.
Time-discretized steady compressible Navier-Stokes equations with inflow and outflow boundaries
NASA Astrophysics Data System (ADS)
Yoon, Gangjoon; Yang, Sung-Dae; Song, Minsu; Gunzburger, Max
2013-12-01
The time-discretized steady compressible Navier-Stokes equations in n-dimensional bounded domains with the velocity specified only at the inflow boundary are considered. The existence and uniqueness of L p solutions are proved for p > n. For time-discretized steady flows, results of Kweon and Kellogg and of Kweon and Song are extended in a manner that allows for more general domains and for density-dependent viscosity coefficients. Moreover, we only require p > n which is a critical barrier in the previous works.
Complexity and chaos control in a discrete-time prey-predator model
NASA Astrophysics Data System (ADS)
Din, Qamar
2017-08-01
We investigate the complex behavior and chaos control in a discrete-time prey-predator model. Taking into account the Leslie-Gower prey-predator model, we propose a discrete-time prey-predator system with predator partially dependent on prey and investigate the boundedness, existence and uniqueness of positive equilibrium and bifurcation analysis of the system by using center manifold theorem and bifurcation theory. Various feedback control strategies are implemented for controlling the bifurcation and chaos in the system. Numerical simulations are provided to illustrate theoretical discussion.
Counting and classifying attractors in high dimensional dynamical systems.
Bagley, R J; Glass, L
1996-12-07
Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.
Human self-control and the density of reinforcement
Flora, Stephen R.; Pavlik, William B.
1992-01-01
Choice responding in adult humans on a discrete-trial button-pressing task was examined as a function of amount, delay, and overall density (points per unit time) of reinforcement. Reinforcement consisted of points that were exchangeable for money. In T 0 conditions, an impulsive response produced 4 points immediately and a self-control response produced 10 points after a delay of 15 s. In T 15 conditions, a constant delay of 15 s was added to both prereinforcer delays. Postreinforcer delays, which consisted of 15 s added to the end of each impulsive trial, equated trial durations regardless of choice, and was manipulated in both T 0 and T 15 conditions. In all conditions, choice was predicted directly from the relative reinforcement densities of the alternatives. Self-control was observed in all conditions except T 0 without postreinforcer delays, where the impulsive choices produced the higher reinforcement density. These results support previous studies showing that choice is a direct function of the relative reinforcement densities when conditioned (point) reinforcers are used. In contrast, where responding produces intrinsic (immediately consumable) reinforcers, immediacy of reinforcement appears to account for preference when density does not. PMID:16812652
Hongyi Xu; Barbic, Jernej
2017-01-01
We present an algorithm for fast continuous collision detection between points and signed distance fields, and demonstrate how to robustly use it for 6-DoF haptic rendering of contact between objects with complex geometry. Continuous collision detection is often needed in computer animation, haptics, and virtual reality applications, but has so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to robustly and continuously detect intersections between points and level sets of the signed distance field. We suggest using an octree subdivision of the distance field for fast traversal of distance field cells. We also give a method to resolve continuous collisions between point clouds organized into a tree hierarchy and a signed distance field, enabling rendering of contact between rigid objects with complex geometry. We investigate and compare two 6-DoF haptic rendering methods now applicable to point-versus-distance field contact for the first time: continuous integration of penalty forces, and a constraint-based method. An experimental comparison to discrete collision detection demonstrates that the continuous method is more robust and can correctly resolve collisions even under high velocities and during complex contact.
A non-discrete method for computation of residence time in fluid mechanics simulations.
Esmaily-Moghadam, Mahdi; Hsia, Tain-Yen; Marsden, Alison L
2013-11-01
Cardiovascular simulations provide a promising means to predict risk of thrombosis in grafts, devices, and surgical anatomies in adult and pediatric patients. Although the pathways for platelet activation and clot formation are not yet fully understood, recent findings suggest that thrombosis risk is increased in regions of flow recirculation and high residence time (RT). Current approaches for calculating RT are typically based on releasing a finite number of Lagrangian particles into the flow field and calculating RT by tracking their positions. However, special care must be taken to achieve temporal and spatial convergence, often requiring repeated simulations. In this work, we introduce a non-discrete method in which RT is calculated in an Eulerian framework using the advection-diffusion equation. We first present the formulation for calculating residence time in a given region of interest using two alternate definitions. The physical significance and sensitivity of the two measures of RT are discussed and their mathematical relation is established. An extension to a point-wise value is also presented. The methods presented here are then applied in a 2D cavity and two representative clinical scenarios, involving shunt placement for single ventricle heart defects and Kawasaki disease. In the second case study, we explored the relationship between RT and wall shear stress, a parameter of particular importance in cardiovascular disease.
Infusing pleasure: Mood effects of the consumption of a single cup of tea.
Einöther, Suzanne J L; Rowson, Matthew; Ramaekers, Johannes G; Giesbrecht, Timo
2016-08-01
Tea has historically been associated with mood benefits. Nevertheless, few studies have empirically investigated mood changes after tea consumption. We explored immediate effects of a single cup of tea up to an hour post-consumption on self-reported valence, arousal, discrete emotions, and implicit measures of mood. In a parallel group design, 153 participants received a cup of tea or placebo tea, or a glass of water. Immediately (i.e. 5 min) after consumption, tea increased valence but reduced arousal, as compared to the placebo. There were no differences at later time points. Discrete emotions did not differ significantly between conditions, immediately or over time. Water consumption increased implicit positivity as compared to placebo. Finally, consumption of tea and water resulted in higher interest in activities overall and in specific activity types compared to placebo. The present study shows that effects of a single cup of tea may be limited to an immediate increase in pleasure and decrease in arousal, which can increase interest in activities. Differences between tea and water were not significant, while differences between water and placebo on implicit measures were unexpected. More servings over a longer time may be required to evoke tea's arousing effects and appropriate tea consumption settings may evoke more enduring valence effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
A non-discrete method for computation of residence time in fluid mechanics simulations
NASA Astrophysics Data System (ADS)
Esmaily-Moghadam, Mahdi; Hsia, Tain-Yen; Marsden, Alison L.
2013-11-01
Cardiovascular simulations provide a promising means to predict risk of thrombosis in grafts, devices, and surgical anatomies in adult and pediatric patients. Although the pathways for platelet activation and clot formation are not yet fully understood, recent findings suggest that thrombosis risk is increased in regions of flow recirculation and high residence time (RT). Current approaches for calculating RT are typically based on releasing a finite number of Lagrangian particles into the flow field and calculating RT by tracking their positions. However, special care must be taken to achieve temporal and spatial convergence, often requiring repeated simulations. In this work, we introduce a non-discrete method in which RT is calculated in an Eulerian framework using the advection-diffusion equation. We first present the formulation for calculating residence time in a given region of interest using two alternate definitions. The physical significance and sensitivity of the two measures of RT are discussed and their mathematical relation is established. An extension to a point-wise value is also presented. The methods presented here are then applied in a 2D cavity and two representative clinical scenarios, involving shunt placement for single ventricle heart defects and Kawasaki disease. In the second case study, we explored the relationship between RT and wall shear stress, a parameter of particular importance in cardiovascular disease.
Monitoring a Complex Physical System using a Hybrid Dynamic Bayes Net
NASA Technical Reports Server (NTRS)
Lerner, Uri; Moses, Brooks; Scott, Maricia; McIlraith, Sheila; Keller, Daphne
2005-01-01
The Reverse Water Gas Shift system (RWGS) is a complex physical system designed to produce oxygen from the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without human supervision, thus requiring a reliable automated system for monitoring and control. The RWGS presents many challenges typical of real-world systems, including: noisy and biased sensors, nonlinear behavior, effects that are manifested over different time granularities, and unobservability of many important quantities. In this paper we model the RWGS using a hybrid (discrete/continuous) Dynamic Bayesian Network (DBN), where the state at each time slice contains 33 discrete and 184 continuous variables. We show how the system state can be tracked using probabilistic inference over the model. We discuss how to deal with the various challenges presented by the RWGS, providing a suite of techniques that are likely to be useful in a wide range of applications. In particular, we describe a general framework for dealing with nonlinear behavior using numerical integration techniques, extending the successful Unscented Filter. We also show how to use a fixed-point computation to deal with effects that develop at different time scales, specifically rapid changes occuring during slowly changing processes. We test our model using real data collected from the RWGS, demonstrating the feasibility of hybrid DBNs for monitoring complex real-world physical systems.
A non-discrete method for computation of residence time in fluid mechanics simulations
Esmaily-Moghadam, Mahdi; Hsia, Tain-Yen; Marsden, Alison L.
2013-01-01
Cardiovascular simulations provide a promising means to predict risk of thrombosis in grafts, devices, and surgical anatomies in adult and pediatric patients. Although the pathways for platelet activation and clot formation are not yet fully understood, recent findings suggest that thrombosis risk is increased in regions of flow recirculation and high residence time (RT). Current approaches for calculating RT are typically based on releasing a finite number of Lagrangian particles into the flow field and calculating RT by tracking their positions. However, special care must be taken to achieve temporal and spatial convergence, often requiring repeated simulations. In this work, we introduce a non-discrete method in which RT is calculated in an Eulerian framework using the advection-diffusion equation. We first present the formulation for calculating residence time in a given region of interest using two alternate definitions. The physical significance and sensitivity of the two measures of RT are discussed and their mathematical relation is established. An extension to a point-wise value is also presented. The methods presented here are then applied in a 2D cavity and two representative clinical scenarios, involving shunt placement for single ventricle heart defects and Kawasaki disease. In the second case study, we explored the relationship between RT and wall shear stress, a parameter of particular importance in cardiovascular disease. PMID:24046509
Henry, Kimberly L; Thornberry, Terence P; Huizinga, David H
2009-01-01
Despite truancy being a common behavior among teenagers, little research has assessed its deleterious effects. In this study, the effect of truancy on the initiation of marijuana use was examined. Using data from the Rochester Youth Development Study (a longitudinal sample of predominantly minority youth), discrete time survival analyses were estimated to assess the effect of truancy on the subsequent initiation of marijuana use. The current analyses used 5 years of panel data collected from youth and their primary caregiver every 6 months throughout adolescence. Truancy was a significant predictor of the initiation of marijuana use during each subsequent 6-month period. The effect was more robust in earlier compared with later adolescence. These effects persisted after controlling for potential risk factors that are shared by both truancy and drug use, including commitment to school, grade-point average, delinquent values, prior involvement in delinquency, peer reactions to delinquency, parental monitoring, affective ties to the child, and positive parenting. We argue that the effect is, in part, the result of reduced social control (i.e., disengagement from pro-social entities such as school) and, in part, the result of the unsupervised, unmonitored time afforded by truancy. Prevention initiatives aimed at reducing truancy also may have a beneficial impact on preventing the initiation of drug use among adolescents.
Robust estimation of pulse wave transit time using group delay.
Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C
2014-03-01
To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.
Molecular dynamics at low time resolution.
Faccioli, P
2010-10-28
The internal dynamics of macromolecular systems is characterized by widely separated time scales, ranging from fraction of picoseconds to nanoseconds. In ordinary molecular dynamics simulations, the elementary time step Δt used to integrate the equation of motion needs to be chosen much smaller of the shortest time scale in order not to cut-off physical effects. We show that in systems obeying the overdamped Langevin equation, it is possible to systematically correct for such discretization errors. This is done by analytically averaging out the fast molecular dynamics which occurs at time scales smaller than Δt, using a renormalization group based technique. Such a procedure gives raise to a time-dependent calculable correction to the diffusion coefficient. The resulting effective Langevin equation describes by construction the same long-time dynamics, but has a lower time resolution power, hence it can be integrated using larger time steps Δt. We illustrate and validate this method by studying the diffusion of a point-particle in a one-dimensional toy model and the denaturation of a protein.
van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F
2013-08-01
Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.
Flexural waves induced by electro-impulse deicing forces
NASA Technical Reports Server (NTRS)
Gien, P. H.
1990-01-01
The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.
Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill
2016-08-08
Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.
Probe-Independent EEG Assessment of Mental Workload in Pilots
2015-05-18
Teager Energy Operator - Frequency Modulated Component - z- score 10.94 17.46 10 Hurst Exponent - Discrete Second Order Derivative 7.02 17.06 D. Best...Teager Energy Operator– Frequency Modulated Component – Z-score 45. Line Length – Time Series 46. Line Length – Time Series – Z-score 47. Hurst Exponent ...Discrete Second Order Derivative 48. Hurst Exponent – Wavelet Based Adaptation 49. Hurst Exponent – Rescaled Range 50. Hurst Exponent – Discrete
Optimal generalized multistep integration formulae for real-time digital simulation
NASA Technical Reports Server (NTRS)
Moerder, D. D.; Halyo, N.
1985-01-01
The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.
Normalized Implicit Radial Models for Scattered Point Cloud Data without Normal Vectors
2009-03-23
points by shrinking a discrete membrane, Computer Graphics Forum, Vol. 24-4, 2005, pp. 791-808 [8] Floater , M. S., Reimers, M.: Meshless...Parameterization and Surface Reconstruction, Computer Aided Geometric Design 18, 2001, pp 77-92 [9] Floater , M. S.: Parameterization of Triangulations and...Unorganized Points, In: Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak and M. S. Floater (eds.), Springer , 2002, pp. 287-316 [10
The Concept of Solid Solvent as Processing Aid.
1984-09-20
3 presents the DSC results of acetanilide . Acetanilide shows a sharp melting peak at 116C, very close to the melting point (Tm) reported by Fisher...should become compatible with a polymer and act as a solvent in the liquid state above its melting point , significantly reducing the viscosity of the...polymer, but should become incompatible and crystallize out of the polymer as discrete domains below its melting point without adversely affecting
The discrete-time compensated Kalman filter
NASA Technical Reports Server (NTRS)
Lee, W. H.; Athans, M.
1978-01-01
A suboptimal dynamic compensator to be used in conjunction with the ordinary discrete time Kalman filter was derived. The resultant compensated Kalman Filter has the property that steady state bias estimation errors, resulting from modelling errors, were eliminated.
On small values of the Riemann zeta-function at Gram points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, M A
In this paper, we prove the existence of a large set of Gram points t{sub n} such that the values ζ(0.5+it{sub n}) are 'anomalously' close to zero. A lower bound for the negative 'discrete' moment of the Riemann zeta-function on the critical line is also given. Bibliography: 13 titles.
A Monte Carlo Application to Approximate the Integral from a to b of e Raised to the x Squared.
ERIC Educational Resources Information Center
Easterday, Kenneth; Smith, Tommy
1992-01-01
Proposes an alternative means of approximating the value of complex integrals, the Monte Carlo procedure. Incorporating a discrete approach and probability, an approximation is obtained from the ratio of computer-generated points falling under the curve to the number of points generated in a predetermined rectangle. (MDH)
A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments
Jeffrey S. Evans; Andrew T. Hudak
2007-01-01
One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground...
Dynamic Models of Insurgent Activity
2014-05-19
Martin Short, P. Jeffrey Brantingham, Frederick Schoenberg, George Tita . Self-Exciting Point Process Modeling of Crime, Journal of the American...Mohler, P. J. Brantingham, G. E. Tita . Gang rivalry dynamics via coupled point process networks, Discrete and Continuous Dynamical Systems - Series...8532-2-1 Laura Smith, Andrea Bertozzi, P. Jeffrey Brantingham, George Tita , Matthew Valasik. ADAPTATION OF AN ECOLOGICAL TERRITORIAL MODEL TOSTREET
State transformations and Hamiltonian structures for optimal control in discrete systems
NASA Astrophysics Data System (ADS)
Sieniutycz, S.
2006-04-01
Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.
Compatible Spatial Discretizations for Partial Differential Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Douglas, N, ed.
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less
On Fitts's and Hooke's laws: simple harmonic movement in upper-limb cyclical aiming.
Guiard, Y
1993-03-01
Can discrete, single-shot movements and continuous, cyclical movements be reduced to a single concept? In the classical, computational approach to human motor behaviour, cyclical aimed movement has generally been considered to derive from discrete primitives through a concatenation mechanism. Much importance, accordingly, has been attached to discrete-movement paradigms and to techniques allowing the segmentation of continuous data. An alternative approach, suggested by the nonlinear dynamical systems theory, views discreteness as a limiting case of cyclicity. Although attempts have been made recently to account for discrete movements in dynamical terms, cyclical paradigms have been favoured. The concatenation interpretation of cyclical aimed movement is criticized on the ground that it implies a complete waste of mechanical energy once in every half-cycle. Some kinematic data from a one-dimensional reciprocal (i.e., cyclical) aiming experiment are reported, suggesting that human subjects do save muscular efforts from one movement to the next in upper-limb cyclical aiming. The experiment demonstrated convergence on simple harmonic motion as aiming tolerance was increased, an outcome interpreted with reference to Hooke's law, in terms of the muscles' capability of storing potential, elastic energy across movement reversals. Not only is the concatenation concept problematic for understanding cyclical aimed movements, but the very reality of discrete movements is questionable too. It is pointed out that discrete motor acts of real life are composed of complete cycles, rather than half-cycles.
NASA Astrophysics Data System (ADS)
Fernandez, P.; Wang, Q.
2017-12-01
We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-09-29
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
Energy thresholds of discrete breathers in thermal equilibrium and relaxation processes.
Ming, Yi; Ling, Dong-Bo; Li, Hui-Min; Ding, Ze-Jun
2017-06-01
So far, only the energy thresholds of single discrete breathers in nonlinear Hamiltonian systems have been analytically obtained. In this work, the energy thresholds of discrete breathers in thermal equilibrium and the energy thresholds of long-lived discrete breathers which can remain after a long time relaxation are analytically estimated for nonlinear chains. These energy thresholds are size dependent. The energy thresholds of discrete breathers in thermal equilibrium are the same as the previous analytical results for single discrete breathers. The energy thresholds of long-lived discrete breathers in relaxation processes are different from the previous results for single discrete breathers but agree well with the published numerical results known to us. Because real systems are either in thermal equilibrium or in relaxation processes, the obtained results could be important for experimental detection of discrete breathers.
Alayli-Goebbels, Adrienne F G; Dellaert, Benedict G C; Knox, Stephanie A; Ament, André J H A; Lakerveld, Jeroen; Bot, Sandra D M; Nijpels, G; Severens, J L
2013-01-01
Health promotion (HP) interventions have outcomes that go beyond health. Such broader nonhealth outcomes are usually neglected in economic evaluation studies. To allow for their consideration, insights are needed into the types of nonhealth outcomes that HP interventions produce and their relative importance compared with health outcomes. This study explored consumer preferences for health and nonhealth outcomes of HP in the context of lifestyle behavior change. A discrete choice experiment was conducted among participants in a lifestyle intervention (n = 132) and controls (n = 141). Respondents made 16 binary choices between situations that can be experienced after lifestyle behavior change. The situations were described by 10 attributes: future health state value, start point of future health state, life expectancy, clothing size above ideal, days with sufficient relaxation, endurance, experienced control over lifestyle choices, lifestyle improvement of partner and/or children, monetary cost per month, and time cost per week. With the exception of "time cost per week" and "start point of future health state," all attributes significantly determined consumer choices. Thus, both health and nonhealth outcomes affected consumer choice. Marginal rates of substitution between the price attribute and the other attributes revealed that the attributes "endurance," "days with sufficient relaxation," and "future health state value" had the greatest impact on consumer choices. The "life expectancy" attribute had a relatively low impact and for increases of less than 3 years, respondents were not willing to trade. Health outcomes and nonhealth outcomes of lifestyle behavior change were both important to consumers in this study. Decision makers should respond to consumer preferences and consider nonhealth outcomes when deciding about HP interventions. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Zhang, Xiang-Zhi; Dong, Huan-He
2017-12-01
Two new shift operators are introduced for which a few differential-difference equations are generated by applying the R-matrix method. These equations can be reduced to the standard Toda lattice equation and (1+1)-dimensional and (2+1)-dimensional Toda-type equations which have important applications in hydrodynamics, plasma physics, and so on. Based on these consequences, we deduce the Hamiltonian structures of two discrete systems. Finally, we obtain some new infinite conservation laws of two discrete equations and employ Lie-point transformation group to obtain some continuous symmetries and part of invariant solutions for the (1+1) and (2+1)-dimensional Toda-type equations. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11
Discrete-time model reduction in limited frequency ranges
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A mathematical formulation for model reduction of discrete time systems such that the reduced order model represents the system in a particular frequency range is discussed. The algorithm transforms the full order system into balanced coordinates using frequency weighted discrete controllability and observability grammians. In this form a criterion is derived to guide truncation of states based on their contribution to the frequency range of interest. Minimization of the criterion is accomplished without need for numerical optimization. Balancing requires the computation of discrete frequency weighted grammians. Close form solutions for the computation of frequency weighted grammians are developed. Numerical examples are discussed to demonstrate the algorithm.
Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard
2016-02-28
Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. Copyright © 2015 John Wiley & Sons, Ltd.
Tail shortening by discrete hydrodynamics
NASA Astrophysics Data System (ADS)
Kiefer, J.; Visscher, P. B.
1982-02-01
A discrete formulation of hydrodynamics was recently introduced, whose most important feature is that it is exactly renormalizable. Previous numerical work has found that it provides a more efficient and rapidly convergent method for calculating transport coefficients than the usual Green-Kubo method. The latter's convergence difficulties are due to the well-known "long-time tail" of the time correlation function which must be integrated over time. The purpose of the present paper is to present additional evidence that these difficulties are really absent in the discrete equation of motion approach. The "memory" terms in the equation of motion are calculated accurately, and shown to decay much more rapidly with time than the equilibrium time correlations do.
Autonomous learning by simple dynamical systems with a discrete-time formulation
NASA Astrophysics Data System (ADS)
Bilen, Agustín M.; Kaluza, Pablo
2017-05-01
We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.
Time-changed geometric fractional Brownian motion and option pricing with transaction costs
NASA Astrophysics Data System (ADS)
Gu, Hui; Liang, Jin-Rong; Zhang, Yun-Xiu
2012-08-01
This paper deals with the problem of discrete time option pricing by a fractional subdiffusive Black-Scholes model. The price of the underlying stock follows a time-changed geometric fractional Brownian motion. By a mean self-financing delta-hedging argument, the pricing formula for the European call option in discrete time setting is obtained.
Hu, Jin; Wang, Jun
2015-06-01
In recent years, complex-valued recurrent neural networks have been developed and analysed in-depth in view of that they have good modelling performance for some applications involving complex-valued elements. In implementing continuous-time dynamical systems for simulation or computational purposes, it is quite necessary to utilize a discrete-time model which is an analogue of the continuous-time system. In this paper, we analyse a discrete-time complex-valued recurrent neural network model and obtain the sufficient conditions on its global exponential periodicity and exponential stability. Simulation results of several numerical examples are delineated to illustrate the theoretical results and an application on associative memory is also given. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.
Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence
2012-12-01
A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.
78 FR 23817 - Limitation on Claims Against Proposed Public Transportation Projects
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... the discrete actions taken by FTA at this time, as described below. Nothing in this notice affects FTA... street level. This notice only applies to the discrete actions taken by FTA at this time, as described...
Behavioral effects in room evacuation models
NASA Astrophysics Data System (ADS)
Dossetti, V.; Bouzat, S.; Kuperman, M. N.
2017-08-01
In this work we study a model for the evacuation of pedestrians from an enclosure considering a continuous space substrate and discrete time. We analyze the influence of behavioral features that affect the use of the empty space, that can be linked to the attitudes or characters of the pedestrians. We study how the interaction of different behavioral profiles affects the needed time to evacuate completely a room and the occurrence of clogging. We find that neither fully egotistic nor fully cooperative attitudes are optimal from the point of view of the crowd. In contrast, intermediate behaviors provide lower evacuation times. This leads us to identify some phenomena closely analogous to the faster-is-slower effect. The proposed model allows for distinguishing between the role of the attitudes in the search for empty space and the attitudes in the conflicts.
Repliscan: a tool for classifying replication timing regions.
Zynda, Gregory J; Song, Jawon; Concia, Lorenzo; Wear, Emily E; Hanley-Bowdoin, Linda; Thompson, William F; Vaughn, Matthew W
2017-08-07
Replication timing experiments that use label incorporation and high throughput sequencing produce peaked data similar to ChIP-Seq experiments. However, the differences in experimental design, coverage density, and possible results make traditional ChIP-Seq analysis methods inappropriate for use with replication timing. To accurately detect and classify regions of replication across the genome, we present Repliscan. Repliscan robustly normalizes, automatically removes outlying and uninformative data points, and classifies Repli-seq signals into discrete combinations of replication signatures. The quality control steps and self-fitting methods make Repliscan generally applicable and more robust than previous methods that classify regions based on thresholds. Repliscan is simple and effective to use on organisms with different genome sizes. Even with analysis window sizes as small as 1 kilobase, reliable profiles can be generated with as little as 2.4x coverage.
Measurement of large strains in ropes using plastic optical fibers
Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David
2006-02-14
A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.
Hydra effects in discrete-time models of stable communities.
Cortez, Michael H
2016-12-21
A species exhibits a hydra effect when, counter-intuitively, increased mortality of the species causes an increase in its abundance. Hydra effects have been studied in many continuous time (differential equation) multispecies models, but only rarely have hydra effects been observed in or studied with discrete time (difference equation) multispecies models. In addition most discrete time theory focuses on single-species models. Thus, it is unclear what unifying characteristics determine when hydra effects arise in discrete time models. Here, using discrete time multispecies models (where total abundance is the single variable describing each population), I show that a species exhibits a hydra effect in a stable system only when fixing that species' density at its equilibrium density destabilizes the system. This general characteristic is referred to as subsystem instability. I apply this result to two-species models and identify specific mechanisms that cause hydra effects in stable communities, e.g., in host--parasitoid models, host Allee effects and saturating parasitoid functional responses can cause parasitoid hydra effects. I discuss how the general characteristic can be used to identify mechanisms causing hydra effects in communities with three or more species. I also show that the condition for hydra effects at stable equilibria implies the system is reactive (i.e., density perturbations can grow before ultimately declining). This study extends previous work on conditions for hydra effects in single-species models by identifying necessary conditions for stable systems and sufficient conditions for cyclic systems. In total, these results show that hydra effects can arise in many more communities than previously appreciated and that hydra effects were present, but unrecognized, in previously studied discrete time models. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Holst spin foam model via cubulations
NASA Astrophysics Data System (ADS)
Baratin, Aristide; Flori, Cecilia; Thiemann, Thomas
2012-10-01
Spin foam models are an attempt at a covariant or path integral formulation of canonical loop quantum gravity. The construction of such models usually relies on the Plebanski formulation of general relativity as a constrained BF theory and is based on the discretization of the action on a simplicial triangulation, which may be viewed as an ultraviolet regulator. The triangulation dependence can be removed by means of group field theory techniques, which allows one to sum over all triangulations. The main tasks for these models are the correct quantum implementation of the Plebanski constraints, the existence of a semiclassical sector implementing additional ‘Regge-like’ constraints arising from simplicial triangulations and the definition of the physical inner product of loop quantum gravity via group field theory. Here we propose a new approach to tackle these issues stemming directly from the Holst action for general relativity, which is also a proper starting point for canonical loop quantum gravity. The discretization is performed by means of a ‘cubulation’ of the manifold rather than a triangulation. We give a direct interpretation of the resulting spin foam model as a generating functional for the n-point functions on the physical Hilbert space at finite regulator. This paper focuses on ideas and tasks to be performed before the model can be taken seriously. However, our analysis reveals some interesting features of this model: firstly, the structure of its amplitudes differs from the standard spin foam models. Secondly, the tetrad n-point functions admit a ‘Wick-like’ structure. Thirdly, the restriction to simple representations does not automatically occur—unless one makes use of the time gauge, just as in the classical theory.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Amin, R.; Gladkova, I.; Gilerson, A.; Grossberg, M.; Hlaing, S.; Shariar, F.; Alabi, P.
2010-04-01
The detection and monitoring of harmful algal blooms using in-situ field measurements is both labor intensive and is practically limited on achievable temporal and spatial resolutions, since field measurements are typically carried out at a series of discrete points and at discrete times, with practical limitations on temporal continuity. The planning and preparation of remedial measures to reduce health risks, etc., requires detection approaches which can effectively cover larger areas with contiguous spatial resolutions, and at the same time offer a more comprehensive and contemporaneous snapshot of entire blooms as they occur. This is beyond capabilities of in-situ measurements and it is in this context that satellite Ocean Color sensors offer potential advantages for bloom detection and monitoring. In this paper we examine the applications and limitations of an approach we have recently developed for the detection of K. brevis blooms from satellite Ocean Color Sensors measurements, the Red Band Difference Technique, and compare it to other detection algorithm approaches, including a new statistical based approach also proposed here. To achieve more uniform standards of comparisons, the performance of different techniques for detection are applied to the same specific verified blooms occurring off the West Florida Shelf (WFS) that have been verified by in-situ measurements.
Pfeil, Thomas; Potjans, Tobias C; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz
2012-01-01
Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists.
Pfeil, Thomas; Potjans, Tobias C.; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz
2012-01-01
Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists. PMID:22822388
NASA Astrophysics Data System (ADS)
Ogden, F. L.
2017-12-01
HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.
Discrete retardance second harmonic generation ellipsometry.
Dehen, Christopher J; Everly, R Michael; Plocinik, Ryan M; Hedderich, Hartmut G; Simpson, Garth J
2007-01-01
A new instrument was constructed to perform discrete retardance nonlinear optical ellipsometry (DR-NOE). The focus of the design was to perform second harmonic generation NOE while maximizing sample and application flexibility and minimizing data acquisition time. The discrete retardance configuration results in relatively simple computational algorithms for performing nonlinear optical ellipsometric analysis. NOE analysis of a disperse red 19 monolayer yielded results that were consistent with previously reported values for the same surface system, but with significantly reduced acquisition times.
Ogungbenro, Kayode; Aarons, Leon
2011-08-01
In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.
NASA Astrophysics Data System (ADS)
Teng, W. L.; Maidment, D. R.; Vollmer, B.; Peters-Lidard, C. D.; Rui, H.; Strub, R.; Whiteaker, T.; Mocko, D. M.; Kirschbaum, D. B.
2012-12-01
A longstanding and significant "Digital Divide" in data representation exists between hydrology and climatology and meteorology. Typically, in hydrology, earth surface features are expressed as discrete spatial objects such as watersheds, river reaches, and point observation sites; and time varying data are contained in time series associated with these spatial objects. Long time histories of data may be associated with a single point or feature in space. In meteorology and climatology, remotely sensed observations and weather and climate model information are expressed as continuous spatial fields, with data sequenced in time from one data file to the next. Hydrology tends to be narrow in space and deep in time, while meteorology and climatology are broad in space and narrow in time. This Divide has been an obstacle, specifically, between the hydrological community, as represented by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) and relevant data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). CUAHSI has developed the Hydrologic Information System (HIS), which is built on international geospatial standards, with one of its aims to bridge the Divide. The opportunity costs of the Divide are high. It has largely prevented the routine access and use of NASA Earth sciences data by the hydrological and, more generally, geospatial community. This presentation describes a recently-begun NASA ACCESS project that addresses the Digital Divide problem. Progress to date is summarized; technical details are provided in a related presentation (Rui et al., Data Reorganization for Optimal Time Series Data Access, Analysis, and Visualization, IN016). Building on prior prototype efforts with EPA BASINS (Better Assessment Science Integrating point and Nonpoint Sources) and CUAHSI HIS, this project focuses on the following approaches to the problems of data discovery, access, and use: (1) Link HIS and GES DISC ontologies to facilitate data service registration in HIS catalog; (2) harvest NASA ECHO catalog with OpenSearch to generalize the solution beyond GES DISC; (3) develop HIS WaterOneFlow Web services for GES DISC data in OGC-compliant WaterML 2.0; (4) reorganize NASA data (land surface model outputs, satellite precipitation and soil moisture data) for optimal access as time series; (5) enhance HIS HydroDesktop client to better handle NASA data; and (6) develop hydrological use cases to guide implementation, and serve as metric for usefulness, of project technologies. This project should significantly extend NASA Earth sciences data to the large and important hydrological user community that has been, heretofore, mostly unable to easily access and use NASA data.
Phillips, Carolyn L.; Guo, Hanqi; Peterka, Tom; ...
2016-02-19
In type-II superconductors, the dynamics of magnetic flux vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter field. Earlier, we introduced a method for extracting vortices from the discretized complex order parameter field generated by a large-scale simulation of vortex matter. With this method, at a fixed time step, each vortex [simplistically, a one-dimensional (1D) curve in 3D space] can be represented as a connected graph extracted from the discretized field. Here we extend this method as a function of time as well. A vortex now corresponds to a 2Dmore » space-time sheet embedded in 4D space time that can be represented as a connected graph extracted from the discretized field over both space and time. Vortices that interact by merging or splitting correspond to disappearance and appearance of holes in the connected graph in the time direction. This method of tracking vortices, which makes no assumptions about the scale or behavior of the vortices, can track the vortices with a resolution as good as the discretization of the temporally evolving complex scalar field. In addition, even details of the trajectory between time steps can be reconstructed from the connected graph. With this form of vortex tracking, the details of vortex dynamics in a model of a superconducting materials can be understood in greater detail than previously possible.« less
Warabi, Tateo; Kato, Masamichi; Kiriyama, Kiichi; Yoshida, Toshikazu; Kobayashi, Nobuyoshi
2004-12-01
Sole-floor reaction forces were recorded from five anatomically discrete points to analyze characteristics of human locomotion. Strain gauge of 14 mm diameter were firmly attached to the sole of bare-foot for recording force changes from the following five points: (1) medial process of calcaneus, (2) head of 1st metatarsal, (3) head of 3rd metatarsal, (4) head of 5th metatarsal and (5) great toe. Fifteen healthy adults were asked to walk at 2, 4, 6 and 8 km/h and to run at 8 km/h on the treadmill. Sole-floor reaction forces from 1st to 5th metatarsals show reciprocal changes during stance phase, while force from 1st metatarsal is strong 5th metatarsal shows weak reaction and vice versa. This phenomenon may be an expression of locomotor program to maintain vertical stability of the body during stance phase. There was a linear relation between walking speeds and sum of force from the five points, although sum of forces from three metatarsals did not change significantly during the walking speeds, indicating mainly calcaneus and great toe contribute to increasing walking speed. During running the sum of force from the three metatarsals increased sharply, joining the other two points to increase thrust.
Features of control systems analysis with discrete control devices using mathematical packages
NASA Astrophysics Data System (ADS)
Yakovleva, E. M.; Faerman, V. A.
2017-02-01
The article contains presentation of basic provisions of the theory of automatic pulse control systems as well as methods of analysis of such systems using the mathematical software widespread in the academic environment. The pulse systems under research are considered as analogues systems interacting among themselves, including sensors, amplifiers, controlled objects, and discrete parts. To describe such systems, one uses a mathematical apparatus of difference equations as well as discrete transfer functions. To obtain a transfer function of the open-loop system, being important from the point of view of the analysis of control systems, one uses mathematical packages Mathcad and Matlab. Despite identity of the obtained result, the way of its achievement from the point of view of user’s action is various for the specified means. In particular, Matlab uses a structural model of the control system while Mathcad allows only execution of a chain of operator transforms. It is worth noting that distinctions taking place allow considering transformation of signals during interaction of the linear and continuous parts of the control system from different sides. The latter can be used in an educational process for the best assimilation of the course of the control system theory by students.
NASA Astrophysics Data System (ADS)
Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen
2017-10-01
We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.
Synchronization Of Parallel Discrete Event Simulations
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System
NASA Astrophysics Data System (ADS)
Rovny, Jared; Blum, Robert L.; Barrett, Sean E.
2018-05-01
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.
Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System.
Rovny, Jared; Blum, Robert L; Barrett, Sean E
2018-05-04
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.
Discrete Events as Units of Perceived Time
ERIC Educational Resources Information Center
Liverence, Brandon M.; Scholl, Brian J.
2012-01-01
In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…
Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip
2015-05-01
An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.
Single-crossover recombination in discrete time.
von Wangenheim, Ute; Baake, Ellen; Baake, Michael
2010-05-01
Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.